1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
28 #define CREATE_TRACE_POINTS
31 #define NVME_MINORS (1U << MINORBITS)
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 "max power saving latency for new devices; use PM QOS to change per device");
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
65 * nvme_wq - hosts nvme related works that are not reset or delete
66 * nvme_reset_wq - hosts nvme reset works
67 * nvme_delete_wq - hosts nvme delete works
69 * nvme_wq will host works such as scan, aen handling, fw activation,
70 * keep-alive, periodic reconnects etc. nvme_reset_wq
71 * runs reset works which also flush works hosted on nvme_wq for
72 * serialization purposes. nvme_delete_wq host controller deletion
73 * works which flush reset works for serialization.
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
92 static int _nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
100 * Revalidating a dead namespace sets capacity to 0. This will end
101 * buffered writers dirtying pages that can't be synced.
103 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105 blk_set_queue_dying(ns->queue);
106 /* Forcibly unquiesce queues to avoid blocking dispatch */
107 blk_mq_unquiesce_queue(ns->queue);
109 * Revalidate after unblocking dispatchers that may be holding bd_butex
111 revalidate_disk(ns->disk);
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
117 * Only new queue scan work when admin and IO queues are both alive
119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 queue_work(nvme_wq, &ctrl->scan_work);
124 * Use this function to proceed with scheduling reset_work for a controller
125 * that had previously been set to the resetting state. This is intended for
126 * code paths that can't be interrupted by other reset attempts. A hot removal
127 * may prevent this from succeeding.
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
131 if (ctrl->state != NVME_CTRL_RESETTING)
133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
153 ret = nvme_reset_ctrl(ctrl);
155 flush_work(&ctrl->reset_work);
156 if (ctrl->state != NVME_CTRL_LIVE)
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
166 dev_info(ctrl->device,
167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
169 flush_work(&ctrl->reset_work);
170 nvme_stop_ctrl(ctrl);
171 nvme_remove_namespaces(ctrl);
172 ctrl->ops->delete_ctrl(ctrl);
173 nvme_uninit_ctrl(ctrl);
176 static void nvme_delete_ctrl_work(struct work_struct *work)
178 struct nvme_ctrl *ctrl =
179 container_of(work, struct nvme_ctrl, delete_work);
181 nvme_do_delete_ctrl(ctrl);
184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
197 * Keep a reference until nvme_do_delete_ctrl() complete,
198 * since ->delete_ctrl can free the controller.
201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
202 nvme_do_delete_ctrl(ctrl);
206 static blk_status_t nvme_error_status(u16 status)
208 switch (status & 0x7ff) {
209 case NVME_SC_SUCCESS:
211 case NVME_SC_CAP_EXCEEDED:
212 return BLK_STS_NOSPC;
213 case NVME_SC_LBA_RANGE:
214 case NVME_SC_CMD_INTERRUPTED:
215 case NVME_SC_NS_NOT_READY:
216 return BLK_STS_TARGET;
217 case NVME_SC_BAD_ATTRIBUTES:
218 case NVME_SC_ONCS_NOT_SUPPORTED:
219 case NVME_SC_INVALID_OPCODE:
220 case NVME_SC_INVALID_FIELD:
221 case NVME_SC_INVALID_NS:
222 return BLK_STS_NOTSUPP;
223 case NVME_SC_WRITE_FAULT:
224 case NVME_SC_READ_ERROR:
225 case NVME_SC_UNWRITTEN_BLOCK:
226 case NVME_SC_ACCESS_DENIED:
227 case NVME_SC_READ_ONLY:
228 case NVME_SC_COMPARE_FAILED:
229 return BLK_STS_MEDIUM;
230 case NVME_SC_GUARD_CHECK:
231 case NVME_SC_APPTAG_CHECK:
232 case NVME_SC_REFTAG_CHECK:
233 case NVME_SC_INVALID_PI:
234 return BLK_STS_PROTECTION;
235 case NVME_SC_RESERVATION_CONFLICT:
236 return BLK_STS_NEXUS;
237 case NVME_SC_HOST_PATH_ERROR:
238 return BLK_STS_TRANSPORT;
240 return BLK_STS_IOERR;
244 static inline bool nvme_req_needs_retry(struct request *req)
246 if (blk_noretry_request(req))
248 if (nvme_req(req)->status & NVME_SC_DNR)
250 if (nvme_req(req)->retries >= nvme_max_retries)
255 static void nvme_retry_req(struct request *req)
257 struct nvme_ns *ns = req->q->queuedata;
258 unsigned long delay = 0;
261 /* The mask and shift result must be <= 3 */
262 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
264 delay = ns->ctrl->crdt[crd - 1] * 100;
266 nvme_req(req)->retries++;
267 blk_mq_requeue_request(req, false);
268 blk_mq_delay_kick_requeue_list(req->q, delay);
271 void nvme_complete_rq(struct request *req)
273 blk_status_t status = nvme_error_status(nvme_req(req)->status);
275 trace_nvme_complete_rq(req);
277 nvme_cleanup_cmd(req);
279 if (nvme_req(req)->ctrl->kas)
280 nvme_req(req)->ctrl->comp_seen = true;
282 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
283 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
286 if (!blk_queue_dying(req->q)) {
290 } else if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
291 req_op(req) == REQ_OP_ZONE_APPEND) {
292 req->__sector = nvme_lba_to_sect(req->q->queuedata,
293 le64_to_cpu(nvme_req(req)->result.u64));
296 nvme_trace_bio_complete(req, status);
297 blk_mq_end_request(req, status);
299 EXPORT_SYMBOL_GPL(nvme_complete_rq);
301 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
303 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
304 "Cancelling I/O %d", req->tag);
306 /* don't abort one completed request */
307 if (blk_mq_request_completed(req))
310 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
311 blk_mq_complete_request(req);
314 EXPORT_SYMBOL_GPL(nvme_cancel_request);
316 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
317 enum nvme_ctrl_state new_state)
319 enum nvme_ctrl_state old_state;
321 bool changed = false;
323 spin_lock_irqsave(&ctrl->lock, flags);
325 old_state = ctrl->state;
330 case NVME_CTRL_RESETTING:
331 case NVME_CTRL_CONNECTING:
338 case NVME_CTRL_RESETTING:
348 case NVME_CTRL_CONNECTING:
351 case NVME_CTRL_RESETTING:
358 case NVME_CTRL_DELETING:
361 case NVME_CTRL_RESETTING:
362 case NVME_CTRL_CONNECTING:
369 case NVME_CTRL_DELETING_NOIO:
371 case NVME_CTRL_DELETING:
381 case NVME_CTRL_DELETING:
393 ctrl->state = new_state;
394 wake_up_all(&ctrl->state_wq);
397 spin_unlock_irqrestore(&ctrl->lock, flags);
398 if (changed && ctrl->state == NVME_CTRL_LIVE)
399 nvme_kick_requeue_lists(ctrl);
402 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
405 * Returns true for sink states that can't ever transition back to live.
407 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
409 switch (ctrl->state) {
412 case NVME_CTRL_RESETTING:
413 case NVME_CTRL_CONNECTING:
415 case NVME_CTRL_DELETING:
416 case NVME_CTRL_DELETING_NOIO:
420 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
426 * Waits for the controller state to be resetting, or returns false if it is
427 * not possible to ever transition to that state.
429 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
431 wait_event(ctrl->state_wq,
432 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
433 nvme_state_terminal(ctrl));
434 return ctrl->state == NVME_CTRL_RESETTING;
436 EXPORT_SYMBOL_GPL(nvme_wait_reset);
438 static void nvme_free_ns_head(struct kref *ref)
440 struct nvme_ns_head *head =
441 container_of(ref, struct nvme_ns_head, ref);
443 nvme_mpath_remove_disk(head);
444 ida_simple_remove(&head->subsys->ns_ida, head->instance);
445 cleanup_srcu_struct(&head->srcu);
446 nvme_put_subsystem(head->subsys);
450 static void nvme_put_ns_head(struct nvme_ns_head *head)
452 kref_put(&head->ref, nvme_free_ns_head);
455 static void nvme_free_ns(struct kref *kref)
457 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
460 nvme_nvm_unregister(ns);
463 nvme_put_ns_head(ns->head);
464 nvme_put_ctrl(ns->ctrl);
468 void nvme_put_ns(struct nvme_ns *ns)
470 kref_put(&ns->kref, nvme_free_ns);
472 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
474 static inline void nvme_clear_nvme_request(struct request *req)
476 if (!(req->rq_flags & RQF_DONTPREP)) {
477 nvme_req(req)->retries = 0;
478 nvme_req(req)->flags = 0;
479 req->rq_flags |= RQF_DONTPREP;
483 struct request *nvme_alloc_request(struct request_queue *q,
484 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
486 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
489 if (qid == NVME_QID_ANY) {
490 req = blk_mq_alloc_request(q, op, flags);
492 req = blk_mq_alloc_request_hctx(q, op, flags,
498 req->cmd_flags |= REQ_FAILFAST_DRIVER;
499 nvme_clear_nvme_request(req);
500 nvme_req(req)->cmd = cmd;
504 EXPORT_SYMBOL_GPL(nvme_alloc_request);
506 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
508 struct nvme_command c;
510 memset(&c, 0, sizeof(c));
512 c.directive.opcode = nvme_admin_directive_send;
513 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
514 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
515 c.directive.dtype = NVME_DIR_IDENTIFY;
516 c.directive.tdtype = NVME_DIR_STREAMS;
517 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
519 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
522 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
524 return nvme_toggle_streams(ctrl, false);
527 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
529 return nvme_toggle_streams(ctrl, true);
532 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
533 struct streams_directive_params *s, u32 nsid)
535 struct nvme_command c;
537 memset(&c, 0, sizeof(c));
538 memset(s, 0, sizeof(*s));
540 c.directive.opcode = nvme_admin_directive_recv;
541 c.directive.nsid = cpu_to_le32(nsid);
542 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
543 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
544 c.directive.dtype = NVME_DIR_STREAMS;
546 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
549 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
551 struct streams_directive_params s;
554 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
559 ret = nvme_enable_streams(ctrl);
563 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
565 goto out_disable_stream;
567 ctrl->nssa = le16_to_cpu(s.nssa);
568 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
569 dev_info(ctrl->device, "too few streams (%u) available\n",
571 goto out_disable_stream;
574 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
575 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
579 nvme_disable_streams(ctrl);
584 * Check if 'req' has a write hint associated with it. If it does, assign
585 * a valid namespace stream to the write.
587 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
588 struct request *req, u16 *control,
591 enum rw_hint streamid = req->write_hint;
593 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
597 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
600 *control |= NVME_RW_DTYPE_STREAMS;
601 *dsmgmt |= streamid << 16;
604 if (streamid < ARRAY_SIZE(req->q->write_hints))
605 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
608 static void nvme_setup_passthrough(struct request *req,
609 struct nvme_command *cmd)
611 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
612 /* passthru commands should let the driver set the SGL flags */
613 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
616 static inline void nvme_setup_flush(struct nvme_ns *ns,
617 struct nvme_command *cmnd)
619 cmnd->common.opcode = nvme_cmd_flush;
620 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
623 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
624 struct nvme_command *cmnd)
626 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
627 struct nvme_dsm_range *range;
631 * Some devices do not consider the DSM 'Number of Ranges' field when
632 * determining how much data to DMA. Always allocate memory for maximum
633 * number of segments to prevent device reading beyond end of buffer.
635 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
637 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
640 * If we fail allocation our range, fallback to the controller
641 * discard page. If that's also busy, it's safe to return
642 * busy, as we know we can make progress once that's freed.
644 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
645 return BLK_STS_RESOURCE;
647 range = page_address(ns->ctrl->discard_page);
650 __rq_for_each_bio(bio, req) {
651 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
652 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
655 range[n].cattr = cpu_to_le32(0);
656 range[n].nlb = cpu_to_le32(nlb);
657 range[n].slba = cpu_to_le64(slba);
662 if (WARN_ON_ONCE(n != segments)) {
663 if (virt_to_page(range) == ns->ctrl->discard_page)
664 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
667 return BLK_STS_IOERR;
670 cmnd->dsm.opcode = nvme_cmd_dsm;
671 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
672 cmnd->dsm.nr = cpu_to_le32(segments - 1);
673 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
675 req->special_vec.bv_page = virt_to_page(range);
676 req->special_vec.bv_offset = offset_in_page(range);
677 req->special_vec.bv_len = alloc_size;
678 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
683 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
684 struct request *req, struct nvme_command *cmnd)
686 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
687 return nvme_setup_discard(ns, req, cmnd);
689 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
690 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
691 cmnd->write_zeroes.slba =
692 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
693 cmnd->write_zeroes.length =
694 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
695 cmnd->write_zeroes.control = 0;
699 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
700 struct request *req, struct nvme_command *cmnd,
703 struct nvme_ctrl *ctrl = ns->ctrl;
707 if (req->cmd_flags & REQ_FUA)
708 control |= NVME_RW_FUA;
709 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
710 control |= NVME_RW_LR;
712 if (req->cmd_flags & REQ_RAHEAD)
713 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
715 cmnd->rw.opcode = op;
716 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
717 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
718 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
720 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
721 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
725 * If formated with metadata, the block layer always provides a
726 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
727 * we enable the PRACT bit for protection information or set the
728 * namespace capacity to zero to prevent any I/O.
730 if (!blk_integrity_rq(req)) {
731 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
732 return BLK_STS_NOTSUPP;
733 control |= NVME_RW_PRINFO_PRACT;
736 switch (ns->pi_type) {
737 case NVME_NS_DPS_PI_TYPE3:
738 control |= NVME_RW_PRINFO_PRCHK_GUARD;
740 case NVME_NS_DPS_PI_TYPE1:
741 case NVME_NS_DPS_PI_TYPE2:
742 control |= NVME_RW_PRINFO_PRCHK_GUARD |
743 NVME_RW_PRINFO_PRCHK_REF;
744 if (op == nvme_cmd_zone_append)
745 control |= NVME_RW_APPEND_PIREMAP;
746 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
751 cmnd->rw.control = cpu_to_le16(control);
752 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
756 void nvme_cleanup_cmd(struct request *req)
758 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
759 struct nvme_ns *ns = req->rq_disk->private_data;
760 struct page *page = req->special_vec.bv_page;
762 if (page == ns->ctrl->discard_page)
763 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
765 kfree(page_address(page) + req->special_vec.bv_offset);
768 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
770 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
771 struct nvme_command *cmd)
773 blk_status_t ret = BLK_STS_OK;
775 nvme_clear_nvme_request(req);
777 memset(cmd, 0, sizeof(*cmd));
778 switch (req_op(req)) {
781 nvme_setup_passthrough(req, cmd);
784 nvme_setup_flush(ns, cmd);
786 case REQ_OP_ZONE_RESET_ALL:
787 case REQ_OP_ZONE_RESET:
788 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
790 case REQ_OP_ZONE_OPEN:
791 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
793 case REQ_OP_ZONE_CLOSE:
794 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
796 case REQ_OP_ZONE_FINISH:
797 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
799 case REQ_OP_WRITE_ZEROES:
800 ret = nvme_setup_write_zeroes(ns, req, cmd);
803 ret = nvme_setup_discard(ns, req, cmd);
806 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
809 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
811 case REQ_OP_ZONE_APPEND:
812 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
816 return BLK_STS_IOERR;
819 cmd->common.command_id = req->tag;
820 trace_nvme_setup_cmd(req, cmd);
823 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
825 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
827 struct completion *waiting = rq->end_io_data;
829 rq->end_io_data = NULL;
833 static void nvme_execute_rq_polled(struct request_queue *q,
834 struct gendisk *bd_disk, struct request *rq, int at_head)
836 DECLARE_COMPLETION_ONSTACK(wait);
838 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
840 rq->cmd_flags |= REQ_HIPRI;
841 rq->end_io_data = &wait;
842 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
844 while (!completion_done(&wait)) {
845 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
851 * Returns 0 on success. If the result is negative, it's a Linux error code;
852 * if the result is positive, it's an NVM Express status code
854 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
855 union nvme_result *result, void *buffer, unsigned bufflen,
856 unsigned timeout, int qid, int at_head,
857 blk_mq_req_flags_t flags, bool poll)
862 req = nvme_alloc_request(q, cmd, flags, qid);
866 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
868 if (buffer && bufflen) {
869 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
875 nvme_execute_rq_polled(req->q, NULL, req, at_head);
877 blk_execute_rq(req->q, NULL, req, at_head);
879 *result = nvme_req(req)->result;
880 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
883 ret = nvme_req(req)->status;
885 blk_mq_free_request(req);
888 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
890 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
891 void *buffer, unsigned bufflen)
893 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
894 NVME_QID_ANY, 0, 0, false);
896 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
898 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
899 unsigned len, u32 seed, bool write)
901 struct bio_integrity_payload *bip;
905 buf = kmalloc(len, GFP_KERNEL);
910 if (write && copy_from_user(buf, ubuf, len))
913 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
919 bip->bip_iter.bi_size = len;
920 bip->bip_iter.bi_sector = seed;
921 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
922 offset_in_page(buf));
932 static u32 nvme_known_admin_effects(u8 opcode)
935 case nvme_admin_format_nvm:
936 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
937 NVME_CMD_EFFECTS_CSE_MASK;
938 case nvme_admin_sanitize_nvm:
939 return NVME_CMD_EFFECTS_CSE_MASK;
946 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
951 if (ns->head->effects)
952 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
953 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
954 dev_warn(ctrl->device,
955 "IO command:%02x has unhandled effects:%08x\n",
961 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
962 effects |= nvme_known_admin_effects(opcode);
966 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
968 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
971 u32 effects = nvme_command_effects(ctrl, ns, opcode);
974 * For simplicity, IO to all namespaces is quiesced even if the command
975 * effects say only one namespace is affected.
977 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
978 mutex_lock(&ctrl->scan_lock);
979 mutex_lock(&ctrl->subsys->lock);
980 nvme_mpath_start_freeze(ctrl->subsys);
981 nvme_mpath_wait_freeze(ctrl->subsys);
982 nvme_start_freeze(ctrl);
983 nvme_wait_freeze(ctrl);
988 static void nvme_update_formats(struct nvme_ctrl *ctrl, u32 *effects)
992 down_read(&ctrl->namespaces_rwsem);
993 list_for_each_entry(ns, &ctrl->namespaces, list)
994 if (_nvme_revalidate_disk(ns->disk))
995 nvme_set_queue_dying(ns);
996 else if (blk_queue_is_zoned(ns->disk->queue)) {
998 * IO commands are required to fully revalidate a zoned
999 * device. Force the command effects to trigger rescan
1000 * work so report zones can run in a context with
1001 * unfrozen IO queues.
1003 *effects |= NVME_CMD_EFFECTS_NCC;
1005 up_read(&ctrl->namespaces_rwsem);
1008 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1011 * Revalidate LBA changes prior to unfreezing. This is necessary to
1012 * prevent memory corruption if a logical block size was changed by
1015 if (effects & NVME_CMD_EFFECTS_LBCC)
1016 nvme_update_formats(ctrl, &effects);
1017 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1018 nvme_unfreeze(ctrl);
1019 nvme_mpath_unfreeze(ctrl->subsys);
1020 mutex_unlock(&ctrl->subsys->lock);
1021 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1022 mutex_unlock(&ctrl->scan_lock);
1024 if (effects & NVME_CMD_EFFECTS_CCC)
1025 nvme_init_identify(ctrl);
1026 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1027 nvme_queue_scan(ctrl);
1028 flush_work(&ctrl->scan_work);
1032 void nvme_execute_passthru_rq(struct request *rq)
1034 struct nvme_command *cmd = nvme_req(rq)->cmd;
1035 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1036 struct nvme_ns *ns = rq->q->queuedata;
1037 struct gendisk *disk = ns ? ns->disk : NULL;
1040 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1041 blk_execute_rq(rq->q, disk, rq, 0);
1042 nvme_passthru_end(ctrl, effects);
1044 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1046 static int nvme_submit_user_cmd(struct request_queue *q,
1047 struct nvme_command *cmd, void __user *ubuffer,
1048 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1049 u32 meta_seed, u64 *result, unsigned timeout)
1051 bool write = nvme_is_write(cmd);
1052 struct nvme_ns *ns = q->queuedata;
1053 struct gendisk *disk = ns ? ns->disk : NULL;
1054 struct request *req;
1055 struct bio *bio = NULL;
1059 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1061 return PTR_ERR(req);
1063 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1064 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1066 if (ubuffer && bufflen) {
1067 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1072 bio->bi_disk = disk;
1073 if (disk && meta_buffer && meta_len) {
1074 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1077 ret = PTR_ERR(meta);
1080 req->cmd_flags |= REQ_INTEGRITY;
1084 nvme_execute_passthru_rq(req);
1085 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1088 ret = nvme_req(req)->status;
1090 *result = le64_to_cpu(nvme_req(req)->result.u64);
1091 if (meta && !ret && !write) {
1092 if (copy_to_user(meta_buffer, meta, meta_len))
1098 blk_rq_unmap_user(bio);
1100 blk_mq_free_request(req);
1104 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1106 struct nvme_ctrl *ctrl = rq->end_io_data;
1107 unsigned long flags;
1108 bool startka = false;
1110 blk_mq_free_request(rq);
1113 dev_err(ctrl->device,
1114 "failed nvme_keep_alive_end_io error=%d\n",
1119 ctrl->comp_seen = false;
1120 spin_lock_irqsave(&ctrl->lock, flags);
1121 if (ctrl->state == NVME_CTRL_LIVE ||
1122 ctrl->state == NVME_CTRL_CONNECTING)
1124 spin_unlock_irqrestore(&ctrl->lock, flags);
1126 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1129 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1133 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1138 rq->timeout = ctrl->kato * HZ;
1139 rq->end_io_data = ctrl;
1141 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1146 static void nvme_keep_alive_work(struct work_struct *work)
1148 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1149 struct nvme_ctrl, ka_work);
1150 bool comp_seen = ctrl->comp_seen;
1152 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1153 dev_dbg(ctrl->device,
1154 "reschedule traffic based keep-alive timer\n");
1155 ctrl->comp_seen = false;
1156 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1160 if (nvme_keep_alive(ctrl)) {
1161 /* allocation failure, reset the controller */
1162 dev_err(ctrl->device, "keep-alive failed\n");
1163 nvme_reset_ctrl(ctrl);
1168 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1170 if (unlikely(ctrl->kato == 0))
1173 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1176 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1178 if (unlikely(ctrl->kato == 0))
1181 cancel_delayed_work_sync(&ctrl->ka_work);
1183 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1186 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1187 * flag, thus sending any new CNS opcodes has a big chance of not working.
1188 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1189 * (but not for any later version).
1191 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1193 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1194 return ctrl->vs < NVME_VS(1, 2, 0);
1195 return ctrl->vs < NVME_VS(1, 1, 0);
1198 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1200 struct nvme_command c = { };
1203 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1204 c.identify.opcode = nvme_admin_identify;
1205 c.identify.cns = NVME_ID_CNS_CTRL;
1207 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1211 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1212 sizeof(struct nvme_id_ctrl));
1218 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1220 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1223 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1224 struct nvme_ns_id_desc *cur, bool *csi_seen)
1226 const char *warn_str = "ctrl returned bogus length:";
1229 switch (cur->nidt) {
1230 case NVME_NIDT_EUI64:
1231 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1232 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1233 warn_str, cur->nidl);
1236 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1237 return NVME_NIDT_EUI64_LEN;
1238 case NVME_NIDT_NGUID:
1239 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1240 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1241 warn_str, cur->nidl);
1244 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1245 return NVME_NIDT_NGUID_LEN;
1246 case NVME_NIDT_UUID:
1247 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1248 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1249 warn_str, cur->nidl);
1252 uuid_copy(&ids->uuid, data + sizeof(*cur));
1253 return NVME_NIDT_UUID_LEN;
1255 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1256 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1257 warn_str, cur->nidl);
1260 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1262 return NVME_NIDT_CSI_LEN;
1264 /* Skip unknown types */
1269 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1270 struct nvme_ns_ids *ids)
1272 struct nvme_command c = { };
1273 bool csi_seen = false;
1274 int status, pos, len;
1277 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1280 c.identify.opcode = nvme_admin_identify;
1281 c.identify.nsid = cpu_to_le32(nsid);
1282 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1284 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1288 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1289 NVME_IDENTIFY_DATA_SIZE);
1291 dev_warn(ctrl->device,
1292 "Identify Descriptors failed (%d)\n", status);
1296 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1297 struct nvme_ns_id_desc *cur = data + pos;
1302 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1306 len += sizeof(*cur);
1309 if (nvme_multi_css(ctrl) && !csi_seen) {
1310 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1320 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1322 struct nvme_command c = { };
1324 c.identify.opcode = nvme_admin_identify;
1325 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1326 c.identify.nsid = cpu_to_le32(nsid);
1327 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1328 NVME_IDENTIFY_DATA_SIZE);
1331 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1332 unsigned nsid, struct nvme_id_ns **id)
1334 struct nvme_command c = { };
1337 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1338 c.identify.opcode = nvme_admin_identify;
1339 c.identify.nsid = cpu_to_le32(nsid);
1340 c.identify.cns = NVME_ID_CNS_NS;
1342 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1346 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1348 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1355 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1356 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1358 union nvme_result res = { 0 };
1359 struct nvme_command c;
1362 memset(&c, 0, sizeof(c));
1363 c.features.opcode = op;
1364 c.features.fid = cpu_to_le32(fid);
1365 c.features.dword11 = cpu_to_le32(dword11);
1367 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1368 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1369 if (ret >= 0 && result)
1370 *result = le32_to_cpu(res.u32);
1374 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1375 unsigned int dword11, void *buffer, size_t buflen,
1378 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1381 EXPORT_SYMBOL_GPL(nvme_set_features);
1383 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1384 unsigned int dword11, void *buffer, size_t buflen,
1387 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1390 EXPORT_SYMBOL_GPL(nvme_get_features);
1392 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1394 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1396 int status, nr_io_queues;
1398 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1404 * Degraded controllers might return an error when setting the queue
1405 * count. We still want to be able to bring them online and offer
1406 * access to the admin queue, as that might be only way to fix them up.
1409 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1412 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1413 *count = min(*count, nr_io_queues);
1418 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1420 #define NVME_AEN_SUPPORTED \
1421 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1422 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1424 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1426 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1429 if (!supported_aens)
1432 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1435 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1438 queue_work(nvme_wq, &ctrl->async_event_work);
1442 * Convert integer values from ioctl structures to user pointers, silently
1443 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1446 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1448 if (in_compat_syscall())
1449 ptrval = (compat_uptr_t)ptrval;
1450 return (void __user *)ptrval;
1453 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1455 struct nvme_user_io io;
1456 struct nvme_command c;
1457 unsigned length, meta_len;
1458 void __user *metadata;
1460 if (copy_from_user(&io, uio, sizeof(io)))
1465 switch (io.opcode) {
1466 case nvme_cmd_write:
1468 case nvme_cmd_compare:
1474 length = (io.nblocks + 1) << ns->lba_shift;
1475 meta_len = (io.nblocks + 1) * ns->ms;
1476 metadata = nvme_to_user_ptr(io.metadata);
1478 if (ns->features & NVME_NS_EXT_LBAS) {
1481 } else if (meta_len) {
1482 if ((io.metadata & 3) || !io.metadata)
1486 memset(&c, 0, sizeof(c));
1487 c.rw.opcode = io.opcode;
1488 c.rw.flags = io.flags;
1489 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1490 c.rw.slba = cpu_to_le64(io.slba);
1491 c.rw.length = cpu_to_le16(io.nblocks);
1492 c.rw.control = cpu_to_le16(io.control);
1493 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1494 c.rw.reftag = cpu_to_le32(io.reftag);
1495 c.rw.apptag = cpu_to_le16(io.apptag);
1496 c.rw.appmask = cpu_to_le16(io.appmask);
1498 return nvme_submit_user_cmd(ns->queue, &c,
1499 nvme_to_user_ptr(io.addr), length,
1500 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1503 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1504 struct nvme_passthru_cmd __user *ucmd)
1506 struct nvme_passthru_cmd cmd;
1507 struct nvme_command c;
1508 unsigned timeout = 0;
1512 if (!capable(CAP_SYS_ADMIN))
1514 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1519 memset(&c, 0, sizeof(c));
1520 c.common.opcode = cmd.opcode;
1521 c.common.flags = cmd.flags;
1522 c.common.nsid = cpu_to_le32(cmd.nsid);
1523 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1524 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1525 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1526 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1527 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1528 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1529 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1530 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1533 timeout = msecs_to_jiffies(cmd.timeout_ms);
1535 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1536 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1537 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1538 0, &result, timeout);
1541 if (put_user(result, &ucmd->result))
1548 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1549 struct nvme_passthru_cmd64 __user *ucmd)
1551 struct nvme_passthru_cmd64 cmd;
1552 struct nvme_command c;
1553 unsigned timeout = 0;
1556 if (!capable(CAP_SYS_ADMIN))
1558 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1563 memset(&c, 0, sizeof(c));
1564 c.common.opcode = cmd.opcode;
1565 c.common.flags = cmd.flags;
1566 c.common.nsid = cpu_to_le32(cmd.nsid);
1567 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1568 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1569 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1570 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1571 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1572 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1573 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1574 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1577 timeout = msecs_to_jiffies(cmd.timeout_ms);
1579 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1580 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1581 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1582 0, &cmd.result, timeout);
1585 if (put_user(cmd.result, &ucmd->result))
1593 * Issue ioctl requests on the first available path. Note that unlike normal
1594 * block layer requests we will not retry failed request on another controller.
1596 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1597 struct nvme_ns_head **head, int *srcu_idx)
1599 #ifdef CONFIG_NVME_MULTIPATH
1600 if (disk->fops == &nvme_ns_head_ops) {
1603 *head = disk->private_data;
1604 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1605 ns = nvme_find_path(*head);
1607 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1613 return disk->private_data;
1616 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1619 srcu_read_unlock(&head->srcu, idx);
1622 static bool is_ctrl_ioctl(unsigned int cmd)
1624 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1626 if (is_sed_ioctl(cmd))
1631 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1633 struct nvme_ns_head *head,
1636 struct nvme_ctrl *ctrl = ns->ctrl;
1639 nvme_get_ctrl(ns->ctrl);
1640 nvme_put_ns_from_disk(head, srcu_idx);
1643 case NVME_IOCTL_ADMIN_CMD:
1644 ret = nvme_user_cmd(ctrl, NULL, argp);
1646 case NVME_IOCTL_ADMIN64_CMD:
1647 ret = nvme_user_cmd64(ctrl, NULL, argp);
1650 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1653 nvme_put_ctrl(ctrl);
1657 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1658 unsigned int cmd, unsigned long arg)
1660 struct nvme_ns_head *head = NULL;
1661 void __user *argp = (void __user *)arg;
1665 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1667 return -EWOULDBLOCK;
1670 * Handle ioctls that apply to the controller instead of the namespace
1671 * seperately and drop the ns SRCU reference early. This avoids a
1672 * deadlock when deleting namespaces using the passthrough interface.
1674 if (is_ctrl_ioctl(cmd))
1675 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1679 force_successful_syscall_return();
1680 ret = ns->head->ns_id;
1682 case NVME_IOCTL_IO_CMD:
1683 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1685 case NVME_IOCTL_SUBMIT_IO:
1686 ret = nvme_submit_io(ns, argp);
1688 case NVME_IOCTL_IO64_CMD:
1689 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1693 ret = nvme_nvm_ioctl(ns, cmd, arg);
1698 nvme_put_ns_from_disk(head, srcu_idx);
1702 #ifdef CONFIG_COMPAT
1703 struct nvme_user_io32 {
1716 } __attribute__((__packed__));
1718 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1720 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1721 unsigned int cmd, unsigned long arg)
1724 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1725 * between 32 bit programs and 64 bit kernel.
1726 * The cause is that the results of sizeof(struct nvme_user_io),
1727 * which is used to define NVME_IOCTL_SUBMIT_IO,
1728 * are not same between 32 bit compiler and 64 bit compiler.
1729 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1730 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1731 * Other IOCTL numbers are same between 32 bit and 64 bit.
1732 * So there is nothing to do regarding to other IOCTL numbers.
1734 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1735 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1737 return nvme_ioctl(bdev, mode, cmd, arg);
1740 #define nvme_compat_ioctl NULL
1741 #endif /* CONFIG_COMPAT */
1743 static int nvme_open(struct block_device *bdev, fmode_t mode)
1745 struct nvme_ns *ns = bdev->bd_disk->private_data;
1747 #ifdef CONFIG_NVME_MULTIPATH
1748 /* should never be called due to GENHD_FL_HIDDEN */
1749 if (WARN_ON_ONCE(ns->head->disk))
1752 if (!kref_get_unless_zero(&ns->kref))
1754 if (!try_module_get(ns->ctrl->ops->module))
1765 static void nvme_release(struct gendisk *disk, fmode_t mode)
1767 struct nvme_ns *ns = disk->private_data;
1769 module_put(ns->ctrl->ops->module);
1773 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1775 /* some standard values */
1776 geo->heads = 1 << 6;
1777 geo->sectors = 1 << 5;
1778 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1782 #ifdef CONFIG_BLK_DEV_INTEGRITY
1783 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1784 u32 max_integrity_segments)
1786 struct blk_integrity integrity;
1788 memset(&integrity, 0, sizeof(integrity));
1790 case NVME_NS_DPS_PI_TYPE3:
1791 integrity.profile = &t10_pi_type3_crc;
1792 integrity.tag_size = sizeof(u16) + sizeof(u32);
1793 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1795 case NVME_NS_DPS_PI_TYPE1:
1796 case NVME_NS_DPS_PI_TYPE2:
1797 integrity.profile = &t10_pi_type1_crc;
1798 integrity.tag_size = sizeof(u16);
1799 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1802 integrity.profile = NULL;
1805 integrity.tuple_size = ms;
1806 blk_integrity_register(disk, &integrity);
1807 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1810 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1811 u32 max_integrity_segments)
1814 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1816 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1818 struct nvme_ctrl *ctrl = ns->ctrl;
1819 struct request_queue *queue = disk->queue;
1820 u32 size = queue_logical_block_size(queue);
1822 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1823 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1827 if (ctrl->nr_streams && ns->sws && ns->sgs)
1828 size *= ns->sws * ns->sgs;
1830 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1831 NVME_DSM_MAX_RANGES);
1833 queue->limits.discard_alignment = 0;
1834 queue->limits.discard_granularity = size;
1836 /* If discard is already enabled, don't reset queue limits */
1837 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1840 blk_queue_max_discard_sectors(queue, UINT_MAX);
1841 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1843 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1844 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1847 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1851 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1852 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1855 * Even though NVMe spec explicitly states that MDTS is not
1856 * applicable to the write-zeroes:- "The restriction does not apply to
1857 * commands that do not transfer data between the host and the
1858 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1859 * In order to be more cautious use controller's max_hw_sectors value
1860 * to configure the maximum sectors for the write-zeroes which is
1861 * configured based on the controller's MDTS field in the
1862 * nvme_init_identify() if available.
1864 if (ns->ctrl->max_hw_sectors == UINT_MAX)
1865 max_blocks = (u64)USHRT_MAX + 1;
1867 max_blocks = ns->ctrl->max_hw_sectors + 1;
1869 blk_queue_max_write_zeroes_sectors(disk->queue,
1870 nvme_lba_to_sect(ns, max_blocks));
1873 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1874 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1876 memset(ids, 0, sizeof(*ids));
1878 if (ctrl->vs >= NVME_VS(1, 1, 0))
1879 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1880 if (ctrl->vs >= NVME_VS(1, 2, 0))
1881 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1882 if (ctrl->vs >= NVME_VS(1, 3, 0) || nvme_multi_css(ctrl))
1883 return nvme_identify_ns_descs(ctrl, nsid, ids);
1887 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1889 return !uuid_is_null(&ids->uuid) ||
1890 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1891 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1894 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1896 return uuid_equal(&a->uuid, &b->uuid) &&
1897 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1898 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1902 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1903 u32 *phys_bs, u32 *io_opt)
1905 struct streams_directive_params s;
1908 if (!ctrl->nr_streams)
1911 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1915 ns->sws = le32_to_cpu(s.sws);
1916 ns->sgs = le16_to_cpu(s.sgs);
1919 *phys_bs = ns->sws * (1 << ns->lba_shift);
1921 *io_opt = *phys_bs * ns->sgs;
1927 static void nvme_update_disk_info(struct gendisk *disk,
1928 struct nvme_ns *ns, struct nvme_id_ns *id)
1930 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1931 unsigned short bs = 1 << ns->lba_shift;
1932 u32 atomic_bs, phys_bs, io_opt = 0;
1934 if (ns->lba_shift > PAGE_SHIFT) {
1935 /* unsupported block size, set capacity to 0 later */
1938 blk_mq_freeze_queue(disk->queue);
1939 blk_integrity_unregister(disk);
1941 atomic_bs = phys_bs = bs;
1942 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1943 if (id->nabo == 0) {
1945 * Bit 1 indicates whether NAWUPF is defined for this namespace
1946 * and whether it should be used instead of AWUPF. If NAWUPF ==
1947 * 0 then AWUPF must be used instead.
1949 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1950 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1952 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1955 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1956 /* NPWG = Namespace Preferred Write Granularity */
1957 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1958 /* NOWS = Namespace Optimal Write Size */
1959 io_opt = bs * (1 + le16_to_cpu(id->nows));
1962 blk_queue_logical_block_size(disk->queue, bs);
1964 * Linux filesystems assume writing a single physical block is
1965 * an atomic operation. Hence limit the physical block size to the
1966 * value of the Atomic Write Unit Power Fail parameter.
1968 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1969 blk_queue_io_min(disk->queue, phys_bs);
1970 blk_queue_io_opt(disk->queue, io_opt);
1973 * The block layer can't support LBA sizes larger than the page size
1974 * yet, so catch this early and don't allow block I/O.
1976 if (ns->lba_shift > PAGE_SHIFT)
1980 * Register a metadata profile for PI, or the plain non-integrity NVMe
1981 * metadata masquerading as Type 0 if supported, otherwise reject block
1982 * I/O to namespaces with metadata except when the namespace supports
1983 * PI, as it can strip/insert in that case.
1986 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1987 (ns->features & NVME_NS_METADATA_SUPPORTED))
1988 nvme_init_integrity(disk, ns->ms, ns->pi_type,
1989 ns->ctrl->max_integrity_segments);
1990 else if (!nvme_ns_has_pi(ns))
1994 set_capacity_revalidate_and_notify(disk, capacity, false);
1996 nvme_config_discard(disk, ns);
1997 nvme_config_write_zeroes(disk, ns);
1999 if (id->nsattr & NVME_NS_ATTR_RO)
2000 set_disk_ro(disk, true);
2002 set_disk_ro(disk, false);
2004 blk_mq_unfreeze_queue(disk->queue);
2007 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
2009 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2010 struct nvme_ns *ns = disk->private_data;
2011 struct nvme_ctrl *ctrl = ns->ctrl;
2016 * If identify namespace failed, use default 512 byte block size so
2017 * block layer can use before failing read/write for 0 capacity.
2019 ns->lba_shift = id->lbaf[lbaf].ds;
2020 if (ns->lba_shift == 0)
2023 switch (ns->head->ids.csi) {
2027 ret = nvme_update_zone_info(disk, ns, lbaf);
2029 dev_warn(ctrl->device,
2030 "failed to add zoned namespace:%u ret:%d\n",
2031 ns->head->ns_id, ret);
2036 dev_warn(ctrl->device, "unknown csi:%u ns:%u\n",
2037 ns->head->ids.csi, ns->head->ns_id);
2041 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2042 is_power_of_2(ctrl->max_hw_sectors))
2043 iob = ctrl->max_hw_sectors;
2045 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2048 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2049 /* the PI implementation requires metadata equal t10 pi tuple size */
2050 if (ns->ms == sizeof(struct t10_pi_tuple))
2051 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
2057 * For PCIe only the separate metadata pointer is supported,
2058 * as the block layer supplies metadata in a separate bio_vec
2059 * chain. For Fabrics, only metadata as part of extended data
2060 * LBA is supported on the wire per the Fabrics specification,
2061 * but the HBA/HCA will do the remapping from the separate
2062 * metadata buffers for us.
2064 if (id->flbas & NVME_NS_FLBAS_META_EXT) {
2065 ns->features |= NVME_NS_EXT_LBAS;
2066 if ((ctrl->ops->flags & NVME_F_FABRICS) &&
2067 (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) &&
2068 ctrl->max_integrity_segments)
2069 ns->features |= NVME_NS_METADATA_SUPPORTED;
2071 if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS))
2073 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
2074 ns->features |= NVME_NS_METADATA_SUPPORTED;
2079 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob));
2080 nvme_update_disk_info(disk, ns, id);
2081 #ifdef CONFIG_NVME_MULTIPATH
2082 if (ns->head->disk) {
2083 nvme_update_disk_info(ns->head->disk, ns, id);
2084 blk_stack_limits(&ns->head->disk->queue->limits,
2085 &ns->queue->limits, 0);
2086 nvme_mpath_update_disk_size(ns->head->disk);
2092 static int _nvme_revalidate_disk(struct gendisk *disk)
2094 struct nvme_ns *ns = disk->private_data;
2095 struct nvme_ctrl *ctrl = ns->ctrl;
2096 struct nvme_id_ns *id;
2097 struct nvme_ns_ids ids;
2100 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
2101 set_capacity(disk, 0);
2105 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
2109 if (id->ncap == 0) {
2114 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
2118 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
2119 dev_err(ctrl->device,
2120 "identifiers changed for nsid %d\n", ns->head->ns_id);
2125 ret = __nvme_revalidate_disk(disk, id);
2130 * Only fail the function if we got a fatal error back from the
2131 * device, otherwise ignore the error and just move on.
2133 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
2136 ret = blk_status_to_errno(nvme_error_status(ret));
2140 static int nvme_revalidate_disk(struct gendisk *disk)
2144 ret = _nvme_revalidate_disk(disk);
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 if (blk_queue_is_zoned(disk->queue)) {
2150 struct nvme_ns *ns = disk->private_data;
2151 struct nvme_ctrl *ctrl = ns->ctrl;
2153 ret = blk_revalidate_disk_zones(disk, NULL);
2155 blk_queue_max_zone_append_sectors(disk->queue,
2156 ctrl->max_zone_append);
2162 static char nvme_pr_type(enum pr_type type)
2165 case PR_WRITE_EXCLUSIVE:
2167 case PR_EXCLUSIVE_ACCESS:
2169 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2171 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2173 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2175 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2182 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2183 u64 key, u64 sa_key, u8 op)
2185 struct nvme_ns_head *head = NULL;
2187 struct nvme_command c;
2189 u8 data[16] = { 0, };
2191 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2193 return -EWOULDBLOCK;
2195 put_unaligned_le64(key, &data[0]);
2196 put_unaligned_le64(sa_key, &data[8]);
2198 memset(&c, 0, sizeof(c));
2199 c.common.opcode = op;
2200 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2201 c.common.cdw10 = cpu_to_le32(cdw10);
2203 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2204 nvme_put_ns_from_disk(head, srcu_idx);
2208 static int nvme_pr_register(struct block_device *bdev, u64 old,
2209 u64 new, unsigned flags)
2213 if (flags & ~PR_FL_IGNORE_KEY)
2216 cdw10 = old ? 2 : 0;
2217 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2218 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2219 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2222 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2223 enum pr_type type, unsigned flags)
2227 if (flags & ~PR_FL_IGNORE_KEY)
2230 cdw10 = nvme_pr_type(type) << 8;
2231 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2232 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2235 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2236 enum pr_type type, bool abort)
2238 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2239 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2242 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2244 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2245 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2248 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2250 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2251 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2254 static const struct pr_ops nvme_pr_ops = {
2255 .pr_register = nvme_pr_register,
2256 .pr_reserve = nvme_pr_reserve,
2257 .pr_release = nvme_pr_release,
2258 .pr_preempt = nvme_pr_preempt,
2259 .pr_clear = nvme_pr_clear,
2262 #ifdef CONFIG_BLK_SED_OPAL
2263 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2266 struct nvme_ctrl *ctrl = data;
2267 struct nvme_command cmd;
2269 memset(&cmd, 0, sizeof(cmd));
2271 cmd.common.opcode = nvme_admin_security_send;
2273 cmd.common.opcode = nvme_admin_security_recv;
2274 cmd.common.nsid = 0;
2275 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2276 cmd.common.cdw11 = cpu_to_le32(len);
2278 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2279 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2281 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2282 #endif /* CONFIG_BLK_SED_OPAL */
2284 static const struct block_device_operations nvme_fops = {
2285 .owner = THIS_MODULE,
2286 .ioctl = nvme_ioctl,
2287 .compat_ioctl = nvme_compat_ioctl,
2289 .release = nvme_release,
2290 .getgeo = nvme_getgeo,
2291 .revalidate_disk= nvme_revalidate_disk,
2292 .report_zones = nvme_report_zones,
2293 .pr_ops = &nvme_pr_ops,
2296 #ifdef CONFIG_NVME_MULTIPATH
2297 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2299 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2301 if (!kref_get_unless_zero(&head->ref))
2306 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2308 nvme_put_ns_head(disk->private_data);
2311 const struct block_device_operations nvme_ns_head_ops = {
2312 .owner = THIS_MODULE,
2313 .submit_bio = nvme_ns_head_submit_bio,
2314 .open = nvme_ns_head_open,
2315 .release = nvme_ns_head_release,
2316 .ioctl = nvme_ioctl,
2317 .compat_ioctl = nvme_compat_ioctl,
2318 .getgeo = nvme_getgeo,
2319 .report_zones = nvme_report_zones,
2320 .pr_ops = &nvme_pr_ops,
2322 #endif /* CONFIG_NVME_MULTIPATH */
2324 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2326 unsigned long timeout =
2327 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2328 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2331 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2334 if ((csts & NVME_CSTS_RDY) == bit)
2337 usleep_range(1000, 2000);
2338 if (fatal_signal_pending(current))
2340 if (time_after(jiffies, timeout)) {
2341 dev_err(ctrl->device,
2342 "Device not ready; aborting %s, CSTS=0x%x\n",
2343 enabled ? "initialisation" : "reset", csts);
2352 * If the device has been passed off to us in an enabled state, just clear
2353 * the enabled bit. The spec says we should set the 'shutdown notification
2354 * bits', but doing so may cause the device to complete commands to the
2355 * admin queue ... and we don't know what memory that might be pointing at!
2357 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2361 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2362 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2364 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2368 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2369 msleep(NVME_QUIRK_DELAY_AMOUNT);
2371 return nvme_wait_ready(ctrl, ctrl->cap, false);
2373 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2375 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2377 unsigned dev_page_min;
2380 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2382 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2385 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2387 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2388 dev_err(ctrl->device,
2389 "Minimum device page size %u too large for host (%u)\n",
2390 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2394 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2395 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2397 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2398 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2399 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2400 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2401 ctrl->ctrl_config |= NVME_CC_ENABLE;
2403 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2406 return nvme_wait_ready(ctrl, ctrl->cap, true);
2408 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2410 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2412 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2416 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2417 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2419 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2423 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2424 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2428 if (fatal_signal_pending(current))
2430 if (time_after(jiffies, timeout)) {
2431 dev_err(ctrl->device,
2432 "Device shutdown incomplete; abort shutdown\n");
2439 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2441 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2442 struct request_queue *q)
2446 if (ctrl->max_hw_sectors) {
2448 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2450 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2451 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2452 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2454 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2455 blk_queue_dma_alignment(q, 7);
2456 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2458 blk_queue_write_cache(q, vwc, vwc);
2461 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2466 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2469 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2470 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2473 dev_warn_once(ctrl->device,
2474 "could not set timestamp (%d)\n", ret);
2478 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2480 struct nvme_feat_host_behavior *host;
2483 /* Don't bother enabling the feature if retry delay is not reported */
2487 host = kzalloc(sizeof(*host), GFP_KERNEL);
2491 host->acre = NVME_ENABLE_ACRE;
2492 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2493 host, sizeof(*host), NULL);
2498 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2501 * APST (Autonomous Power State Transition) lets us program a
2502 * table of power state transitions that the controller will
2503 * perform automatically. We configure it with a simple
2504 * heuristic: we are willing to spend at most 2% of the time
2505 * transitioning between power states. Therefore, when running
2506 * in any given state, we will enter the next lower-power
2507 * non-operational state after waiting 50 * (enlat + exlat)
2508 * microseconds, as long as that state's exit latency is under
2509 * the requested maximum latency.
2511 * We will not autonomously enter any non-operational state for
2512 * which the total latency exceeds ps_max_latency_us. Users
2513 * can set ps_max_latency_us to zero to turn off APST.
2517 struct nvme_feat_auto_pst *table;
2523 * If APST isn't supported or if we haven't been initialized yet,
2524 * then don't do anything.
2529 if (ctrl->npss > 31) {
2530 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2534 table = kzalloc(sizeof(*table), GFP_KERNEL);
2538 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2539 /* Turn off APST. */
2541 dev_dbg(ctrl->device, "APST disabled\n");
2543 __le64 target = cpu_to_le64(0);
2547 * Walk through all states from lowest- to highest-power.
2548 * According to the spec, lower-numbered states use more
2549 * power. NPSS, despite the name, is the index of the
2550 * lowest-power state, not the number of states.
2552 for (state = (int)ctrl->npss; state >= 0; state--) {
2553 u64 total_latency_us, exit_latency_us, transition_ms;
2556 table->entries[state] = target;
2559 * Don't allow transitions to the deepest state
2560 * if it's quirked off.
2562 if (state == ctrl->npss &&
2563 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2567 * Is this state a useful non-operational state for
2568 * higher-power states to autonomously transition to?
2570 if (!(ctrl->psd[state].flags &
2571 NVME_PS_FLAGS_NON_OP_STATE))
2575 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2576 if (exit_latency_us > ctrl->ps_max_latency_us)
2581 le32_to_cpu(ctrl->psd[state].entry_lat);
2584 * This state is good. Use it as the APST idle
2585 * target for higher power states.
2587 transition_ms = total_latency_us + 19;
2588 do_div(transition_ms, 20);
2589 if (transition_ms > (1 << 24) - 1)
2590 transition_ms = (1 << 24) - 1;
2592 target = cpu_to_le64((state << 3) |
2593 (transition_ms << 8));
2598 if (total_latency_us > max_lat_us)
2599 max_lat_us = total_latency_us;
2605 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2607 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2608 max_ps, max_lat_us, (int)sizeof(*table), table);
2612 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2613 table, sizeof(*table), NULL);
2615 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2621 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2623 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2627 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2628 case PM_QOS_LATENCY_ANY:
2636 if (ctrl->ps_max_latency_us != latency) {
2637 ctrl->ps_max_latency_us = latency;
2638 nvme_configure_apst(ctrl);
2642 struct nvme_core_quirk_entry {
2644 * NVMe model and firmware strings are padded with spaces. For
2645 * simplicity, strings in the quirk table are padded with NULLs
2651 unsigned long quirks;
2654 static const struct nvme_core_quirk_entry core_quirks[] = {
2657 * This Toshiba device seems to die using any APST states. See:
2658 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2661 .mn = "THNSF5256GPUK TOSHIBA",
2662 .quirks = NVME_QUIRK_NO_APST,
2666 * This LiteON CL1-3D*-Q11 firmware version has a race
2667 * condition associated with actions related to suspend to idle
2668 * LiteON has resolved the problem in future firmware
2672 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2676 /* match is null-terminated but idstr is space-padded. */
2677 static bool string_matches(const char *idstr, const char *match, size_t len)
2684 matchlen = strlen(match);
2685 WARN_ON_ONCE(matchlen > len);
2687 if (memcmp(idstr, match, matchlen))
2690 for (; matchlen < len; matchlen++)
2691 if (idstr[matchlen] != ' ')
2697 static bool quirk_matches(const struct nvme_id_ctrl *id,
2698 const struct nvme_core_quirk_entry *q)
2700 return q->vid == le16_to_cpu(id->vid) &&
2701 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2702 string_matches(id->fr, q->fr, sizeof(id->fr));
2705 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2706 struct nvme_id_ctrl *id)
2711 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2712 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2713 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2714 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2718 if (ctrl->vs >= NVME_VS(1, 2, 1))
2719 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2722 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2723 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2724 "nqn.2014.08.org.nvmexpress:%04x%04x",
2725 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2726 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2727 off += sizeof(id->sn);
2728 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2729 off += sizeof(id->mn);
2730 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2733 static void nvme_release_subsystem(struct device *dev)
2735 struct nvme_subsystem *subsys =
2736 container_of(dev, struct nvme_subsystem, dev);
2738 if (subsys->instance >= 0)
2739 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2743 static void nvme_destroy_subsystem(struct kref *ref)
2745 struct nvme_subsystem *subsys =
2746 container_of(ref, struct nvme_subsystem, ref);
2748 mutex_lock(&nvme_subsystems_lock);
2749 list_del(&subsys->entry);
2750 mutex_unlock(&nvme_subsystems_lock);
2752 ida_destroy(&subsys->ns_ida);
2753 device_del(&subsys->dev);
2754 put_device(&subsys->dev);
2757 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2759 kref_put(&subsys->ref, nvme_destroy_subsystem);
2762 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2764 struct nvme_subsystem *subsys;
2766 lockdep_assert_held(&nvme_subsystems_lock);
2769 * Fail matches for discovery subsystems. This results
2770 * in each discovery controller bound to a unique subsystem.
2771 * This avoids issues with validating controller values
2772 * that can only be true when there is a single unique subsystem.
2773 * There may be multiple and completely independent entities
2774 * that provide discovery controllers.
2776 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2779 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2780 if (strcmp(subsys->subnqn, subsysnqn))
2782 if (!kref_get_unless_zero(&subsys->ref))
2790 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2791 struct device_attribute subsys_attr_##_name = \
2792 __ATTR(_name, _mode, _show, NULL)
2794 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2795 struct device_attribute *attr,
2798 struct nvme_subsystem *subsys =
2799 container_of(dev, struct nvme_subsystem, dev);
2801 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2803 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2805 #define nvme_subsys_show_str_function(field) \
2806 static ssize_t subsys_##field##_show(struct device *dev, \
2807 struct device_attribute *attr, char *buf) \
2809 struct nvme_subsystem *subsys = \
2810 container_of(dev, struct nvme_subsystem, dev); \
2811 return sprintf(buf, "%.*s\n", \
2812 (int)sizeof(subsys->field), subsys->field); \
2814 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2816 nvme_subsys_show_str_function(model);
2817 nvme_subsys_show_str_function(serial);
2818 nvme_subsys_show_str_function(firmware_rev);
2820 static struct attribute *nvme_subsys_attrs[] = {
2821 &subsys_attr_model.attr,
2822 &subsys_attr_serial.attr,
2823 &subsys_attr_firmware_rev.attr,
2824 &subsys_attr_subsysnqn.attr,
2825 #ifdef CONFIG_NVME_MULTIPATH
2826 &subsys_attr_iopolicy.attr,
2831 static struct attribute_group nvme_subsys_attrs_group = {
2832 .attrs = nvme_subsys_attrs,
2835 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2836 &nvme_subsys_attrs_group,
2840 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2841 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2843 struct nvme_ctrl *tmp;
2845 lockdep_assert_held(&nvme_subsystems_lock);
2847 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2848 if (nvme_state_terminal(tmp))
2851 if (tmp->cntlid == ctrl->cntlid) {
2852 dev_err(ctrl->device,
2853 "Duplicate cntlid %u with %s, rejecting\n",
2854 ctrl->cntlid, dev_name(tmp->device));
2858 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2859 (ctrl->opts && ctrl->opts->discovery_nqn))
2862 dev_err(ctrl->device,
2863 "Subsystem does not support multiple controllers\n");
2870 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2872 struct nvme_subsystem *subsys, *found;
2875 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2879 subsys->instance = -1;
2880 mutex_init(&subsys->lock);
2881 kref_init(&subsys->ref);
2882 INIT_LIST_HEAD(&subsys->ctrls);
2883 INIT_LIST_HEAD(&subsys->nsheads);
2884 nvme_init_subnqn(subsys, ctrl, id);
2885 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2886 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2887 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2888 subsys->vendor_id = le16_to_cpu(id->vid);
2889 subsys->cmic = id->cmic;
2890 subsys->awupf = le16_to_cpu(id->awupf);
2891 #ifdef CONFIG_NVME_MULTIPATH
2892 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2895 subsys->dev.class = nvme_subsys_class;
2896 subsys->dev.release = nvme_release_subsystem;
2897 subsys->dev.groups = nvme_subsys_attrs_groups;
2898 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2899 device_initialize(&subsys->dev);
2901 mutex_lock(&nvme_subsystems_lock);
2902 found = __nvme_find_get_subsystem(subsys->subnqn);
2904 put_device(&subsys->dev);
2907 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2909 goto out_put_subsystem;
2912 ret = device_add(&subsys->dev);
2914 dev_err(ctrl->device,
2915 "failed to register subsystem device.\n");
2916 put_device(&subsys->dev);
2919 ida_init(&subsys->ns_ida);
2920 list_add_tail(&subsys->entry, &nvme_subsystems);
2923 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2924 dev_name(ctrl->device));
2926 dev_err(ctrl->device,
2927 "failed to create sysfs link from subsystem.\n");
2928 goto out_put_subsystem;
2932 subsys->instance = ctrl->instance;
2933 ctrl->subsys = subsys;
2934 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2935 mutex_unlock(&nvme_subsystems_lock);
2939 nvme_put_subsystem(subsys);
2941 mutex_unlock(&nvme_subsystems_lock);
2945 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2946 void *log, size_t size, u64 offset)
2948 struct nvme_command c = { };
2949 u32 dwlen = nvme_bytes_to_numd(size);
2951 c.get_log_page.opcode = nvme_admin_get_log_page;
2952 c.get_log_page.nsid = cpu_to_le32(nsid);
2953 c.get_log_page.lid = log_page;
2954 c.get_log_page.lsp = lsp;
2955 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2956 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2957 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2958 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2959 c.get_log_page.csi = csi;
2961 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2964 static struct nvme_cel *nvme_find_cel(struct nvme_ctrl *ctrl, u8 csi)
2966 struct nvme_cel *cel, *ret = NULL;
2968 spin_lock(&ctrl->lock);
2969 list_for_each_entry(cel, &ctrl->cels, entry) {
2970 if (cel->csi == csi) {
2975 spin_unlock(&ctrl->lock);
2980 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2981 struct nvme_effects_log **log)
2983 struct nvme_cel *cel = nvme_find_cel(ctrl, csi);
2989 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2993 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, csi,
2994 &cel->log, sizeof(cel->log), 0);
3002 spin_lock(&ctrl->lock);
3003 list_add_tail(&cel->entry, &ctrl->cels);
3004 spin_unlock(&ctrl->lock);
3011 * Initialize the cached copies of the Identify data and various controller
3012 * register in our nvme_ctrl structure. This should be called as soon as
3013 * the admin queue is fully up and running.
3015 int nvme_init_identify(struct nvme_ctrl *ctrl)
3017 struct nvme_id_ctrl *id;
3018 int ret, page_shift;
3020 bool prev_apst_enabled;
3022 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3024 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3027 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3028 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3030 if (ctrl->vs >= NVME_VS(1, 1, 0))
3031 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3033 ret = nvme_identify_ctrl(ctrl, &id);
3035 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3039 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3040 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3045 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3046 ctrl->cntlid = le16_to_cpu(id->cntlid);
3048 if (!ctrl->identified) {
3051 ret = nvme_init_subsystem(ctrl, id);
3056 * Check for quirks. Quirk can depend on firmware version,
3057 * so, in principle, the set of quirks present can change
3058 * across a reset. As a possible future enhancement, we
3059 * could re-scan for quirks every time we reinitialize
3060 * the device, but we'd have to make sure that the driver
3061 * behaves intelligently if the quirks change.
3063 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3064 if (quirk_matches(id, &core_quirks[i]))
3065 ctrl->quirks |= core_quirks[i].quirks;
3069 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3070 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3071 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3074 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3075 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3076 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3078 ctrl->oacs = le16_to_cpu(id->oacs);
3079 ctrl->oncs = le16_to_cpu(id->oncs);
3080 ctrl->mtfa = le16_to_cpu(id->mtfa);
3081 ctrl->oaes = le32_to_cpu(id->oaes);
3082 ctrl->wctemp = le16_to_cpu(id->wctemp);
3083 ctrl->cctemp = le16_to_cpu(id->cctemp);
3085 atomic_set(&ctrl->abort_limit, id->acl + 1);
3086 ctrl->vwc = id->vwc;
3088 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3090 max_hw_sectors = UINT_MAX;
3091 ctrl->max_hw_sectors =
3092 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3094 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3095 ctrl->sgls = le32_to_cpu(id->sgls);
3096 ctrl->kas = le16_to_cpu(id->kas);
3097 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3098 ctrl->ctratt = le32_to_cpu(id->ctratt);
3102 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3104 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3105 shutdown_timeout, 60);
3107 if (ctrl->shutdown_timeout != shutdown_timeout)
3108 dev_info(ctrl->device,
3109 "Shutdown timeout set to %u seconds\n",
3110 ctrl->shutdown_timeout);
3112 ctrl->shutdown_timeout = shutdown_timeout;
3114 ctrl->npss = id->npss;
3115 ctrl->apsta = id->apsta;
3116 prev_apst_enabled = ctrl->apst_enabled;
3117 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3118 if (force_apst && id->apsta) {
3119 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3120 ctrl->apst_enabled = true;
3122 ctrl->apst_enabled = false;
3125 ctrl->apst_enabled = id->apsta;
3127 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3129 if (ctrl->ops->flags & NVME_F_FABRICS) {
3130 ctrl->icdoff = le16_to_cpu(id->icdoff);
3131 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3132 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3133 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3136 * In fabrics we need to verify the cntlid matches the
3139 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3140 dev_err(ctrl->device,
3141 "Mismatching cntlid: Connect %u vs Identify "
3143 ctrl->cntlid, le16_to_cpu(id->cntlid));
3148 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3149 dev_err(ctrl->device,
3150 "keep-alive support is mandatory for fabrics\n");
3155 ctrl->hmpre = le32_to_cpu(id->hmpre);
3156 ctrl->hmmin = le32_to_cpu(id->hmmin);
3157 ctrl->hmminds = le32_to_cpu(id->hmminds);
3158 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3161 ret = nvme_mpath_init(ctrl, id);
3167 if (ctrl->apst_enabled && !prev_apst_enabled)
3168 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3169 else if (!ctrl->apst_enabled && prev_apst_enabled)
3170 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3172 ret = nvme_configure_apst(ctrl);
3176 ret = nvme_configure_timestamp(ctrl);
3180 ret = nvme_configure_directives(ctrl);
3184 ret = nvme_configure_acre(ctrl);
3188 if (!ctrl->identified)
3189 nvme_hwmon_init(ctrl);
3191 ctrl->identified = true;
3199 EXPORT_SYMBOL_GPL(nvme_init_identify);
3201 static int nvme_dev_open(struct inode *inode, struct file *file)
3203 struct nvme_ctrl *ctrl =
3204 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3206 switch (ctrl->state) {
3207 case NVME_CTRL_LIVE:
3210 return -EWOULDBLOCK;
3213 file->private_data = ctrl;
3217 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3222 down_read(&ctrl->namespaces_rwsem);
3223 if (list_empty(&ctrl->namespaces)) {
3228 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3229 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3230 dev_warn(ctrl->device,
3231 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3236 dev_warn(ctrl->device,
3237 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3238 kref_get(&ns->kref);
3239 up_read(&ctrl->namespaces_rwsem);
3241 ret = nvme_user_cmd(ctrl, ns, argp);
3246 up_read(&ctrl->namespaces_rwsem);
3250 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3253 struct nvme_ctrl *ctrl = file->private_data;
3254 void __user *argp = (void __user *)arg;
3257 case NVME_IOCTL_ADMIN_CMD:
3258 return nvme_user_cmd(ctrl, NULL, argp);
3259 case NVME_IOCTL_ADMIN64_CMD:
3260 return nvme_user_cmd64(ctrl, NULL, argp);
3261 case NVME_IOCTL_IO_CMD:
3262 return nvme_dev_user_cmd(ctrl, argp);
3263 case NVME_IOCTL_RESET:
3264 dev_warn(ctrl->device, "resetting controller\n");
3265 return nvme_reset_ctrl_sync(ctrl);
3266 case NVME_IOCTL_SUBSYS_RESET:
3267 return nvme_reset_subsystem(ctrl);
3268 case NVME_IOCTL_RESCAN:
3269 nvme_queue_scan(ctrl);
3276 static const struct file_operations nvme_dev_fops = {
3277 .owner = THIS_MODULE,
3278 .open = nvme_dev_open,
3279 .unlocked_ioctl = nvme_dev_ioctl,
3280 .compat_ioctl = compat_ptr_ioctl,
3283 static ssize_t nvme_sysfs_reset(struct device *dev,
3284 struct device_attribute *attr, const char *buf,
3287 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3290 ret = nvme_reset_ctrl_sync(ctrl);
3295 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3297 static ssize_t nvme_sysfs_rescan(struct device *dev,
3298 struct device_attribute *attr, const char *buf,
3301 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3303 nvme_queue_scan(ctrl);
3306 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3308 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3310 struct gendisk *disk = dev_to_disk(dev);
3312 if (disk->fops == &nvme_fops)
3313 return nvme_get_ns_from_dev(dev)->head;
3315 return disk->private_data;
3318 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3321 struct nvme_ns_head *head = dev_to_ns_head(dev);
3322 struct nvme_ns_ids *ids = &head->ids;
3323 struct nvme_subsystem *subsys = head->subsys;
3324 int serial_len = sizeof(subsys->serial);
3325 int model_len = sizeof(subsys->model);
3327 if (!uuid_is_null(&ids->uuid))
3328 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3330 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3331 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3333 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3334 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3336 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3337 subsys->serial[serial_len - 1] == '\0'))
3339 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3340 subsys->model[model_len - 1] == '\0'))
3343 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3344 serial_len, subsys->serial, model_len, subsys->model,
3347 static DEVICE_ATTR_RO(wwid);
3349 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3352 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3354 static DEVICE_ATTR_RO(nguid);
3356 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3359 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3361 /* For backward compatibility expose the NGUID to userspace if
3362 * we have no UUID set
3364 if (uuid_is_null(&ids->uuid)) {
3365 printk_ratelimited(KERN_WARNING
3366 "No UUID available providing old NGUID\n");
3367 return sprintf(buf, "%pU\n", ids->nguid);
3369 return sprintf(buf, "%pU\n", &ids->uuid);
3371 static DEVICE_ATTR_RO(uuid);
3373 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3376 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3378 static DEVICE_ATTR_RO(eui);
3380 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3383 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3385 static DEVICE_ATTR_RO(nsid);
3387 static struct attribute *nvme_ns_id_attrs[] = {
3388 &dev_attr_wwid.attr,
3389 &dev_attr_uuid.attr,
3390 &dev_attr_nguid.attr,
3392 &dev_attr_nsid.attr,
3393 #ifdef CONFIG_NVME_MULTIPATH
3394 &dev_attr_ana_grpid.attr,
3395 &dev_attr_ana_state.attr,
3400 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3401 struct attribute *a, int n)
3403 struct device *dev = container_of(kobj, struct device, kobj);
3404 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3406 if (a == &dev_attr_uuid.attr) {
3407 if (uuid_is_null(&ids->uuid) &&
3408 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3411 if (a == &dev_attr_nguid.attr) {
3412 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3415 if (a == &dev_attr_eui.attr) {
3416 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3419 #ifdef CONFIG_NVME_MULTIPATH
3420 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3421 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3423 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3430 static const struct attribute_group nvme_ns_id_attr_group = {
3431 .attrs = nvme_ns_id_attrs,
3432 .is_visible = nvme_ns_id_attrs_are_visible,
3435 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3436 &nvme_ns_id_attr_group,
3438 &nvme_nvm_attr_group,
3443 #define nvme_show_str_function(field) \
3444 static ssize_t field##_show(struct device *dev, \
3445 struct device_attribute *attr, char *buf) \
3447 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3448 return sprintf(buf, "%.*s\n", \
3449 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3451 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3453 nvme_show_str_function(model);
3454 nvme_show_str_function(serial);
3455 nvme_show_str_function(firmware_rev);
3457 #define nvme_show_int_function(field) \
3458 static ssize_t field##_show(struct device *dev, \
3459 struct device_attribute *attr, char *buf) \
3461 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3462 return sprintf(buf, "%d\n", ctrl->field); \
3464 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3466 nvme_show_int_function(cntlid);
3467 nvme_show_int_function(numa_node);
3468 nvme_show_int_function(queue_count);
3469 nvme_show_int_function(sqsize);
3471 static ssize_t nvme_sysfs_delete(struct device *dev,
3472 struct device_attribute *attr, const char *buf,
3475 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3477 /* Can't delete non-created controllers */
3481 if (device_remove_file_self(dev, attr))
3482 nvme_delete_ctrl_sync(ctrl);
3485 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3487 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3488 struct device_attribute *attr,
3491 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3493 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3495 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3497 static ssize_t nvme_sysfs_show_state(struct device *dev,
3498 struct device_attribute *attr,
3501 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3502 static const char *const state_name[] = {
3503 [NVME_CTRL_NEW] = "new",
3504 [NVME_CTRL_LIVE] = "live",
3505 [NVME_CTRL_RESETTING] = "resetting",
3506 [NVME_CTRL_CONNECTING] = "connecting",
3507 [NVME_CTRL_DELETING] = "deleting",
3508 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3509 [NVME_CTRL_DEAD] = "dead",
3512 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3513 state_name[ctrl->state])
3514 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3516 return sprintf(buf, "unknown state\n");
3519 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3521 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3522 struct device_attribute *attr,
3525 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3527 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3529 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3531 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3532 struct device_attribute *attr,
3535 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3537 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3539 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3541 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3542 struct device_attribute *attr,
3545 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3547 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3549 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3551 static ssize_t nvme_sysfs_show_address(struct device *dev,
3552 struct device_attribute *attr,
3555 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3557 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3559 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3561 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3562 struct device_attribute *attr, char *buf)
3564 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3565 struct nvmf_ctrl_options *opts = ctrl->opts;
3567 if (ctrl->opts->max_reconnects == -1)
3568 return sprintf(buf, "off\n");
3569 return sprintf(buf, "%d\n",
3570 opts->max_reconnects * opts->reconnect_delay);
3573 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3574 struct device_attribute *attr, const char *buf, size_t count)
3576 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577 struct nvmf_ctrl_options *opts = ctrl->opts;
3578 int ctrl_loss_tmo, err;
3580 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3584 else if (ctrl_loss_tmo < 0)
3585 opts->max_reconnects = -1;
3587 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3588 opts->reconnect_delay);
3591 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3592 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3594 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3595 struct device_attribute *attr, char *buf)
3597 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3599 if (ctrl->opts->reconnect_delay == -1)
3600 return sprintf(buf, "off\n");
3601 return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3604 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3605 struct device_attribute *attr, const char *buf, size_t count)
3607 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3611 err = kstrtou32(buf, 10, &v);
3615 ctrl->opts->reconnect_delay = v;
3618 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3619 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3621 static struct attribute *nvme_dev_attrs[] = {
3622 &dev_attr_reset_controller.attr,
3623 &dev_attr_rescan_controller.attr,
3624 &dev_attr_model.attr,
3625 &dev_attr_serial.attr,
3626 &dev_attr_firmware_rev.attr,
3627 &dev_attr_cntlid.attr,
3628 &dev_attr_delete_controller.attr,
3629 &dev_attr_transport.attr,
3630 &dev_attr_subsysnqn.attr,
3631 &dev_attr_address.attr,
3632 &dev_attr_state.attr,
3633 &dev_attr_numa_node.attr,
3634 &dev_attr_queue_count.attr,
3635 &dev_attr_sqsize.attr,
3636 &dev_attr_hostnqn.attr,
3637 &dev_attr_hostid.attr,
3638 &dev_attr_ctrl_loss_tmo.attr,
3639 &dev_attr_reconnect_delay.attr,
3643 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3644 struct attribute *a, int n)
3646 struct device *dev = container_of(kobj, struct device, kobj);
3647 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3649 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3651 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3653 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3655 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3661 static struct attribute_group nvme_dev_attrs_group = {
3662 .attrs = nvme_dev_attrs,
3663 .is_visible = nvme_dev_attrs_are_visible,
3666 static const struct attribute_group *nvme_dev_attr_groups[] = {
3667 &nvme_dev_attrs_group,
3671 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3674 struct nvme_ns_head *h;
3676 lockdep_assert_held(&subsys->lock);
3678 list_for_each_entry(h, &subsys->nsheads, entry) {
3679 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3686 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3687 struct nvme_ns_head *new)
3689 struct nvme_ns_head *h;
3691 lockdep_assert_held(&subsys->lock);
3693 list_for_each_entry(h, &subsys->nsheads, entry) {
3694 if (nvme_ns_ids_valid(&new->ids) &&
3695 nvme_ns_ids_equal(&new->ids, &h->ids))
3702 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3703 unsigned nsid, struct nvme_ns_ids *ids)
3705 struct nvme_ns_head *head;
3706 size_t size = sizeof(*head);
3709 #ifdef CONFIG_NVME_MULTIPATH
3710 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3713 head = kzalloc(size, GFP_KERNEL);
3716 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3719 head->instance = ret;
3720 INIT_LIST_HEAD(&head->list);
3721 ret = init_srcu_struct(&head->srcu);
3723 goto out_ida_remove;
3724 head->subsys = ctrl->subsys;
3727 kref_init(&head->ref);
3729 ret = __nvme_check_ids(ctrl->subsys, head);
3731 dev_err(ctrl->device,
3732 "duplicate IDs for nsid %d\n", nsid);
3733 goto out_cleanup_srcu;
3736 if (head->ids.csi) {
3737 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3739 goto out_cleanup_srcu;
3741 head->effects = ctrl->effects;
3743 ret = nvme_mpath_alloc_disk(ctrl, head);
3745 goto out_cleanup_srcu;
3747 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3749 kref_get(&ctrl->subsys->ref);
3753 cleanup_srcu_struct(&head->srcu);
3755 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3760 ret = blk_status_to_errno(nvme_error_status(ret));
3761 return ERR_PTR(ret);
3764 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3765 struct nvme_id_ns *id)
3767 struct nvme_ctrl *ctrl = ns->ctrl;
3768 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED;
3769 struct nvme_ns_head *head = NULL;
3770 struct nvme_ns_ids ids;
3773 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3777 return blk_status_to_errno(nvme_error_status(ret));
3780 mutex_lock(&ctrl->subsys->lock);
3781 head = nvme_find_ns_head(ctrl->subsys, nsid);
3783 head = nvme_alloc_ns_head(ctrl, nsid, &ids);
3785 ret = PTR_ERR(head);
3788 head->shared = is_shared;
3791 if (!is_shared || !head->shared) {
3792 dev_err(ctrl->device,
3793 "Duplicate unshared namespace %d\n", nsid);
3794 goto out_put_ns_head;
3796 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3797 dev_err(ctrl->device,
3798 "IDs don't match for shared namespace %d\n",
3800 goto out_put_ns_head;
3804 list_add_tail(&ns->siblings, &head->list);
3806 mutex_unlock(&ctrl->subsys->lock);
3810 nvme_put_ns_head(head);
3812 mutex_unlock(&ctrl->subsys->lock);
3816 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3818 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3819 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3821 return nsa->head->ns_id - nsb->head->ns_id;
3824 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3826 struct nvme_ns *ns, *ret = NULL;
3828 down_read(&ctrl->namespaces_rwsem);
3829 list_for_each_entry(ns, &ctrl->namespaces, list) {
3830 if (ns->head->ns_id == nsid) {
3831 if (!kref_get_unless_zero(&ns->kref))
3836 if (ns->head->ns_id > nsid)
3839 up_read(&ctrl->namespaces_rwsem);
3842 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3844 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3847 struct gendisk *disk;
3848 struct nvme_id_ns *id;
3849 char disk_name[DISK_NAME_LEN];
3850 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3852 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3856 ns->queue = blk_mq_init_queue(ctrl->tagset);
3857 if (IS_ERR(ns->queue))
3860 if (ctrl->opts && ctrl->opts->data_digest)
3861 ns->queue->backing_dev_info->capabilities
3862 |= BDI_CAP_STABLE_WRITES;
3864 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3865 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3866 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3868 ns->queue->queuedata = ns;
3871 kref_init(&ns->kref);
3872 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3874 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3875 nvme_set_queue_limits(ctrl, ns->queue);
3877 ret = nvme_identify_ns(ctrl, nsid, &id);
3879 goto out_free_queue;
3881 if (id->ncap == 0) /* no namespace (legacy quirk) */
3884 ret = nvme_init_ns_head(ns, nsid, id);
3887 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3889 disk = alloc_disk_node(0, node);
3893 disk->fops = &nvme_fops;
3894 disk->private_data = ns;
3895 disk->queue = ns->queue;
3896 disk->flags = flags;
3897 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3900 if (__nvme_revalidate_disk(disk, id))
3903 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3904 ret = nvme_nvm_register(ns, disk_name, node);
3906 dev_warn(ctrl->device, "LightNVM init failure\n");
3911 down_write(&ctrl->namespaces_rwsem);
3912 list_add_tail(&ns->list, &ctrl->namespaces);
3913 up_write(&ctrl->namespaces_rwsem);
3915 nvme_get_ctrl(ctrl);
3917 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3919 nvme_mpath_add_disk(ns, id);
3920 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3925 /* prevent double queue cleanup */
3926 ns->disk->queue = NULL;
3929 mutex_lock(&ctrl->subsys->lock);
3930 list_del_rcu(&ns->siblings);
3931 if (list_empty(&ns->head->list))
3932 list_del_init(&ns->head->entry);
3933 mutex_unlock(&ctrl->subsys->lock);
3934 nvme_put_ns_head(ns->head);
3938 blk_cleanup_queue(ns->queue);
3943 static void nvme_ns_remove(struct nvme_ns *ns)
3945 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3948 nvme_fault_inject_fini(&ns->fault_inject);
3950 mutex_lock(&ns->ctrl->subsys->lock);
3951 list_del_rcu(&ns->siblings);
3952 if (list_empty(&ns->head->list))
3953 list_del_init(&ns->head->entry);
3954 mutex_unlock(&ns->ctrl->subsys->lock);
3956 synchronize_rcu(); /* guarantee not available in head->list */
3957 nvme_mpath_clear_current_path(ns);
3958 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3960 if (ns->disk->flags & GENHD_FL_UP) {
3961 del_gendisk(ns->disk);
3962 blk_cleanup_queue(ns->queue);
3963 if (blk_get_integrity(ns->disk))
3964 blk_integrity_unregister(ns->disk);
3967 down_write(&ns->ctrl->namespaces_rwsem);
3968 list_del_init(&ns->list);
3969 up_write(&ns->ctrl->namespaces_rwsem);
3971 nvme_mpath_check_last_path(ns);
3975 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3977 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3985 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3989 ns = nvme_find_get_ns(ctrl, nsid);
3991 if (revalidate_disk(ns->disk))
3995 nvme_alloc_ns(ctrl, nsid);
3998 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4001 struct nvme_ns *ns, *next;
4004 down_write(&ctrl->namespaces_rwsem);
4005 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4006 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4007 list_move_tail(&ns->list, &rm_list);
4009 up_write(&ctrl->namespaces_rwsem);
4011 list_for_each_entry_safe(ns, next, &rm_list, list)
4016 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4018 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4023 if (nvme_ctrl_limited_cns(ctrl))
4026 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4031 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
4035 for (i = 0; i < nr_entries; i++) {
4036 u32 nsid = le32_to_cpu(ns_list[i]);
4038 if (!nsid) /* end of the list? */
4040 nvme_validate_ns(ctrl, nsid);
4041 while (++prev < nsid)
4042 nvme_ns_remove_by_nsid(ctrl, prev);
4046 nvme_remove_invalid_namespaces(ctrl, prev);
4052 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4054 struct nvme_id_ctrl *id;
4057 if (nvme_identify_ctrl(ctrl, &id))
4059 nn = le32_to_cpu(id->nn);
4062 for (i = 1; i <= nn; i++)
4063 nvme_validate_ns(ctrl, i);
4065 nvme_remove_invalid_namespaces(ctrl, nn);
4068 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4070 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4074 log = kzalloc(log_size, GFP_KERNEL);
4079 * We need to read the log to clear the AEN, but we don't want to rely
4080 * on it for the changed namespace information as userspace could have
4081 * raced with us in reading the log page, which could cause us to miss
4084 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4085 NVME_CSI_NVM, log, log_size, 0);
4087 dev_warn(ctrl->device,
4088 "reading changed ns log failed: %d\n", error);
4093 static void nvme_scan_work(struct work_struct *work)
4095 struct nvme_ctrl *ctrl =
4096 container_of(work, struct nvme_ctrl, scan_work);
4098 /* No tagset on a live ctrl means IO queues could not created */
4099 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4102 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4103 dev_info(ctrl->device, "rescanning namespaces.\n");
4104 nvme_clear_changed_ns_log(ctrl);
4107 mutex_lock(&ctrl->scan_lock);
4108 if (nvme_scan_ns_list(ctrl) != 0)
4109 nvme_scan_ns_sequential(ctrl);
4110 mutex_unlock(&ctrl->scan_lock);
4112 down_write(&ctrl->namespaces_rwsem);
4113 list_sort(NULL, &ctrl->namespaces, ns_cmp);
4114 up_write(&ctrl->namespaces_rwsem);
4118 * This function iterates the namespace list unlocked to allow recovery from
4119 * controller failure. It is up to the caller to ensure the namespace list is
4120 * not modified by scan work while this function is executing.
4122 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4124 struct nvme_ns *ns, *next;
4128 * make sure to requeue I/O to all namespaces as these
4129 * might result from the scan itself and must complete
4130 * for the scan_work to make progress
4132 nvme_mpath_clear_ctrl_paths(ctrl);
4134 /* prevent racing with ns scanning */
4135 flush_work(&ctrl->scan_work);
4138 * The dead states indicates the controller was not gracefully
4139 * disconnected. In that case, we won't be able to flush any data while
4140 * removing the namespaces' disks; fail all the queues now to avoid
4141 * potentially having to clean up the failed sync later.
4143 if (ctrl->state == NVME_CTRL_DEAD)
4144 nvme_kill_queues(ctrl);
4146 /* this is a no-op when called from the controller reset handler */
4147 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4149 down_write(&ctrl->namespaces_rwsem);
4150 list_splice_init(&ctrl->namespaces, &ns_list);
4151 up_write(&ctrl->namespaces_rwsem);
4153 list_for_each_entry_safe(ns, next, &ns_list, list)
4156 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4158 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4160 struct nvme_ctrl *ctrl =
4161 container_of(dev, struct nvme_ctrl, ctrl_device);
4162 struct nvmf_ctrl_options *opts = ctrl->opts;
4165 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4170 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4174 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4175 opts->trsvcid ?: "none");
4179 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4180 opts->host_traddr ?: "none");
4185 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4187 char *envp[2] = { NULL, NULL };
4188 u32 aen_result = ctrl->aen_result;
4190 ctrl->aen_result = 0;
4194 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4197 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4201 static void nvme_async_event_work(struct work_struct *work)
4203 struct nvme_ctrl *ctrl =
4204 container_of(work, struct nvme_ctrl, async_event_work);
4206 nvme_aen_uevent(ctrl);
4207 ctrl->ops->submit_async_event(ctrl);
4210 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4215 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4221 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4224 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4226 struct nvme_fw_slot_info_log *log;
4228 log = kmalloc(sizeof(*log), GFP_KERNEL);
4232 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4233 log, sizeof(*log), 0))
4234 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4238 static void nvme_fw_act_work(struct work_struct *work)
4240 struct nvme_ctrl *ctrl = container_of(work,
4241 struct nvme_ctrl, fw_act_work);
4242 unsigned long fw_act_timeout;
4245 fw_act_timeout = jiffies +
4246 msecs_to_jiffies(ctrl->mtfa * 100);
4248 fw_act_timeout = jiffies +
4249 msecs_to_jiffies(admin_timeout * 1000);
4251 nvme_stop_queues(ctrl);
4252 while (nvme_ctrl_pp_status(ctrl)) {
4253 if (time_after(jiffies, fw_act_timeout)) {
4254 dev_warn(ctrl->device,
4255 "Fw activation timeout, reset controller\n");
4256 nvme_try_sched_reset(ctrl);
4262 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4265 nvme_start_queues(ctrl);
4266 /* read FW slot information to clear the AER */
4267 nvme_get_fw_slot_info(ctrl);
4270 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4272 u32 aer_notice_type = (result & 0xff00) >> 8;
4274 trace_nvme_async_event(ctrl, aer_notice_type);
4276 switch (aer_notice_type) {
4277 case NVME_AER_NOTICE_NS_CHANGED:
4278 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4279 nvme_queue_scan(ctrl);
4281 case NVME_AER_NOTICE_FW_ACT_STARTING:
4283 * We are (ab)using the RESETTING state to prevent subsequent
4284 * recovery actions from interfering with the controller's
4285 * firmware activation.
4287 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4288 queue_work(nvme_wq, &ctrl->fw_act_work);
4290 #ifdef CONFIG_NVME_MULTIPATH
4291 case NVME_AER_NOTICE_ANA:
4292 if (!ctrl->ana_log_buf)
4294 queue_work(nvme_wq, &ctrl->ana_work);
4297 case NVME_AER_NOTICE_DISC_CHANGED:
4298 ctrl->aen_result = result;
4301 dev_warn(ctrl->device, "async event result %08x\n", result);
4305 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4306 volatile union nvme_result *res)
4308 u32 result = le32_to_cpu(res->u32);
4309 u32 aer_type = result & 0x07;
4311 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4315 case NVME_AER_NOTICE:
4316 nvme_handle_aen_notice(ctrl, result);
4318 case NVME_AER_ERROR:
4319 case NVME_AER_SMART:
4322 trace_nvme_async_event(ctrl, aer_type);
4323 ctrl->aen_result = result;
4328 queue_work(nvme_wq, &ctrl->async_event_work);
4330 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4332 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4334 nvme_mpath_stop(ctrl);
4335 nvme_stop_keep_alive(ctrl);
4336 flush_work(&ctrl->async_event_work);
4337 cancel_work_sync(&ctrl->fw_act_work);
4339 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4341 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4343 nvme_start_keep_alive(ctrl);
4345 nvme_enable_aen(ctrl);
4347 if (ctrl->queue_count > 1) {
4348 nvme_queue_scan(ctrl);
4349 nvme_start_queues(ctrl);
4351 ctrl->created = true;
4353 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4357 nvme_fault_inject_fini(&ctrl->fault_inject);
4358 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4359 cdev_device_del(&ctrl->cdev, ctrl->device);
4360 nvme_put_ctrl(ctrl);
4362 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4364 static void nvme_free_ctrl(struct device *dev)
4366 struct nvme_ctrl *ctrl =
4367 container_of(dev, struct nvme_ctrl, ctrl_device);
4368 struct nvme_subsystem *subsys = ctrl->subsys;
4369 struct nvme_cel *cel, *next;
4371 if (subsys && ctrl->instance != subsys->instance)
4372 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4374 list_for_each_entry_safe(cel, next, &ctrl->cels, entry) {
4375 list_del(&cel->entry);
4379 nvme_mpath_uninit(ctrl);
4380 __free_page(ctrl->discard_page);
4383 mutex_lock(&nvme_subsystems_lock);
4384 list_del(&ctrl->subsys_entry);
4385 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4386 mutex_unlock(&nvme_subsystems_lock);
4389 ctrl->ops->free_ctrl(ctrl);
4392 nvme_put_subsystem(subsys);
4396 * Initialize a NVMe controller structures. This needs to be called during
4397 * earliest initialization so that we have the initialized structured around
4400 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4401 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4405 ctrl->state = NVME_CTRL_NEW;
4406 spin_lock_init(&ctrl->lock);
4407 mutex_init(&ctrl->scan_lock);
4408 INIT_LIST_HEAD(&ctrl->namespaces);
4409 INIT_LIST_HEAD(&ctrl->cels);
4410 init_rwsem(&ctrl->namespaces_rwsem);
4413 ctrl->quirks = quirks;
4414 ctrl->numa_node = NUMA_NO_NODE;
4415 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4416 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4417 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4418 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4419 init_waitqueue_head(&ctrl->state_wq);
4421 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4422 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4423 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4425 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4427 ctrl->discard_page = alloc_page(GFP_KERNEL);
4428 if (!ctrl->discard_page) {
4433 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4436 ctrl->instance = ret;
4438 device_initialize(&ctrl->ctrl_device);
4439 ctrl->device = &ctrl->ctrl_device;
4440 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4441 ctrl->device->class = nvme_class;
4442 ctrl->device->parent = ctrl->dev;
4443 ctrl->device->groups = nvme_dev_attr_groups;
4444 ctrl->device->release = nvme_free_ctrl;
4445 dev_set_drvdata(ctrl->device, ctrl);
4446 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4448 goto out_release_instance;
4450 nvme_get_ctrl(ctrl);
4451 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4452 ctrl->cdev.owner = ops->module;
4453 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4458 * Initialize latency tolerance controls. The sysfs files won't
4459 * be visible to userspace unless the device actually supports APST.
4461 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4462 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4463 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4465 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4469 nvme_put_ctrl(ctrl);
4470 kfree_const(ctrl->device->kobj.name);
4471 out_release_instance:
4472 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4474 if (ctrl->discard_page)
4475 __free_page(ctrl->discard_page);
4478 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4481 * nvme_kill_queues(): Ends all namespace queues
4482 * @ctrl: the dead controller that needs to end
4484 * Call this function when the driver determines it is unable to get the
4485 * controller in a state capable of servicing IO.
4487 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4491 down_read(&ctrl->namespaces_rwsem);
4493 /* Forcibly unquiesce queues to avoid blocking dispatch */
4494 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4495 blk_mq_unquiesce_queue(ctrl->admin_q);
4497 list_for_each_entry(ns, &ctrl->namespaces, list)
4498 nvme_set_queue_dying(ns);
4500 up_read(&ctrl->namespaces_rwsem);
4502 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4504 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4508 down_read(&ctrl->namespaces_rwsem);
4509 list_for_each_entry(ns, &ctrl->namespaces, list)
4510 blk_mq_unfreeze_queue(ns->queue);
4511 up_read(&ctrl->namespaces_rwsem);
4513 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4515 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4519 down_read(&ctrl->namespaces_rwsem);
4520 list_for_each_entry(ns, &ctrl->namespaces, list) {
4521 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4525 up_read(&ctrl->namespaces_rwsem);
4527 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4529 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4533 down_read(&ctrl->namespaces_rwsem);
4534 list_for_each_entry(ns, &ctrl->namespaces, list)
4535 blk_mq_freeze_queue_wait(ns->queue);
4536 up_read(&ctrl->namespaces_rwsem);
4538 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4540 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4544 down_read(&ctrl->namespaces_rwsem);
4545 list_for_each_entry(ns, &ctrl->namespaces, list)
4546 blk_freeze_queue_start(ns->queue);
4547 up_read(&ctrl->namespaces_rwsem);
4549 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4551 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4555 down_read(&ctrl->namespaces_rwsem);
4556 list_for_each_entry(ns, &ctrl->namespaces, list)
4557 blk_mq_quiesce_queue(ns->queue);
4558 up_read(&ctrl->namespaces_rwsem);
4560 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4562 void nvme_start_queues(struct nvme_ctrl *ctrl)
4566 down_read(&ctrl->namespaces_rwsem);
4567 list_for_each_entry(ns, &ctrl->namespaces, list)
4568 blk_mq_unquiesce_queue(ns->queue);
4569 up_read(&ctrl->namespaces_rwsem);
4571 EXPORT_SYMBOL_GPL(nvme_start_queues);
4574 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4578 down_read(&ctrl->namespaces_rwsem);
4579 list_for_each_entry(ns, &ctrl->namespaces, list)
4580 blk_sync_queue(ns->queue);
4581 up_read(&ctrl->namespaces_rwsem);
4584 blk_sync_queue(ctrl->admin_q);
4586 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4588 struct nvme_ctrl *nvme_ctrl_get_by_path(const char *path)
4590 struct nvme_ctrl *ctrl;
4593 f = filp_open(path, O_RDWR, 0);
4597 if (f->f_op != &nvme_dev_fops) {
4598 ctrl = ERR_PTR(-EINVAL);
4602 ctrl = f->private_data;
4603 nvme_get_ctrl(ctrl);
4606 filp_close(f, NULL);
4609 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_get_by_path, NVME_TARGET_PASSTHRU);
4612 * Check we didn't inadvertently grow the command structure sizes:
4614 static inline void _nvme_check_size(void)
4616 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4617 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4618 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4619 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4620 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4621 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4622 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4623 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4624 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4625 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4626 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4627 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4628 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4629 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4630 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4631 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4632 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4633 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4634 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4638 static int __init nvme_core_init(void)
4640 int result = -ENOMEM;
4644 nvme_wq = alloc_workqueue("nvme-wq",
4645 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4649 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4650 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4654 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4655 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4656 if (!nvme_delete_wq)
4657 goto destroy_reset_wq;
4659 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4661 goto destroy_delete_wq;
4663 nvme_class = class_create(THIS_MODULE, "nvme");
4664 if (IS_ERR(nvme_class)) {
4665 result = PTR_ERR(nvme_class);
4666 goto unregister_chrdev;
4668 nvme_class->dev_uevent = nvme_class_uevent;
4670 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4671 if (IS_ERR(nvme_subsys_class)) {
4672 result = PTR_ERR(nvme_subsys_class);
4678 class_destroy(nvme_class);
4680 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4682 destroy_workqueue(nvme_delete_wq);
4684 destroy_workqueue(nvme_reset_wq);
4686 destroy_workqueue(nvme_wq);
4691 static void __exit nvme_core_exit(void)
4693 class_destroy(nvme_subsys_class);
4694 class_destroy(nvme_class);
4695 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4696 destroy_workqueue(nvme_delete_wq);
4697 destroy_workqueue(nvme_reset_wq);
4698 destroy_workqueue(nvme_wq);
4699 ida_destroy(&nvme_instance_ida);
4702 MODULE_LICENSE("GPL");
4703 MODULE_VERSION("1.0");
4704 module_init(nvme_core_init);
4705 module_exit(nvme_core_exit);