1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 * Copyright 2019-2020 Xilinx Inc.
9 #ifndef EFX_NIC_COMMON_H
10 #define EFX_NIC_COMMON_H
12 #include "net_driver.h"
13 #include "efx_common.h"
18 /* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
19 * They are not supported by this driver but these revision numbers
20 * form part of the ethtool API for register dumping.
27 static inline int efx_nic_rev(struct efx_nic *efx)
29 return efx->type->revision;
32 /* Read the current event from the event queue */
33 static inline efx_qword_t *efx_event(struct efx_channel *channel,
36 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
37 (index & channel->eventq_mask);
40 /* See if an event is present
42 * We check both the high and low dword of the event for all ones. We
43 * wrote all ones when we cleared the event, and no valid event can
44 * have all ones in either its high or low dwords. This approach is
45 * robust against reordering.
47 * Note that using a single 64-bit comparison is incorrect; even
48 * though the CPU read will be atomic, the DMA write may not be.
50 static inline int efx_event_present(efx_qword_t *event)
52 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
53 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
56 /* Returns a pointer to the specified transmit descriptor in the TX
57 * descriptor queue belonging to the specified channel.
59 static inline efx_qword_t *
60 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
62 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
65 /* Report whether this TX queue would be empty for the given write_count.
66 * May return false negative.
68 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
69 unsigned int write_count)
71 unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
73 if (empty_read_count == 0)
76 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
79 /* Report whether the NIC considers this TX queue empty, using
80 * packet_write_count (the write count recorded for the last completable
81 * doorbell push). May return false negative. EF10 only, which is OK
82 * because only EF10 supports PIO.
84 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
86 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
87 return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
90 /* Get partner of a TX queue, seen as part of the same net core queue */
91 /* XXX is this a thing on EF100? */
92 static inline struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
94 if (tx_queue->label & EFX_TXQ_TYPE_OFFLOAD)
95 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
97 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
100 /* Decide whether we can use TX PIO, ie. write packet data directly into
101 * a buffer on the device. This can reduce latency at the expense of
102 * throughput, so we only do this if both hardware and software TX rings
103 * are empty. This also ensures that only one packet at a time can be
104 * using the PIO buffer.
106 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
108 struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
110 return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
111 efx_nic_tx_is_empty(partner);
114 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
117 /* Decide whether to push a TX descriptor to the NIC vs merely writing
118 * the doorbell. This can reduce latency when we are adding a single
119 * descriptor to an empty queue, but is otherwise pointless. Further,
120 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
121 * triggered if we don't check this.
122 * We use the write_count used for the last doorbell push, to get the
123 * NIC's view of the tx queue.
125 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
126 unsigned int write_count)
128 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
130 tx_queue->empty_read_count = 0;
131 return was_empty && tx_queue->write_count - write_count == 1;
134 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
135 static inline efx_qword_t *
136 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
138 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
141 /* Alignment of PCIe DMA boundaries (4KB) */
142 #define EFX_PAGE_SIZE 4096
143 /* Size and alignment of buffer table entries (same) */
144 #define EFX_BUF_SIZE EFX_PAGE_SIZE
146 /* NIC-generic software stats */
148 GENERIC_STAT_rx_noskb_drops,
149 GENERIC_STAT_rx_nodesc_trunc,
153 #define EFX_GENERIC_SW_STAT(ext_name) \
154 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
157 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
159 return tx_queue->efx->type->tx_probe(tx_queue);
161 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
163 tx_queue->efx->type->tx_init(tx_queue);
165 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
167 if (tx_queue->efx->type->tx_remove)
168 tx_queue->efx->type->tx_remove(tx_queue);
170 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
172 tx_queue->efx->type->tx_write(tx_queue);
176 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
178 return rx_queue->efx->type->rx_probe(rx_queue);
180 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
182 rx_queue->efx->type->rx_init(rx_queue);
184 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
186 rx_queue->efx->type->rx_remove(rx_queue);
188 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
190 rx_queue->efx->type->rx_write(rx_queue);
192 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
194 rx_queue->efx->type->rx_defer_refill(rx_queue);
197 /* Event data path */
198 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
200 return channel->efx->type->ev_probe(channel);
202 static inline int efx_nic_init_eventq(struct efx_channel *channel)
204 return channel->efx->type->ev_init(channel);
206 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
208 channel->efx->type->ev_fini(channel);
210 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
212 channel->efx->type->ev_remove(channel);
215 efx_nic_process_eventq(struct efx_channel *channel, int quota)
217 return channel->efx->type->ev_process(channel, quota);
219 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
221 channel->efx->type->ev_read_ack(channel);
224 void efx_nic_event_test_start(struct efx_channel *channel);
226 bool efx_nic_event_present(struct efx_channel *channel);
228 static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
230 if (efx->type->sensor_event)
231 efx->type->sensor_event(efx, ev);
234 /* Some statistics are computed as A - B where A and B each increase
235 * linearly with some hardware counter(s) and the counters are read
236 * asynchronously. If the counters contributing to B are always read
237 * after those contributing to A, the computed value may be lower than
238 * the true value by some variable amount, and may decrease between
239 * subsequent computations.
241 * We should never allow statistics to decrease or to exceed the true
242 * value. Since the computed value will never be greater than the
243 * true value, we can achieve this by only storing the computed value
246 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
248 if ((s64)(diff - *stat) > 0)
253 int efx_nic_init_interrupt(struct efx_nic *efx);
254 int efx_nic_irq_test_start(struct efx_nic *efx);
255 void efx_nic_fini_interrupt(struct efx_nic *efx);
257 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
259 return READ_ONCE(channel->event_test_cpu);
261 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
263 return READ_ONCE(efx->last_irq_cpu);
266 /* Global Resources */
267 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
268 unsigned int len, gfp_t gfp_flags);
269 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
271 size_t efx_nic_get_regs_len(struct efx_nic *efx);
272 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
274 #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
276 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
277 const unsigned long *mask, u8 *names);
278 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
279 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
280 const unsigned long *mask, u64 *stats,
281 const void *dma_buf, bool accumulate);
282 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
284 #define EFX_MAX_FLUSH_TIME 5000
286 #endif /* EFX_NIC_COMMON_H */