1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
21 struct nvme_tcp_queue;
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
33 enum nvme_tcp_send_state {
34 NVME_TCP_SEND_CMD_PDU = 0,
35 NVME_TCP_SEND_H2C_PDU,
40 struct nvme_tcp_request {
41 struct nvme_request req;
43 struct nvme_tcp_queue *queue;
48 struct list_head entry;
49 struct llist_node lentry;
58 enum nvme_tcp_send_state state;
61 enum nvme_tcp_queue_flags {
62 NVME_TCP_Q_ALLOCATED = 0,
64 NVME_TCP_Q_POLLING = 2,
67 enum nvme_tcp_recv_state {
68 NVME_TCP_RECV_PDU = 0,
74 struct nvme_tcp_queue {
76 struct work_struct io_work;
79 struct mutex send_mutex;
80 struct llist_head req_list;
81 struct list_head send_list;
88 size_t data_remaining;
89 size_t ddgst_remaining;
93 struct nvme_tcp_request *request;
96 size_t cmnd_capsule_len;
97 struct nvme_tcp_ctrl *ctrl;
103 struct ahash_request *rcv_hash;
104 struct ahash_request *snd_hash;
108 struct page_frag_cache pf_cache;
110 void (*state_change)(struct sock *);
111 void (*data_ready)(struct sock *);
112 void (*write_space)(struct sock *);
115 struct nvme_tcp_ctrl {
116 /* read only in the hot path */
117 struct nvme_tcp_queue *queues;
118 struct blk_mq_tag_set tag_set;
120 /* other member variables */
121 struct list_head list;
122 struct blk_mq_tag_set admin_tag_set;
123 struct sockaddr_storage addr;
124 struct sockaddr_storage src_addr;
125 struct nvme_ctrl ctrl;
127 struct work_struct err_work;
128 struct delayed_work connect_work;
129 struct nvme_tcp_request async_req;
130 u32 io_queues[HCTX_MAX_TYPES];
133 static LIST_HEAD(nvme_tcp_ctrl_list);
134 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
135 static struct workqueue_struct *nvme_tcp_wq;
136 static const struct blk_mq_ops nvme_tcp_mq_ops;
137 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
138 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 return queue - queue->ctrl->queues;
150 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 u32 queue_idx = nvme_tcp_queue_id(queue);
155 return queue->ctrl->admin_tag_set.tags[queue_idx];
156 return queue->ctrl->tag_set.tags[queue_idx - 1];
159 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 return req == &req->queue->ctrl->async_req;
179 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
183 if (unlikely(nvme_tcp_async_req(req)))
184 return false; /* async events don't have a request */
186 rq = blk_mq_rq_from_pdu(req);
188 return rq_data_dir(rq) == WRITE && req->data_len &&
189 req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 return req->iter.bvec->bv_page;
197 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
205 req->pdu_len - req->pdu_sent);
208 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
210 return req->iter.iov_offset;
213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
215 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216 req->pdu_len - req->pdu_sent : 0;
219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
222 return nvme_tcp_pdu_data_left(req) <= len;
225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
228 struct request *rq = blk_mq_rq_from_pdu(req);
234 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235 vec = &rq->special_vec;
237 size = blk_rq_payload_bytes(rq);
240 struct bio *bio = req->curr_bio;
242 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
243 nsegs = bio_segments(bio);
244 size = bio->bi_iter.bi_size;
245 offset = bio->bi_iter.bi_bvec_done;
248 iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
249 req->iter.iov_offset = offset;
252 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255 req->data_sent += len;
256 req->pdu_sent += len;
257 iov_iter_advance(&req->iter, len);
258 if (!iov_iter_count(&req->iter) &&
259 req->data_sent < req->data_len) {
260 req->curr_bio = req->curr_bio->bi_next;
261 nvme_tcp_init_iter(req, WRITE);
265 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
266 bool sync, bool last)
268 struct nvme_tcp_queue *queue = req->queue;
271 empty = llist_add(&req->lentry, &queue->req_list) &&
272 list_empty(&queue->send_list) && !queue->request;
275 * if we're the first on the send_list and we can try to send
276 * directly, otherwise queue io_work. Also, only do that if we
277 * are on the same cpu, so we don't introduce contention.
279 if (queue->io_cpu == smp_processor_id() &&
280 sync && empty && mutex_trylock(&queue->send_mutex)) {
281 queue->more_requests = !last;
282 nvme_tcp_try_send(queue);
283 queue->more_requests = false;
284 mutex_unlock(&queue->send_mutex);
286 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
290 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
292 struct nvme_tcp_request *req;
293 struct llist_node *node;
295 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
296 req = llist_entry(node, struct nvme_tcp_request, lentry);
297 list_add(&req->entry, &queue->send_list);
301 static inline struct nvme_tcp_request *
302 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
304 struct nvme_tcp_request *req;
306 req = list_first_entry_or_null(&queue->send_list,
307 struct nvme_tcp_request, entry);
309 nvme_tcp_process_req_list(queue);
310 req = list_first_entry_or_null(&queue->send_list,
311 struct nvme_tcp_request, entry);
316 list_del(&req->entry);
320 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
323 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
324 crypto_ahash_final(hash);
327 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
328 struct page *page, off_t off, size_t len)
330 struct scatterlist sg;
332 sg_init_marker(&sg, 1);
333 sg_set_page(&sg, page, len, off);
334 ahash_request_set_crypt(hash, &sg, NULL, len);
335 crypto_ahash_update(hash);
338 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
339 void *pdu, size_t len)
341 struct scatterlist sg;
343 sg_init_one(&sg, pdu, len);
344 ahash_request_set_crypt(hash, &sg, pdu + len, len);
345 crypto_ahash_digest(hash);
348 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
349 void *pdu, size_t pdu_len)
351 struct nvme_tcp_hdr *hdr = pdu;
355 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
356 dev_err(queue->ctrl->ctrl.device,
357 "queue %d: header digest flag is cleared\n",
358 nvme_tcp_queue_id(queue));
362 recv_digest = *(__le32 *)(pdu + hdr->hlen);
363 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
364 exp_digest = *(__le32 *)(pdu + hdr->hlen);
365 if (recv_digest != exp_digest) {
366 dev_err(queue->ctrl->ctrl.device,
367 "header digest error: recv %#x expected %#x\n",
368 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
375 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
377 struct nvme_tcp_hdr *hdr = pdu;
378 u8 digest_len = nvme_tcp_hdgst_len(queue);
381 len = le32_to_cpu(hdr->plen) - hdr->hlen -
382 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
384 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
385 dev_err(queue->ctrl->ctrl.device,
386 "queue %d: data digest flag is cleared\n",
387 nvme_tcp_queue_id(queue));
390 crypto_ahash_init(queue->rcv_hash);
395 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
396 struct request *rq, unsigned int hctx_idx)
398 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
400 page_frag_free(req->pdu);
403 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
404 struct request *rq, unsigned int hctx_idx,
405 unsigned int numa_node)
407 struct nvme_tcp_ctrl *ctrl = set->driver_data;
408 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
409 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
410 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
411 u8 hdgst = nvme_tcp_hdgst_len(queue);
413 req->pdu = page_frag_alloc(&queue->pf_cache,
414 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
415 GFP_KERNEL | __GFP_ZERO);
420 nvme_req(rq)->ctrl = &ctrl->ctrl;
425 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426 unsigned int hctx_idx)
428 struct nvme_tcp_ctrl *ctrl = data;
429 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
431 hctx->driver_data = queue;
435 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
436 unsigned int hctx_idx)
438 struct nvme_tcp_ctrl *ctrl = data;
439 struct nvme_tcp_queue *queue = &ctrl->queues[0];
441 hctx->driver_data = queue;
445 static enum nvme_tcp_recv_state
446 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
448 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
449 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
453 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
455 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
456 nvme_tcp_hdgst_len(queue);
457 queue->pdu_offset = 0;
458 queue->data_remaining = -1;
459 queue->ddgst_remaining = 0;
462 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
464 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
467 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
470 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
471 struct nvme_completion *cqe)
475 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
477 dev_err(queue->ctrl->ctrl.device,
478 "queue %d tag 0x%x not found\n",
479 nvme_tcp_queue_id(queue), cqe->command_id);
480 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
484 if (!nvme_end_request(rq, cqe->status, cqe->result))
485 nvme_complete_rq(rq);
491 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
492 struct nvme_tcp_data_pdu *pdu)
496 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
498 dev_err(queue->ctrl->ctrl.device,
499 "queue %d tag %#x not found\n",
500 nvme_tcp_queue_id(queue), pdu->command_id);
504 if (!blk_rq_payload_bytes(rq)) {
505 dev_err(queue->ctrl->ctrl.device,
506 "queue %d tag %#x unexpected data\n",
507 nvme_tcp_queue_id(queue), rq->tag);
511 queue->data_remaining = le32_to_cpu(pdu->data_length);
513 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
514 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
515 dev_err(queue->ctrl->ctrl.device,
516 "queue %d tag %#x SUCCESS set but not last PDU\n",
517 nvme_tcp_queue_id(queue), rq->tag);
518 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
525 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
526 struct nvme_tcp_rsp_pdu *pdu)
528 struct nvme_completion *cqe = &pdu->cqe;
532 * AEN requests are special as they don't time out and can
533 * survive any kind of queue freeze and often don't respond to
534 * aborts. We don't even bother to allocate a struct request
535 * for them but rather special case them here.
537 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
539 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
542 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
547 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
548 struct nvme_tcp_r2t_pdu *pdu)
550 struct nvme_tcp_data_pdu *data = req->pdu;
551 struct nvme_tcp_queue *queue = req->queue;
552 struct request *rq = blk_mq_rq_from_pdu(req);
553 u8 hdgst = nvme_tcp_hdgst_len(queue);
554 u8 ddgst = nvme_tcp_ddgst_len(queue);
556 req->pdu_len = le32_to_cpu(pdu->r2t_length);
559 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
560 dev_err(queue->ctrl->ctrl.device,
561 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
562 rq->tag, req->pdu_len, req->data_len,
567 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
568 dev_err(queue->ctrl->ctrl.device,
569 "req %d unexpected r2t offset %u (expected %zu)\n",
570 rq->tag, le32_to_cpu(pdu->r2t_offset),
575 memset(data, 0, sizeof(*data));
576 data->hdr.type = nvme_tcp_h2c_data;
577 data->hdr.flags = NVME_TCP_F_DATA_LAST;
578 if (queue->hdr_digest)
579 data->hdr.flags |= NVME_TCP_F_HDGST;
580 if (queue->data_digest)
581 data->hdr.flags |= NVME_TCP_F_DDGST;
582 data->hdr.hlen = sizeof(*data);
583 data->hdr.pdo = data->hdr.hlen + hdgst;
585 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
586 data->ttag = pdu->ttag;
587 data->command_id = rq->tag;
588 data->data_offset = cpu_to_le32(req->data_sent);
589 data->data_length = cpu_to_le32(req->pdu_len);
593 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
594 struct nvme_tcp_r2t_pdu *pdu)
596 struct nvme_tcp_request *req;
600 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
602 dev_err(queue->ctrl->ctrl.device,
603 "queue %d tag %#x not found\n",
604 nvme_tcp_queue_id(queue), pdu->command_id);
607 req = blk_mq_rq_to_pdu(rq);
609 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
613 req->state = NVME_TCP_SEND_H2C_PDU;
616 nvme_tcp_queue_request(req, false, true);
621 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
622 unsigned int *offset, size_t *len)
624 struct nvme_tcp_hdr *hdr;
625 char *pdu = queue->pdu;
626 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
629 ret = skb_copy_bits(skb, *offset,
630 &pdu[queue->pdu_offset], rcv_len);
634 queue->pdu_remaining -= rcv_len;
635 queue->pdu_offset += rcv_len;
638 if (queue->pdu_remaining)
642 if (queue->hdr_digest) {
643 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
649 if (queue->data_digest) {
650 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
656 case nvme_tcp_c2h_data:
657 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
659 nvme_tcp_init_recv_ctx(queue);
660 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
662 nvme_tcp_init_recv_ctx(queue);
663 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
665 dev_err(queue->ctrl->ctrl.device,
666 "unsupported pdu type (%d)\n", hdr->type);
671 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
673 union nvme_result res = {};
675 if (!nvme_end_request(rq, cpu_to_le16(status << 1), res))
676 nvme_complete_rq(rq);
679 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
680 unsigned int *offset, size_t *len)
682 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
683 struct nvme_tcp_request *req;
686 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
688 dev_err(queue->ctrl->ctrl.device,
689 "queue %d tag %#x not found\n",
690 nvme_tcp_queue_id(queue), pdu->command_id);
693 req = blk_mq_rq_to_pdu(rq);
698 recv_len = min_t(size_t, *len, queue->data_remaining);
702 if (!iov_iter_count(&req->iter)) {
703 req->curr_bio = req->curr_bio->bi_next;
706 * If we don`t have any bios it means that controller
707 * sent more data than we requested, hence error
709 if (!req->curr_bio) {
710 dev_err(queue->ctrl->ctrl.device,
711 "queue %d no space in request %#x",
712 nvme_tcp_queue_id(queue), rq->tag);
713 nvme_tcp_init_recv_ctx(queue);
716 nvme_tcp_init_iter(req, READ);
719 /* we can read only from what is left in this bio */
720 recv_len = min_t(size_t, recv_len,
721 iov_iter_count(&req->iter));
723 if (queue->data_digest)
724 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
725 &req->iter, recv_len, queue->rcv_hash);
727 ret = skb_copy_datagram_iter(skb, *offset,
728 &req->iter, recv_len);
730 dev_err(queue->ctrl->ctrl.device,
731 "queue %d failed to copy request %#x data",
732 nvme_tcp_queue_id(queue), rq->tag);
738 queue->data_remaining -= recv_len;
741 if (!queue->data_remaining) {
742 if (queue->data_digest) {
743 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
744 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
746 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
747 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
750 nvme_tcp_init_recv_ctx(queue);
757 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
758 struct sk_buff *skb, unsigned int *offset, size_t *len)
760 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
761 char *ddgst = (char *)&queue->recv_ddgst;
762 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
763 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
766 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
770 queue->ddgst_remaining -= recv_len;
773 if (queue->ddgst_remaining)
776 if (queue->recv_ddgst != queue->exp_ddgst) {
777 dev_err(queue->ctrl->ctrl.device,
778 "data digest error: recv %#x expected %#x\n",
779 le32_to_cpu(queue->recv_ddgst),
780 le32_to_cpu(queue->exp_ddgst));
784 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
785 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
788 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
792 nvme_tcp_init_recv_ctx(queue);
796 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
797 unsigned int offset, size_t len)
799 struct nvme_tcp_queue *queue = desc->arg.data;
800 size_t consumed = len;
804 switch (nvme_tcp_recv_state(queue)) {
805 case NVME_TCP_RECV_PDU:
806 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
808 case NVME_TCP_RECV_DATA:
809 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
811 case NVME_TCP_RECV_DDGST:
812 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
818 dev_err(queue->ctrl->ctrl.device,
819 "receive failed: %d\n", result);
820 queue->rd_enabled = false;
821 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
829 static void nvme_tcp_data_ready(struct sock *sk)
831 struct nvme_tcp_queue *queue;
833 read_lock_bh(&sk->sk_callback_lock);
834 queue = sk->sk_user_data;
835 if (likely(queue && queue->rd_enabled) &&
836 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
837 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
838 read_unlock_bh(&sk->sk_callback_lock);
841 static void nvme_tcp_write_space(struct sock *sk)
843 struct nvme_tcp_queue *queue;
845 read_lock_bh(&sk->sk_callback_lock);
846 queue = sk->sk_user_data;
847 if (likely(queue && sk_stream_is_writeable(sk))) {
848 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
849 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
851 read_unlock_bh(&sk->sk_callback_lock);
854 static void nvme_tcp_state_change(struct sock *sk)
856 struct nvme_tcp_queue *queue;
858 read_lock(&sk->sk_callback_lock);
859 queue = sk->sk_user_data;
863 switch (sk->sk_state) {
870 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
873 dev_info(queue->ctrl->ctrl.device,
874 "queue %d socket state %d\n",
875 nvme_tcp_queue_id(queue), sk->sk_state);
878 queue->state_change(sk);
880 read_unlock(&sk->sk_callback_lock);
883 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
885 return !list_empty(&queue->send_list) ||
886 !llist_empty(&queue->req_list) || queue->more_requests;
889 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
891 queue->request = NULL;
894 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
896 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
899 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
901 struct nvme_tcp_queue *queue = req->queue;
904 struct page *page = nvme_tcp_req_cur_page(req);
905 size_t offset = nvme_tcp_req_cur_offset(req);
906 size_t len = nvme_tcp_req_cur_length(req);
907 bool last = nvme_tcp_pdu_last_send(req, len);
908 int ret, flags = MSG_DONTWAIT;
910 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
913 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
915 /* can't zcopy slab pages */
916 if (unlikely(PageSlab(page))) {
917 ret = sock_no_sendpage(queue->sock, page, offset, len,
920 ret = kernel_sendpage(queue->sock, page, offset, len,
926 nvme_tcp_advance_req(req, ret);
927 if (queue->data_digest)
928 nvme_tcp_ddgst_update(queue->snd_hash, page,
931 /* fully successful last write*/
932 if (last && ret == len) {
933 if (queue->data_digest) {
934 nvme_tcp_ddgst_final(queue->snd_hash,
936 req->state = NVME_TCP_SEND_DDGST;
939 nvme_tcp_done_send_req(queue);
947 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
949 struct nvme_tcp_queue *queue = req->queue;
950 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
951 bool inline_data = nvme_tcp_has_inline_data(req);
952 u8 hdgst = nvme_tcp_hdgst_len(queue);
953 int len = sizeof(*pdu) + hdgst - req->offset;
954 int flags = MSG_DONTWAIT;
957 if (inline_data || nvme_tcp_queue_more(queue))
958 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
962 if (queue->hdr_digest && !req->offset)
963 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
965 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
966 offset_in_page(pdu) + req->offset, len, flags);
967 if (unlikely(ret <= 0))
973 req->state = NVME_TCP_SEND_DATA;
974 if (queue->data_digest)
975 crypto_ahash_init(queue->snd_hash);
976 nvme_tcp_init_iter(req, WRITE);
978 nvme_tcp_done_send_req(queue);
987 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
989 struct nvme_tcp_queue *queue = req->queue;
990 struct nvme_tcp_data_pdu *pdu = req->pdu;
991 u8 hdgst = nvme_tcp_hdgst_len(queue);
992 int len = sizeof(*pdu) - req->offset + hdgst;
995 if (queue->hdr_digest && !req->offset)
996 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
998 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
999 offset_in_page(pdu) + req->offset, len,
1000 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1001 if (unlikely(ret <= 0))
1006 req->state = NVME_TCP_SEND_DATA;
1007 if (queue->data_digest)
1008 crypto_ahash_init(queue->snd_hash);
1009 if (!req->data_sent)
1010 nvme_tcp_init_iter(req, WRITE);
1018 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1020 struct nvme_tcp_queue *queue = req->queue;
1022 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1024 .iov_base = &req->ddgst + req->offset,
1025 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1028 if (nvme_tcp_queue_more(queue))
1029 msg.msg_flags |= MSG_MORE;
1031 msg.msg_flags |= MSG_EOR;
1033 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1034 if (unlikely(ret <= 0))
1037 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1038 nvme_tcp_done_send_req(queue);
1046 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1048 struct nvme_tcp_request *req;
1051 if (!queue->request) {
1052 queue->request = nvme_tcp_fetch_request(queue);
1053 if (!queue->request)
1056 req = queue->request;
1058 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1059 ret = nvme_tcp_try_send_cmd_pdu(req);
1062 if (!nvme_tcp_has_inline_data(req))
1066 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1067 ret = nvme_tcp_try_send_data_pdu(req);
1072 if (req->state == NVME_TCP_SEND_DATA) {
1073 ret = nvme_tcp_try_send_data(req);
1078 if (req->state == NVME_TCP_SEND_DDGST)
1079 ret = nvme_tcp_try_send_ddgst(req);
1081 if (ret == -EAGAIN) {
1083 } else if (ret < 0) {
1084 dev_err(queue->ctrl->ctrl.device,
1085 "failed to send request %d\n", ret);
1086 if (ret != -EPIPE && ret != -ECONNRESET)
1087 nvme_tcp_fail_request(queue->request);
1088 nvme_tcp_done_send_req(queue);
1093 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1095 struct socket *sock = queue->sock;
1096 struct sock *sk = sock->sk;
1097 read_descriptor_t rd_desc;
1100 rd_desc.arg.data = queue;
1104 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1109 static void nvme_tcp_io_work(struct work_struct *w)
1111 struct nvme_tcp_queue *queue =
1112 container_of(w, struct nvme_tcp_queue, io_work);
1113 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1116 bool pending = false;
1119 if (mutex_trylock(&queue->send_mutex)) {
1120 result = nvme_tcp_try_send(queue);
1121 mutex_unlock(&queue->send_mutex);
1124 else if (unlikely(result < 0))
1128 result = nvme_tcp_try_recv(queue);
1131 else if (unlikely(result < 0))
1137 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1139 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1142 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1144 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1146 ahash_request_free(queue->rcv_hash);
1147 ahash_request_free(queue->snd_hash);
1148 crypto_free_ahash(tfm);
1151 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1153 struct crypto_ahash *tfm;
1155 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1157 return PTR_ERR(tfm);
1159 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1160 if (!queue->snd_hash)
1162 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1164 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1165 if (!queue->rcv_hash)
1167 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1171 ahash_request_free(queue->snd_hash);
1173 crypto_free_ahash(tfm);
1177 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1179 struct nvme_tcp_request *async = &ctrl->async_req;
1181 page_frag_free(async->pdu);
1184 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1186 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1187 struct nvme_tcp_request *async = &ctrl->async_req;
1188 u8 hdgst = nvme_tcp_hdgst_len(queue);
1190 async->pdu = page_frag_alloc(&queue->pf_cache,
1191 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1192 GFP_KERNEL | __GFP_ZERO);
1196 async->queue = &ctrl->queues[0];
1200 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1202 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1203 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1205 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1208 if (queue->hdr_digest || queue->data_digest)
1209 nvme_tcp_free_crypto(queue);
1211 sock_release(queue->sock);
1215 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1217 struct nvme_tcp_icreq_pdu *icreq;
1218 struct nvme_tcp_icresp_pdu *icresp;
1219 struct msghdr msg = {};
1221 bool ctrl_hdgst, ctrl_ddgst;
1224 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1228 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1234 icreq->hdr.type = nvme_tcp_icreq;
1235 icreq->hdr.hlen = sizeof(*icreq);
1237 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1238 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1239 icreq->maxr2t = 0; /* single inflight r2t supported */
1240 icreq->hpda = 0; /* no alignment constraint */
1241 if (queue->hdr_digest)
1242 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1243 if (queue->data_digest)
1244 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1246 iov.iov_base = icreq;
1247 iov.iov_len = sizeof(*icreq);
1248 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1252 memset(&msg, 0, sizeof(msg));
1253 iov.iov_base = icresp;
1254 iov.iov_len = sizeof(*icresp);
1255 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1256 iov.iov_len, msg.msg_flags);
1261 if (icresp->hdr.type != nvme_tcp_icresp) {
1262 pr_err("queue %d: bad type returned %d\n",
1263 nvme_tcp_queue_id(queue), icresp->hdr.type);
1267 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1268 pr_err("queue %d: bad pdu length returned %d\n",
1269 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1273 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1274 pr_err("queue %d: bad pfv returned %d\n",
1275 nvme_tcp_queue_id(queue), icresp->pfv);
1279 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1280 if ((queue->data_digest && !ctrl_ddgst) ||
1281 (!queue->data_digest && ctrl_ddgst)) {
1282 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1283 nvme_tcp_queue_id(queue),
1284 queue->data_digest ? "enabled" : "disabled",
1285 ctrl_ddgst ? "enabled" : "disabled");
1289 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1290 if ((queue->hdr_digest && !ctrl_hdgst) ||
1291 (!queue->hdr_digest && ctrl_hdgst)) {
1292 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1293 nvme_tcp_queue_id(queue),
1294 queue->hdr_digest ? "enabled" : "disabled",
1295 ctrl_hdgst ? "enabled" : "disabled");
1299 if (icresp->cpda != 0) {
1300 pr_err("queue %d: unsupported cpda returned %d\n",
1301 nvme_tcp_queue_id(queue), icresp->cpda);
1313 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1315 return nvme_tcp_queue_id(queue) == 0;
1318 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1320 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1321 int qid = nvme_tcp_queue_id(queue);
1323 return !nvme_tcp_admin_queue(queue) &&
1324 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1327 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1329 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1330 int qid = nvme_tcp_queue_id(queue);
1332 return !nvme_tcp_admin_queue(queue) &&
1333 !nvme_tcp_default_queue(queue) &&
1334 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1335 ctrl->io_queues[HCTX_TYPE_READ];
1338 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1340 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1341 int qid = nvme_tcp_queue_id(queue);
1343 return !nvme_tcp_admin_queue(queue) &&
1344 !nvme_tcp_default_queue(queue) &&
1345 !nvme_tcp_read_queue(queue) &&
1346 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1347 ctrl->io_queues[HCTX_TYPE_READ] +
1348 ctrl->io_queues[HCTX_TYPE_POLL];
1351 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1353 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1354 int qid = nvme_tcp_queue_id(queue);
1357 if (nvme_tcp_default_queue(queue))
1359 else if (nvme_tcp_read_queue(queue))
1360 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1361 else if (nvme_tcp_poll_queue(queue))
1362 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1363 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1364 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1367 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1368 int qid, size_t queue_size)
1370 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1371 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1372 int ret, rcv_pdu_size;
1375 init_llist_head(&queue->req_list);
1376 INIT_LIST_HEAD(&queue->send_list);
1377 mutex_init(&queue->send_mutex);
1378 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1379 queue->queue_size = queue_size;
1382 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1384 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1385 NVME_TCP_ADMIN_CCSZ;
1387 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1388 IPPROTO_TCP, &queue->sock);
1390 dev_err(nctrl->device,
1391 "failed to create socket: %d\n", ret);
1395 /* Single syn retry */
1396 tcp_sock_set_syncnt(queue->sock->sk, 1);
1398 /* Set TCP no delay */
1399 tcp_sock_set_nodelay(queue->sock->sk);
1402 * Cleanup whatever is sitting in the TCP transmit queue on socket
1403 * close. This is done to prevent stale data from being sent should
1404 * the network connection be restored before TCP times out.
1406 sock_no_linger(queue->sock->sk);
1408 if (so_priority > 0)
1409 sock_set_priority(queue->sock->sk, so_priority);
1411 /* Set socket type of service */
1412 if (nctrl->opts->tos >= 0)
1413 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1415 /* Set 10 seconds timeout for icresp recvmsg */
1416 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1418 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1419 nvme_tcp_set_queue_io_cpu(queue);
1420 queue->request = NULL;
1421 queue->data_remaining = 0;
1422 queue->ddgst_remaining = 0;
1423 queue->pdu_remaining = 0;
1424 queue->pdu_offset = 0;
1425 sk_set_memalloc(queue->sock->sk);
1427 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1428 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1429 sizeof(ctrl->src_addr));
1431 dev_err(nctrl->device,
1432 "failed to bind queue %d socket %d\n",
1438 queue->hdr_digest = nctrl->opts->hdr_digest;
1439 queue->data_digest = nctrl->opts->data_digest;
1440 if (queue->hdr_digest || queue->data_digest) {
1441 ret = nvme_tcp_alloc_crypto(queue);
1443 dev_err(nctrl->device,
1444 "failed to allocate queue %d crypto\n", qid);
1449 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1450 nvme_tcp_hdgst_len(queue);
1451 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1457 dev_dbg(nctrl->device, "connecting queue %d\n",
1458 nvme_tcp_queue_id(queue));
1460 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1461 sizeof(ctrl->addr), 0);
1463 dev_err(nctrl->device,
1464 "failed to connect socket: %d\n", ret);
1468 ret = nvme_tcp_init_connection(queue);
1470 goto err_init_connect;
1472 queue->rd_enabled = true;
1473 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1474 nvme_tcp_init_recv_ctx(queue);
1476 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1477 queue->sock->sk->sk_user_data = queue;
1478 queue->state_change = queue->sock->sk->sk_state_change;
1479 queue->data_ready = queue->sock->sk->sk_data_ready;
1480 queue->write_space = queue->sock->sk->sk_write_space;
1481 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1482 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1483 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1484 #ifdef CONFIG_NET_RX_BUSY_POLL
1485 queue->sock->sk->sk_ll_usec = 1;
1487 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1492 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1496 if (queue->hdr_digest || queue->data_digest)
1497 nvme_tcp_free_crypto(queue);
1499 sock_release(queue->sock);
1504 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1506 struct socket *sock = queue->sock;
1508 write_lock_bh(&sock->sk->sk_callback_lock);
1509 sock->sk->sk_user_data = NULL;
1510 sock->sk->sk_data_ready = queue->data_ready;
1511 sock->sk->sk_state_change = queue->state_change;
1512 sock->sk->sk_write_space = queue->write_space;
1513 write_unlock_bh(&sock->sk->sk_callback_lock);
1516 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1518 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1519 nvme_tcp_restore_sock_calls(queue);
1520 cancel_work_sync(&queue->io_work);
1523 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1525 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1526 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1528 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1531 __nvme_tcp_stop_queue(queue);
1534 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1536 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1540 ret = nvmf_connect_io_queue(nctrl, idx, false);
1542 ret = nvmf_connect_admin_queue(nctrl);
1545 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1547 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1548 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1549 dev_err(nctrl->device,
1550 "failed to connect queue: %d ret=%d\n", idx, ret);
1555 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1558 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1559 struct blk_mq_tag_set *set;
1563 set = &ctrl->admin_tag_set;
1564 memset(set, 0, sizeof(*set));
1565 set->ops = &nvme_tcp_admin_mq_ops;
1566 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1567 set->reserved_tags = 2; /* connect + keep-alive */
1568 set->numa_node = nctrl->numa_node;
1569 set->flags = BLK_MQ_F_BLOCKING;
1570 set->cmd_size = sizeof(struct nvme_tcp_request);
1571 set->driver_data = ctrl;
1572 set->nr_hw_queues = 1;
1573 set->timeout = ADMIN_TIMEOUT;
1575 set = &ctrl->tag_set;
1576 memset(set, 0, sizeof(*set));
1577 set->ops = &nvme_tcp_mq_ops;
1578 set->queue_depth = nctrl->sqsize + 1;
1579 set->reserved_tags = 1; /* fabric connect */
1580 set->numa_node = nctrl->numa_node;
1581 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1582 set->cmd_size = sizeof(struct nvme_tcp_request);
1583 set->driver_data = ctrl;
1584 set->nr_hw_queues = nctrl->queue_count - 1;
1585 set->timeout = NVME_IO_TIMEOUT;
1586 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1589 ret = blk_mq_alloc_tag_set(set);
1591 return ERR_PTR(ret);
1596 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1598 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1599 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1600 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1603 nvme_tcp_free_queue(ctrl, 0);
1606 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1610 for (i = 1; i < ctrl->queue_count; i++)
1611 nvme_tcp_free_queue(ctrl, i);
1614 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1618 for (i = 1; i < ctrl->queue_count; i++)
1619 nvme_tcp_stop_queue(ctrl, i);
1622 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1626 for (i = 1; i < ctrl->queue_count; i++) {
1627 ret = nvme_tcp_start_queue(ctrl, i);
1629 goto out_stop_queues;
1635 for (i--; i >= 1; i--)
1636 nvme_tcp_stop_queue(ctrl, i);
1640 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1644 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1648 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1650 goto out_free_queue;
1655 nvme_tcp_free_queue(ctrl, 0);
1659 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1663 for (i = 1; i < ctrl->queue_count; i++) {
1664 ret = nvme_tcp_alloc_queue(ctrl, i,
1667 goto out_free_queues;
1673 for (i--; i >= 1; i--)
1674 nvme_tcp_free_queue(ctrl, i);
1679 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1681 unsigned int nr_io_queues;
1683 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1684 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1685 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1687 return nr_io_queues;
1690 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1691 unsigned int nr_io_queues)
1693 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1694 struct nvmf_ctrl_options *opts = nctrl->opts;
1696 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1698 * separate read/write queues
1699 * hand out dedicated default queues only after we have
1700 * sufficient read queues.
1702 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1703 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1704 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1705 min(opts->nr_write_queues, nr_io_queues);
1706 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1709 * shared read/write queues
1710 * either no write queues were requested, or we don't have
1711 * sufficient queue count to have dedicated default queues.
1713 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1714 min(opts->nr_io_queues, nr_io_queues);
1715 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1718 if (opts->nr_poll_queues && nr_io_queues) {
1719 /* map dedicated poll queues only if we have queues left */
1720 ctrl->io_queues[HCTX_TYPE_POLL] =
1721 min(opts->nr_poll_queues, nr_io_queues);
1725 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1727 unsigned int nr_io_queues;
1730 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1731 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1735 ctrl->queue_count = nr_io_queues + 1;
1736 if (ctrl->queue_count < 2)
1739 dev_info(ctrl->device,
1740 "creating %d I/O queues.\n", nr_io_queues);
1742 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1744 return __nvme_tcp_alloc_io_queues(ctrl);
1747 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1749 nvme_tcp_stop_io_queues(ctrl);
1751 blk_cleanup_queue(ctrl->connect_q);
1752 blk_mq_free_tag_set(ctrl->tagset);
1754 nvme_tcp_free_io_queues(ctrl);
1757 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1761 ret = nvme_tcp_alloc_io_queues(ctrl);
1766 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1767 if (IS_ERR(ctrl->tagset)) {
1768 ret = PTR_ERR(ctrl->tagset);
1769 goto out_free_io_queues;
1772 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1773 if (IS_ERR(ctrl->connect_q)) {
1774 ret = PTR_ERR(ctrl->connect_q);
1775 goto out_free_tag_set;
1779 ret = nvme_tcp_start_io_queues(ctrl);
1781 goto out_cleanup_connect_q;
1784 nvme_start_queues(ctrl);
1785 nvme_wait_freeze(ctrl);
1786 blk_mq_update_nr_hw_queues(ctrl->tagset,
1787 ctrl->queue_count - 1);
1788 nvme_unfreeze(ctrl);
1793 out_cleanup_connect_q:
1795 blk_cleanup_queue(ctrl->connect_q);
1798 blk_mq_free_tag_set(ctrl->tagset);
1800 nvme_tcp_free_io_queues(ctrl);
1804 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1806 nvme_tcp_stop_queue(ctrl, 0);
1808 blk_cleanup_queue(ctrl->admin_q);
1809 blk_cleanup_queue(ctrl->fabrics_q);
1810 blk_mq_free_tag_set(ctrl->admin_tagset);
1812 nvme_tcp_free_admin_queue(ctrl);
1815 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1819 error = nvme_tcp_alloc_admin_queue(ctrl);
1824 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1825 if (IS_ERR(ctrl->admin_tagset)) {
1826 error = PTR_ERR(ctrl->admin_tagset);
1827 goto out_free_queue;
1830 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1831 if (IS_ERR(ctrl->fabrics_q)) {
1832 error = PTR_ERR(ctrl->fabrics_q);
1833 goto out_free_tagset;
1836 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1837 if (IS_ERR(ctrl->admin_q)) {
1838 error = PTR_ERR(ctrl->admin_q);
1839 goto out_cleanup_fabrics_q;
1843 error = nvme_tcp_start_queue(ctrl, 0);
1845 goto out_cleanup_queue;
1847 error = nvme_enable_ctrl(ctrl);
1849 goto out_stop_queue;
1851 blk_mq_unquiesce_queue(ctrl->admin_q);
1853 error = nvme_init_identify(ctrl);
1855 goto out_stop_queue;
1860 nvme_tcp_stop_queue(ctrl, 0);
1863 blk_cleanup_queue(ctrl->admin_q);
1864 out_cleanup_fabrics_q:
1866 blk_cleanup_queue(ctrl->fabrics_q);
1869 blk_mq_free_tag_set(ctrl->admin_tagset);
1871 nvme_tcp_free_admin_queue(ctrl);
1875 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1878 blk_mq_quiesce_queue(ctrl->admin_q);
1879 nvme_tcp_stop_queue(ctrl, 0);
1880 if (ctrl->admin_tagset) {
1881 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1882 nvme_cancel_request, ctrl);
1883 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1886 blk_mq_unquiesce_queue(ctrl->admin_q);
1887 nvme_tcp_destroy_admin_queue(ctrl, remove);
1890 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1893 if (ctrl->queue_count <= 1)
1895 nvme_start_freeze(ctrl);
1896 nvme_stop_queues(ctrl);
1897 nvme_tcp_stop_io_queues(ctrl);
1899 blk_mq_tagset_busy_iter(ctrl->tagset,
1900 nvme_cancel_request, ctrl);
1901 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1904 nvme_start_queues(ctrl);
1905 nvme_tcp_destroy_io_queues(ctrl, remove);
1908 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1910 /* If we are resetting/deleting then do nothing */
1911 if (ctrl->state != NVME_CTRL_CONNECTING) {
1912 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1913 ctrl->state == NVME_CTRL_LIVE);
1917 if (nvmf_should_reconnect(ctrl)) {
1918 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1919 ctrl->opts->reconnect_delay);
1920 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1921 ctrl->opts->reconnect_delay * HZ);
1923 dev_info(ctrl->device, "Removing controller...\n");
1924 nvme_delete_ctrl(ctrl);
1928 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1930 struct nvmf_ctrl_options *opts = ctrl->opts;
1933 ret = nvme_tcp_configure_admin_queue(ctrl, new);
1938 dev_err(ctrl->device, "icdoff is not supported!\n");
1942 if (opts->queue_size > ctrl->sqsize + 1)
1943 dev_warn(ctrl->device,
1944 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1945 opts->queue_size, ctrl->sqsize + 1);
1947 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1948 dev_warn(ctrl->device,
1949 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1950 ctrl->sqsize + 1, ctrl->maxcmd);
1951 ctrl->sqsize = ctrl->maxcmd - 1;
1954 if (ctrl->queue_count > 1) {
1955 ret = nvme_tcp_configure_io_queues(ctrl, new);
1960 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1962 * state change failure is ok if we started ctrl delete,
1963 * unless we're during creation of a new controller to
1964 * avoid races with teardown flow.
1966 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
1967 ctrl->state != NVME_CTRL_DELETING_NOIO);
1973 nvme_start_ctrl(ctrl);
1977 if (ctrl->queue_count > 1)
1978 nvme_tcp_destroy_io_queues(ctrl, new);
1980 nvme_tcp_stop_queue(ctrl, 0);
1981 nvme_tcp_destroy_admin_queue(ctrl, new);
1985 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1987 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1988 struct nvme_tcp_ctrl, connect_work);
1989 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1991 ++ctrl->nr_reconnects;
1993 if (nvme_tcp_setup_ctrl(ctrl, false))
1996 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1997 ctrl->nr_reconnects);
1999 ctrl->nr_reconnects = 0;
2004 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2005 ctrl->nr_reconnects);
2006 nvme_tcp_reconnect_or_remove(ctrl);
2009 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2011 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2012 struct nvme_tcp_ctrl, err_work);
2013 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2015 nvme_stop_keep_alive(ctrl);
2016 nvme_tcp_teardown_io_queues(ctrl, false);
2017 /* unquiesce to fail fast pending requests */
2018 nvme_start_queues(ctrl);
2019 nvme_tcp_teardown_admin_queue(ctrl, false);
2020 blk_mq_unquiesce_queue(ctrl->admin_q);
2022 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2023 /* state change failure is ok if we started ctrl delete */
2024 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2025 ctrl->state != NVME_CTRL_DELETING_NOIO);
2029 nvme_tcp_reconnect_or_remove(ctrl);
2032 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2034 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2035 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2037 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2038 blk_mq_quiesce_queue(ctrl->admin_q);
2040 nvme_shutdown_ctrl(ctrl);
2042 nvme_disable_ctrl(ctrl);
2043 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2046 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2048 nvme_tcp_teardown_ctrl(ctrl, true);
2051 static void nvme_reset_ctrl_work(struct work_struct *work)
2053 struct nvme_ctrl *ctrl =
2054 container_of(work, struct nvme_ctrl, reset_work);
2056 nvme_stop_ctrl(ctrl);
2057 nvme_tcp_teardown_ctrl(ctrl, false);
2059 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2060 /* state change failure is ok if we started ctrl delete */
2061 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2062 ctrl->state != NVME_CTRL_DELETING_NOIO);
2066 if (nvme_tcp_setup_ctrl(ctrl, false))
2072 ++ctrl->nr_reconnects;
2073 nvme_tcp_reconnect_or_remove(ctrl);
2076 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2078 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2080 if (list_empty(&ctrl->list))
2083 mutex_lock(&nvme_tcp_ctrl_mutex);
2084 list_del(&ctrl->list);
2085 mutex_unlock(&nvme_tcp_ctrl_mutex);
2087 nvmf_free_options(nctrl->opts);
2089 kfree(ctrl->queues);
2093 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2095 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2099 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2100 NVME_SGL_FMT_TRANSPORT_A;
2103 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2104 struct nvme_command *c, u32 data_len)
2106 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2108 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2109 sg->length = cpu_to_le32(data_len);
2110 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2113 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2116 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2119 sg->length = cpu_to_le32(data_len);
2120 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2121 NVME_SGL_FMT_TRANSPORT_A;
2124 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2126 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2127 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2128 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2129 struct nvme_command *cmd = &pdu->cmd;
2130 u8 hdgst = nvme_tcp_hdgst_len(queue);
2132 memset(pdu, 0, sizeof(*pdu));
2133 pdu->hdr.type = nvme_tcp_cmd;
2134 if (queue->hdr_digest)
2135 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2136 pdu->hdr.hlen = sizeof(*pdu);
2137 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2139 cmd->common.opcode = nvme_admin_async_event;
2140 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2141 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2142 nvme_tcp_set_sg_null(cmd);
2144 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2145 ctrl->async_req.offset = 0;
2146 ctrl->async_req.curr_bio = NULL;
2147 ctrl->async_req.data_len = 0;
2149 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2152 static enum blk_eh_timer_return
2153 nvme_tcp_timeout(struct request *rq, bool reserved)
2155 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2156 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2157 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2160 * Restart the timer if a controller reset is already scheduled. Any
2161 * timed out commands would be handled before entering the connecting
2164 if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2165 return BLK_EH_RESET_TIMER;
2167 dev_warn(ctrl->ctrl.device,
2168 "queue %d: timeout request %#x type %d\n",
2169 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2171 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2173 * Teardown immediately if controller times out while starting
2174 * or we are already started error recovery. all outstanding
2175 * requests are completed on shutdown, so we return BLK_EH_DONE.
2177 flush_work(&ctrl->err_work);
2178 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2179 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2183 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2184 nvme_tcp_error_recovery(&ctrl->ctrl);
2186 return BLK_EH_RESET_TIMER;
2189 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2192 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2193 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2194 struct nvme_command *c = &pdu->cmd;
2196 c->common.flags |= NVME_CMD_SGL_METABUF;
2198 if (!blk_rq_nr_phys_segments(rq))
2199 nvme_tcp_set_sg_null(c);
2200 else if (rq_data_dir(rq) == WRITE &&
2201 req->data_len <= nvme_tcp_inline_data_size(queue))
2202 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2204 nvme_tcp_set_sg_host_data(c, req->data_len);
2209 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2212 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2213 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2214 struct nvme_tcp_queue *queue = req->queue;
2215 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2218 ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2222 req->state = NVME_TCP_SEND_CMD_PDU;
2227 req->data_len = blk_rq_nr_phys_segments(rq) ?
2228 blk_rq_payload_bytes(rq) : 0;
2229 req->curr_bio = rq->bio;
2231 if (rq_data_dir(rq) == WRITE &&
2232 req->data_len <= nvme_tcp_inline_data_size(queue))
2233 req->pdu_len = req->data_len;
2234 else if (req->curr_bio)
2235 nvme_tcp_init_iter(req, READ);
2237 pdu->hdr.type = nvme_tcp_cmd;
2239 if (queue->hdr_digest)
2240 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2241 if (queue->data_digest && req->pdu_len) {
2242 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2243 ddgst = nvme_tcp_ddgst_len(queue);
2245 pdu->hdr.hlen = sizeof(*pdu);
2246 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2248 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2250 ret = nvme_tcp_map_data(queue, rq);
2251 if (unlikely(ret)) {
2252 nvme_cleanup_cmd(rq);
2253 dev_err(queue->ctrl->ctrl.device,
2254 "Failed to map data (%d)\n", ret);
2261 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2263 struct nvme_tcp_queue *queue = hctx->driver_data;
2265 if (!llist_empty(&queue->req_list))
2266 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2269 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2270 const struct blk_mq_queue_data *bd)
2272 struct nvme_ns *ns = hctx->queue->queuedata;
2273 struct nvme_tcp_queue *queue = hctx->driver_data;
2274 struct request *rq = bd->rq;
2275 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2276 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2279 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2280 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2282 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2286 blk_mq_start_request(rq);
2288 nvme_tcp_queue_request(req, true, bd->last);
2293 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2295 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2296 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2298 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2299 /* separate read/write queues */
2300 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2301 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2302 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2303 set->map[HCTX_TYPE_READ].nr_queues =
2304 ctrl->io_queues[HCTX_TYPE_READ];
2305 set->map[HCTX_TYPE_READ].queue_offset =
2306 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2308 /* shared read/write queues */
2309 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2310 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2311 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2312 set->map[HCTX_TYPE_READ].nr_queues =
2313 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2314 set->map[HCTX_TYPE_READ].queue_offset = 0;
2316 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2317 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2319 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2320 /* map dedicated poll queues only if we have queues left */
2321 set->map[HCTX_TYPE_POLL].nr_queues =
2322 ctrl->io_queues[HCTX_TYPE_POLL];
2323 set->map[HCTX_TYPE_POLL].queue_offset =
2324 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2325 ctrl->io_queues[HCTX_TYPE_READ];
2326 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2329 dev_info(ctrl->ctrl.device,
2330 "mapped %d/%d/%d default/read/poll queues.\n",
2331 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2332 ctrl->io_queues[HCTX_TYPE_READ],
2333 ctrl->io_queues[HCTX_TYPE_POLL]);
2338 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2340 struct nvme_tcp_queue *queue = hctx->driver_data;
2341 struct sock *sk = queue->sock->sk;
2343 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2346 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2347 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2348 sk_busy_loop(sk, true);
2349 nvme_tcp_try_recv(queue);
2350 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2351 return queue->nr_cqe;
2354 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2355 .queue_rq = nvme_tcp_queue_rq,
2356 .commit_rqs = nvme_tcp_commit_rqs,
2357 .complete = nvme_complete_rq,
2358 .init_request = nvme_tcp_init_request,
2359 .exit_request = nvme_tcp_exit_request,
2360 .init_hctx = nvme_tcp_init_hctx,
2361 .timeout = nvme_tcp_timeout,
2362 .map_queues = nvme_tcp_map_queues,
2363 .poll = nvme_tcp_poll,
2366 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2367 .queue_rq = nvme_tcp_queue_rq,
2368 .complete = nvme_complete_rq,
2369 .init_request = nvme_tcp_init_request,
2370 .exit_request = nvme_tcp_exit_request,
2371 .init_hctx = nvme_tcp_init_admin_hctx,
2372 .timeout = nvme_tcp_timeout,
2375 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2377 .module = THIS_MODULE,
2378 .flags = NVME_F_FABRICS,
2379 .reg_read32 = nvmf_reg_read32,
2380 .reg_read64 = nvmf_reg_read64,
2381 .reg_write32 = nvmf_reg_write32,
2382 .free_ctrl = nvme_tcp_free_ctrl,
2383 .submit_async_event = nvme_tcp_submit_async_event,
2384 .delete_ctrl = nvme_tcp_delete_ctrl,
2385 .get_address = nvmf_get_address,
2389 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2391 struct nvme_tcp_ctrl *ctrl;
2394 mutex_lock(&nvme_tcp_ctrl_mutex);
2395 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2396 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2400 mutex_unlock(&nvme_tcp_ctrl_mutex);
2405 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2406 struct nvmf_ctrl_options *opts)
2408 struct nvme_tcp_ctrl *ctrl;
2411 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2413 return ERR_PTR(-ENOMEM);
2415 INIT_LIST_HEAD(&ctrl->list);
2416 ctrl->ctrl.opts = opts;
2417 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2418 opts->nr_poll_queues + 1;
2419 ctrl->ctrl.sqsize = opts->queue_size - 1;
2420 ctrl->ctrl.kato = opts->kato;
2422 INIT_DELAYED_WORK(&ctrl->connect_work,
2423 nvme_tcp_reconnect_ctrl_work);
2424 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2425 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2427 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2429 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2430 if (!opts->trsvcid) {
2434 opts->mask |= NVMF_OPT_TRSVCID;
2437 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2438 opts->traddr, opts->trsvcid, &ctrl->addr);
2440 pr_err("malformed address passed: %s:%s\n",
2441 opts->traddr, opts->trsvcid);
2445 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2446 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2447 opts->host_traddr, NULL, &ctrl->src_addr);
2449 pr_err("malformed src address passed: %s\n",
2455 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2460 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2462 if (!ctrl->queues) {
2467 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2469 goto out_kfree_queues;
2471 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2474 goto out_uninit_ctrl;
2477 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2479 goto out_uninit_ctrl;
2481 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2482 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2484 mutex_lock(&nvme_tcp_ctrl_mutex);
2485 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2486 mutex_unlock(&nvme_tcp_ctrl_mutex);
2491 nvme_uninit_ctrl(&ctrl->ctrl);
2492 nvme_put_ctrl(&ctrl->ctrl);
2495 return ERR_PTR(ret);
2497 kfree(ctrl->queues);
2500 return ERR_PTR(ret);
2503 static struct nvmf_transport_ops nvme_tcp_transport = {
2505 .module = THIS_MODULE,
2506 .required_opts = NVMF_OPT_TRADDR,
2507 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2508 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2509 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2510 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2512 .create_ctrl = nvme_tcp_create_ctrl,
2515 static int __init nvme_tcp_init_module(void)
2517 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2518 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2522 nvmf_register_transport(&nvme_tcp_transport);
2526 static void __exit nvme_tcp_cleanup_module(void)
2528 struct nvme_tcp_ctrl *ctrl;
2530 nvmf_unregister_transport(&nvme_tcp_transport);
2532 mutex_lock(&nvme_tcp_ctrl_mutex);
2533 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2534 nvme_delete_ctrl(&ctrl->ctrl);
2535 mutex_unlock(&nvme_tcp_ctrl_mutex);
2536 flush_workqueue(nvme_delete_wq);
2538 destroy_workqueue(nvme_tcp_wq);
2541 module_init(nvme_tcp_init_module);
2542 module_exit(nvme_tcp_cleanup_module);
2544 MODULE_LICENSE("GPL v2");