1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Isochronous I/O functionality:
4 * - Isochronous DMA context management
5 * - Isochronous bus resource management (channels, bandwidth), client side
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
21 #include <asm/byteorder.h>
25 #include <trace/events/firewire.h>
28 * Isochronous DMA context management
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
35 buffer->page_count = 0;
36 buffer->page_count_mapped = 0;
37 buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
39 if (buffer->pages == NULL)
42 for (i = 0; i < page_count; i++) {
43 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44 if (buffer->pages[i] == NULL)
47 buffer->page_count = i;
49 fw_iso_buffer_destroy(buffer, NULL);
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57 enum dma_data_direction direction)
62 buffer->direction = direction;
64 for (i = 0; i < buffer->page_count; i++) {
65 address = dma_map_page(card->device, buffer->pages[i],
66 0, PAGE_SIZE, direction);
67 if (dma_mapping_error(card->device, address))
70 set_page_private(buffer->pages[i], address);
72 buffer->page_count_mapped = i;
73 if (i < buffer->page_count)
79 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80 int page_count, enum dma_data_direction direction)
84 ret = fw_iso_buffer_alloc(buffer, page_count);
88 ret = fw_iso_buffer_map_dma(buffer, card, direction);
90 fw_iso_buffer_destroy(buffer, card);
94 EXPORT_SYMBOL(fw_iso_buffer_init);
96 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
102 for (i = 0; i < buffer->page_count_mapped; i++) {
103 address = page_private(buffer->pages[i]);
104 dma_unmap_page(card->device, address,
105 PAGE_SIZE, buffer->direction);
107 for (i = 0; i < buffer->page_count; i++)
108 __free_page(buffer->pages[i]);
110 kfree(buffer->pages);
111 buffer->pages = NULL;
112 buffer->page_count = 0;
113 buffer->page_count_mapped = 0;
115 EXPORT_SYMBOL(fw_iso_buffer_destroy);
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
124 for (i = 0; i < buffer->page_count; i++) {
125 address = page_private(buffer->pages[i]);
126 offset = (ssize_t)completed - (ssize_t)address;
127 if (offset > 0 && offset <= PAGE_SIZE)
128 return (i << PAGE_SHIFT) + offset;
134 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135 int type, int channel, int speed, size_t header_size,
136 fw_iso_callback_t callback, void *callback_data)
138 struct fw_iso_context *ctx;
140 ctx = card->driver->allocate_iso_context(card,
141 type, channel, header_size);
147 ctx->channel = channel;
149 ctx->header_size = header_size;
150 ctx->callback.sc = callback;
151 ctx->callback_data = callback_data;
153 trace_isoc_outbound_allocate(ctx, channel, speed);
154 trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155 trace_isoc_inbound_multiple_allocate(ctx);
159 EXPORT_SYMBOL(fw_iso_context_create);
161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
163 trace_isoc_outbound_destroy(ctx);
164 trace_isoc_inbound_single_destroy(ctx);
165 trace_isoc_inbound_multiple_destroy(ctx);
167 ctx->card->driver->free_iso_context(ctx);
169 EXPORT_SYMBOL(fw_iso_context_destroy);
171 int fw_iso_context_start(struct fw_iso_context *ctx,
172 int cycle, int sync, int tags)
174 trace_isoc_outbound_start(ctx, cycle);
175 trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176 trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
178 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
180 EXPORT_SYMBOL(fw_iso_context_start);
182 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
184 trace_isoc_inbound_multiple_channels(ctx, *channels);
186 return ctx->card->driver->set_iso_channels(ctx, channels);
189 int fw_iso_context_queue(struct fw_iso_context *ctx,
190 struct fw_iso_packet *packet,
191 struct fw_iso_buffer *buffer,
192 unsigned long payload)
194 trace_isoc_outbound_queue(ctx, payload, packet);
195 trace_isoc_inbound_single_queue(ctx, payload, packet);
196 trace_isoc_inbound_multiple_queue(ctx, payload, packet);
198 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
200 EXPORT_SYMBOL(fw_iso_context_queue);
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
204 trace_isoc_outbound_flush(ctx);
205 trace_isoc_inbound_single_flush(ctx);
206 trace_isoc_inbound_multiple_flush(ctx);
208 ctx->card->driver->flush_queue_iso(ctx);
210 EXPORT_SYMBOL(fw_iso_context_queue_flush);
212 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
214 trace_isoc_outbound_flush_completions(ctx);
215 trace_isoc_inbound_single_flush_completions(ctx);
216 trace_isoc_inbound_multiple_flush_completions(ctx);
218 return ctx->card->driver->flush_iso_completions(ctx);
220 EXPORT_SYMBOL(fw_iso_context_flush_completions);
222 int fw_iso_context_stop(struct fw_iso_context *ctx)
224 trace_isoc_outbound_stop(ctx);
225 trace_isoc_inbound_single_stop(ctx);
226 trace_isoc_inbound_multiple_stop(ctx);
228 return ctx->card->driver->stop_iso(ctx);
230 EXPORT_SYMBOL(fw_iso_context_stop);
233 * Isochronous bus resource management (channels, bandwidth), client side
236 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
237 int bandwidth, bool allocate)
239 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
243 * On a 1394a IRM with low contention, try < 1 is enough.
244 * On a 1394-1995 IRM, we need at least try < 2.
245 * Let's just do try < 5.
247 for (try = 0; try < 5; try++) {
248 new = allocate ? old - bandwidth : old + bandwidth;
249 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
252 data[0] = cpu_to_be32(old);
253 data[1] = cpu_to_be32(new);
254 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
255 irm_id, generation, SCODE_100,
256 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
258 case RCODE_GENERATION:
259 /* A generation change frees all bandwidth. */
260 return allocate ? -EAGAIN : bandwidth;
263 if (be32_to_cpup(data) == old)
266 old = be32_to_cpup(data);
274 static int manage_channel(struct fw_card *card, int irm_id, int generation,
275 u32 channels_mask, u64 offset, bool allocate)
277 __be32 bit, all, old;
279 int channel, ret = -EIO, retry = 5;
281 old = all = allocate ? cpu_to_be32(~0) : 0;
283 for (channel = 0; channel < 32; channel++) {
284 if (!(channels_mask & 1 << channel))
289 bit = cpu_to_be32(1 << (31 - channel));
290 if ((old & bit) != (all & bit))
295 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
296 irm_id, generation, SCODE_100,
298 case RCODE_GENERATION:
299 /* A generation change frees all channels. */
300 return allocate ? -EAGAIN : channel;
308 /* Is the IRM 1394a-2000 compliant? */
309 if ((data[0] & bit) == (data[1] & bit))
312 fallthrough; /* It's a 1394-1995 IRM, retry */
326 static void deallocate_channel(struct fw_card *card, int irm_id,
327 int generation, int channel)
332 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
333 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
334 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
336 manage_channel(card, irm_id, generation, mask, offset, false);
340 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
341 * @card: card interface for this action
342 * @generation: bus generation
343 * @channels_mask: bitmask for channel allocation
344 * @channel: pointer for returning channel allocation result
345 * @bandwidth: pointer for returning bandwidth allocation result
346 * @allocate: whether to allocate (true) or deallocate (false)
348 * In parameters: card, generation, channels_mask, bandwidth, allocate
349 * Out parameters: channel, bandwidth
351 * This function blocks (sleeps) during communication with the IRM.
353 * Allocates or deallocates at most one channel out of channels_mask.
354 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
355 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
356 * channel 0 and LSB for channel 63.)
357 * Allocates or deallocates as many bandwidth allocation units as specified.
359 * Returns channel < 0 if no channel was allocated or deallocated.
360 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
362 * If generation is stale, deallocations succeed but allocations fail with
365 * If channel allocation fails, no bandwidth will be allocated either.
366 * If bandwidth allocation fails, no channel will be allocated either.
367 * But deallocations of channel and bandwidth are tried independently
368 * of each other's success.
370 void fw_iso_resource_manage(struct fw_card *card, int generation,
371 u64 channels_mask, int *channel, int *bandwidth,
374 u32 channels_hi = channels_mask; /* channels 31...0 */
375 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
376 int irm_id, ret, c = -EINVAL;
378 spin_lock_irq(&card->lock);
379 irm_id = card->irm_node->node_id;
380 spin_unlock_irq(&card->lock);
383 c = manage_channel(card, irm_id, generation, channels_hi,
384 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
386 if (channels_lo && c < 0) {
387 c = manage_channel(card, irm_id, generation, channels_lo,
388 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
395 if (allocate && channels_mask != 0 && c < 0)
401 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
405 if (allocate && ret < 0) {
407 deallocate_channel(card, irm_id, generation, c);
411 EXPORT_SYMBOL(fw_iso_resource_manage);