]> Git Repo - linux.git/blob - drivers/firewire/core-iso.c
drm/v3d: Use v3d_perfmon_find()
[linux.git] / drivers / firewire / core-iso.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <[email protected]>
8  */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20
21 #include <asm/byteorder.h>
22
23 #include "core.h"
24
25 #include <trace/events/firewire.h>
26
27 /*
28  * Isochronous DMA context management
29  */
30
31 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
32 {
33         int i;
34
35         buffer->page_count = 0;
36         buffer->page_count_mapped = 0;
37         buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
38                                       GFP_KERNEL);
39         if (buffer->pages == NULL)
40                 return -ENOMEM;
41
42         for (i = 0; i < page_count; i++) {
43                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
44                 if (buffer->pages[i] == NULL)
45                         break;
46         }
47         buffer->page_count = i;
48         if (i < page_count) {
49                 fw_iso_buffer_destroy(buffer, NULL);
50                 return -ENOMEM;
51         }
52
53         return 0;
54 }
55
56 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
57                           enum dma_data_direction direction)
58 {
59         dma_addr_t address;
60         int i;
61
62         buffer->direction = direction;
63
64         for (i = 0; i < buffer->page_count; i++) {
65                 address = dma_map_page(card->device, buffer->pages[i],
66                                        0, PAGE_SIZE, direction);
67                 if (dma_mapping_error(card->device, address))
68                         break;
69
70                 set_page_private(buffer->pages[i], address);
71         }
72         buffer->page_count_mapped = i;
73         if (i < buffer->page_count)
74                 return -ENOMEM;
75
76         return 0;
77 }
78
79 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
80                        int page_count, enum dma_data_direction direction)
81 {
82         int ret;
83
84         ret = fw_iso_buffer_alloc(buffer, page_count);
85         if (ret < 0)
86                 return ret;
87
88         ret = fw_iso_buffer_map_dma(buffer, card, direction);
89         if (ret < 0)
90                 fw_iso_buffer_destroy(buffer, card);
91
92         return ret;
93 }
94 EXPORT_SYMBOL(fw_iso_buffer_init);
95
96 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
97                            struct fw_card *card)
98 {
99         int i;
100         dma_addr_t address;
101
102         for (i = 0; i < buffer->page_count_mapped; i++) {
103                 address = page_private(buffer->pages[i]);
104                 dma_unmap_page(card->device, address,
105                                PAGE_SIZE, buffer->direction);
106         }
107         for (i = 0; i < buffer->page_count; i++)
108                 __free_page(buffer->pages[i]);
109
110         kfree(buffer->pages);
111         buffer->pages = NULL;
112         buffer->page_count = 0;
113         buffer->page_count_mapped = 0;
114 }
115 EXPORT_SYMBOL(fw_iso_buffer_destroy);
116
117 /* Convert DMA address to offset into virtually contiguous buffer. */
118 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119 {
120         size_t i;
121         dma_addr_t address;
122         ssize_t offset;
123
124         for (i = 0; i < buffer->page_count; i++) {
125                 address = page_private(buffer->pages[i]);
126                 offset = (ssize_t)completed - (ssize_t)address;
127                 if (offset > 0 && offset <= PAGE_SIZE)
128                         return (i << PAGE_SHIFT) + offset;
129         }
130
131         return 0;
132 }
133
134 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135                 int type, int channel, int speed, size_t header_size,
136                 fw_iso_callback_t callback, void *callback_data)
137 {
138         struct fw_iso_context *ctx;
139
140         ctx = card->driver->allocate_iso_context(card,
141                                                  type, channel, header_size);
142         if (IS_ERR(ctx))
143                 return ctx;
144
145         ctx->card = card;
146         ctx->type = type;
147         ctx->channel = channel;
148         ctx->speed = speed;
149         ctx->header_size = header_size;
150         ctx->callback.sc = callback;
151         ctx->callback_data = callback_data;
152
153         trace_isoc_outbound_allocate(ctx, channel, speed);
154         trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155         trace_isoc_inbound_multiple_allocate(ctx);
156
157         return ctx;
158 }
159 EXPORT_SYMBOL(fw_iso_context_create);
160
161 void fw_iso_context_destroy(struct fw_iso_context *ctx)
162 {
163         trace_isoc_outbound_destroy(ctx);
164         trace_isoc_inbound_single_destroy(ctx);
165         trace_isoc_inbound_multiple_destroy(ctx);
166
167         ctx->card->driver->free_iso_context(ctx);
168 }
169 EXPORT_SYMBOL(fw_iso_context_destroy);
170
171 int fw_iso_context_start(struct fw_iso_context *ctx,
172                          int cycle, int sync, int tags)
173 {
174         trace_isoc_outbound_start(ctx, cycle);
175         trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176         trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
177
178         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
179 }
180 EXPORT_SYMBOL(fw_iso_context_start);
181
182 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
183 {
184         trace_isoc_inbound_multiple_channels(ctx, *channels);
185
186         return ctx->card->driver->set_iso_channels(ctx, channels);
187 }
188
189 int fw_iso_context_queue(struct fw_iso_context *ctx,
190                          struct fw_iso_packet *packet,
191                          struct fw_iso_buffer *buffer,
192                          unsigned long payload)
193 {
194         trace_isoc_outbound_queue(ctx, payload, packet);
195         trace_isoc_inbound_single_queue(ctx, payload, packet);
196         trace_isoc_inbound_multiple_queue(ctx, payload, packet);
197
198         return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199 }
200 EXPORT_SYMBOL(fw_iso_context_queue);
201
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203 {
204         trace_isoc_outbound_flush(ctx);
205         trace_isoc_inbound_single_flush(ctx);
206         trace_isoc_inbound_multiple_flush(ctx);
207
208         ctx->card->driver->flush_queue_iso(ctx);
209 }
210 EXPORT_SYMBOL(fw_iso_context_queue_flush);
211
212 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
213 {
214         trace_isoc_outbound_flush_completions(ctx);
215         trace_isoc_inbound_single_flush_completions(ctx);
216         trace_isoc_inbound_multiple_flush_completions(ctx);
217
218         return ctx->card->driver->flush_iso_completions(ctx);
219 }
220 EXPORT_SYMBOL(fw_iso_context_flush_completions);
221
222 int fw_iso_context_stop(struct fw_iso_context *ctx)
223 {
224         trace_isoc_outbound_stop(ctx);
225         trace_isoc_inbound_single_stop(ctx);
226         trace_isoc_inbound_multiple_stop(ctx);
227
228         return ctx->card->driver->stop_iso(ctx);
229 }
230 EXPORT_SYMBOL(fw_iso_context_stop);
231
232 /*
233  * Isochronous bus resource management (channels, bandwidth), client side
234  */
235
236 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
237                             int bandwidth, bool allocate)
238 {
239         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
240         __be32 data[2];
241
242         /*
243          * On a 1394a IRM with low contention, try < 1 is enough.
244          * On a 1394-1995 IRM, we need at least try < 2.
245          * Let's just do try < 5.
246          */
247         for (try = 0; try < 5; try++) {
248                 new = allocate ? old - bandwidth : old + bandwidth;
249                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
250                         return -EBUSY;
251
252                 data[0] = cpu_to_be32(old);
253                 data[1] = cpu_to_be32(new);
254                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
255                                 irm_id, generation, SCODE_100,
256                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
257                                 data, 8)) {
258                 case RCODE_GENERATION:
259                         /* A generation change frees all bandwidth. */
260                         return allocate ? -EAGAIN : bandwidth;
261
262                 case RCODE_COMPLETE:
263                         if (be32_to_cpup(data) == old)
264                                 return bandwidth;
265
266                         old = be32_to_cpup(data);
267                         /* Fall through. */
268                 }
269         }
270
271         return -EIO;
272 }
273
274 static int manage_channel(struct fw_card *card, int irm_id, int generation,
275                 u32 channels_mask, u64 offset, bool allocate)
276 {
277         __be32 bit, all, old;
278         __be32 data[2];
279         int channel, ret = -EIO, retry = 5;
280
281         old = all = allocate ? cpu_to_be32(~0) : 0;
282
283         for (channel = 0; channel < 32; channel++) {
284                 if (!(channels_mask & 1 << channel))
285                         continue;
286
287                 ret = -EBUSY;
288
289                 bit = cpu_to_be32(1 << (31 - channel));
290                 if ((old & bit) != (all & bit))
291                         continue;
292
293                 data[0] = old;
294                 data[1] = old ^ bit;
295                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
296                                            irm_id, generation, SCODE_100,
297                                            offset, data, 8)) {
298                 case RCODE_GENERATION:
299                         /* A generation change frees all channels. */
300                         return allocate ? -EAGAIN : channel;
301
302                 case RCODE_COMPLETE:
303                         if (data[0] == old)
304                                 return channel;
305
306                         old = data[0];
307
308                         /* Is the IRM 1394a-2000 compliant? */
309                         if ((data[0] & bit) == (data[1] & bit))
310                                 continue;
311
312                         fallthrough;    /* It's a 1394-1995 IRM, retry */
313                 default:
314                         if (retry) {
315                                 retry--;
316                                 channel--;
317                         } else {
318                                 ret = -EIO;
319                         }
320                 }
321         }
322
323         return ret;
324 }
325
326 static void deallocate_channel(struct fw_card *card, int irm_id,
327                                int generation, int channel)
328 {
329         u32 mask;
330         u64 offset;
331
332         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
333         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
334                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
335
336         manage_channel(card, irm_id, generation, mask, offset, false);
337 }
338
339 /**
340  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
341  * @card: card interface for this action
342  * @generation: bus generation
343  * @channels_mask: bitmask for channel allocation
344  * @channel: pointer for returning channel allocation result
345  * @bandwidth: pointer for returning bandwidth allocation result
346  * @allocate: whether to allocate (true) or deallocate (false)
347  *
348  * In parameters: card, generation, channels_mask, bandwidth, allocate
349  * Out parameters: channel, bandwidth
350  *
351  * This function blocks (sleeps) during communication with the IRM.
352  *
353  * Allocates or deallocates at most one channel out of channels_mask.
354  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
355  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
356  * channel 0 and LSB for channel 63.)
357  * Allocates or deallocates as many bandwidth allocation units as specified.
358  *
359  * Returns channel < 0 if no channel was allocated or deallocated.
360  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
361  *
362  * If generation is stale, deallocations succeed but allocations fail with
363  * channel = -EAGAIN.
364  *
365  * If channel allocation fails, no bandwidth will be allocated either.
366  * If bandwidth allocation fails, no channel will be allocated either.
367  * But deallocations of channel and bandwidth are tried independently
368  * of each other's success.
369  */
370 void fw_iso_resource_manage(struct fw_card *card, int generation,
371                             u64 channels_mask, int *channel, int *bandwidth,
372                             bool allocate)
373 {
374         u32 channels_hi = channels_mask;        /* channels 31...0 */
375         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
376         int irm_id, ret, c = -EINVAL;
377
378         spin_lock_irq(&card->lock);
379         irm_id = card->irm_node->node_id;
380         spin_unlock_irq(&card->lock);
381
382         if (channels_hi)
383                 c = manage_channel(card, irm_id, generation, channels_hi,
384                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
385                                 allocate);
386         if (channels_lo && c < 0) {
387                 c = manage_channel(card, irm_id, generation, channels_lo,
388                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
389                                 allocate);
390                 if (c >= 0)
391                         c += 32;
392         }
393         *channel = c;
394
395         if (allocate && channels_mask != 0 && c < 0)
396                 *bandwidth = 0;
397
398         if (*bandwidth == 0)
399                 return;
400
401         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
402         if (ret < 0)
403                 *bandwidth = 0;
404
405         if (allocate && ret < 0) {
406                 if (c >= 0)
407                         deallocate_channel(card, irm_id, generation, c);
408                 *channel = ret;
409         }
410 }
411 EXPORT_SYMBOL(fw_iso_resource_manage);
This page took 0.054755 seconds and 4 git commands to generate.