]> Git Repo - linux.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/version.h>
11 #include <linux/device.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/skbuff.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/string.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <asm/byteorder.h>
21 #include <asm/param.h>
22 #include <linux/io.h>
23 #include <linux/netdev_features.h>
24 #include <linux/udp.h>
25 #include <linux/tcp.h>
26 #include <net/udp_tunnel.h>
27 #include <linux/ip.h>
28 #include <net/ipv6.h>
29 #include <net/tcp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/pkt_sched.h>
33 #include <linux/ethtool.h>
34 #include <linux/in.h>
35 #include <linux/random.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/bitops.h>
38 #include <linux/vmalloc.h>
39 #include <linux/aer.h>
40 #include "qede.h"
41 #include "qede_ptp.h"
42
43 static char version[] =
44         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45
46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
47 MODULE_LICENSE("GPL");
48 MODULE_VERSION(DRV_MODULE_VERSION);
49
50 static uint debug;
51 module_param(debug, uint, 0);
52 MODULE_PARM_DESC(debug, " Default debug msglevel");
53
54 static const struct qed_eth_ops *qed_ops;
55
56 #define CHIP_NUM_57980S_40              0x1634
57 #define CHIP_NUM_57980S_10              0x1666
58 #define CHIP_NUM_57980S_MF              0x1636
59 #define CHIP_NUM_57980S_100             0x1644
60 #define CHIP_NUM_57980S_50              0x1654
61 #define CHIP_NUM_57980S_25              0x1656
62 #define CHIP_NUM_57980S_IOV             0x1664
63 #define CHIP_NUM_AH                     0x8070
64 #define CHIP_NUM_AH_IOV                 0x8090
65
66 #ifndef PCI_DEVICE_ID_NX2_57980E
67 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
68 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
69 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
70 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
71 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
72 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
73 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
74 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
75 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
76
77 #endif
78
79 enum qede_pci_private {
80         QEDE_PRIVATE_PF,
81         QEDE_PRIVATE_VF
82 };
83
84 static const struct pci_device_id qede_pci_tbl[] = {
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
91 #ifdef CONFIG_QED_SRIOV
92         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
93 #endif
94         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
95 #ifdef CONFIG_QED_SRIOV
96         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
97 #endif
98         { 0 }
99 };
100
101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
102
103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
104 static pci_ers_result_t
105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
106
107 #define TX_TIMEOUT              (5 * HZ)
108
109 /* Utilize last protocol index for XDP */
110 #define XDP_PI  11
111
112 static void qede_remove(struct pci_dev *pdev);
113 static void qede_shutdown(struct pci_dev *pdev);
114 static void qede_link_update(void *dev, struct qed_link_output *link);
115 static void qede_schedule_recovery_handler(void *dev);
116 static void qede_recovery_handler(struct qede_dev *edev);
117 static void qede_schedule_hw_err_handler(void *dev,
118                                          enum qed_hw_err_type err_type);
119 static void qede_get_eth_tlv_data(void *edev, void *data);
120 static void qede_get_generic_tlv_data(void *edev,
121                                       struct qed_generic_tlvs *data);
122 static void qede_generic_hw_err_handler(struct qede_dev *edev);
123 #ifdef CONFIG_QED_SRIOV
124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
125                             __be16 vlan_proto)
126 {
127         struct qede_dev *edev = netdev_priv(ndev);
128
129         if (vlan > 4095) {
130                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
131                 return -EINVAL;
132         }
133
134         if (vlan_proto != htons(ETH_P_8021Q))
135                 return -EPROTONOSUPPORT;
136
137         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
138                    vlan, vf);
139
140         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
141 }
142
143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
144 {
145         struct qede_dev *edev = netdev_priv(ndev);
146
147         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
148
149         if (!is_valid_ether_addr(mac)) {
150                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
151                 return -EINVAL;
152         }
153
154         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
155 }
156
157 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
158 {
159         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
160         struct qed_dev_info *qed_info = &edev->dev_info.common;
161         struct qed_update_vport_params *vport_params;
162         int rc;
163
164         vport_params = vzalloc(sizeof(*vport_params));
165         if (!vport_params)
166                 return -ENOMEM;
167         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
168
169         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
170
171         /* Enable/Disable Tx switching for PF */
172         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
173             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
174                 vport_params->vport_id = 0;
175                 vport_params->update_tx_switching_flg = 1;
176                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
177                 edev->ops->vport_update(edev->cdev, vport_params);
178         }
179
180         vfree(vport_params);
181         return rc;
182 }
183 #endif
184
185 static const struct pci_error_handlers qede_err_handler = {
186         .error_detected = qede_io_error_detected,
187 };
188
189 static struct pci_driver qede_pci_driver = {
190         .name = "qede",
191         .id_table = qede_pci_tbl,
192         .probe = qede_probe,
193         .remove = qede_remove,
194         .shutdown = qede_shutdown,
195 #ifdef CONFIG_QED_SRIOV
196         .sriov_configure = qede_sriov_configure,
197 #endif
198         .err_handler = &qede_err_handler,
199 };
200
201 static struct qed_eth_cb_ops qede_ll_ops = {
202         {
203 #ifdef CONFIG_RFS_ACCEL
204                 .arfs_filter_op = qede_arfs_filter_op,
205 #endif
206                 .link_update = qede_link_update,
207                 .schedule_recovery_handler = qede_schedule_recovery_handler,
208                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
209                 .get_generic_tlv_data = qede_get_generic_tlv_data,
210                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
211         },
212         .force_mac = qede_force_mac,
213         .ports_update = qede_udp_ports_update,
214 };
215
216 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
217                              void *ptr)
218 {
219         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
220         struct ethtool_drvinfo drvinfo;
221         struct qede_dev *edev;
222
223         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
224                 goto done;
225
226         /* Check whether this is a qede device */
227         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
228                 goto done;
229
230         memset(&drvinfo, 0, sizeof(drvinfo));
231         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
232         if (strcmp(drvinfo.driver, "qede"))
233                 goto done;
234         edev = netdev_priv(ndev);
235
236         switch (event) {
237         case NETDEV_CHANGENAME:
238                 /* Notify qed of the name change */
239                 if (!edev->ops || !edev->ops->common)
240                         goto done;
241                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
242                 break;
243         case NETDEV_CHANGEADDR:
244                 edev = netdev_priv(ndev);
245                 qede_rdma_event_changeaddr(edev);
246                 break;
247         }
248
249 done:
250         return NOTIFY_DONE;
251 }
252
253 static struct notifier_block qede_netdev_notifier = {
254         .notifier_call = qede_netdev_event,
255 };
256
257 static
258 int __init qede_init(void)
259 {
260         int ret;
261
262         pr_info("qede_init: %s\n", version);
263
264         qede_forced_speed_maps_init();
265
266         qed_ops = qed_get_eth_ops();
267         if (!qed_ops) {
268                 pr_notice("Failed to get qed ethtool operations\n");
269                 return -EINVAL;
270         }
271
272         /* Must register notifier before pci ops, since we might miss
273          * interface rename after pci probe and netdev registration.
274          */
275         ret = register_netdevice_notifier(&qede_netdev_notifier);
276         if (ret) {
277                 pr_notice("Failed to register netdevice_notifier\n");
278                 qed_put_eth_ops();
279                 return -EINVAL;
280         }
281
282         ret = pci_register_driver(&qede_pci_driver);
283         if (ret) {
284                 pr_notice("Failed to register driver\n");
285                 unregister_netdevice_notifier(&qede_netdev_notifier);
286                 qed_put_eth_ops();
287                 return -EINVAL;
288         }
289
290         return 0;
291 }
292
293 static void __exit qede_cleanup(void)
294 {
295         if (debug & QED_LOG_INFO_MASK)
296                 pr_info("qede_cleanup called\n");
297
298         unregister_netdevice_notifier(&qede_netdev_notifier);
299         pci_unregister_driver(&qede_pci_driver);
300         qed_put_eth_ops();
301 }
302
303 module_init(qede_init);
304 module_exit(qede_cleanup);
305
306 static int qede_open(struct net_device *ndev);
307 static int qede_close(struct net_device *ndev);
308
309 void qede_fill_by_demand_stats(struct qede_dev *edev)
310 {
311         struct qede_stats_common *p_common = &edev->stats.common;
312         struct qed_eth_stats stats;
313
314         edev->ops->get_vport_stats(edev->cdev, &stats);
315
316         p_common->no_buff_discards = stats.common.no_buff_discards;
317         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
318         p_common->ttl0_discard = stats.common.ttl0_discard;
319         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
320         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
321         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
322         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
323         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
324         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
325         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
326         p_common->mac_filter_discards = stats.common.mac_filter_discards;
327         p_common->gft_filter_drop = stats.common.gft_filter_drop;
328
329         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
330         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
331         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
332         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
333         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
334         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
335         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
336         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
337         p_common->coalesced_events = stats.common.tpa_coalesced_events;
338         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
339         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
340         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
341
342         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
343         p_common->rx_65_to_127_byte_packets =
344             stats.common.rx_65_to_127_byte_packets;
345         p_common->rx_128_to_255_byte_packets =
346             stats.common.rx_128_to_255_byte_packets;
347         p_common->rx_256_to_511_byte_packets =
348             stats.common.rx_256_to_511_byte_packets;
349         p_common->rx_512_to_1023_byte_packets =
350             stats.common.rx_512_to_1023_byte_packets;
351         p_common->rx_1024_to_1518_byte_packets =
352             stats.common.rx_1024_to_1518_byte_packets;
353         p_common->rx_crc_errors = stats.common.rx_crc_errors;
354         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
355         p_common->rx_pause_frames = stats.common.rx_pause_frames;
356         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
357         p_common->rx_align_errors = stats.common.rx_align_errors;
358         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
359         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
360         p_common->rx_jabbers = stats.common.rx_jabbers;
361         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
362         p_common->rx_fragments = stats.common.rx_fragments;
363         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
364         p_common->tx_65_to_127_byte_packets =
365             stats.common.tx_65_to_127_byte_packets;
366         p_common->tx_128_to_255_byte_packets =
367             stats.common.tx_128_to_255_byte_packets;
368         p_common->tx_256_to_511_byte_packets =
369             stats.common.tx_256_to_511_byte_packets;
370         p_common->tx_512_to_1023_byte_packets =
371             stats.common.tx_512_to_1023_byte_packets;
372         p_common->tx_1024_to_1518_byte_packets =
373             stats.common.tx_1024_to_1518_byte_packets;
374         p_common->tx_pause_frames = stats.common.tx_pause_frames;
375         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
376         p_common->brb_truncates = stats.common.brb_truncates;
377         p_common->brb_discards = stats.common.brb_discards;
378         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
379         p_common->link_change_count = stats.common.link_change_count;
380         p_common->ptp_skip_txts = edev->ptp_skip_txts;
381
382         if (QEDE_IS_BB(edev)) {
383                 struct qede_stats_bb *p_bb = &edev->stats.bb;
384
385                 p_bb->rx_1519_to_1522_byte_packets =
386                     stats.bb.rx_1519_to_1522_byte_packets;
387                 p_bb->rx_1519_to_2047_byte_packets =
388                     stats.bb.rx_1519_to_2047_byte_packets;
389                 p_bb->rx_2048_to_4095_byte_packets =
390                     stats.bb.rx_2048_to_4095_byte_packets;
391                 p_bb->rx_4096_to_9216_byte_packets =
392                     stats.bb.rx_4096_to_9216_byte_packets;
393                 p_bb->rx_9217_to_16383_byte_packets =
394                     stats.bb.rx_9217_to_16383_byte_packets;
395                 p_bb->tx_1519_to_2047_byte_packets =
396                     stats.bb.tx_1519_to_2047_byte_packets;
397                 p_bb->tx_2048_to_4095_byte_packets =
398                     stats.bb.tx_2048_to_4095_byte_packets;
399                 p_bb->tx_4096_to_9216_byte_packets =
400                     stats.bb.tx_4096_to_9216_byte_packets;
401                 p_bb->tx_9217_to_16383_byte_packets =
402                     stats.bb.tx_9217_to_16383_byte_packets;
403                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
404                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
405         } else {
406                 struct qede_stats_ah *p_ah = &edev->stats.ah;
407
408                 p_ah->rx_1519_to_max_byte_packets =
409                     stats.ah.rx_1519_to_max_byte_packets;
410                 p_ah->tx_1519_to_max_byte_packets =
411                     stats.ah.tx_1519_to_max_byte_packets;
412         }
413 }
414
415 static void qede_get_stats64(struct net_device *dev,
416                              struct rtnl_link_stats64 *stats)
417 {
418         struct qede_dev *edev = netdev_priv(dev);
419         struct qede_stats_common *p_common;
420
421         qede_fill_by_demand_stats(edev);
422         p_common = &edev->stats.common;
423
424         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
425                             p_common->rx_bcast_pkts;
426         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
427                             p_common->tx_bcast_pkts;
428
429         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
430                           p_common->rx_bcast_bytes;
431         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
432                           p_common->tx_bcast_bytes;
433
434         stats->tx_errors = p_common->tx_err_drop_pkts;
435         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
436
437         stats->rx_fifo_errors = p_common->no_buff_discards;
438
439         if (QEDE_IS_BB(edev))
440                 stats->collisions = edev->stats.bb.tx_total_collisions;
441         stats->rx_crc_errors = p_common->rx_crc_errors;
442         stats->rx_frame_errors = p_common->rx_align_errors;
443 }
444
445 #ifdef CONFIG_QED_SRIOV
446 static int qede_get_vf_config(struct net_device *dev, int vfidx,
447                               struct ifla_vf_info *ivi)
448 {
449         struct qede_dev *edev = netdev_priv(dev);
450
451         if (!edev->ops)
452                 return -EINVAL;
453
454         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
455 }
456
457 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
458                             int min_tx_rate, int max_tx_rate)
459 {
460         struct qede_dev *edev = netdev_priv(dev);
461
462         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
463                                         max_tx_rate);
464 }
465
466 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
467 {
468         struct qede_dev *edev = netdev_priv(dev);
469
470         if (!edev->ops)
471                 return -EINVAL;
472
473         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
474 }
475
476 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
477                                   int link_state)
478 {
479         struct qede_dev *edev = netdev_priv(dev);
480
481         if (!edev->ops)
482                 return -EINVAL;
483
484         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
485 }
486
487 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
488 {
489         struct qede_dev *edev = netdev_priv(dev);
490
491         if (!edev->ops)
492                 return -EINVAL;
493
494         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
495 }
496 #endif
497
498 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
499 {
500         struct qede_dev *edev = netdev_priv(dev);
501
502         if (!netif_running(dev))
503                 return -EAGAIN;
504
505         switch (cmd) {
506         case SIOCSHWTSTAMP:
507                 return qede_ptp_hw_ts(edev, ifr);
508         default:
509                 DP_VERBOSE(edev, QED_MSG_DEBUG,
510                            "default IOCTL cmd 0x%x\n", cmd);
511                 return -EOPNOTSUPP;
512         }
513
514         return 0;
515 }
516
517 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
518 {
519         DP_NOTICE(edev,
520                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
521                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
522                   qed_chain_get_cons_idx(&txq->tx_pbl),
523                   qed_chain_get_prod_idx(&txq->tx_pbl),
524                   jiffies);
525 }
526
527 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
528 {
529         struct qede_dev *edev = netdev_priv(dev);
530         struct qede_tx_queue *txq;
531         int cos;
532
533         netif_carrier_off(dev);
534         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
535
536         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
537                 return;
538
539         for_each_cos_in_txq(edev, cos) {
540                 txq = &edev->fp_array[txqueue].txq[cos];
541
542                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
543                     qed_chain_get_prod_idx(&txq->tx_pbl))
544                         qede_tx_log_print(edev, txq);
545         }
546
547         if (IS_VF(edev))
548                 return;
549
550         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
551             edev->state == QEDE_STATE_RECOVERY) {
552                 DP_INFO(edev,
553                         "Avoid handling a Tx timeout while another HW error is being handled\n");
554                 return;
555         }
556
557         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
558         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
559         schedule_delayed_work(&edev->sp_task, 0);
560 }
561
562 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
563 {
564         struct qede_dev *edev = netdev_priv(ndev);
565         int cos, count, offset;
566
567         if (num_tc > edev->dev_info.num_tc)
568                 return -EINVAL;
569
570         netdev_reset_tc(ndev);
571         netdev_set_num_tc(ndev, num_tc);
572
573         for_each_cos_in_txq(edev, cos) {
574                 count = QEDE_TSS_COUNT(edev);
575                 offset = cos * QEDE_TSS_COUNT(edev);
576                 netdev_set_tc_queue(ndev, cos, count, offset);
577         }
578
579         return 0;
580 }
581
582 static int
583 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
584                 __be16 proto)
585 {
586         switch (f->command) {
587         case FLOW_CLS_REPLACE:
588                 return qede_add_tc_flower_fltr(edev, proto, f);
589         case FLOW_CLS_DESTROY:
590                 return qede_delete_flow_filter(edev, f->cookie);
591         default:
592                 return -EOPNOTSUPP;
593         }
594 }
595
596 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
597                                   void *cb_priv)
598 {
599         struct flow_cls_offload *f;
600         struct qede_dev *edev = cb_priv;
601
602         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
603                 return -EOPNOTSUPP;
604
605         switch (type) {
606         case TC_SETUP_CLSFLOWER:
607                 f = type_data;
608                 return qede_set_flower(edev, f, f->common.protocol);
609         default:
610                 return -EOPNOTSUPP;
611         }
612 }
613
614 static LIST_HEAD(qede_block_cb_list);
615
616 static int
617 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
618                       void *type_data)
619 {
620         struct qede_dev *edev = netdev_priv(dev);
621         struct tc_mqprio_qopt *mqprio;
622
623         switch (type) {
624         case TC_SETUP_BLOCK:
625                 return flow_block_cb_setup_simple(type_data,
626                                                   &qede_block_cb_list,
627                                                   qede_setup_tc_block_cb,
628                                                   edev, edev, true);
629         case TC_SETUP_QDISC_MQPRIO:
630                 mqprio = type_data;
631
632                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
633                 return qede_setup_tc(dev, mqprio->num_tc);
634         default:
635                 return -EOPNOTSUPP;
636         }
637 }
638
639 static const struct net_device_ops qede_netdev_ops = {
640         .ndo_open               = qede_open,
641         .ndo_stop               = qede_close,
642         .ndo_start_xmit         = qede_start_xmit,
643         .ndo_select_queue       = qede_select_queue,
644         .ndo_set_rx_mode        = qede_set_rx_mode,
645         .ndo_set_mac_address    = qede_set_mac_addr,
646         .ndo_validate_addr      = eth_validate_addr,
647         .ndo_change_mtu         = qede_change_mtu,
648         .ndo_do_ioctl           = qede_ioctl,
649         .ndo_tx_timeout         = qede_tx_timeout,
650 #ifdef CONFIG_QED_SRIOV
651         .ndo_set_vf_mac         = qede_set_vf_mac,
652         .ndo_set_vf_vlan        = qede_set_vf_vlan,
653         .ndo_set_vf_trust       = qede_set_vf_trust,
654 #endif
655         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
656         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
657         .ndo_fix_features       = qede_fix_features,
658         .ndo_set_features       = qede_set_features,
659         .ndo_get_stats64        = qede_get_stats64,
660 #ifdef CONFIG_QED_SRIOV
661         .ndo_set_vf_link_state  = qede_set_vf_link_state,
662         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
663         .ndo_get_vf_config      = qede_get_vf_config,
664         .ndo_set_vf_rate        = qede_set_vf_rate,
665 #endif
666         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
667         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
668         .ndo_features_check     = qede_features_check,
669         .ndo_bpf                = qede_xdp,
670 #ifdef CONFIG_RFS_ACCEL
671         .ndo_rx_flow_steer      = qede_rx_flow_steer,
672 #endif
673         .ndo_xdp_xmit           = qede_xdp_transmit,
674         .ndo_setup_tc           = qede_setup_tc_offload,
675 };
676
677 static const struct net_device_ops qede_netdev_vf_ops = {
678         .ndo_open               = qede_open,
679         .ndo_stop               = qede_close,
680         .ndo_start_xmit         = qede_start_xmit,
681         .ndo_select_queue       = qede_select_queue,
682         .ndo_set_rx_mode        = qede_set_rx_mode,
683         .ndo_set_mac_address    = qede_set_mac_addr,
684         .ndo_validate_addr      = eth_validate_addr,
685         .ndo_change_mtu         = qede_change_mtu,
686         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
687         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
688         .ndo_fix_features       = qede_fix_features,
689         .ndo_set_features       = qede_set_features,
690         .ndo_get_stats64        = qede_get_stats64,
691         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
692         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
693         .ndo_features_check     = qede_features_check,
694 };
695
696 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
697         .ndo_open               = qede_open,
698         .ndo_stop               = qede_close,
699         .ndo_start_xmit         = qede_start_xmit,
700         .ndo_select_queue       = qede_select_queue,
701         .ndo_set_rx_mode        = qede_set_rx_mode,
702         .ndo_set_mac_address    = qede_set_mac_addr,
703         .ndo_validate_addr      = eth_validate_addr,
704         .ndo_change_mtu         = qede_change_mtu,
705         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
706         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
707         .ndo_fix_features       = qede_fix_features,
708         .ndo_set_features       = qede_set_features,
709         .ndo_get_stats64        = qede_get_stats64,
710         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
711         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
712         .ndo_features_check     = qede_features_check,
713         .ndo_bpf                = qede_xdp,
714         .ndo_xdp_xmit           = qede_xdp_transmit,
715 };
716
717 /* -------------------------------------------------------------------------
718  * START OF PROBE / REMOVE
719  * -------------------------------------------------------------------------
720  */
721
722 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
723                                             struct pci_dev *pdev,
724                                             struct qed_dev_eth_info *info,
725                                             u32 dp_module, u8 dp_level)
726 {
727         struct net_device *ndev;
728         struct qede_dev *edev;
729
730         ndev = alloc_etherdev_mqs(sizeof(*edev),
731                                   info->num_queues * info->num_tc,
732                                   info->num_queues);
733         if (!ndev) {
734                 pr_err("etherdev allocation failed\n");
735                 return NULL;
736         }
737
738         edev = netdev_priv(ndev);
739         edev->ndev = ndev;
740         edev->cdev = cdev;
741         edev->pdev = pdev;
742         edev->dp_module = dp_module;
743         edev->dp_level = dp_level;
744         edev->ops = qed_ops;
745
746         if (is_kdump_kernel()) {
747                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
748                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
749         } else {
750                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
751                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
752         }
753
754         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
755                 info->num_queues, info->num_queues);
756
757         SET_NETDEV_DEV(ndev, &pdev->dev);
758
759         memset(&edev->stats, 0, sizeof(edev->stats));
760         memcpy(&edev->dev_info, info, sizeof(*info));
761
762         /* As ethtool doesn't have the ability to show WoL behavior as
763          * 'default', if device supports it declare it's enabled.
764          */
765         if (edev->dev_info.common.wol_support)
766                 edev->wol_enabled = true;
767
768         INIT_LIST_HEAD(&edev->vlan_list);
769
770         return edev;
771 }
772
773 static void qede_init_ndev(struct qede_dev *edev)
774 {
775         struct net_device *ndev = edev->ndev;
776         struct pci_dev *pdev = edev->pdev;
777         bool udp_tunnel_enable = false;
778         netdev_features_t hw_features;
779
780         pci_set_drvdata(pdev, ndev);
781
782         ndev->mem_start = edev->dev_info.common.pci_mem_start;
783         ndev->base_addr = ndev->mem_start;
784         ndev->mem_end = edev->dev_info.common.pci_mem_end;
785         ndev->irq = edev->dev_info.common.pci_irq;
786
787         ndev->watchdog_timeo = TX_TIMEOUT;
788
789         if (IS_VF(edev)) {
790                 if (edev->dev_info.xdp_supported)
791                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
792                 else
793                         ndev->netdev_ops = &qede_netdev_vf_ops;
794         } else {
795                 ndev->netdev_ops = &qede_netdev_ops;
796         }
797
798         qede_set_ethtool_ops(ndev);
799
800         ndev->priv_flags |= IFF_UNICAST_FLT;
801
802         /* user-changeble features */
803         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
804                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
805                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
806
807         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
808                 hw_features |= NETIF_F_NTUPLE;
809
810         if (edev->dev_info.common.vxlan_enable ||
811             edev->dev_info.common.geneve_enable)
812                 udp_tunnel_enable = true;
813
814         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
815                 hw_features |= NETIF_F_TSO_ECN;
816                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
817                                         NETIF_F_SG | NETIF_F_TSO |
818                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
819                                         NETIF_F_RXCSUM;
820         }
821
822         if (udp_tunnel_enable) {
823                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
824                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
825                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
826                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
827
828                 qede_set_udp_tunnels(edev);
829         }
830
831         if (edev->dev_info.common.gre_enable) {
832                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
833                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
834                                           NETIF_F_GSO_GRE_CSUM);
835         }
836
837         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
838                               NETIF_F_HIGHDMA;
839         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
840                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
841                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
842
843         ndev->hw_features = hw_features;
844
845         /* MTU range: 46 - 9600 */
846         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
847         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
848
849         /* Set network device HW mac */
850         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
851
852         ndev->mtu = edev->dev_info.common.mtu;
853 }
854
855 /* This function converts from 32b param to two params of level and module
856  * Input 32b decoding:
857  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
858  * 'happy' flow, e.g. memory allocation failed.
859  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
860  * and provide important parameters.
861  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
862  * module. VERBOSE prints are for tracking the specific flow in low level.
863  *
864  * Notice that the level should be that of the lowest required logs.
865  */
866 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
867 {
868         *p_dp_level = QED_LEVEL_NOTICE;
869         *p_dp_module = 0;
870
871         if (debug & QED_LOG_VERBOSE_MASK) {
872                 *p_dp_level = QED_LEVEL_VERBOSE;
873                 *p_dp_module = (debug & 0x3FFFFFFF);
874         } else if (debug & QED_LOG_INFO_MASK) {
875                 *p_dp_level = QED_LEVEL_INFO;
876         } else if (debug & QED_LOG_NOTICE_MASK) {
877                 *p_dp_level = QED_LEVEL_NOTICE;
878         }
879 }
880
881 static void qede_free_fp_array(struct qede_dev *edev)
882 {
883         if (edev->fp_array) {
884                 struct qede_fastpath *fp;
885                 int i;
886
887                 for_each_queue(i) {
888                         fp = &edev->fp_array[i];
889
890                         kfree(fp->sb_info);
891                         /* Handle mem alloc failure case where qede_init_fp
892                          * didn't register xdp_rxq_info yet.
893                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
894                          */
895                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
896                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
897                         kfree(fp->rxq);
898                         kfree(fp->xdp_tx);
899                         kfree(fp->txq);
900                 }
901                 kfree(edev->fp_array);
902         }
903
904         edev->num_queues = 0;
905         edev->fp_num_tx = 0;
906         edev->fp_num_rx = 0;
907 }
908
909 static int qede_alloc_fp_array(struct qede_dev *edev)
910 {
911         u8 fp_combined, fp_rx = edev->fp_num_rx;
912         struct qede_fastpath *fp;
913         int i;
914
915         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
916                                  sizeof(*edev->fp_array), GFP_KERNEL);
917         if (!edev->fp_array) {
918                 DP_NOTICE(edev, "fp array allocation failed\n");
919                 goto err;
920         }
921
922         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
923
924         /* Allocate the FP elements for Rx queues followed by combined and then
925          * the Tx. This ordering should be maintained so that the respective
926          * queues (Rx or Tx) will be together in the fastpath array and the
927          * associated ids will be sequential.
928          */
929         for_each_queue(i) {
930                 fp = &edev->fp_array[i];
931
932                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
933                 if (!fp->sb_info) {
934                         DP_NOTICE(edev, "sb info struct allocation failed\n");
935                         goto err;
936                 }
937
938                 if (fp_rx) {
939                         fp->type = QEDE_FASTPATH_RX;
940                         fp_rx--;
941                 } else if (fp_combined) {
942                         fp->type = QEDE_FASTPATH_COMBINED;
943                         fp_combined--;
944                 } else {
945                         fp->type = QEDE_FASTPATH_TX;
946                 }
947
948                 if (fp->type & QEDE_FASTPATH_TX) {
949                         fp->txq = kcalloc(edev->dev_info.num_tc,
950                                           sizeof(*fp->txq), GFP_KERNEL);
951                         if (!fp->txq)
952                                 goto err;
953                 }
954
955                 if (fp->type & QEDE_FASTPATH_RX) {
956                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
957                         if (!fp->rxq)
958                                 goto err;
959
960                         if (edev->xdp_prog) {
961                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
962                                                      GFP_KERNEL);
963                                 if (!fp->xdp_tx)
964                                         goto err;
965                                 fp->type |= QEDE_FASTPATH_XDP;
966                         }
967                 }
968         }
969
970         return 0;
971 err:
972         qede_free_fp_array(edev);
973         return -ENOMEM;
974 }
975
976 /* The qede lock is used to protect driver state change and driver flows that
977  * are not reentrant.
978  */
979 void __qede_lock(struct qede_dev *edev)
980 {
981         mutex_lock(&edev->qede_lock);
982 }
983
984 void __qede_unlock(struct qede_dev *edev)
985 {
986         mutex_unlock(&edev->qede_lock);
987 }
988
989 /* This version of the lock should be used when acquiring the RTNL lock is also
990  * needed in addition to the internal qede lock.
991  */
992 static void qede_lock(struct qede_dev *edev)
993 {
994         rtnl_lock();
995         __qede_lock(edev);
996 }
997
998 static void qede_unlock(struct qede_dev *edev)
999 {
1000         __qede_unlock(edev);
1001         rtnl_unlock();
1002 }
1003
1004 static void qede_sp_task(struct work_struct *work)
1005 {
1006         struct qede_dev *edev = container_of(work, struct qede_dev,
1007                                              sp_task.work);
1008
1009         /* The locking scheme depends on the specific flag:
1010          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1011          * ensure that ongoing flows are ended and new ones are not started.
1012          * In other cases - only the internal qede lock should be acquired.
1013          */
1014
1015         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1016 #ifdef CONFIG_QED_SRIOV
1017                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1018                  * The recovery of the active VFs is currently not supported.
1019                  */
1020                 if (pci_num_vf(edev->pdev))
1021                         qede_sriov_configure(edev->pdev, 0);
1022 #endif
1023                 qede_lock(edev);
1024                 qede_recovery_handler(edev);
1025                 qede_unlock(edev);
1026         }
1027
1028         __qede_lock(edev);
1029
1030         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1031                 if (edev->state == QEDE_STATE_OPEN)
1032                         qede_config_rx_mode(edev->ndev);
1033
1034 #ifdef CONFIG_RFS_ACCEL
1035         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1036                 if (edev->state == QEDE_STATE_OPEN)
1037                         qede_process_arfs_filters(edev, false);
1038         }
1039 #endif
1040         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1041                 qede_generic_hw_err_handler(edev);
1042         __qede_unlock(edev);
1043
1044         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1045 #ifdef CONFIG_QED_SRIOV
1046                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1047                  * The recovery of the active VFs is currently not supported.
1048                  */
1049                 if (pci_num_vf(edev->pdev))
1050                         qede_sriov_configure(edev->pdev, 0);
1051 #endif
1052                 edev->ops->common->recovery_process(edev->cdev);
1053         }
1054 }
1055
1056 static void qede_update_pf_params(struct qed_dev *cdev)
1057 {
1058         struct qed_pf_params pf_params;
1059         u16 num_cons;
1060
1061         /* 64 rx + 64 tx + 64 XDP */
1062         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1063
1064         /* 1 rx + 1 xdp + max tx cos */
1065         num_cons = QED_MIN_L2_CONS;
1066
1067         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1068
1069         /* Same for VFs - make sure they'll have sufficient connections
1070          * to support XDP Tx queues.
1071          */
1072         pf_params.eth_pf_params.num_vf_cons = 48;
1073
1074         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1075         qed_ops->common->update_pf_params(cdev, &pf_params);
1076 }
1077
1078 #define QEDE_FW_VER_STR_SIZE    80
1079
1080 static void qede_log_probe(struct qede_dev *edev)
1081 {
1082         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1083         u8 buf[QEDE_FW_VER_STR_SIZE];
1084         size_t left_size;
1085
1086         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1087                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1088                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1089                  p_dev_info->fw_eng,
1090                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1091                  QED_MFW_VERSION_3_OFFSET,
1092                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1093                  QED_MFW_VERSION_2_OFFSET,
1094                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1095                  QED_MFW_VERSION_1_OFFSET,
1096                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1097                  QED_MFW_VERSION_0_OFFSET);
1098
1099         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1100         if (p_dev_info->mbi_version && left_size)
1101                 snprintf(buf + strlen(buf), left_size,
1102                          " [MBI %d.%d.%d]",
1103                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1104                          QED_MBI_VERSION_2_OFFSET,
1105                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1106                          QED_MBI_VERSION_1_OFFSET,
1107                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1108                          QED_MBI_VERSION_0_OFFSET);
1109
1110         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1111                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1112                 buf, edev->ndev->name);
1113 }
1114
1115 enum qede_probe_mode {
1116         QEDE_PROBE_NORMAL,
1117         QEDE_PROBE_RECOVERY,
1118 };
1119
1120 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1121                         bool is_vf, enum qede_probe_mode mode)
1122 {
1123         struct qed_probe_params probe_params;
1124         struct qed_slowpath_params sp_params;
1125         struct qed_dev_eth_info dev_info;
1126         struct qede_dev *edev;
1127         struct qed_dev *cdev;
1128         int rc;
1129
1130         if (unlikely(dp_level & QED_LEVEL_INFO))
1131                 pr_notice("Starting qede probe\n");
1132
1133         memset(&probe_params, 0, sizeof(probe_params));
1134         probe_params.protocol = QED_PROTOCOL_ETH;
1135         probe_params.dp_module = dp_module;
1136         probe_params.dp_level = dp_level;
1137         probe_params.is_vf = is_vf;
1138         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1139         cdev = qed_ops->common->probe(pdev, &probe_params);
1140         if (!cdev) {
1141                 rc = -ENODEV;
1142                 goto err0;
1143         }
1144
1145         qede_update_pf_params(cdev);
1146
1147         /* Start the Slowpath-process */
1148         memset(&sp_params, 0, sizeof(sp_params));
1149         sp_params.int_mode = QED_INT_MODE_MSIX;
1150         sp_params.drv_major = QEDE_MAJOR_VERSION;
1151         sp_params.drv_minor = QEDE_MINOR_VERSION;
1152         sp_params.drv_rev = QEDE_REVISION_VERSION;
1153         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1154         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1155         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1156         if (rc) {
1157                 pr_notice("Cannot start slowpath\n");
1158                 goto err1;
1159         }
1160
1161         /* Learn information crucial for qede to progress */
1162         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1163         if (rc)
1164                 goto err2;
1165
1166         if (mode != QEDE_PROBE_RECOVERY) {
1167                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1168                                            dp_level);
1169                 if (!edev) {
1170                         rc = -ENOMEM;
1171                         goto err2;
1172                 }
1173         } else {
1174                 struct net_device *ndev = pci_get_drvdata(pdev);
1175
1176                 edev = netdev_priv(ndev);
1177                 edev->cdev = cdev;
1178                 memset(&edev->stats, 0, sizeof(edev->stats));
1179                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1180         }
1181
1182         if (is_vf)
1183                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1184
1185         qede_init_ndev(edev);
1186
1187         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1188         if (rc)
1189                 goto err3;
1190
1191         if (mode != QEDE_PROBE_RECOVERY) {
1192                 /* Prepare the lock prior to the registration of the netdev,
1193                  * as once it's registered we might reach flows requiring it
1194                  * [it's even possible to reach a flow needing it directly
1195                  * from there, although it's unlikely].
1196                  */
1197                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1198                 mutex_init(&edev->qede_lock);
1199
1200                 rc = register_netdev(edev->ndev);
1201                 if (rc) {
1202                         DP_NOTICE(edev, "Cannot register net-device\n");
1203                         goto err4;
1204                 }
1205         }
1206
1207         edev->ops->common->set_name(cdev, edev->ndev->name);
1208
1209         /* PTP not supported on VFs */
1210         if (!is_vf)
1211                 qede_ptp_enable(edev);
1212
1213         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1214
1215 #ifdef CONFIG_DCB
1216         if (!IS_VF(edev))
1217                 qede_set_dcbnl_ops(edev->ndev);
1218 #endif
1219
1220         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1221
1222         qede_log_probe(edev);
1223         return 0;
1224
1225 err4:
1226         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1227 err3:
1228         free_netdev(edev->ndev);
1229 err2:
1230         qed_ops->common->slowpath_stop(cdev);
1231 err1:
1232         qed_ops->common->remove(cdev);
1233 err0:
1234         return rc;
1235 }
1236
1237 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1238 {
1239         bool is_vf = false;
1240         u32 dp_module = 0;
1241         u8 dp_level = 0;
1242
1243         switch ((enum qede_pci_private)id->driver_data) {
1244         case QEDE_PRIVATE_VF:
1245                 if (debug & QED_LOG_VERBOSE_MASK)
1246                         dev_err(&pdev->dev, "Probing a VF\n");
1247                 is_vf = true;
1248                 break;
1249         default:
1250                 if (debug & QED_LOG_VERBOSE_MASK)
1251                         dev_err(&pdev->dev, "Probing a PF\n");
1252         }
1253
1254         qede_config_debug(debug, &dp_module, &dp_level);
1255
1256         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1257                             QEDE_PROBE_NORMAL);
1258 }
1259
1260 enum qede_remove_mode {
1261         QEDE_REMOVE_NORMAL,
1262         QEDE_REMOVE_RECOVERY,
1263 };
1264
1265 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1266 {
1267         struct net_device *ndev = pci_get_drvdata(pdev);
1268         struct qede_dev *edev;
1269         struct qed_dev *cdev;
1270
1271         if (!ndev) {
1272                 dev_info(&pdev->dev, "Device has already been removed\n");
1273                 return;
1274         }
1275
1276         edev = netdev_priv(ndev);
1277         cdev = edev->cdev;
1278
1279         DP_INFO(edev, "Starting qede_remove\n");
1280
1281         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1282
1283         if (mode != QEDE_REMOVE_RECOVERY) {
1284                 unregister_netdev(ndev);
1285
1286                 cancel_delayed_work_sync(&edev->sp_task);
1287
1288                 edev->ops->common->set_power_state(cdev, PCI_D0);
1289
1290                 pci_set_drvdata(pdev, NULL);
1291         }
1292
1293         qede_ptp_disable(edev);
1294
1295         /* Use global ops since we've freed edev */
1296         qed_ops->common->slowpath_stop(cdev);
1297         if (system_state == SYSTEM_POWER_OFF)
1298                 return;
1299         qed_ops->common->remove(cdev);
1300         edev->cdev = NULL;
1301
1302         /* Since this can happen out-of-sync with other flows,
1303          * don't release the netdevice until after slowpath stop
1304          * has been called to guarantee various other contexts
1305          * [e.g., QED register callbacks] won't break anything when
1306          * accessing the netdevice.
1307          */
1308         if (mode != QEDE_REMOVE_RECOVERY)
1309                 free_netdev(ndev);
1310
1311         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1312 }
1313
1314 static void qede_remove(struct pci_dev *pdev)
1315 {
1316         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1317 }
1318
1319 static void qede_shutdown(struct pci_dev *pdev)
1320 {
1321         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1322 }
1323
1324 /* -------------------------------------------------------------------------
1325  * START OF LOAD / UNLOAD
1326  * -------------------------------------------------------------------------
1327  */
1328
1329 static int qede_set_num_queues(struct qede_dev *edev)
1330 {
1331         int rc;
1332         u16 rss_num;
1333
1334         /* Setup queues according to possible resources*/
1335         if (edev->req_queues)
1336                 rss_num = edev->req_queues;
1337         else
1338                 rss_num = netif_get_num_default_rss_queues() *
1339                           edev->dev_info.common.num_hwfns;
1340
1341         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1342
1343         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1344         if (rc > 0) {
1345                 /* Managed to request interrupts for our queues */
1346                 edev->num_queues = rc;
1347                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1348                         QEDE_QUEUE_CNT(edev), rss_num);
1349                 rc = 0;
1350         }
1351
1352         edev->fp_num_tx = edev->req_num_tx;
1353         edev->fp_num_rx = edev->req_num_rx;
1354
1355         return rc;
1356 }
1357
1358 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1359                              u16 sb_id)
1360 {
1361         if (sb_info->sb_virt) {
1362                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1363                                               QED_SB_TYPE_L2_QUEUE);
1364                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1365                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1366                 memset(sb_info, 0, sizeof(*sb_info));
1367         }
1368 }
1369
1370 /* This function allocates fast-path status block memory */
1371 static int qede_alloc_mem_sb(struct qede_dev *edev,
1372                              struct qed_sb_info *sb_info, u16 sb_id)
1373 {
1374         struct status_block_e4 *sb_virt;
1375         dma_addr_t sb_phys;
1376         int rc;
1377
1378         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1379                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1380         if (!sb_virt) {
1381                 DP_ERR(edev, "Status block allocation failed\n");
1382                 return -ENOMEM;
1383         }
1384
1385         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1386                                         sb_virt, sb_phys, sb_id,
1387                                         QED_SB_TYPE_L2_QUEUE);
1388         if (rc) {
1389                 DP_ERR(edev, "Status block initialization failed\n");
1390                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1391                                   sb_virt, sb_phys);
1392                 return rc;
1393         }
1394
1395         return 0;
1396 }
1397
1398 static void qede_free_rx_buffers(struct qede_dev *edev,
1399                                  struct qede_rx_queue *rxq)
1400 {
1401         u16 i;
1402
1403         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1404                 struct sw_rx_data *rx_buf;
1405                 struct page *data;
1406
1407                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1408                 data = rx_buf->data;
1409
1410                 dma_unmap_page(&edev->pdev->dev,
1411                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1412
1413                 rx_buf->data = NULL;
1414                 __free_page(data);
1415         }
1416 }
1417
1418 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1419 {
1420         /* Free rx buffers */
1421         qede_free_rx_buffers(edev, rxq);
1422
1423         /* Free the parallel SW ring */
1424         kfree(rxq->sw_rx_ring);
1425
1426         /* Free the real RQ ring used by FW */
1427         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1428         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1429 }
1430
1431 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1432 {
1433         int i;
1434
1435         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1436                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1437
1438                 tpa_info->state = QEDE_AGG_STATE_NONE;
1439         }
1440 }
1441
1442 /* This function allocates all memory needed per Rx queue */
1443 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1444 {
1445         struct qed_chain_init_params params = {
1446                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1447                 .num_elems      = RX_RING_SIZE,
1448         };
1449         struct qed_dev *cdev = edev->cdev;
1450         int i, rc, size;
1451
1452         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1453
1454         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1455
1456         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1457         size = rxq->rx_headroom +
1458                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1459
1460         /* Make sure that the headroom and  payload fit in a single page */
1461         if (rxq->rx_buf_size + size > PAGE_SIZE)
1462                 rxq->rx_buf_size = PAGE_SIZE - size;
1463
1464         /* Segment size to split a page in multiple equal parts,
1465          * unless XDP is used in which case we'd use the entire page.
1466          */
1467         if (!edev->xdp_prog) {
1468                 size = size + rxq->rx_buf_size;
1469                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1470         } else {
1471                 rxq->rx_buf_seg_size = PAGE_SIZE;
1472                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1473         }
1474
1475         /* Allocate the parallel driver ring for Rx buffers */
1476         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1477         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1478         if (!rxq->sw_rx_ring) {
1479                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1480                 rc = -ENOMEM;
1481                 goto err;
1482         }
1483
1484         /* Allocate FW Rx ring  */
1485         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1486         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1487         params.elem_size = sizeof(struct eth_rx_bd);
1488
1489         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1490         if (rc)
1491                 goto err;
1492
1493         /* Allocate FW completion ring */
1494         params.mode = QED_CHAIN_MODE_PBL;
1495         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1496         params.elem_size = sizeof(union eth_rx_cqe);
1497
1498         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1499         if (rc)
1500                 goto err;
1501
1502         /* Allocate buffers for the Rx ring */
1503         rxq->filled_buffers = 0;
1504         for (i = 0; i < rxq->num_rx_buffers; i++) {
1505                 rc = qede_alloc_rx_buffer(rxq, false);
1506                 if (rc) {
1507                         DP_ERR(edev,
1508                                "Rx buffers allocation failed at index %d\n", i);
1509                         goto err;
1510                 }
1511         }
1512
1513         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1514         if (!edev->gro_disable)
1515                 qede_set_tpa_param(rxq);
1516 err:
1517         return rc;
1518 }
1519
1520 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1521 {
1522         /* Free the parallel SW ring */
1523         if (txq->is_xdp)
1524                 kfree(txq->sw_tx_ring.xdp);
1525         else
1526                 kfree(txq->sw_tx_ring.skbs);
1527
1528         /* Free the real RQ ring used by FW */
1529         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1530 }
1531
1532 /* This function allocates all memory needed per Tx queue */
1533 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1534 {
1535         struct qed_chain_init_params params = {
1536                 .mode           = QED_CHAIN_MODE_PBL,
1537                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1538                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1539                 .num_elems      = edev->q_num_tx_buffers,
1540                 .elem_size      = sizeof(union eth_tx_bd_types),
1541         };
1542         int size, rc;
1543
1544         txq->num_tx_buffers = edev->q_num_tx_buffers;
1545
1546         /* Allocate the parallel driver ring for Tx buffers */
1547         if (txq->is_xdp) {
1548                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1549                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1550                 if (!txq->sw_tx_ring.xdp)
1551                         goto err;
1552         } else {
1553                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1554                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1555                 if (!txq->sw_tx_ring.skbs)
1556                         goto err;
1557         }
1558
1559         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1560         if (rc)
1561                 goto err;
1562
1563         return 0;
1564
1565 err:
1566         qede_free_mem_txq(edev, txq);
1567         return -ENOMEM;
1568 }
1569
1570 /* This function frees all memory of a single fp */
1571 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1572 {
1573         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1574
1575         if (fp->type & QEDE_FASTPATH_RX)
1576                 qede_free_mem_rxq(edev, fp->rxq);
1577
1578         if (fp->type & QEDE_FASTPATH_XDP)
1579                 qede_free_mem_txq(edev, fp->xdp_tx);
1580
1581         if (fp->type & QEDE_FASTPATH_TX) {
1582                 int cos;
1583
1584                 for_each_cos_in_txq(edev, cos)
1585                         qede_free_mem_txq(edev, &fp->txq[cos]);
1586         }
1587 }
1588
1589 /* This function allocates all memory needed for a single fp (i.e. an entity
1590  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1591  */
1592 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1593 {
1594         int rc = 0;
1595
1596         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1597         if (rc)
1598                 goto out;
1599
1600         if (fp->type & QEDE_FASTPATH_RX) {
1601                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1602                 if (rc)
1603                         goto out;
1604         }
1605
1606         if (fp->type & QEDE_FASTPATH_XDP) {
1607                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1608                 if (rc)
1609                         goto out;
1610         }
1611
1612         if (fp->type & QEDE_FASTPATH_TX) {
1613                 int cos;
1614
1615                 for_each_cos_in_txq(edev, cos) {
1616                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1617                         if (rc)
1618                                 goto out;
1619                 }
1620         }
1621
1622 out:
1623         return rc;
1624 }
1625
1626 static void qede_free_mem_load(struct qede_dev *edev)
1627 {
1628         int i;
1629
1630         for_each_queue(i) {
1631                 struct qede_fastpath *fp = &edev->fp_array[i];
1632
1633                 qede_free_mem_fp(edev, fp);
1634         }
1635 }
1636
1637 /* This function allocates all qede memory at NIC load. */
1638 static int qede_alloc_mem_load(struct qede_dev *edev)
1639 {
1640         int rc = 0, queue_id;
1641
1642         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1643                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1644
1645                 rc = qede_alloc_mem_fp(edev, fp);
1646                 if (rc) {
1647                         DP_ERR(edev,
1648                                "Failed to allocate memory for fastpath - rss id = %d\n",
1649                                queue_id);
1650                         qede_free_mem_load(edev);
1651                         return rc;
1652                 }
1653         }
1654
1655         return 0;
1656 }
1657
1658 static void qede_empty_tx_queue(struct qede_dev *edev,
1659                                 struct qede_tx_queue *txq)
1660 {
1661         unsigned int pkts_compl = 0, bytes_compl = 0;
1662         struct netdev_queue *netdev_txq;
1663         int rc, len = 0;
1664
1665         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1666
1667         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1668                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1669                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1670                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1671                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1672                            qed_chain_get_prod_idx(&txq->tx_pbl));
1673
1674                 rc = qede_free_tx_pkt(edev, txq, &len);
1675                 if (rc) {
1676                         DP_NOTICE(edev,
1677                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1678                                   txq->index,
1679                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1680                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1681                         break;
1682                 }
1683
1684                 bytes_compl += len;
1685                 pkts_compl++;
1686                 txq->sw_tx_cons++;
1687         }
1688
1689         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1690 }
1691
1692 static void qede_empty_tx_queues(struct qede_dev *edev)
1693 {
1694         int i;
1695
1696         for_each_queue(i)
1697                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1698                         int cos;
1699
1700                         for_each_cos_in_txq(edev, cos) {
1701                                 struct qede_fastpath *fp;
1702
1703                                 fp = &edev->fp_array[i];
1704                                 qede_empty_tx_queue(edev,
1705                                                     &fp->txq[cos]);
1706                         }
1707                 }
1708 }
1709
1710 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1711 static void qede_init_fp(struct qede_dev *edev)
1712 {
1713         int queue_id, rxq_index = 0, txq_index = 0;
1714         struct qede_fastpath *fp;
1715         bool init_xdp = false;
1716
1717         for_each_queue(queue_id) {
1718                 fp = &edev->fp_array[queue_id];
1719
1720                 fp->edev = edev;
1721                 fp->id = queue_id;
1722
1723                 if (fp->type & QEDE_FASTPATH_XDP) {
1724                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1725                                                                 rxq_index);
1726                         fp->xdp_tx->is_xdp = 1;
1727
1728                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1729                         init_xdp = true;
1730                 }
1731
1732                 if (fp->type & QEDE_FASTPATH_RX) {
1733                         fp->rxq->rxq_id = rxq_index++;
1734
1735                         /* Determine how to map buffers for this queue */
1736                         if (fp->type & QEDE_FASTPATH_XDP)
1737                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1738                         else
1739                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1740                         fp->rxq->dev = &edev->pdev->dev;
1741
1742                         /* Driver have no error path from here */
1743                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1744                                                  fp->rxq->rxq_id) < 0);
1745
1746                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1747                                                        MEM_TYPE_PAGE_ORDER0,
1748                                                        NULL)) {
1749                                 DP_NOTICE(edev,
1750                                           "Failed to register XDP memory model\n");
1751                         }
1752                 }
1753
1754                 if (fp->type & QEDE_FASTPATH_TX) {
1755                         int cos;
1756
1757                         for_each_cos_in_txq(edev, cos) {
1758                                 struct qede_tx_queue *txq = &fp->txq[cos];
1759                                 u16 ndev_tx_id;
1760
1761                                 txq->cos = cos;
1762                                 txq->index = txq_index;
1763                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1764                                 txq->ndev_txq_id = ndev_tx_id;
1765
1766                                 if (edev->dev_info.is_legacy)
1767                                         txq->is_legacy = true;
1768                                 txq->dev = &edev->pdev->dev;
1769                         }
1770
1771                         txq_index++;
1772                 }
1773
1774                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1775                          edev->ndev->name, queue_id);
1776         }
1777
1778         if (init_xdp) {
1779                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1780                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1781         }
1782 }
1783
1784 static int qede_set_real_num_queues(struct qede_dev *edev)
1785 {
1786         int rc = 0;
1787
1788         rc = netif_set_real_num_tx_queues(edev->ndev,
1789                                           QEDE_TSS_COUNT(edev) *
1790                                           edev->dev_info.num_tc);
1791         if (rc) {
1792                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1793                 return rc;
1794         }
1795
1796         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1797         if (rc) {
1798                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1799                 return rc;
1800         }
1801
1802         return 0;
1803 }
1804
1805 static void qede_napi_disable_remove(struct qede_dev *edev)
1806 {
1807         int i;
1808
1809         for_each_queue(i) {
1810                 napi_disable(&edev->fp_array[i].napi);
1811
1812                 netif_napi_del(&edev->fp_array[i].napi);
1813         }
1814 }
1815
1816 static void qede_napi_add_enable(struct qede_dev *edev)
1817 {
1818         int i;
1819
1820         /* Add NAPI objects */
1821         for_each_queue(i) {
1822                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1823                                qede_poll, NAPI_POLL_WEIGHT);
1824                 napi_enable(&edev->fp_array[i].napi);
1825         }
1826 }
1827
1828 static void qede_sync_free_irqs(struct qede_dev *edev)
1829 {
1830         int i;
1831
1832         for (i = 0; i < edev->int_info.used_cnt; i++) {
1833                 if (edev->int_info.msix_cnt) {
1834                         synchronize_irq(edev->int_info.msix[i].vector);
1835                         free_irq(edev->int_info.msix[i].vector,
1836                                  &edev->fp_array[i]);
1837                 } else {
1838                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1839                 }
1840         }
1841
1842         edev->int_info.used_cnt = 0;
1843 }
1844
1845 static int qede_req_msix_irqs(struct qede_dev *edev)
1846 {
1847         int i, rc;
1848
1849         /* Sanitize number of interrupts == number of prepared RSS queues */
1850         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1851                 DP_ERR(edev,
1852                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1853                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1854                 return -EINVAL;
1855         }
1856
1857         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1858 #ifdef CONFIG_RFS_ACCEL
1859                 struct qede_fastpath *fp = &edev->fp_array[i];
1860
1861                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1862                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1863                                               edev->int_info.msix[i].vector);
1864                         if (rc) {
1865                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1866                                 qede_free_arfs(edev);
1867                         }
1868                 }
1869 #endif
1870                 rc = request_irq(edev->int_info.msix[i].vector,
1871                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1872                                  &edev->fp_array[i]);
1873                 if (rc) {
1874                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1875                         qede_sync_free_irqs(edev);
1876                         return rc;
1877                 }
1878                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1879                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1880                            edev->fp_array[i].name, i,
1881                            &edev->fp_array[i]);
1882                 edev->int_info.used_cnt++;
1883         }
1884
1885         return 0;
1886 }
1887
1888 static void qede_simd_fp_handler(void *cookie)
1889 {
1890         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1891
1892         napi_schedule_irqoff(&fp->napi);
1893 }
1894
1895 static int qede_setup_irqs(struct qede_dev *edev)
1896 {
1897         int i, rc = 0;
1898
1899         /* Learn Interrupt configuration */
1900         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1901         if (rc)
1902                 return rc;
1903
1904         if (edev->int_info.msix_cnt) {
1905                 rc = qede_req_msix_irqs(edev);
1906                 if (rc)
1907                         return rc;
1908                 edev->ndev->irq = edev->int_info.msix[0].vector;
1909         } else {
1910                 const struct qed_common_ops *ops;
1911
1912                 /* qed should learn receive the RSS ids and callbacks */
1913                 ops = edev->ops->common;
1914                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1915                         ops->simd_handler_config(edev->cdev,
1916                                                  &edev->fp_array[i], i,
1917                                                  qede_simd_fp_handler);
1918                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1919         }
1920         return 0;
1921 }
1922
1923 static int qede_drain_txq(struct qede_dev *edev,
1924                           struct qede_tx_queue *txq, bool allow_drain)
1925 {
1926         int rc, cnt = 1000;
1927
1928         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1929                 if (!cnt) {
1930                         if (allow_drain) {
1931                                 DP_NOTICE(edev,
1932                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1933                                           txq->index);
1934                                 rc = edev->ops->common->drain(edev->cdev);
1935                                 if (rc)
1936                                         return rc;
1937                                 return qede_drain_txq(edev, txq, false);
1938                         }
1939                         DP_NOTICE(edev,
1940                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1941                                   txq->index, txq->sw_tx_prod,
1942                                   txq->sw_tx_cons);
1943                         return -ENODEV;
1944                 }
1945                 cnt--;
1946                 usleep_range(1000, 2000);
1947                 barrier();
1948         }
1949
1950         /* FW finished processing, wait for HW to transmit all tx packets */
1951         usleep_range(1000, 2000);
1952
1953         return 0;
1954 }
1955
1956 static int qede_stop_txq(struct qede_dev *edev,
1957                          struct qede_tx_queue *txq, int rss_id)
1958 {
1959         /* delete doorbell from doorbell recovery mechanism */
1960         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1961                                            &txq->tx_db);
1962
1963         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1964 }
1965
1966 static int qede_stop_queues(struct qede_dev *edev)
1967 {
1968         struct qed_update_vport_params *vport_update_params;
1969         struct qed_dev *cdev = edev->cdev;
1970         struct qede_fastpath *fp;
1971         int rc, i;
1972
1973         /* Disable the vport */
1974         vport_update_params = vzalloc(sizeof(*vport_update_params));
1975         if (!vport_update_params)
1976                 return -ENOMEM;
1977
1978         vport_update_params->vport_id = 0;
1979         vport_update_params->update_vport_active_flg = 1;
1980         vport_update_params->vport_active_flg = 0;
1981         vport_update_params->update_rss_flg = 0;
1982
1983         rc = edev->ops->vport_update(cdev, vport_update_params);
1984         vfree(vport_update_params);
1985
1986         if (rc) {
1987                 DP_ERR(edev, "Failed to update vport\n");
1988                 return rc;
1989         }
1990
1991         /* Flush Tx queues. If needed, request drain from MCP */
1992         for_each_queue(i) {
1993                 fp = &edev->fp_array[i];
1994
1995                 if (fp->type & QEDE_FASTPATH_TX) {
1996                         int cos;
1997
1998                         for_each_cos_in_txq(edev, cos) {
1999                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2000                                 if (rc)
2001                                         return rc;
2002                         }
2003                 }
2004
2005                 if (fp->type & QEDE_FASTPATH_XDP) {
2006                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2007                         if (rc)
2008                                 return rc;
2009                 }
2010         }
2011
2012         /* Stop all Queues in reverse order */
2013         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2014                 fp = &edev->fp_array[i];
2015
2016                 /* Stop the Tx Queue(s) */
2017                 if (fp->type & QEDE_FASTPATH_TX) {
2018                         int cos;
2019
2020                         for_each_cos_in_txq(edev, cos) {
2021                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2022                                 if (rc)
2023                                         return rc;
2024                         }
2025                 }
2026
2027                 /* Stop the Rx Queue */
2028                 if (fp->type & QEDE_FASTPATH_RX) {
2029                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2030                         if (rc) {
2031                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2032                                 return rc;
2033                         }
2034                 }
2035
2036                 /* Stop the XDP forwarding queue */
2037                 if (fp->type & QEDE_FASTPATH_XDP) {
2038                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2039                         if (rc)
2040                                 return rc;
2041
2042                         bpf_prog_put(fp->rxq->xdp_prog);
2043                 }
2044         }
2045
2046         /* Stop the vport */
2047         rc = edev->ops->vport_stop(cdev, 0);
2048         if (rc)
2049                 DP_ERR(edev, "Failed to stop VPORT\n");
2050
2051         return rc;
2052 }
2053
2054 static int qede_start_txq(struct qede_dev *edev,
2055                           struct qede_fastpath *fp,
2056                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2057 {
2058         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2059         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2060         struct qed_queue_start_common_params params;
2061         struct qed_txq_start_ret_params ret_params;
2062         int rc;
2063
2064         memset(&params, 0, sizeof(params));
2065         memset(&ret_params, 0, sizeof(ret_params));
2066
2067         /* Let the XDP queue share the queue-zone with one of the regular txq.
2068          * We don't really care about its coalescing.
2069          */
2070         if (txq->is_xdp)
2071                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2072         else
2073                 params.queue_id = txq->index;
2074
2075         params.p_sb = fp->sb_info;
2076         params.sb_idx = sb_idx;
2077         params.tc = txq->cos;
2078
2079         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2080                                    page_cnt, &ret_params);
2081         if (rc) {
2082                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2083                 return rc;
2084         }
2085
2086         txq->doorbell_addr = ret_params.p_doorbell;
2087         txq->handle = ret_params.p_handle;
2088
2089         /* Determine the FW consumer address associated */
2090         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2091
2092         /* Prepare the doorbell parameters */
2093         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2094         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2095         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2096                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2097         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2098
2099         /* register doorbell with doorbell recovery mechanism */
2100         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2101                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2102                                                 DB_REC_KERNEL);
2103
2104         return rc;
2105 }
2106
2107 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2108 {
2109         int vlan_removal_en = 1;
2110         struct qed_dev *cdev = edev->cdev;
2111         struct qed_dev_info *qed_info = &edev->dev_info.common;
2112         struct qed_update_vport_params *vport_update_params;
2113         struct qed_queue_start_common_params q_params;
2114         struct qed_start_vport_params start = {0};
2115         int rc, i;
2116
2117         if (!edev->num_queues) {
2118                 DP_ERR(edev,
2119                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2120                 return -EINVAL;
2121         }
2122
2123         vport_update_params = vzalloc(sizeof(*vport_update_params));
2124         if (!vport_update_params)
2125                 return -ENOMEM;
2126
2127         start.handle_ptp_pkts = !!(edev->ptp);
2128         start.gro_enable = !edev->gro_disable;
2129         start.mtu = edev->ndev->mtu;
2130         start.vport_id = 0;
2131         start.drop_ttl0 = true;
2132         start.remove_inner_vlan = vlan_removal_en;
2133         start.clear_stats = clear_stats;
2134
2135         rc = edev->ops->vport_start(cdev, &start);
2136
2137         if (rc) {
2138                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2139                 goto out;
2140         }
2141
2142         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2143                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2144                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2145
2146         for_each_queue(i) {
2147                 struct qede_fastpath *fp = &edev->fp_array[i];
2148                 dma_addr_t p_phys_table;
2149                 u32 page_cnt;
2150
2151                 if (fp->type & QEDE_FASTPATH_RX) {
2152                         struct qed_rxq_start_ret_params ret_params;
2153                         struct qede_rx_queue *rxq = fp->rxq;
2154                         __le16 *val;
2155
2156                         memset(&ret_params, 0, sizeof(ret_params));
2157                         memset(&q_params, 0, sizeof(q_params));
2158                         q_params.queue_id = rxq->rxq_id;
2159                         q_params.vport_id = 0;
2160                         q_params.p_sb = fp->sb_info;
2161                         q_params.sb_idx = RX_PI;
2162
2163                         p_phys_table =
2164                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2165                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2166
2167                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2168                                                    rxq->rx_buf_size,
2169                                                    rxq->rx_bd_ring.p_phys_addr,
2170                                                    p_phys_table,
2171                                                    page_cnt, &ret_params);
2172                         if (rc) {
2173                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2174                                        rc);
2175                                 goto out;
2176                         }
2177
2178                         /* Use the return parameters */
2179                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2180                         rxq->handle = ret_params.p_handle;
2181
2182                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2183                         rxq->hw_cons_ptr = val;
2184
2185                         qede_update_rx_prod(edev, rxq);
2186                 }
2187
2188                 if (fp->type & QEDE_FASTPATH_XDP) {
2189                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2190                         if (rc)
2191                                 goto out;
2192
2193                         bpf_prog_add(edev->xdp_prog, 1);
2194                         fp->rxq->xdp_prog = edev->xdp_prog;
2195                 }
2196
2197                 if (fp->type & QEDE_FASTPATH_TX) {
2198                         int cos;
2199
2200                         for_each_cos_in_txq(edev, cos) {
2201                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2202                                                     TX_PI(cos));
2203                                 if (rc)
2204                                         goto out;
2205                         }
2206                 }
2207         }
2208
2209         /* Prepare and send the vport enable */
2210         vport_update_params->vport_id = start.vport_id;
2211         vport_update_params->update_vport_active_flg = 1;
2212         vport_update_params->vport_active_flg = 1;
2213
2214         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2215             qed_info->tx_switching) {
2216                 vport_update_params->update_tx_switching_flg = 1;
2217                 vport_update_params->tx_switching_flg = 1;
2218         }
2219
2220         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2221                              &vport_update_params->update_rss_flg);
2222
2223         rc = edev->ops->vport_update(cdev, vport_update_params);
2224         if (rc)
2225                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2226
2227 out:
2228         vfree(vport_update_params);
2229         return rc;
2230 }
2231
2232 enum qede_unload_mode {
2233         QEDE_UNLOAD_NORMAL,
2234         QEDE_UNLOAD_RECOVERY,
2235 };
2236
2237 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2238                         bool is_locked)
2239 {
2240         struct qed_link_params link_params;
2241         int rc;
2242
2243         DP_INFO(edev, "Starting qede unload\n");
2244
2245         if (!is_locked)
2246                 __qede_lock(edev);
2247
2248         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2249
2250         if (mode != QEDE_UNLOAD_RECOVERY)
2251                 edev->state = QEDE_STATE_CLOSED;
2252
2253         qede_rdma_dev_event_close(edev);
2254
2255         /* Close OS Tx */
2256         netif_tx_disable(edev->ndev);
2257         netif_carrier_off(edev->ndev);
2258
2259         if (mode != QEDE_UNLOAD_RECOVERY) {
2260                 /* Reset the link */
2261                 memset(&link_params, 0, sizeof(link_params));
2262                 link_params.link_up = false;
2263                 edev->ops->common->set_link(edev->cdev, &link_params);
2264
2265                 rc = qede_stop_queues(edev);
2266                 if (rc) {
2267                         qede_sync_free_irqs(edev);
2268                         goto out;
2269                 }
2270
2271                 DP_INFO(edev, "Stopped Queues\n");
2272         }
2273
2274         qede_vlan_mark_nonconfigured(edev);
2275         edev->ops->fastpath_stop(edev->cdev);
2276
2277         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2278                 qede_poll_for_freeing_arfs_filters(edev);
2279                 qede_free_arfs(edev);
2280         }
2281
2282         /* Release the interrupts */
2283         qede_sync_free_irqs(edev);
2284         edev->ops->common->set_fp_int(edev->cdev, 0);
2285
2286         qede_napi_disable_remove(edev);
2287
2288         if (mode == QEDE_UNLOAD_RECOVERY)
2289                 qede_empty_tx_queues(edev);
2290
2291         qede_free_mem_load(edev);
2292         qede_free_fp_array(edev);
2293
2294 out:
2295         if (!is_locked)
2296                 __qede_unlock(edev);
2297
2298         if (mode != QEDE_UNLOAD_RECOVERY)
2299                 DP_NOTICE(edev, "Link is down\n");
2300
2301         edev->ptp_skip_txts = 0;
2302
2303         DP_INFO(edev, "Ending qede unload\n");
2304 }
2305
2306 enum qede_load_mode {
2307         QEDE_LOAD_NORMAL,
2308         QEDE_LOAD_RELOAD,
2309         QEDE_LOAD_RECOVERY,
2310 };
2311
2312 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2313                      bool is_locked)
2314 {
2315         struct qed_link_params link_params;
2316         u8 num_tc;
2317         int rc;
2318
2319         DP_INFO(edev, "Starting qede load\n");
2320
2321         if (!is_locked)
2322                 __qede_lock(edev);
2323
2324         rc = qede_set_num_queues(edev);
2325         if (rc)
2326                 goto out;
2327
2328         rc = qede_alloc_fp_array(edev);
2329         if (rc)
2330                 goto out;
2331
2332         qede_init_fp(edev);
2333
2334         rc = qede_alloc_mem_load(edev);
2335         if (rc)
2336                 goto err1;
2337         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2338                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2339
2340         rc = qede_set_real_num_queues(edev);
2341         if (rc)
2342                 goto err2;
2343
2344         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2345                 rc = qede_alloc_arfs(edev);
2346                 if (rc)
2347                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2348         }
2349
2350         qede_napi_add_enable(edev);
2351         DP_INFO(edev, "Napi added and enabled\n");
2352
2353         rc = qede_setup_irqs(edev);
2354         if (rc)
2355                 goto err3;
2356         DP_INFO(edev, "Setup IRQs succeeded\n");
2357
2358         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2359         if (rc)
2360                 goto err4;
2361         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2362
2363         num_tc = netdev_get_num_tc(edev->ndev);
2364         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2365         qede_setup_tc(edev->ndev, num_tc);
2366
2367         /* Program un-configured VLANs */
2368         qede_configure_vlan_filters(edev);
2369
2370         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2371
2372         /* Ask for link-up using current configuration */
2373         memset(&link_params, 0, sizeof(link_params));
2374         link_params.link_up = true;
2375         edev->ops->common->set_link(edev->cdev, &link_params);
2376
2377         edev->state = QEDE_STATE_OPEN;
2378
2379         DP_INFO(edev, "Ending successfully qede load\n");
2380
2381         goto out;
2382 err4:
2383         qede_sync_free_irqs(edev);
2384         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2385 err3:
2386         qede_napi_disable_remove(edev);
2387 err2:
2388         qede_free_mem_load(edev);
2389 err1:
2390         edev->ops->common->set_fp_int(edev->cdev, 0);
2391         qede_free_fp_array(edev);
2392         edev->num_queues = 0;
2393         edev->fp_num_tx = 0;
2394         edev->fp_num_rx = 0;
2395 out:
2396         if (!is_locked)
2397                 __qede_unlock(edev);
2398
2399         return rc;
2400 }
2401
2402 /* 'func' should be able to run between unload and reload assuming interface
2403  * is actually running, or afterwards in case it's currently DOWN.
2404  */
2405 void qede_reload(struct qede_dev *edev,
2406                  struct qede_reload_args *args, bool is_locked)
2407 {
2408         if (!is_locked)
2409                 __qede_lock(edev);
2410
2411         /* Since qede_lock is held, internal state wouldn't change even
2412          * if netdev state would start transitioning. Check whether current
2413          * internal configuration indicates device is up, then reload.
2414          */
2415         if (edev->state == QEDE_STATE_OPEN) {
2416                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2417                 if (args)
2418                         args->func(edev, args);
2419                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2420
2421                 /* Since no one is going to do it for us, re-configure */
2422                 qede_config_rx_mode(edev->ndev);
2423         } else if (args) {
2424                 args->func(edev, args);
2425         }
2426
2427         if (!is_locked)
2428                 __qede_unlock(edev);
2429 }
2430
2431 /* called with rtnl_lock */
2432 static int qede_open(struct net_device *ndev)
2433 {
2434         struct qede_dev *edev = netdev_priv(ndev);
2435         int rc;
2436
2437         netif_carrier_off(ndev);
2438
2439         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2440
2441         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2442         if (rc)
2443                 return rc;
2444
2445         udp_tunnel_nic_reset_ntf(ndev);
2446
2447         edev->ops->common->update_drv_state(edev->cdev, true);
2448
2449         return 0;
2450 }
2451
2452 static int qede_close(struct net_device *ndev)
2453 {
2454         struct qede_dev *edev = netdev_priv(ndev);
2455
2456         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2457
2458         edev->ops->common->update_drv_state(edev->cdev, false);
2459
2460         return 0;
2461 }
2462
2463 static void qede_link_update(void *dev, struct qed_link_output *link)
2464 {
2465         struct qede_dev *edev = dev;
2466
2467         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2468                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2469                 return;
2470         }
2471
2472         if (link->link_up) {
2473                 if (!netif_carrier_ok(edev->ndev)) {
2474                         DP_NOTICE(edev, "Link is up\n");
2475                         netif_tx_start_all_queues(edev->ndev);
2476                         netif_carrier_on(edev->ndev);
2477                         qede_rdma_dev_event_open(edev);
2478                 }
2479         } else {
2480                 if (netif_carrier_ok(edev->ndev)) {
2481                         DP_NOTICE(edev, "Link is down\n");
2482                         netif_tx_disable(edev->ndev);
2483                         netif_carrier_off(edev->ndev);
2484                         qede_rdma_dev_event_close(edev);
2485                 }
2486         }
2487 }
2488
2489 static void qede_schedule_recovery_handler(void *dev)
2490 {
2491         struct qede_dev *edev = dev;
2492
2493         if (edev->state == QEDE_STATE_RECOVERY) {
2494                 DP_NOTICE(edev,
2495                           "Avoid scheduling a recovery handling since already in recovery state\n");
2496                 return;
2497         }
2498
2499         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2500         schedule_delayed_work(&edev->sp_task, 0);
2501
2502         DP_INFO(edev, "Scheduled a recovery handler\n");
2503 }
2504
2505 static void qede_recovery_failed(struct qede_dev *edev)
2506 {
2507         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2508
2509         netif_device_detach(edev->ndev);
2510
2511         if (edev->cdev)
2512                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2513 }
2514
2515 static void qede_recovery_handler(struct qede_dev *edev)
2516 {
2517         u32 curr_state = edev->state;
2518         int rc;
2519
2520         DP_NOTICE(edev, "Starting a recovery process\n");
2521
2522         /* No need to acquire first the qede_lock since is done by qede_sp_task
2523          * before calling this function.
2524          */
2525         edev->state = QEDE_STATE_RECOVERY;
2526
2527         edev->ops->common->recovery_prolog(edev->cdev);
2528
2529         if (curr_state == QEDE_STATE_OPEN)
2530                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2531
2532         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2533
2534         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2535                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2536         if (rc) {
2537                 edev->cdev = NULL;
2538                 goto err;
2539         }
2540
2541         if (curr_state == QEDE_STATE_OPEN) {
2542                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2543                 if (rc)
2544                         goto err;
2545
2546                 qede_config_rx_mode(edev->ndev);
2547                 udp_tunnel_nic_reset_ntf(edev->ndev);
2548         }
2549
2550         edev->state = curr_state;
2551
2552         DP_NOTICE(edev, "Recovery handling is done\n");
2553
2554         return;
2555
2556 err:
2557         qede_recovery_failed(edev);
2558 }
2559
2560 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2561 {
2562         struct qed_dev *cdev = edev->cdev;
2563
2564         DP_NOTICE(edev,
2565                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2566                   edev->err_flags);
2567
2568         /* Get a call trace of the flow that led to the error */
2569         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2570
2571         /* Prevent HW attentions from being reasserted */
2572         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2573                 edev->ops->common->attn_clr_enable(cdev, true);
2574
2575         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2576 }
2577
2578 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2579 {
2580         struct qed_dev *cdev = edev->cdev;
2581
2582         DP_NOTICE(edev,
2583                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2584                   edev->err_flags);
2585
2586         /* Trigger a recovery process.
2587          * This is placed in the sleep requiring section just to make
2588          * sure it is the last one, and that all the other operations
2589          * were completed.
2590          */
2591         if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2592                 edev->ops->common->recovery_process(cdev);
2593
2594         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2595
2596         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2597 }
2598
2599 static void qede_set_hw_err_flags(struct qede_dev *edev,
2600                                   enum qed_hw_err_type err_type)
2601 {
2602         unsigned long err_flags = 0;
2603
2604         switch (err_type) {
2605         case QED_HW_ERR_DMAE_FAIL:
2606                 set_bit(QEDE_ERR_WARN, &err_flags);
2607                 fallthrough;
2608         case QED_HW_ERR_MFW_RESP_FAIL:
2609         case QED_HW_ERR_HW_ATTN:
2610         case QED_HW_ERR_RAMROD_FAIL:
2611         case QED_HW_ERR_FW_ASSERT:
2612                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2613                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2614                 break;
2615
2616         default:
2617                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2618                 break;
2619         }
2620
2621         edev->err_flags |= err_flags;
2622 }
2623
2624 static void qede_schedule_hw_err_handler(void *dev,
2625                                          enum qed_hw_err_type err_type)
2626 {
2627         struct qede_dev *edev = dev;
2628
2629         /* Fan failure cannot be masked by handling of another HW error or by a
2630          * concurrent recovery process.
2631          */
2632         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2633              edev->state == QEDE_STATE_RECOVERY) &&
2634              err_type != QED_HW_ERR_FAN_FAIL) {
2635                 DP_INFO(edev,
2636                         "Avoid scheduling an error handling while another HW error is being handled\n");
2637                 return;
2638         }
2639
2640         if (err_type >= QED_HW_ERR_LAST) {
2641                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2642                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2643                 return;
2644         }
2645
2646         qede_set_hw_err_flags(edev, err_type);
2647         qede_atomic_hw_err_handler(edev);
2648         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2649         schedule_delayed_work(&edev->sp_task, 0);
2650
2651         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2652 }
2653
2654 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2655 {
2656         struct netdev_queue *netdev_txq;
2657
2658         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2659         if (netif_xmit_stopped(netdev_txq))
2660                 return true;
2661
2662         return false;
2663 }
2664
2665 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2666 {
2667         struct qede_dev *edev = dev;
2668         struct netdev_hw_addr *ha;
2669         int i;
2670
2671         if (edev->ndev->features & NETIF_F_IP_CSUM)
2672                 data->feat_flags |= QED_TLV_IP_CSUM;
2673         if (edev->ndev->features & NETIF_F_TSO)
2674                 data->feat_flags |= QED_TLV_LSO;
2675
2676         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2677         eth_zero_addr(data->mac[1]);
2678         eth_zero_addr(data->mac[2]);
2679         /* Copy the first two UC macs */
2680         netif_addr_lock_bh(edev->ndev);
2681         i = 1;
2682         netdev_for_each_uc_addr(ha, edev->ndev) {
2683                 ether_addr_copy(data->mac[i++], ha->addr);
2684                 if (i == QED_TLV_MAC_COUNT)
2685                         break;
2686         }
2687
2688         netif_addr_unlock_bh(edev->ndev);
2689 }
2690
2691 static void qede_get_eth_tlv_data(void *dev, void *data)
2692 {
2693         struct qed_mfw_tlv_eth *etlv = data;
2694         struct qede_dev *edev = dev;
2695         struct qede_fastpath *fp;
2696         int i;
2697
2698         etlv->lso_maxoff_size = 0XFFFF;
2699         etlv->lso_maxoff_size_set = true;
2700         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2701         etlv->lso_minseg_size_set = true;
2702         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2703         etlv->prom_mode_set = true;
2704         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2705         etlv->tx_descr_size_set = true;
2706         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2707         etlv->rx_descr_size_set = true;
2708         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2709         etlv->iov_offload_set = true;
2710
2711         /* Fill information regarding queues; Should be done under the qede
2712          * lock to guarantee those don't change beneath our feet.
2713          */
2714         etlv->txqs_empty = true;
2715         etlv->rxqs_empty = true;
2716         etlv->num_txqs_full = 0;
2717         etlv->num_rxqs_full = 0;
2718
2719         __qede_lock(edev);
2720         for_each_queue(i) {
2721                 fp = &edev->fp_array[i];
2722                 if (fp->type & QEDE_FASTPATH_TX) {
2723                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2724
2725                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2726                                 etlv->txqs_empty = false;
2727                         if (qede_is_txq_full(edev, txq))
2728                                 etlv->num_txqs_full++;
2729                 }
2730                 if (fp->type & QEDE_FASTPATH_RX) {
2731                         if (qede_has_rx_work(fp->rxq))
2732                                 etlv->rxqs_empty = false;
2733
2734                         /* This one is a bit tricky; Firmware might stop
2735                          * placing packets if ring is not yet full.
2736                          * Give an approximation.
2737                          */
2738                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2739                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2740                             RX_RING_SIZE - 100)
2741                                 etlv->num_rxqs_full++;
2742                 }
2743         }
2744         __qede_unlock(edev);
2745
2746         etlv->txqs_empty_set = true;
2747         etlv->rxqs_empty_set = true;
2748         etlv->num_txqs_full_set = true;
2749         etlv->num_rxqs_full_set = true;
2750 }
2751
2752 /**
2753  * qede_io_error_detected - called when PCI error is detected
2754  * @pdev: Pointer to PCI device
2755  * @state: The current pci connection state
2756  *
2757  * This function is called after a PCI bus error affecting
2758  * this device has been detected.
2759  */
2760 static pci_ers_result_t
2761 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2762 {
2763         struct net_device *dev = pci_get_drvdata(pdev);
2764         struct qede_dev *edev = netdev_priv(dev);
2765
2766         if (!edev)
2767                 return PCI_ERS_RESULT_NONE;
2768
2769         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2770
2771         __qede_lock(edev);
2772         if (edev->state == QEDE_STATE_RECOVERY) {
2773                 DP_NOTICE(edev, "Device already in the recovery state\n");
2774                 __qede_unlock(edev);
2775                 return PCI_ERS_RESULT_NONE;
2776         }
2777
2778         /* PF handles the recovery of its VFs */
2779         if (IS_VF(edev)) {
2780                 DP_VERBOSE(edev, QED_MSG_IOV,
2781                            "VF recovery is handled by its PF\n");
2782                 __qede_unlock(edev);
2783                 return PCI_ERS_RESULT_RECOVERED;
2784         }
2785
2786         /* Close OS Tx */
2787         netif_tx_disable(edev->ndev);
2788         netif_carrier_off(edev->ndev);
2789
2790         set_bit(QEDE_SP_AER, &edev->sp_flags);
2791         schedule_delayed_work(&edev->sp_task, 0);
2792
2793         __qede_unlock(edev);
2794
2795         return PCI_ERS_RESULT_CAN_RECOVER;
2796 }
This page took 0.193583 seconds and 4 git commands to generate.