1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define RAID_1_10_NAME "raid1"
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
73 raid1_rb_insert(si, &serial->serial_rb);
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
87 if (WARN_ON(!mddev->serial_info_pool))
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
96 struct serial_info *si;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
125 return get_resync_pages(bio)->raid_bio;
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
151 struct resync_pages *rps;
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
163 * Allocate bios : 1 for reading, n-1 for writing
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
173 * Allocate RESYNC_PAGES data pages and attach them to
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
185 bio = r1_bio->bios[j];
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
199 r1_bio->master_bio = NULL;
205 resync_free_pages(&rps[j]);
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
215 rbio_pool_free(r1_bio, data);
219 static void r1buf_pool_free(void *__r1_bio, void *data)
221 struct pool_info *pi = data;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
233 /* resync pages array stored in the 1st bio's .bi_private */
236 rbio_pool_free(r1bio, data);
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
251 static void free_r1bio(struct r1bio *r1_bio)
253 struct r1conf *conf = r1_bio->mddev->private;
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
259 static void put_buf(struct r1bio *r1_bio)
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 mempool_free(r1_bio, &conf->r1buf_pool);
273 lower_barrier(conf, sect);
276 static void reschedule_retry(struct r1bio *r1_bio)
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
298 static void call_bio_endio(struct r1bio *r1_bio)
300 struct bio *bio = r1_bio->master_bio;
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
308 static void raid_end_bio_io(struct r1bio *r1_bio)
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
321 call_bio_endio(r1_bio);
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
329 allow_barrier(conf, sector);
333 * Update disk head position estimator based on IRQ completion info.
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 struct r1conf *conf = r1_bio->mddev->private;
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
344 * Find the disk number which triggered given bio
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
362 static void raid1_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370 * this branch is our 'one mirror IO has finished' event handler:
372 update_head_pos(r1_bio->read_disk, r1_bio);
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
392 spin_unlock_irqrestore(&conf->device_lock, flags);
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
412 static void close_write(struct r1bio *r1_bio)
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
428 static void r1_bio_write_done(struct r1bio *r1_bio)
430 if (!atomic_dec_and_test(&r1_bio->remaining))
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
440 raid_end_bio_io(r1_bio);
444 static void raid1_end_write_request(struct bio *bio)
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 * 'one mirror IO has finished' event handler:
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
475 * When the device is faulty, it is not necessary to
476 * handle write error.
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
498 r1_bio->bios[mirror] = NULL;
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
510 set_bit(R1BIO_Uptodate, &r1_bio->state);
512 /* Maybe we can clear some bad blocks. */
513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
521 if (test_bit(CollisionCheck, &rdev->flags))
522 remove_serial(rdev, lo, hi);
523 if (test_bit(WriteMostly, &rdev->flags))
524 atomic_dec(&r1_bio->behind_remaining);
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
538 pr_debug("raid1: behind end write sectors"
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
542 call_bio_endio(r1_bio);
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
547 if (r1_bio->bios[mirror] == NULL)
548 rdev_dec_pending(rdev, conf->mddev);
551 * Let's see if all mirrored write operations have finished
554 r1_bio_write_done(r1_bio);
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
565 WARN_ON(sectors == 0);
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
579 static void update_read_sectors(struct r1conf *conf, int disk,
580 sector_t this_sector, int len)
582 struct raid1_info *info = &conf->mirrors[disk];
584 atomic_inc(&info->rdev->nr_pending);
585 if (info->next_seq_sect != this_sector)
586 info->seq_start = this_sector;
587 info->next_seq_sect = this_sector + len;
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 sector_t this_sector = r1_bio->sector;
594 int len = r1_bio->sectors;
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 struct md_rdev *rdev;
601 if (r1_bio->bios[disk] == IO_BLOCKED)
604 rdev = conf->mirrors[disk].rdev;
605 if (!rdev || test_bit(Faulty, &rdev->flags))
608 /* choose the first disk even if it has some bad blocks. */
609 read_len = raid1_check_read_range(rdev, this_sector, &len);
611 update_read_sectors(conf, disk, this_sector, read_len);
612 *max_sectors = read_len;
620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
622 return !test_bit(In_sync, &rdev->flags) &&
623 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 sector_t this_sector = r1_bio->sector;
634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 struct md_rdev *rdev;
639 if (r1_bio->bios[disk] == IO_BLOCKED)
642 rdev = conf->mirrors[disk].rdev;
643 if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 rdev_in_recovery(rdev, r1_bio) ||
645 test_bit(WriteMostly, &rdev->flags))
648 /* keep track of the disk with the most readable sectors. */
649 len = r1_bio->sectors;
650 read_len = raid1_check_read_range(rdev, this_sector, &len);
651 if (read_len > best_len) {
657 if (best_disk != -1) {
658 *max_sectors = best_len;
659 update_read_sectors(conf, best_disk, this_sector, best_len);
665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 sector_t this_sector = r1_bio->sector;
673 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 struct md_rdev *rdev;
678 if (r1_bio->bios[disk] == IO_BLOCKED)
681 rdev = conf->mirrors[disk].rdev;
682 if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 !test_bit(WriteMostly, &rdev->flags) ||
684 rdev_in_recovery(rdev, r1_bio))
687 /* there are no bad blocks, we can use this disk */
688 len = r1_bio->sectors;
689 read_len = raid1_check_read_range(rdev, this_sector, &len);
690 if (read_len == r1_bio->sectors) {
691 *max_sectors = read_len;
692 update_read_sectors(conf, disk, this_sector, read_len);
697 * there are partial bad blocks, choose the rdev with largest
700 if (read_len > bb_read_len) {
702 bb_read_len = read_len;
707 *max_sectors = bb_read_len;
708 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
716 /* TODO: address issues with this check and concurrency. */
717 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 conf->mirrors[disk].head_position == r1_bio->sector;
722 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723 * disk. If yes, choose the idle disk.
725 static bool should_choose_next(struct r1conf *conf, int disk)
727 struct raid1_info *mirror = &conf->mirrors[disk];
730 if (!test_bit(Nonrot, &mirror->rdev->flags))
733 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 mirror->next_seq_sect > opt_iosize &&
736 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
741 if (!rdev || test_bit(Faulty, &rdev->flags))
744 if (rdev_in_recovery(rdev, r1_bio))
747 /* don't read from slow disk unless have to */
748 if (test_bit(WriteMostly, &rdev->flags))
751 /* don't split IO for bad blocks unless have to */
752 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
758 struct read_balance_ctl {
759 sector_t closest_dist;
760 int closest_dist_disk;
762 int min_pending_disk;
767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 struct read_balance_ctl ctl = {
771 .closest_dist_disk = -1,
772 .closest_dist = MaxSector,
773 .min_pending_disk = -1,
774 .min_pending = UINT_MAX,
775 .sequential_disk = -1,
778 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 struct md_rdev *rdev;
781 unsigned int pending;
783 if (r1_bio->bios[disk] == IO_BLOCKED)
786 rdev = conf->mirrors[disk].rdev;
787 if (!rdev_readable(rdev, r1_bio))
790 /* At least two disks to choose from so failfast is OK */
791 if (ctl.readable_disks++ == 1)
792 set_bit(R1BIO_FailFast, &r1_bio->state);
794 pending = atomic_read(&rdev->nr_pending);
795 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
797 /* Don't change to another disk for sequential reads */
798 if (is_sequential(conf, disk, r1_bio)) {
799 if (!should_choose_next(conf, disk))
803 * Add 'pending' to avoid choosing this disk if
804 * there is other idle disk.
808 * If there is no other idle disk, this disk
811 ctl.sequential_disk = disk;
814 if (ctl.min_pending > pending) {
815 ctl.min_pending = pending;
816 ctl.min_pending_disk = disk;
819 if (ctl.closest_dist > dist) {
820 ctl.closest_dist = dist;
821 ctl.closest_dist_disk = disk;
826 * sequential IO size exceeds optimal iosize, however, there is no other
827 * idle disk, so choose the sequential disk.
829 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 return ctl.sequential_disk;
833 * If all disks are rotational, choose the closest disk. If any disk is
834 * non-rotational, choose the disk with less pending request even the
835 * disk is rotational, which might/might not be optimal for raids with
836 * mixed ratation/non-rotational disks depending on workload.
838 if (ctl.min_pending_disk != -1 &&
839 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 return ctl.min_pending_disk;
842 return ctl.closest_dist_disk;
846 * This routine returns the disk from which the requested read should be done.
848 * 1) If resync is in progress, find the first usable disk and use it even if it
849 * has some bad blocks.
851 * 2) Now that there is no resync, loop through all disks and skipping slow
852 * disks and disks with bad blocks for now. Only pay attention to key disk
855 * 3) If we've made it this far, now look for disks with bad blocks and choose
856 * the one with most number of sectors.
858 * 4) If we are all the way at the end, we have no choice but to use a disk even
859 * if it is write mostly.
861 * The rdev for the device selected will have nr_pending incremented.
863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
868 clear_bit(R1BIO_FailFast, &r1_bio->state);
870 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
872 return choose_first_rdev(conf, r1_bio, max_sectors);
874 disk = choose_best_rdev(conf, r1_bio);
876 *max_sectors = r1_bio->sectors;
877 update_read_sectors(conf, disk, r1_bio->sector,
883 * If we are here it means we didn't find a perfectly good disk so
884 * now spend a bit more time trying to find one with the most good
887 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
891 return choose_slow_rdev(conf, r1_bio, max_sectors);
894 static void wake_up_barrier(struct r1conf *conf)
896 if (wq_has_sleeper(&conf->wait_barrier))
897 wake_up(&conf->wait_barrier);
900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
902 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 raid1_prepare_flush_writes(conf->mddev->bitmap);
904 wake_up_barrier(conf);
906 while (bio) { /* submit pending writes */
907 struct bio *next = bio->bi_next;
909 raid1_submit_write(bio);
915 static void flush_pending_writes(struct r1conf *conf)
917 /* Any writes that have been queued but are awaiting
918 * bitmap updates get flushed here.
920 spin_lock_irq(&conf->device_lock);
922 if (conf->pending_bio_list.head) {
923 struct blk_plug plug;
926 bio = bio_list_get(&conf->pending_bio_list);
927 spin_unlock_irq(&conf->device_lock);
930 * As this is called in a wait_event() loop (see freeze_array),
931 * current->state might be TASK_UNINTERRUPTIBLE which will
932 * cause a warning when we prepare to wait again. As it is
933 * rare that this path is taken, it is perfectly safe to force
934 * us to go around the wait_event() loop again, so the warning
935 * is a false-positive. Silence the warning by resetting
938 __set_current_state(TASK_RUNNING);
939 blk_start_plug(&plug);
940 flush_bio_list(conf, bio);
941 blk_finish_plug(&plug);
943 spin_unlock_irq(&conf->device_lock);
947 * Sometimes we need to suspend IO while we do something else,
948 * either some resync/recovery, or reconfigure the array.
949 * To do this we raise a 'barrier'.
950 * The 'barrier' is a counter that can be raised multiple times
951 * to count how many activities are happening which preclude
953 * We can only raise the barrier if there is no pending IO.
954 * i.e. if nr_pending == 0.
955 * We choose only to raise the barrier if no-one is waiting for the
956 * barrier to go down. This means that as soon as an IO request
957 * is ready, no other operations which require a barrier will start
958 * until the IO request has had a chance.
960 * So: regular IO calls 'wait_barrier'. When that returns there
961 * is no backgroup IO happening, It must arrange to call
962 * allow_barrier when it has finished its IO.
963 * backgroup IO calls must call raise_barrier. Once that returns
964 * there is no normal IO happeing. It must arrange to call
965 * lower_barrier when the particular background IO completes.
967 * If resync/recovery is interrupted, returns -EINTR;
968 * Otherwise, returns 0.
970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
972 int idx = sector_to_idx(sector_nr);
974 spin_lock_irq(&conf->resync_lock);
976 /* Wait until no block IO is waiting */
977 wait_event_lock_irq(conf->wait_barrier,
978 !atomic_read(&conf->nr_waiting[idx]),
981 /* block any new IO from starting */
982 atomic_inc(&conf->barrier[idx]);
984 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 * be fetched before conf->barrier[idx] is increased. Otherwise
989 * there will be a race between raise_barrier() and _wait_barrier().
991 smp_mb__after_atomic();
993 /* For these conditions we must wait:
994 * A: while the array is in frozen state
995 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 * existing in corresponding I/O barrier bucket.
997 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 * max resync count which allowed on current I/O barrier bucket.
1000 wait_event_lock_irq(conf->wait_barrier,
1001 (!conf->array_frozen &&
1002 !atomic_read(&conf->nr_pending[idx]) &&
1003 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 atomic_dec(&conf->barrier[idx]);
1009 spin_unlock_irq(&conf->resync_lock);
1010 wake_up(&conf->wait_barrier);
1014 atomic_inc(&conf->nr_sync_pending);
1015 spin_unlock_irq(&conf->resync_lock);
1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1022 int idx = sector_to_idx(sector_nr);
1024 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1026 atomic_dec(&conf->barrier[idx]);
1027 atomic_dec(&conf->nr_sync_pending);
1028 wake_up(&conf->wait_barrier);
1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1036 * We need to increase conf->nr_pending[idx] very early here,
1037 * then raise_barrier() can be blocked when it waits for
1038 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 * conf->resync_lock when there is no barrier raised in same
1040 * barrier unit bucket. Also if the array is frozen, I/O
1041 * should be blocked until array is unfrozen.
1043 atomic_inc(&conf->nr_pending[idx]);
1045 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 * will be a race between _wait_barrier() and raise_barrier().
1052 smp_mb__after_atomic();
1055 * Don't worry about checking two atomic_t variables at same time
1056 * here. If during we check conf->barrier[idx], the array is
1057 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 * 0, it is safe to return and make the I/O continue. Because the
1059 * array is frozen, all I/O returned here will eventually complete
1060 * or be queued, no race will happen. See code comment in
1063 if (!READ_ONCE(conf->array_frozen) &&
1064 !atomic_read(&conf->barrier[idx]))
1068 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 * should be decreased before waiting for barrier to drop.
1070 * Otherwise, we may encounter a race condition because
1071 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 * to be 0 at same time.
1074 spin_lock_irq(&conf->resync_lock);
1075 atomic_inc(&conf->nr_waiting[idx]);
1076 atomic_dec(&conf->nr_pending[idx]);
1078 * In case freeze_array() is waiting for
1079 * get_unqueued_pending() == extra
1081 wake_up_barrier(conf);
1082 /* Wait for the barrier in same barrier unit bucket to drop. */
1084 /* Return false when nowait flag is set */
1088 wait_event_lock_irq(conf->wait_barrier,
1089 !conf->array_frozen &&
1090 !atomic_read(&conf->barrier[idx]),
1092 atomic_inc(&conf->nr_pending[idx]);
1095 atomic_dec(&conf->nr_waiting[idx]);
1096 spin_unlock_irq(&conf->resync_lock);
1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1102 int idx = sector_to_idx(sector_nr);
1106 * Very similar to _wait_barrier(). The difference is, for read
1107 * I/O we don't need wait for sync I/O, but if the whole array
1108 * is frozen, the read I/O still has to wait until the array is
1109 * unfrozen. Since there is no ordering requirement with
1110 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1112 atomic_inc(&conf->nr_pending[idx]);
1114 if (!READ_ONCE(conf->array_frozen))
1117 spin_lock_irq(&conf->resync_lock);
1118 atomic_inc(&conf->nr_waiting[idx]);
1119 atomic_dec(&conf->nr_pending[idx]);
1121 * In case freeze_array() is waiting for
1122 * get_unqueued_pending() == extra
1124 wake_up_barrier(conf);
1125 /* Wait for array to be unfrozen */
1127 /* Return false when nowait flag is set */
1129 /* Return false when nowait flag is set */
1132 wait_event_lock_irq(conf->wait_barrier,
1133 !conf->array_frozen,
1135 atomic_inc(&conf->nr_pending[idx]);
1138 atomic_dec(&conf->nr_waiting[idx]);
1139 spin_unlock_irq(&conf->resync_lock);
1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1145 int idx = sector_to_idx(sector_nr);
1147 return _wait_barrier(conf, idx, nowait);
1150 static void _allow_barrier(struct r1conf *conf, int idx)
1152 atomic_dec(&conf->nr_pending[idx]);
1153 wake_up_barrier(conf);
1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1158 int idx = sector_to_idx(sector_nr);
1160 _allow_barrier(conf, idx);
1163 /* conf->resync_lock should be held */
1164 static int get_unqueued_pending(struct r1conf *conf)
1168 ret = atomic_read(&conf->nr_sync_pending);
1169 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 ret += atomic_read(&conf->nr_pending[idx]) -
1171 atomic_read(&conf->nr_queued[idx]);
1176 static void freeze_array(struct r1conf *conf, int extra)
1178 /* Stop sync I/O and normal I/O and wait for everything to
1180 * This is called in two situations:
1181 * 1) management command handlers (reshape, remove disk, quiesce).
1182 * 2) one normal I/O request failed.
1184 * After array_frozen is set to 1, new sync IO will be blocked at
1185 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 * queued. When everything goes quite, there are only queued I/Os left.
1189 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 * barrier bucket index which this I/O request hits. When all sync and
1191 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 * in handle_read_error(), we may call freeze_array() before trying to
1194 * fix the read error. In this case, the error read I/O is not queued,
1195 * so get_unqueued_pending() == 1.
1197 * Therefore before this function returns, we need to wait until
1198 * get_unqueued_pendings(conf) gets equal to extra. For
1199 * normal I/O context, extra is 1, in rested situations extra is 0.
1201 spin_lock_irq(&conf->resync_lock);
1202 conf->array_frozen = 1;
1203 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 wait_event_lock_irq_cmd(
1206 get_unqueued_pending(conf) == extra,
1208 flush_pending_writes(conf));
1209 spin_unlock_irq(&conf->resync_lock);
1211 static void unfreeze_array(struct r1conf *conf)
1213 /* reverse the effect of the freeze */
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->array_frozen = 0;
1216 spin_unlock_irq(&conf->resync_lock);
1217 wake_up(&conf->wait_barrier);
1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 int size = bio->bi_iter.bi_size;
1224 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1226 struct bio *behind_bio = NULL;
1228 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1229 &r1_bio->mddev->bio_set);
1231 /* discard op, we don't support writezero/writesame yet */
1232 if (!bio_has_data(bio)) {
1233 behind_bio->bi_iter.bi_size = size;
1237 while (i < vcnt && size) {
1239 int len = min_t(int, PAGE_SIZE, size);
1241 page = alloc_page(GFP_NOIO);
1242 if (unlikely(!page))
1245 if (!bio_add_page(behind_bio, page, len, 0)) {
1254 bio_copy_data(behind_bio, bio);
1256 r1_bio->behind_master_bio = behind_bio;
1257 set_bit(R1BIO_BehindIO, &r1_bio->state);
1262 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 bio->bi_iter.bi_size);
1264 bio_free_pages(behind_bio);
1265 bio_put(behind_bio);
1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1270 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1272 struct mddev *mddev = plug->cb.data;
1273 struct r1conf *conf = mddev->private;
1276 if (from_schedule) {
1277 spin_lock_irq(&conf->device_lock);
1278 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 spin_unlock_irq(&conf->device_lock);
1280 wake_up_barrier(conf);
1281 md_wakeup_thread(mddev->thread);
1286 /* we aren't scheduling, so we can do the write-out directly. */
1287 bio = bio_list_get(&plug->pending);
1288 flush_bio_list(conf, bio);
1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1294 r1_bio->master_bio = bio;
1295 r1_bio->sectors = bio_sectors(bio);
1297 r1_bio->mddev = mddev;
1298 r1_bio->sector = bio->bi_iter.bi_sector;
1301 static inline struct r1bio *
1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1304 struct r1conf *conf = mddev->private;
1305 struct r1bio *r1_bio;
1307 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1308 /* Ensure no bio records IO_BLOCKED */
1309 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1310 init_r1bio(r1_bio, mddev, bio);
1314 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1315 int max_read_sectors, struct r1bio *r1_bio)
1317 struct r1conf *conf = mddev->private;
1318 struct raid1_info *mirror;
1319 struct bio *read_bio;
1320 struct bitmap *bitmap = mddev->bitmap;
1321 const enum req_op op = bio_op(bio);
1322 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1325 bool r1bio_existed = !!r1_bio;
1326 char b[BDEVNAME_SIZE];
1329 * If r1_bio is set, we are blocking the raid1d thread
1330 * so there is a tiny risk of deadlock. So ask for
1331 * emergency memory if needed.
1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1335 if (r1bio_existed) {
1336 /* Need to get the block device name carefully */
1337 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1340 snprintf(b, sizeof(b), "%pg", rdev->bdev);
1346 * Still need barrier for READ in case that whole
1349 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1350 bio->bi_opf & REQ_NOWAIT)) {
1351 bio_wouldblock_error(bio);
1356 r1_bio = alloc_r1bio(mddev, bio);
1358 init_r1bio(r1_bio, mddev, bio);
1359 r1_bio->sectors = max_read_sectors;
1362 * make_request() can abort the operation when read-ahead is being
1363 * used and no empty request is available.
1365 rdisk = read_balance(conf, r1_bio, &max_sectors);
1368 /* couldn't find anywhere to read from */
1369 if (r1bio_existed) {
1370 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1373 (unsigned long long)r1_bio->sector);
1375 raid_end_bio_io(r1_bio);
1378 mirror = conf->mirrors + rdisk;
1381 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1383 (unsigned long long)r1_bio->sector,
1384 mirror->rdev->bdev);
1386 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1389 * Reading from a write-mostly device must take care not to
1390 * over-take any writes that are 'behind'
1392 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1393 wait_event(bitmap->behind_wait,
1394 atomic_read(&bitmap->behind_writes) == 0);
1397 if (max_sectors < bio_sectors(bio)) {
1398 struct bio *split = bio_split(bio, max_sectors,
1399 gfp, &conf->bio_split);
1400 bio_chain(split, bio);
1401 submit_bio_noacct(bio);
1403 r1_bio->master_bio = bio;
1404 r1_bio->sectors = max_sectors;
1407 r1_bio->read_disk = rdisk;
1408 if (!r1bio_existed) {
1409 md_account_bio(mddev, &bio);
1410 r1_bio->master_bio = bio;
1412 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1415 r1_bio->bios[rdisk] = read_bio;
1417 read_bio->bi_iter.bi_sector = r1_bio->sector +
1418 mirror->rdev->data_offset;
1419 read_bio->bi_end_io = raid1_end_read_request;
1420 read_bio->bi_opf = op | do_sync;
1421 if (test_bit(FailFast, &mirror->rdev->flags) &&
1422 test_bit(R1BIO_FailFast, &r1_bio->state))
1423 read_bio->bi_opf |= MD_FAILFAST;
1424 read_bio->bi_private = r1_bio;
1425 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1426 submit_bio_noacct(read_bio);
1429 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1430 int max_write_sectors)
1432 struct r1conf *conf = mddev->private;
1433 struct r1bio *r1_bio;
1435 struct bitmap *bitmap = mddev->bitmap;
1436 unsigned long flags;
1437 struct md_rdev *blocked_rdev;
1440 bool write_behind = false;
1441 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1443 if (mddev_is_clustered(mddev) &&
1444 md_cluster_ops->area_resyncing(mddev, WRITE,
1445 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1448 if (bio->bi_opf & REQ_NOWAIT) {
1449 bio_wouldblock_error(bio);
1453 prepare_to_wait(&conf->wait_barrier,
1455 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1456 bio->bi_iter.bi_sector,
1457 bio_end_sector(bio)))
1461 finish_wait(&conf->wait_barrier, &w);
1465 * Register the new request and wait if the reconstruction
1466 * thread has put up a bar for new requests.
1467 * Continue immediately if no resync is active currently.
1469 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1470 bio->bi_opf & REQ_NOWAIT)) {
1471 bio_wouldblock_error(bio);
1476 r1_bio = alloc_r1bio(mddev, bio);
1477 r1_bio->sectors = max_write_sectors;
1479 /* first select target devices under rcu_lock and
1480 * inc refcount on their rdev. Record them by setting
1482 * If there are known/acknowledged bad blocks on any device on
1483 * which we have seen a write error, we want to avoid writing those
1485 * This potentially requires several writes to write around
1486 * the bad blocks. Each set of writes gets it's own r1bio
1487 * with a set of bios attached.
1490 disks = conf->raid_disks * 2;
1491 blocked_rdev = NULL;
1492 max_sectors = r1_bio->sectors;
1493 for (i = 0; i < disks; i++) {
1494 struct md_rdev *rdev = conf->mirrors[i].rdev;
1497 * The write-behind io is only attempted on drives marked as
1498 * write-mostly, which means we could allocate write behind
1501 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1502 write_behind = true;
1504 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1505 atomic_inc(&rdev->nr_pending);
1506 blocked_rdev = rdev;
1509 r1_bio->bios[i] = NULL;
1510 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1511 if (i < conf->raid_disks)
1512 set_bit(R1BIO_Degraded, &r1_bio->state);
1516 atomic_inc(&rdev->nr_pending);
1517 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1522 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1523 &first_bad, &bad_sectors);
1525 /* mustn't write here until the bad block is
1527 set_bit(BlockedBadBlocks, &rdev->flags);
1528 blocked_rdev = rdev;
1531 if (is_bad && first_bad <= r1_bio->sector) {
1532 /* Cannot write here at all */
1533 bad_sectors -= (r1_bio->sector - first_bad);
1534 if (bad_sectors < max_sectors)
1535 /* mustn't write more than bad_sectors
1536 * to other devices yet
1538 max_sectors = bad_sectors;
1539 rdev_dec_pending(rdev, mddev);
1540 /* We don't set R1BIO_Degraded as that
1541 * only applies if the disk is
1542 * missing, so it might be re-added,
1543 * and we want to know to recover this
1545 * In this case the device is here,
1546 * and the fact that this chunk is not
1547 * in-sync is recorded in the bad
1553 int good_sectors = first_bad - r1_bio->sector;
1554 if (good_sectors < max_sectors)
1555 max_sectors = good_sectors;
1558 r1_bio->bios[i] = bio;
1561 if (unlikely(blocked_rdev)) {
1562 /* Wait for this device to become unblocked */
1565 for (j = 0; j < i; j++)
1566 if (r1_bio->bios[j])
1567 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1568 mempool_free(r1_bio, &conf->r1bio_pool);
1569 allow_barrier(conf, bio->bi_iter.bi_sector);
1571 if (bio->bi_opf & REQ_NOWAIT) {
1572 bio_wouldblock_error(bio);
1575 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1576 blocked_rdev->raid_disk);
1577 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1578 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1583 * When using a bitmap, we may call alloc_behind_master_bio below.
1584 * alloc_behind_master_bio allocates a copy of the data payload a page
1585 * at a time and thus needs a new bio that can fit the whole payload
1586 * this bio in page sized chunks.
1588 if (write_behind && bitmap)
1589 max_sectors = min_t(int, max_sectors,
1590 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1591 if (max_sectors < bio_sectors(bio)) {
1592 struct bio *split = bio_split(bio, max_sectors,
1593 GFP_NOIO, &conf->bio_split);
1594 bio_chain(split, bio);
1595 submit_bio_noacct(bio);
1597 r1_bio->master_bio = bio;
1598 r1_bio->sectors = max_sectors;
1601 md_account_bio(mddev, &bio);
1602 r1_bio->master_bio = bio;
1603 atomic_set(&r1_bio->remaining, 1);
1604 atomic_set(&r1_bio->behind_remaining, 0);
1608 for (i = 0; i < disks; i++) {
1609 struct bio *mbio = NULL;
1610 struct md_rdev *rdev = conf->mirrors[i].rdev;
1611 if (!r1_bio->bios[i])
1616 * Not if there are too many, or cannot
1617 * allocate memory, or a reader on WriteMostly
1618 * is waiting for behind writes to flush */
1619 if (bitmap && write_behind &&
1620 (atomic_read(&bitmap->behind_writes)
1621 < mddev->bitmap_info.max_write_behind) &&
1622 !waitqueue_active(&bitmap->behind_wait)) {
1623 alloc_behind_master_bio(r1_bio, bio);
1626 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1627 test_bit(R1BIO_BehindIO, &r1_bio->state));
1631 if (r1_bio->behind_master_bio) {
1632 mbio = bio_alloc_clone(rdev->bdev,
1633 r1_bio->behind_master_bio,
1634 GFP_NOIO, &mddev->bio_set);
1635 if (test_bit(CollisionCheck, &rdev->flags))
1636 wait_for_serialization(rdev, r1_bio);
1637 if (test_bit(WriteMostly, &rdev->flags))
1638 atomic_inc(&r1_bio->behind_remaining);
1640 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1643 if (mddev->serialize_policy)
1644 wait_for_serialization(rdev, r1_bio);
1647 r1_bio->bios[i] = mbio;
1649 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1650 mbio->bi_end_io = raid1_end_write_request;
1651 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1652 if (test_bit(FailFast, &rdev->flags) &&
1653 !test_bit(WriteMostly, &rdev->flags) &&
1654 conf->raid_disks - mddev->degraded > 1)
1655 mbio->bi_opf |= MD_FAILFAST;
1656 mbio->bi_private = r1_bio;
1658 atomic_inc(&r1_bio->remaining);
1659 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1660 /* flush_pending_writes() needs access to the rdev so...*/
1661 mbio->bi_bdev = (void *)rdev;
1662 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1663 spin_lock_irqsave(&conf->device_lock, flags);
1664 bio_list_add(&conf->pending_bio_list, mbio);
1665 spin_unlock_irqrestore(&conf->device_lock, flags);
1666 md_wakeup_thread(mddev->thread);
1670 r1_bio_write_done(r1_bio);
1672 /* In case raid1d snuck in to freeze_array */
1673 wake_up_barrier(conf);
1676 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1680 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1681 && md_flush_request(mddev, bio))
1685 * There is a limit to the maximum size, but
1686 * the read/write handler might find a lower limit
1687 * due to bad blocks. To avoid multiple splits,
1688 * we pass the maximum number of sectors down
1689 * and let the lower level perform the split.
1691 sectors = align_to_barrier_unit_end(
1692 bio->bi_iter.bi_sector, bio_sectors(bio));
1694 if (bio_data_dir(bio) == READ)
1695 raid1_read_request(mddev, bio, sectors, NULL);
1697 md_write_start(mddev,bio);
1698 raid1_write_request(mddev, bio, sectors);
1703 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1705 struct r1conf *conf = mddev->private;
1708 lockdep_assert_held(&mddev->lock);
1710 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1711 conf->raid_disks - mddev->degraded);
1712 for (i = 0; i < conf->raid_disks; i++) {
1713 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1715 seq_printf(seq, "%s",
1716 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1718 seq_printf(seq, "]");
1722 * raid1_error() - RAID1 error handler.
1723 * @mddev: affected md device.
1724 * @rdev: member device to fail.
1726 * The routine acknowledges &rdev failure and determines new @mddev state.
1727 * If it failed, then:
1728 * - &MD_BROKEN flag is set in &mddev->flags.
1729 * - recovery is disabled.
1730 * Otherwise, it must be degraded:
1731 * - recovery is interrupted.
1732 * - &mddev->degraded is bumped.
1734 * @rdev is marked as &Faulty excluding case when array is failed and
1735 * &mddev->fail_last_dev is off.
1737 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1739 struct r1conf *conf = mddev->private;
1740 unsigned long flags;
1742 spin_lock_irqsave(&conf->device_lock, flags);
1744 if (test_bit(In_sync, &rdev->flags) &&
1745 (conf->raid_disks - mddev->degraded) == 1) {
1746 set_bit(MD_BROKEN, &mddev->flags);
1748 if (!mddev->fail_last_dev) {
1749 conf->recovery_disabled = mddev->recovery_disabled;
1750 spin_unlock_irqrestore(&conf->device_lock, flags);
1754 set_bit(Blocked, &rdev->flags);
1755 if (test_and_clear_bit(In_sync, &rdev->flags))
1757 set_bit(Faulty, &rdev->flags);
1758 spin_unlock_irqrestore(&conf->device_lock, flags);
1760 * if recovery is running, make sure it aborts.
1762 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1763 set_mask_bits(&mddev->sb_flags, 0,
1764 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1765 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1766 "md/raid1:%s: Operation continuing on %d devices.\n",
1767 mdname(mddev), rdev->bdev,
1768 mdname(mddev), conf->raid_disks - mddev->degraded);
1771 static void print_conf(struct r1conf *conf)
1775 pr_debug("RAID1 conf printout:\n");
1777 pr_debug("(!conf)\n");
1780 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1783 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1784 for (i = 0; i < conf->raid_disks; i++) {
1785 struct md_rdev *rdev = conf->mirrors[i].rdev;
1787 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1788 i, !test_bit(In_sync, &rdev->flags),
1789 !test_bit(Faulty, &rdev->flags),
1794 static void close_sync(struct r1conf *conf)
1798 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1799 _wait_barrier(conf, idx, false);
1800 _allow_barrier(conf, idx);
1803 mempool_exit(&conf->r1buf_pool);
1806 static int raid1_spare_active(struct mddev *mddev)
1809 struct r1conf *conf = mddev->private;
1811 unsigned long flags;
1814 * Find all failed disks within the RAID1 configuration
1815 * and mark them readable.
1816 * Called under mddev lock, so rcu protection not needed.
1817 * device_lock used to avoid races with raid1_end_read_request
1818 * which expects 'In_sync' flags and ->degraded to be consistent.
1820 spin_lock_irqsave(&conf->device_lock, flags);
1821 for (i = 0; i < conf->raid_disks; i++) {
1822 struct md_rdev *rdev = conf->mirrors[i].rdev;
1823 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1825 && !test_bit(Candidate, &repl->flags)
1826 && repl->recovery_offset == MaxSector
1827 && !test_bit(Faulty, &repl->flags)
1828 && !test_and_set_bit(In_sync, &repl->flags)) {
1829 /* replacement has just become active */
1831 !test_and_clear_bit(In_sync, &rdev->flags))
1834 /* Replaced device not technically
1835 * faulty, but we need to be sure
1836 * it gets removed and never re-added
1838 set_bit(Faulty, &rdev->flags);
1839 sysfs_notify_dirent_safe(
1844 && rdev->recovery_offset == MaxSector
1845 && !test_bit(Faulty, &rdev->flags)
1846 && !test_and_set_bit(In_sync, &rdev->flags)) {
1848 sysfs_notify_dirent_safe(rdev->sysfs_state);
1851 mddev->degraded -= count;
1852 spin_unlock_irqrestore(&conf->device_lock, flags);
1858 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1861 struct raid1_info *info = conf->mirrors + disk;
1864 info += conf->raid_disks;
1869 if (bdev_nonrot(rdev->bdev)) {
1870 set_bit(Nonrot, &rdev->flags);
1871 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1874 rdev->raid_disk = disk;
1875 info->head_position = 0;
1876 info->seq_start = MaxSector;
1877 WRITE_ONCE(info->rdev, rdev);
1882 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1884 struct raid1_info *info = conf->mirrors + disk;
1885 struct md_rdev *rdev = info->rdev;
1887 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1888 atomic_read(&rdev->nr_pending))
1891 /* Only remove non-faulty devices if recovery is not possible. */
1892 if (!test_bit(Faulty, &rdev->flags) &&
1893 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1894 rdev->mddev->degraded < conf->raid_disks)
1897 if (test_and_clear_bit(Nonrot, &rdev->flags))
1898 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1900 WRITE_ONCE(info->rdev, NULL);
1904 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1906 struct r1conf *conf = mddev->private;
1908 int mirror = 0, repl_slot = -1;
1909 struct raid1_info *p;
1911 int last = conf->raid_disks - 1;
1913 if (mddev->recovery_disabled == conf->recovery_disabled)
1916 if (rdev->raid_disk >= 0)
1917 first = last = rdev->raid_disk;
1920 * find the disk ... but prefer rdev->saved_raid_disk
1923 if (rdev->saved_raid_disk >= 0 &&
1924 rdev->saved_raid_disk >= first &&
1925 rdev->saved_raid_disk < conf->raid_disks &&
1926 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1927 first = last = rdev->saved_raid_disk;
1929 for (mirror = first; mirror <= last; mirror++) {
1930 p = conf->mirrors + mirror;
1932 err = mddev_stack_new_rdev(mddev, rdev);
1936 raid1_add_conf(conf, rdev, mirror, false);
1937 /* As all devices are equivalent, we don't need a full recovery
1938 * if this was recently any drive of the array
1940 if (rdev->saved_raid_disk < 0)
1944 if (test_bit(WantReplacement, &p->rdev->flags) &&
1945 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1949 if (err && repl_slot >= 0) {
1950 /* Add this device as a replacement */
1951 clear_bit(In_sync, &rdev->flags);
1952 set_bit(Replacement, &rdev->flags);
1953 raid1_add_conf(conf, rdev, repl_slot, true);
1962 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1964 struct r1conf *conf = mddev->private;
1966 int number = rdev->raid_disk;
1967 struct raid1_info *p = conf->mirrors + number;
1969 if (unlikely(number >= conf->raid_disks))
1972 if (rdev != p->rdev) {
1973 number += conf->raid_disks;
1974 p = conf->mirrors + number;
1978 if (rdev == p->rdev) {
1979 if (!raid1_remove_conf(conf, number)) {
1984 if (number < conf->raid_disks &&
1985 conf->mirrors[conf->raid_disks + number].rdev) {
1986 /* We just removed a device that is being replaced.
1987 * Move down the replacement. We drain all IO before
1988 * doing this to avoid confusion.
1990 struct md_rdev *repl =
1991 conf->mirrors[conf->raid_disks + number].rdev;
1992 freeze_array(conf, 0);
1993 if (atomic_read(&repl->nr_pending)) {
1994 /* It means that some queued IO of retry_list
1995 * hold repl. Thus, we cannot set replacement
1996 * as NULL, avoiding rdev NULL pointer
1997 * dereference in sync_request_write and
1998 * handle_write_finished.
2001 unfreeze_array(conf);
2004 clear_bit(Replacement, &repl->flags);
2005 WRITE_ONCE(p->rdev, repl);
2006 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2007 unfreeze_array(conf);
2010 clear_bit(WantReplacement, &rdev->flags);
2011 err = md_integrity_register(mddev);
2019 static void end_sync_read(struct bio *bio)
2021 struct r1bio *r1_bio = get_resync_r1bio(bio);
2023 update_head_pos(r1_bio->read_disk, r1_bio);
2026 * we have read a block, now it needs to be re-written,
2027 * or re-read if the read failed.
2028 * We don't do much here, just schedule handling by raid1d
2030 if (!bio->bi_status)
2031 set_bit(R1BIO_Uptodate, &r1_bio->state);
2033 if (atomic_dec_and_test(&r1_bio->remaining))
2034 reschedule_retry(r1_bio);
2037 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2039 sector_t sync_blocks = 0;
2040 sector_t s = r1_bio->sector;
2041 long sectors_to_go = r1_bio->sectors;
2043 /* make sure these bits don't get cleared. */
2045 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2047 sectors_to_go -= sync_blocks;
2048 } while (sectors_to_go > 0);
2051 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2053 if (atomic_dec_and_test(&r1_bio->remaining)) {
2054 struct mddev *mddev = r1_bio->mddev;
2055 int s = r1_bio->sectors;
2057 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2058 test_bit(R1BIO_WriteError, &r1_bio->state))
2059 reschedule_retry(r1_bio);
2062 md_done_sync(mddev, s, uptodate);
2067 static void end_sync_write(struct bio *bio)
2069 int uptodate = !bio->bi_status;
2070 struct r1bio *r1_bio = get_resync_r1bio(bio);
2071 struct mddev *mddev = r1_bio->mddev;
2072 struct r1conf *conf = mddev->private;
2073 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2076 abort_sync_write(mddev, r1_bio);
2077 set_bit(WriteErrorSeen, &rdev->flags);
2078 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2079 set_bit(MD_RECOVERY_NEEDED, &
2081 set_bit(R1BIO_WriteError, &r1_bio->state);
2082 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2083 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2084 r1_bio->sector, r1_bio->sectors)) {
2085 set_bit(R1BIO_MadeGood, &r1_bio->state);
2088 put_sync_write_buf(r1_bio, uptodate);
2091 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2092 int sectors, struct page *page, blk_opf_t rw)
2094 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2097 if (rw == REQ_OP_WRITE) {
2098 set_bit(WriteErrorSeen, &rdev->flags);
2099 if (!test_and_set_bit(WantReplacement,
2101 set_bit(MD_RECOVERY_NEEDED, &
2102 rdev->mddev->recovery);
2104 /* need to record an error - either for the block or the device */
2105 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2106 md_error(rdev->mddev, rdev);
2110 static int fix_sync_read_error(struct r1bio *r1_bio)
2112 /* Try some synchronous reads of other devices to get
2113 * good data, much like with normal read errors. Only
2114 * read into the pages we already have so we don't
2115 * need to re-issue the read request.
2116 * We don't need to freeze the array, because being in an
2117 * active sync request, there is no normal IO, and
2118 * no overlapping syncs.
2119 * We don't need to check is_badblock() again as we
2120 * made sure that anything with a bad block in range
2121 * will have bi_end_io clear.
2123 struct mddev *mddev = r1_bio->mddev;
2124 struct r1conf *conf = mddev->private;
2125 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2126 struct page **pages = get_resync_pages(bio)->pages;
2127 sector_t sect = r1_bio->sector;
2128 int sectors = r1_bio->sectors;
2130 struct md_rdev *rdev;
2132 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2133 if (test_bit(FailFast, &rdev->flags)) {
2134 /* Don't try recovering from here - just fail it
2135 * ... unless it is the last working device of course */
2136 md_error(mddev, rdev);
2137 if (test_bit(Faulty, &rdev->flags))
2138 /* Don't try to read from here, but make sure
2139 * put_buf does it's thing
2141 bio->bi_end_io = end_sync_write;
2146 int d = r1_bio->read_disk;
2150 if (s > (PAGE_SIZE>>9))
2153 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2154 /* No rcu protection needed here devices
2155 * can only be removed when no resync is
2156 * active, and resync is currently active
2158 rdev = conf->mirrors[d].rdev;
2159 if (sync_page_io(rdev, sect, s<<9,
2161 REQ_OP_READ, false)) {
2167 if (d == conf->raid_disks * 2)
2169 } while (!success && d != r1_bio->read_disk);
2173 /* Cannot read from anywhere, this block is lost.
2174 * Record a bad block on each device. If that doesn't
2175 * work just disable and interrupt the recovery.
2176 * Don't fail devices as that won't really help.
2178 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2179 mdname(mddev), bio->bi_bdev,
2180 (unsigned long long)r1_bio->sector);
2181 for (d = 0; d < conf->raid_disks * 2; d++) {
2182 rdev = conf->mirrors[d].rdev;
2183 if (!rdev || test_bit(Faulty, &rdev->flags))
2185 if (!rdev_set_badblocks(rdev, sect, s, 0))
2189 conf->recovery_disabled =
2190 mddev->recovery_disabled;
2191 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2192 md_done_sync(mddev, r1_bio->sectors, 0);
2204 /* write it back and re-read */
2205 while (d != r1_bio->read_disk) {
2207 d = conf->raid_disks * 2;
2209 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2211 rdev = conf->mirrors[d].rdev;
2212 if (r1_sync_page_io(rdev, sect, s,
2214 REQ_OP_WRITE) == 0) {
2215 r1_bio->bios[d]->bi_end_io = NULL;
2216 rdev_dec_pending(rdev, mddev);
2220 while (d != r1_bio->read_disk) {
2222 d = conf->raid_disks * 2;
2224 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2226 rdev = conf->mirrors[d].rdev;
2227 if (r1_sync_page_io(rdev, sect, s,
2230 atomic_add(s, &rdev->corrected_errors);
2236 set_bit(R1BIO_Uptodate, &r1_bio->state);
2241 static void process_checks(struct r1bio *r1_bio)
2243 /* We have read all readable devices. If we haven't
2244 * got the block, then there is no hope left.
2245 * If we have, then we want to do a comparison
2246 * and skip the write if everything is the same.
2247 * If any blocks failed to read, then we need to
2248 * attempt an over-write
2250 struct mddev *mddev = r1_bio->mddev;
2251 struct r1conf *conf = mddev->private;
2256 /* Fix variable parts of all bios */
2257 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2258 for (i = 0; i < conf->raid_disks * 2; i++) {
2259 blk_status_t status;
2260 struct bio *b = r1_bio->bios[i];
2261 struct resync_pages *rp = get_resync_pages(b);
2262 if (b->bi_end_io != end_sync_read)
2264 /* fixup the bio for reuse, but preserve errno */
2265 status = b->bi_status;
2266 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2267 b->bi_status = status;
2268 b->bi_iter.bi_sector = r1_bio->sector +
2269 conf->mirrors[i].rdev->data_offset;
2270 b->bi_end_io = end_sync_read;
2271 rp->raid_bio = r1_bio;
2274 /* initialize bvec table again */
2275 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2277 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2278 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2279 !r1_bio->bios[primary]->bi_status) {
2280 r1_bio->bios[primary]->bi_end_io = NULL;
2281 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2284 r1_bio->read_disk = primary;
2285 for (i = 0; i < conf->raid_disks * 2; i++) {
2287 struct bio *pbio = r1_bio->bios[primary];
2288 struct bio *sbio = r1_bio->bios[i];
2289 blk_status_t status = sbio->bi_status;
2290 struct page **ppages = get_resync_pages(pbio)->pages;
2291 struct page **spages = get_resync_pages(sbio)->pages;
2293 int page_len[RESYNC_PAGES] = { 0 };
2294 struct bvec_iter_all iter_all;
2296 if (sbio->bi_end_io != end_sync_read)
2298 /* Now we can 'fixup' the error value */
2299 sbio->bi_status = 0;
2301 bio_for_each_segment_all(bi, sbio, iter_all)
2302 page_len[j++] = bi->bv_len;
2305 for (j = vcnt; j-- ; ) {
2306 if (memcmp(page_address(ppages[j]),
2307 page_address(spages[j]),
2314 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2315 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2317 /* No need to write to this device. */
2318 sbio->bi_end_io = NULL;
2319 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2323 bio_copy_data(sbio, pbio);
2327 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2329 struct r1conf *conf = mddev->private;
2331 int disks = conf->raid_disks * 2;
2334 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2335 /* ouch - failed to read all of that. */
2336 if (!fix_sync_read_error(r1_bio))
2339 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2340 process_checks(r1_bio);
2345 atomic_set(&r1_bio->remaining, 1);
2346 for (i = 0; i < disks ; i++) {
2347 wbio = r1_bio->bios[i];
2348 if (wbio->bi_end_io == NULL ||
2349 (wbio->bi_end_io == end_sync_read &&
2350 (i == r1_bio->read_disk ||
2351 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2353 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2354 abort_sync_write(mddev, r1_bio);
2358 wbio->bi_opf = REQ_OP_WRITE;
2359 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2360 wbio->bi_opf |= MD_FAILFAST;
2362 wbio->bi_end_io = end_sync_write;
2363 atomic_inc(&r1_bio->remaining);
2364 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2366 submit_bio_noacct(wbio);
2369 put_sync_write_buf(r1_bio, 1);
2373 * This is a kernel thread which:
2375 * 1. Retries failed read operations on working mirrors.
2376 * 2. Updates the raid superblock when problems encounter.
2377 * 3. Performs writes following reads for array synchronising.
2380 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2382 sector_t sect = r1_bio->sector;
2383 int sectors = r1_bio->sectors;
2384 int read_disk = r1_bio->read_disk;
2385 struct mddev *mddev = conf->mddev;
2386 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2388 if (exceed_read_errors(mddev, rdev)) {
2389 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2399 if (s > (PAGE_SIZE>>9))
2403 rdev = conf->mirrors[d].rdev;
2405 (test_bit(In_sync, &rdev->flags) ||
2406 (!test_bit(Faulty, &rdev->flags) &&
2407 rdev->recovery_offset >= sect + s)) &&
2408 rdev_has_badblock(rdev, sect, s) == 0) {
2409 atomic_inc(&rdev->nr_pending);
2410 if (sync_page_io(rdev, sect, s<<9,
2411 conf->tmppage, REQ_OP_READ, false))
2413 rdev_dec_pending(rdev, mddev);
2419 if (d == conf->raid_disks * 2)
2421 } while (d != read_disk);
2424 /* Cannot read from anywhere - mark it bad */
2425 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2426 if (!rdev_set_badblocks(rdev, sect, s, 0))
2427 md_error(mddev, rdev);
2430 /* write it back and re-read */
2432 while (d != read_disk) {
2434 d = conf->raid_disks * 2;
2436 rdev = conf->mirrors[d].rdev;
2438 !test_bit(Faulty, &rdev->flags)) {
2439 atomic_inc(&rdev->nr_pending);
2440 r1_sync_page_io(rdev, sect, s,
2441 conf->tmppage, REQ_OP_WRITE);
2442 rdev_dec_pending(rdev, mddev);
2446 while (d != read_disk) {
2448 d = conf->raid_disks * 2;
2450 rdev = conf->mirrors[d].rdev;
2452 !test_bit(Faulty, &rdev->flags)) {
2453 atomic_inc(&rdev->nr_pending);
2454 if (r1_sync_page_io(rdev, sect, s,
2455 conf->tmppage, REQ_OP_READ)) {
2456 atomic_add(s, &rdev->corrected_errors);
2457 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2459 (unsigned long long)(sect +
2463 rdev_dec_pending(rdev, mddev);
2471 static int narrow_write_error(struct r1bio *r1_bio, int i)
2473 struct mddev *mddev = r1_bio->mddev;
2474 struct r1conf *conf = mddev->private;
2475 struct md_rdev *rdev = conf->mirrors[i].rdev;
2477 /* bio has the data to be written to device 'i' where
2478 * we just recently had a write error.
2479 * We repeatedly clone the bio and trim down to one block,
2480 * then try the write. Where the write fails we record
2482 * It is conceivable that the bio doesn't exactly align with
2483 * blocks. We must handle this somehow.
2485 * We currently own a reference on the rdev.
2491 int sect_to_write = r1_bio->sectors;
2494 if (rdev->badblocks.shift < 0)
2497 block_sectors = roundup(1 << rdev->badblocks.shift,
2498 bdev_logical_block_size(rdev->bdev) >> 9);
2499 sector = r1_bio->sector;
2500 sectors = ((sector + block_sectors)
2501 & ~(sector_t)(block_sectors - 1))
2504 while (sect_to_write) {
2506 if (sectors > sect_to_write)
2507 sectors = sect_to_write;
2508 /* Write at 'sector' for 'sectors'*/
2510 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2511 wbio = bio_alloc_clone(rdev->bdev,
2512 r1_bio->behind_master_bio,
2513 GFP_NOIO, &mddev->bio_set);
2515 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2516 GFP_NOIO, &mddev->bio_set);
2519 wbio->bi_opf = REQ_OP_WRITE;
2520 wbio->bi_iter.bi_sector = r1_bio->sector;
2521 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2523 bio_trim(wbio, sector - r1_bio->sector, sectors);
2524 wbio->bi_iter.bi_sector += rdev->data_offset;
2526 if (submit_bio_wait(wbio) < 0)
2528 ok = rdev_set_badblocks(rdev, sector,
2533 sect_to_write -= sectors;
2535 sectors = block_sectors;
2540 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2543 int s = r1_bio->sectors;
2544 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2545 struct md_rdev *rdev = conf->mirrors[m].rdev;
2546 struct bio *bio = r1_bio->bios[m];
2547 if (bio->bi_end_io == NULL)
2549 if (!bio->bi_status &&
2550 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2551 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2553 if (bio->bi_status &&
2554 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2555 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2556 md_error(conf->mddev, rdev);
2560 md_done_sync(conf->mddev, s, 1);
2563 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2568 for (m = 0; m < conf->raid_disks * 2 ; m++)
2569 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2570 struct md_rdev *rdev = conf->mirrors[m].rdev;
2571 rdev_clear_badblocks(rdev,
2573 r1_bio->sectors, 0);
2574 rdev_dec_pending(rdev, conf->mddev);
2575 } else if (r1_bio->bios[m] != NULL) {
2576 /* This drive got a write error. We need to
2577 * narrow down and record precise write
2581 if (!narrow_write_error(r1_bio, m)) {
2582 md_error(conf->mddev,
2583 conf->mirrors[m].rdev);
2584 /* an I/O failed, we can't clear the bitmap */
2585 set_bit(R1BIO_Degraded, &r1_bio->state);
2587 rdev_dec_pending(conf->mirrors[m].rdev,
2591 spin_lock_irq(&conf->device_lock);
2592 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2593 idx = sector_to_idx(r1_bio->sector);
2594 atomic_inc(&conf->nr_queued[idx]);
2595 spin_unlock_irq(&conf->device_lock);
2597 * In case freeze_array() is waiting for condition
2598 * get_unqueued_pending() == extra to be true.
2600 wake_up(&conf->wait_barrier);
2601 md_wakeup_thread(conf->mddev->thread);
2603 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2604 close_write(r1_bio);
2605 raid_end_bio_io(r1_bio);
2609 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2611 struct mddev *mddev = conf->mddev;
2613 struct md_rdev *rdev;
2616 clear_bit(R1BIO_ReadError, &r1_bio->state);
2617 /* we got a read error. Maybe the drive is bad. Maybe just
2618 * the block and we can fix it.
2619 * We freeze all other IO, and try reading the block from
2620 * other devices. When we find one, we re-write
2621 * and check it that fixes the read error.
2622 * This is all done synchronously while the array is
2626 bio = r1_bio->bios[r1_bio->read_disk];
2628 r1_bio->bios[r1_bio->read_disk] = NULL;
2630 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2632 && !test_bit(FailFast, &rdev->flags)) {
2633 freeze_array(conf, 1);
2634 fix_read_error(conf, r1_bio);
2635 unfreeze_array(conf);
2636 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2637 md_error(mddev, rdev);
2639 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2642 rdev_dec_pending(rdev, conf->mddev);
2643 sector = r1_bio->sector;
2644 bio = r1_bio->master_bio;
2646 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2648 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2649 allow_barrier(conf, sector);
2652 static void raid1d(struct md_thread *thread)
2654 struct mddev *mddev = thread->mddev;
2655 struct r1bio *r1_bio;
2656 unsigned long flags;
2657 struct r1conf *conf = mddev->private;
2658 struct list_head *head = &conf->retry_list;
2659 struct blk_plug plug;
2662 md_check_recovery(mddev);
2664 if (!list_empty_careful(&conf->bio_end_io_list) &&
2665 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2667 spin_lock_irqsave(&conf->device_lock, flags);
2668 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2669 list_splice_init(&conf->bio_end_io_list, &tmp);
2670 spin_unlock_irqrestore(&conf->device_lock, flags);
2671 while (!list_empty(&tmp)) {
2672 r1_bio = list_first_entry(&tmp, struct r1bio,
2674 list_del(&r1_bio->retry_list);
2675 idx = sector_to_idx(r1_bio->sector);
2676 atomic_dec(&conf->nr_queued[idx]);
2677 if (mddev->degraded)
2678 set_bit(R1BIO_Degraded, &r1_bio->state);
2679 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2680 close_write(r1_bio);
2681 raid_end_bio_io(r1_bio);
2685 blk_start_plug(&plug);
2688 flush_pending_writes(conf);
2690 spin_lock_irqsave(&conf->device_lock, flags);
2691 if (list_empty(head)) {
2692 spin_unlock_irqrestore(&conf->device_lock, flags);
2695 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2696 list_del(head->prev);
2697 idx = sector_to_idx(r1_bio->sector);
2698 atomic_dec(&conf->nr_queued[idx]);
2699 spin_unlock_irqrestore(&conf->device_lock, flags);
2701 mddev = r1_bio->mddev;
2702 conf = mddev->private;
2703 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2704 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2705 test_bit(R1BIO_WriteError, &r1_bio->state))
2706 handle_sync_write_finished(conf, r1_bio);
2708 sync_request_write(mddev, r1_bio);
2709 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2710 test_bit(R1BIO_WriteError, &r1_bio->state))
2711 handle_write_finished(conf, r1_bio);
2712 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2713 handle_read_error(conf, r1_bio);
2718 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2719 md_check_recovery(mddev);
2721 blk_finish_plug(&plug);
2724 static int init_resync(struct r1conf *conf)
2728 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2729 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2731 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2732 r1buf_pool_free, conf->poolinfo);
2735 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2737 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2738 struct resync_pages *rps;
2742 for (i = conf->poolinfo->raid_disks; i--; ) {
2743 bio = r1bio->bios[i];
2744 rps = bio->bi_private;
2745 bio_reset(bio, NULL, 0);
2746 bio->bi_private = rps;
2748 r1bio->master_bio = NULL;
2753 * perform a "sync" on one "block"
2755 * We need to make sure that no normal I/O request - particularly write
2756 * requests - conflict with active sync requests.
2758 * This is achieved by tracking pending requests and a 'barrier' concept
2759 * that can be installed to exclude normal IO requests.
2762 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2763 sector_t max_sector, int *skipped)
2765 struct r1conf *conf = mddev->private;
2766 struct r1bio *r1_bio;
2768 sector_t nr_sectors;
2772 int write_targets = 0, read_targets = 0;
2773 sector_t sync_blocks;
2774 int still_degraded = 0;
2775 int good_sectors = RESYNC_SECTORS;
2776 int min_bad = 0; /* number of sectors that are bad in all devices */
2777 int idx = sector_to_idx(sector_nr);
2780 if (!mempool_initialized(&conf->r1buf_pool))
2781 if (init_resync(conf))
2784 if (sector_nr >= max_sector) {
2785 /* If we aborted, we need to abort the
2786 * sync on the 'current' bitmap chunk (there will
2787 * only be one in raid1 resync.
2788 * We can find the current addess in mddev->curr_resync
2790 if (mddev->curr_resync < max_sector) /* aborted */
2791 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2793 else /* completed sync */
2796 md_bitmap_close_sync(mddev->bitmap);
2799 if (mddev_is_clustered(mddev)) {
2800 conf->cluster_sync_low = 0;
2801 conf->cluster_sync_high = 0;
2806 if (mddev->bitmap == NULL &&
2807 mddev->recovery_cp == MaxSector &&
2808 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2809 conf->fullsync == 0) {
2811 return max_sector - sector_nr;
2813 /* before building a request, check if we can skip these blocks..
2814 * This call the bitmap_start_sync doesn't actually record anything
2816 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2817 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2818 /* We can skip this block, and probably several more */
2824 * If there is non-resync activity waiting for a turn, then let it
2825 * though before starting on this new sync request.
2827 if (atomic_read(&conf->nr_waiting[idx]))
2828 schedule_timeout_uninterruptible(1);
2830 /* we are incrementing sector_nr below. To be safe, we check against
2831 * sector_nr + two times RESYNC_SECTORS
2834 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2835 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2838 if (raise_barrier(conf, sector_nr))
2841 r1_bio = raid1_alloc_init_r1buf(conf);
2844 * If we get a correctably read error during resync or recovery,
2845 * we might want to read from a different device. So we
2846 * flag all drives that could conceivably be read from for READ,
2847 * and any others (which will be non-In_sync devices) for WRITE.
2848 * If a read fails, we try reading from something else for which READ
2852 r1_bio->mddev = mddev;
2853 r1_bio->sector = sector_nr;
2855 set_bit(R1BIO_IsSync, &r1_bio->state);
2856 /* make sure good_sectors won't go across barrier unit boundary */
2857 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2859 for (i = 0; i < conf->raid_disks * 2; i++) {
2860 struct md_rdev *rdev;
2861 bio = r1_bio->bios[i];
2863 rdev = conf->mirrors[i].rdev;
2865 test_bit(Faulty, &rdev->flags)) {
2866 if (i < conf->raid_disks)
2868 } else if (!test_bit(In_sync, &rdev->flags)) {
2869 bio->bi_opf = REQ_OP_WRITE;
2870 bio->bi_end_io = end_sync_write;
2873 /* may need to read from here */
2874 sector_t first_bad = MaxSector;
2877 if (is_badblock(rdev, sector_nr, good_sectors,
2878 &first_bad, &bad_sectors)) {
2879 if (first_bad > sector_nr)
2880 good_sectors = first_bad - sector_nr;
2882 bad_sectors -= (sector_nr - first_bad);
2884 min_bad > bad_sectors)
2885 min_bad = bad_sectors;
2888 if (sector_nr < first_bad) {
2889 if (test_bit(WriteMostly, &rdev->flags)) {
2896 bio->bi_opf = REQ_OP_READ;
2897 bio->bi_end_io = end_sync_read;
2899 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2900 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2901 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2903 * The device is suitable for reading (InSync),
2904 * but has bad block(s) here. Let's try to correct them,
2905 * if we are doing resync or repair. Otherwise, leave
2906 * this device alone for this sync request.
2908 bio->bi_opf = REQ_OP_WRITE;
2909 bio->bi_end_io = end_sync_write;
2913 if (rdev && bio->bi_end_io) {
2914 atomic_inc(&rdev->nr_pending);
2915 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2916 bio_set_dev(bio, rdev->bdev);
2917 if (test_bit(FailFast, &rdev->flags))
2918 bio->bi_opf |= MD_FAILFAST;
2923 r1_bio->read_disk = disk;
2925 if (read_targets == 0 && min_bad > 0) {
2926 /* These sectors are bad on all InSync devices, so we
2927 * need to mark them bad on all write targets
2930 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2931 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2932 struct md_rdev *rdev = conf->mirrors[i].rdev;
2933 ok = rdev_set_badblocks(rdev, sector_nr,
2937 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2942 /* Cannot record the badblocks, so need to
2944 * If there are multiple read targets, could just
2945 * fail the really bad ones ???
2947 conf->recovery_disabled = mddev->recovery_disabled;
2948 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2954 if (min_bad > 0 && min_bad < good_sectors) {
2955 /* only resync enough to reach the next bad->good
2957 good_sectors = min_bad;
2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2961 /* extra read targets are also write targets */
2962 write_targets += read_targets-1;
2964 if (write_targets == 0 || read_targets == 0) {
2965 /* There is nowhere to write, so all non-sync
2966 * drives must be failed - so we are finished
2970 max_sector = sector_nr + min_bad;
2971 rv = max_sector - sector_nr;
2977 if (max_sector > mddev->resync_max)
2978 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2979 if (max_sector > sector_nr + good_sectors)
2980 max_sector = sector_nr + good_sectors;
2985 int len = PAGE_SIZE;
2986 if (sector_nr + (len>>9) > max_sector)
2987 len = (max_sector - sector_nr) << 9;
2990 if (sync_blocks == 0) {
2991 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2992 &sync_blocks, still_degraded) &&
2994 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2996 if ((len >> 9) > sync_blocks)
2997 len = sync_blocks<<9;
3000 for (i = 0 ; i < conf->raid_disks * 2; i++) {
3001 struct resync_pages *rp;
3003 bio = r1_bio->bios[i];
3004 rp = get_resync_pages(bio);
3005 if (bio->bi_end_io) {
3006 page = resync_fetch_page(rp, page_idx);
3009 * won't fail because the vec table is big
3010 * enough to hold all these pages
3012 __bio_add_page(bio, page, len, 0);
3015 nr_sectors += len>>9;
3016 sector_nr += len>>9;
3017 sync_blocks -= (len>>9);
3018 } while (++page_idx < RESYNC_PAGES);
3020 r1_bio->sectors = nr_sectors;
3022 if (mddev_is_clustered(mddev) &&
3023 conf->cluster_sync_high < sector_nr + nr_sectors) {
3024 conf->cluster_sync_low = mddev->curr_resync_completed;
3025 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3026 /* Send resync message */
3027 md_cluster_ops->resync_info_update(mddev,
3028 conf->cluster_sync_low,
3029 conf->cluster_sync_high);
3032 /* For a user-requested sync, we read all readable devices and do a
3035 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3036 atomic_set(&r1_bio->remaining, read_targets);
3037 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3038 bio = r1_bio->bios[i];
3039 if (bio->bi_end_io == end_sync_read) {
3041 md_sync_acct_bio(bio, nr_sectors);
3042 if (read_targets == 1)
3043 bio->bi_opf &= ~MD_FAILFAST;
3044 submit_bio_noacct(bio);
3048 atomic_set(&r1_bio->remaining, 1);
3049 bio = r1_bio->bios[r1_bio->read_disk];
3050 md_sync_acct_bio(bio, nr_sectors);
3051 if (read_targets == 1)
3052 bio->bi_opf &= ~MD_FAILFAST;
3053 submit_bio_noacct(bio);
3058 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3063 return mddev->dev_sectors;
3066 static struct r1conf *setup_conf(struct mddev *mddev)
3068 struct r1conf *conf;
3070 struct raid1_info *disk;
3071 struct md_rdev *rdev;
3074 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3078 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3079 sizeof(atomic_t), GFP_KERNEL);
3080 if (!conf->nr_pending)
3083 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3084 sizeof(atomic_t), GFP_KERNEL);
3085 if (!conf->nr_waiting)
3088 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3089 sizeof(atomic_t), GFP_KERNEL);
3090 if (!conf->nr_queued)
3093 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3094 sizeof(atomic_t), GFP_KERNEL);
3098 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3099 mddev->raid_disks, 2),
3104 conf->tmppage = alloc_page(GFP_KERNEL);
3108 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3109 if (!conf->poolinfo)
3111 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3112 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3113 rbio_pool_free, conf->poolinfo);
3117 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3121 conf->poolinfo->mddev = mddev;
3124 spin_lock_init(&conf->device_lock);
3125 conf->raid_disks = mddev->raid_disks;
3126 rdev_for_each(rdev, mddev) {
3127 int disk_idx = rdev->raid_disk;
3129 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3132 if (!raid1_add_conf(conf, rdev, disk_idx,
3133 test_bit(Replacement, &rdev->flags)))
3136 conf->mddev = mddev;
3137 INIT_LIST_HEAD(&conf->retry_list);
3138 INIT_LIST_HEAD(&conf->bio_end_io_list);
3140 spin_lock_init(&conf->resync_lock);
3141 init_waitqueue_head(&conf->wait_barrier);
3143 bio_list_init(&conf->pending_bio_list);
3144 conf->recovery_disabled = mddev->recovery_disabled - 1;
3147 for (i = 0; i < conf->raid_disks * 2; i++) {
3149 disk = conf->mirrors + i;
3151 if (i < conf->raid_disks &&
3152 disk[conf->raid_disks].rdev) {
3153 /* This slot has a replacement. */
3155 /* No original, just make the replacement
3156 * a recovering spare
3159 disk[conf->raid_disks].rdev;
3160 disk[conf->raid_disks].rdev = NULL;
3161 } else if (!test_bit(In_sync, &disk->rdev->flags))
3162 /* Original is not in_sync - bad */
3167 !test_bit(In_sync, &disk->rdev->flags)) {
3168 disk->head_position = 0;
3170 (disk->rdev->saved_raid_disk < 0))
3176 rcu_assign_pointer(conf->thread,
3177 md_register_thread(raid1d, mddev, "raid1"));
3185 mempool_exit(&conf->r1bio_pool);
3186 kfree(conf->mirrors);
3187 safe_put_page(conf->tmppage);
3188 kfree(conf->poolinfo);
3189 kfree(conf->nr_pending);
3190 kfree(conf->nr_waiting);
3191 kfree(conf->nr_queued);
3192 kfree(conf->barrier);
3193 bioset_exit(&conf->bio_split);
3196 return ERR_PTR(err);
3199 static int raid1_set_limits(struct mddev *mddev)
3201 struct queue_limits lim;
3204 md_init_stacking_limits(&lim);
3205 lim.max_write_zeroes_sectors = 0;
3206 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3208 queue_limits_cancel_update(mddev->gendisk->queue);
3211 return queue_limits_set(mddev->gendisk->queue, &lim);
3214 static int raid1_run(struct mddev *mddev)
3216 struct r1conf *conf;
3220 if (mddev->level != 1) {
3221 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3222 mdname(mddev), mddev->level);
3225 if (mddev->reshape_position != MaxSector) {
3226 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3232 * copy the already verified devices into our private RAID1
3233 * bookkeeping area. [whatever we allocate in run(),
3234 * should be freed in raid1_free()]
3236 if (mddev->private == NULL)
3237 conf = setup_conf(mddev);
3239 conf = mddev->private;
3242 return PTR_ERR(conf);
3244 if (!mddev_is_dm(mddev)) {
3245 ret = raid1_set_limits(mddev);
3250 mddev->degraded = 0;
3251 for (i = 0; i < conf->raid_disks; i++)
3252 if (conf->mirrors[i].rdev == NULL ||
3253 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3254 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3257 * RAID1 needs at least one disk in active
3259 if (conf->raid_disks - mddev->degraded < 1) {
3260 md_unregister_thread(mddev, &conf->thread);
3264 if (conf->raid_disks - mddev->degraded == 1)
3265 mddev->recovery_cp = MaxSector;
3267 if (mddev->recovery_cp != MaxSector)
3268 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3270 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3271 mdname(mddev), mddev->raid_disks - mddev->degraded,
3275 * Ok, everything is just fine now
3277 rcu_assign_pointer(mddev->thread, conf->thread);
3278 rcu_assign_pointer(conf->thread, NULL);
3279 mddev->private = conf;
3280 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3282 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3284 ret = md_integrity_register(mddev);
3286 md_unregister_thread(mddev, &mddev->thread);
3290 static void raid1_free(struct mddev *mddev, void *priv)
3292 struct r1conf *conf = priv;
3294 mempool_exit(&conf->r1bio_pool);
3295 kfree(conf->mirrors);
3296 safe_put_page(conf->tmppage);
3297 kfree(conf->poolinfo);
3298 kfree(conf->nr_pending);
3299 kfree(conf->nr_waiting);
3300 kfree(conf->nr_queued);
3301 kfree(conf->barrier);
3302 bioset_exit(&conf->bio_split);
3306 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3308 /* no resync is happening, and there is enough space
3309 * on all devices, so we can resize.
3310 * We need to make sure resync covers any new space.
3311 * If the array is shrinking we should possibly wait until
3312 * any io in the removed space completes, but it hardly seems
3315 sector_t newsize = raid1_size(mddev, sectors, 0);
3316 if (mddev->external_size &&
3317 mddev->array_sectors > newsize)
3319 if (mddev->bitmap) {
3320 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3324 md_set_array_sectors(mddev, newsize);
3325 if (sectors > mddev->dev_sectors &&
3326 mddev->recovery_cp > mddev->dev_sectors) {
3327 mddev->recovery_cp = mddev->dev_sectors;
3328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 mddev->dev_sectors = sectors;
3331 mddev->resync_max_sectors = sectors;
3335 static int raid1_reshape(struct mddev *mddev)
3338 * 1/ resize the r1bio_pool
3339 * 2/ resize conf->mirrors
3341 * We allocate a new r1bio_pool if we can.
3342 * Then raise a device barrier and wait until all IO stops.
3343 * Then resize conf->mirrors and swap in the new r1bio pool.
3345 * At the same time, we "pack" the devices so that all the missing
3346 * devices have the higher raid_disk numbers.
3348 mempool_t newpool, oldpool;
3349 struct pool_info *newpoolinfo;
3350 struct raid1_info *newmirrors;
3351 struct r1conf *conf = mddev->private;
3352 int cnt, raid_disks;
3353 unsigned long flags;
3357 memset(&newpool, 0, sizeof(newpool));
3358 memset(&oldpool, 0, sizeof(oldpool));
3360 /* Cannot change chunk_size, layout, or level */
3361 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3362 mddev->layout != mddev->new_layout ||
3363 mddev->level != mddev->new_level) {
3364 mddev->new_chunk_sectors = mddev->chunk_sectors;
3365 mddev->new_layout = mddev->layout;
3366 mddev->new_level = mddev->level;
3370 if (!mddev_is_clustered(mddev))
3371 md_allow_write(mddev);
3373 raid_disks = mddev->raid_disks + mddev->delta_disks;
3375 if (raid_disks < conf->raid_disks) {
3377 for (d= 0; d < conf->raid_disks; d++)
3378 if (conf->mirrors[d].rdev)
3380 if (cnt > raid_disks)
3384 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3387 newpoolinfo->mddev = mddev;
3388 newpoolinfo->raid_disks = raid_disks * 2;
3390 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3391 rbio_pool_free, newpoolinfo);
3396 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3401 mempool_exit(&newpool);
3405 freeze_array(conf, 0);
3407 /* ok, everything is stopped */
3408 oldpool = conf->r1bio_pool;
3409 conf->r1bio_pool = newpool;
3411 for (d = d2 = 0; d < conf->raid_disks; d++) {
3412 struct md_rdev *rdev = conf->mirrors[d].rdev;
3413 if (rdev && rdev->raid_disk != d2) {
3414 sysfs_unlink_rdev(mddev, rdev);
3415 rdev->raid_disk = d2;
3416 sysfs_unlink_rdev(mddev, rdev);
3417 if (sysfs_link_rdev(mddev, rdev))
3418 pr_warn("md/raid1:%s: cannot register rd%d\n",
3419 mdname(mddev), rdev->raid_disk);
3422 newmirrors[d2++].rdev = rdev;
3424 kfree(conf->mirrors);
3425 conf->mirrors = newmirrors;
3426 kfree(conf->poolinfo);
3427 conf->poolinfo = newpoolinfo;
3429 spin_lock_irqsave(&conf->device_lock, flags);
3430 mddev->degraded += (raid_disks - conf->raid_disks);
3431 spin_unlock_irqrestore(&conf->device_lock, flags);
3432 conf->raid_disks = mddev->raid_disks = raid_disks;
3433 mddev->delta_disks = 0;
3435 unfreeze_array(conf);
3437 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3438 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3439 md_wakeup_thread(mddev->thread);
3441 mempool_exit(&oldpool);
3445 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3447 struct r1conf *conf = mddev->private;
3450 freeze_array(conf, 0);
3452 unfreeze_array(conf);
3455 static void *raid1_takeover(struct mddev *mddev)
3457 /* raid1 can take over:
3458 * raid5 with 2 devices, any layout or chunk size
3460 if (mddev->level == 5 && mddev->raid_disks == 2) {
3461 struct r1conf *conf;
3462 mddev->new_level = 1;
3463 mddev->new_layout = 0;
3464 mddev->new_chunk_sectors = 0;
3465 conf = setup_conf(mddev);
3466 if (!IS_ERR(conf)) {
3467 /* Array must appear to be quiesced */
3468 conf->array_frozen = 1;
3469 mddev_clear_unsupported_flags(mddev,
3470 UNSUPPORTED_MDDEV_FLAGS);
3474 return ERR_PTR(-EINVAL);
3477 static struct md_personality raid1_personality =
3481 .owner = THIS_MODULE,
3482 .make_request = raid1_make_request,
3485 .status = raid1_status,
3486 .error_handler = raid1_error,
3487 .hot_add_disk = raid1_add_disk,
3488 .hot_remove_disk= raid1_remove_disk,
3489 .spare_active = raid1_spare_active,
3490 .sync_request = raid1_sync_request,
3491 .resize = raid1_resize,
3493 .check_reshape = raid1_reshape,
3494 .quiesce = raid1_quiesce,
3495 .takeover = raid1_takeover,
3498 static int __init raid_init(void)
3500 return register_md_personality(&raid1_personality);
3503 static void raid_exit(void)
3505 unregister_md_personality(&raid1_personality);
3508 module_init(raid_init);
3509 module_exit(raid_exit);
3510 MODULE_LICENSE("GPL");
3511 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3512 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3513 MODULE_ALIAS("md-raid1");
3514 MODULE_ALIAS("md-level-1");