]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29                   "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31                   "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43 static struct igbvf_info igbvf_vf_info = {
44         .mac            = e1000_vfadapt,
45         .flags          = 0,
46         .pba            = 10,
47         .init_ops       = e1000_init_function_pointers_vf,
48 };
49
50 static struct igbvf_info igbvf_i350_vf_info = {
51         .mac            = e1000_vfadapt_i350,
52         .flags          = 0,
53         .pba            = 10,
54         .init_ops       = e1000_init_function_pointers_vf,
55 };
56
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58         [board_vf]      = &igbvf_vf_info,
59         [board_i350_vf] = &igbvf_i350_vf_info,
60 };
61
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @rx_ring: address of receive ring structure
65  **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68         if (ring->next_to_clean > ring->next_to_use)
69                 return ring->next_to_clean - ring->next_to_use - 1;
70
71         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @status: descriptor status field as written by hardware
78  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
79  * @skb: pointer to sk_buff to be indicated to stack
80  **/
81 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
82                               struct net_device *netdev,
83                               struct sk_buff *skb,
84                               u32 status, u16 vlan)
85 {
86         u16 vid;
87
88         if (status & E1000_RXD_STAT_VP) {
89                 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
90                     (status & E1000_RXDEXT_STATERR_LB))
91                         vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
92                 else
93                         vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94                 if (test_bit(vid, adapter->active_vlans))
95                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
96         }
97
98         napi_gro_receive(&adapter->rx_ring->napi, skb);
99 }
100
101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102                                          u32 status_err, struct sk_buff *skb)
103 {
104         skb_checksum_none_assert(skb);
105
106         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
107         if ((status_err & E1000_RXD_STAT_IXSM) ||
108             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
109                 return;
110
111         /* TCP/UDP checksum error bit is set */
112         if (status_err &
113             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114                 /* let the stack verify checksum errors */
115                 adapter->hw_csum_err++;
116                 return;
117         }
118
119         /* It must be a TCP or UDP packet with a valid checksum */
120         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121                 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123         adapter->hw_csum_good++;
124 }
125
126 /**
127  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128  * @rx_ring: address of ring structure to repopulate
129  * @cleaned_count: number of buffers to repopulate
130  **/
131 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132                                    int cleaned_count)
133 {
134         struct igbvf_adapter *adapter = rx_ring->adapter;
135         struct net_device *netdev = adapter->netdev;
136         struct pci_dev *pdev = adapter->pdev;
137         union e1000_adv_rx_desc *rx_desc;
138         struct igbvf_buffer *buffer_info;
139         struct sk_buff *skb;
140         unsigned int i;
141         int bufsz;
142
143         i = rx_ring->next_to_use;
144         buffer_info = &rx_ring->buffer_info[i];
145
146         if (adapter->rx_ps_hdr_size)
147                 bufsz = adapter->rx_ps_hdr_size;
148         else
149                 bufsz = adapter->rx_buffer_len;
150
151         while (cleaned_count--) {
152                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
153
154                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155                         if (!buffer_info->page) {
156                                 buffer_info->page = alloc_page(GFP_ATOMIC);
157                                 if (!buffer_info->page) {
158                                         adapter->alloc_rx_buff_failed++;
159                                         goto no_buffers;
160                                 }
161                                 buffer_info->page_offset = 0;
162                         } else {
163                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
164                         }
165                         buffer_info->page_dma =
166                                 dma_map_page(&pdev->dev, buffer_info->page,
167                                              buffer_info->page_offset,
168                                              PAGE_SIZE / 2,
169                                              DMA_FROM_DEVICE);
170                         if (dma_mapping_error(&pdev->dev,
171                                               buffer_info->page_dma)) {
172                                 __free_page(buffer_info->page);
173                                 buffer_info->page = NULL;
174                                 dev_err(&pdev->dev, "RX DMA map failed\n");
175                                 break;
176                         }
177                 }
178
179                 if (!buffer_info->skb) {
180                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
181                         if (!skb) {
182                                 adapter->alloc_rx_buff_failed++;
183                                 goto no_buffers;
184                         }
185
186                         buffer_info->skb = skb;
187                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
188                                                           bufsz,
189                                                           DMA_FROM_DEVICE);
190                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
191                                 dev_kfree_skb(buffer_info->skb);
192                                 buffer_info->skb = NULL;
193                                 dev_err(&pdev->dev, "RX DMA map failed\n");
194                                 goto no_buffers;
195                         }
196                 }
197                 /* Refresh the desc even if buffer_addrs didn't change because
198                  * each write-back erases this info.
199                  */
200                 if (adapter->rx_ps_hdr_size) {
201                         rx_desc->read.pkt_addr =
202                              cpu_to_le64(buffer_info->page_dma);
203                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
204                 } else {
205                         rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
206                         rx_desc->read.hdr_addr = 0;
207                 }
208
209                 i++;
210                 if (i == rx_ring->count)
211                         i = 0;
212                 buffer_info = &rx_ring->buffer_info[i];
213         }
214
215 no_buffers:
216         if (rx_ring->next_to_use != i) {
217                 rx_ring->next_to_use = i;
218                 if (i == 0)
219                         i = (rx_ring->count - 1);
220                 else
221                         i--;
222
223                 /* Force memory writes to complete before letting h/w
224                  * know there are new descriptors to fetch.  (Only
225                  * applicable for weak-ordered memory model archs,
226                  * such as IA-64).
227                 */
228                 wmb();
229                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230         }
231 }
232
233 /**
234  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
235  * @adapter: board private structure
236  *
237  * the return value indicates whether actual cleaning was done, there
238  * is no guarantee that everything was cleaned
239  **/
240 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
241                                int *work_done, int work_to_do)
242 {
243         struct igbvf_ring *rx_ring = adapter->rx_ring;
244         struct net_device *netdev = adapter->netdev;
245         struct pci_dev *pdev = adapter->pdev;
246         union e1000_adv_rx_desc *rx_desc, *next_rxd;
247         struct igbvf_buffer *buffer_info, *next_buffer;
248         struct sk_buff *skb;
249         bool cleaned = false;
250         int cleaned_count = 0;
251         unsigned int total_bytes = 0, total_packets = 0;
252         unsigned int i;
253         u32 length, hlen, staterr;
254
255         i = rx_ring->next_to_clean;
256         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
257         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
258
259         while (staterr & E1000_RXD_STAT_DD) {
260                 if (*work_done >= work_to_do)
261                         break;
262                 (*work_done)++;
263                 rmb(); /* read descriptor and rx_buffer_info after status DD */
264
265                 buffer_info = &rx_ring->buffer_info[i];
266
267                 /* HW will not DMA in data larger than the given buffer, even
268                  * if it parses the (NFS, of course) header to be larger.  In
269                  * that case, it fills the header buffer and spills the rest
270                  * into the page.
271                  */
272                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
273                        & E1000_RXDADV_HDRBUFLEN_MASK) >>
274                        E1000_RXDADV_HDRBUFLEN_SHIFT;
275                 if (hlen > adapter->rx_ps_hdr_size)
276                         hlen = adapter->rx_ps_hdr_size;
277
278                 length = le16_to_cpu(rx_desc->wb.upper.length);
279                 cleaned = true;
280                 cleaned_count++;
281
282                 skb = buffer_info->skb;
283                 prefetch(skb->data - NET_IP_ALIGN);
284                 buffer_info->skb = NULL;
285                 if (!adapter->rx_ps_hdr_size) {
286                         dma_unmap_single(&pdev->dev, buffer_info->dma,
287                                          adapter->rx_buffer_len,
288                                          DMA_FROM_DEVICE);
289                         buffer_info->dma = 0;
290                         skb_put(skb, length);
291                         goto send_up;
292                 }
293
294                 if (!skb_shinfo(skb)->nr_frags) {
295                         dma_unmap_single(&pdev->dev, buffer_info->dma,
296                                          adapter->rx_ps_hdr_size,
297                                          DMA_FROM_DEVICE);
298                         buffer_info->dma = 0;
299                         skb_put(skb, hlen);
300                 }
301
302                 if (length) {
303                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
304                                        PAGE_SIZE / 2,
305                                        DMA_FROM_DEVICE);
306                         buffer_info->page_dma = 0;
307
308                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
309                                            buffer_info->page,
310                                            buffer_info->page_offset,
311                                            length);
312
313                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
314                             (page_count(buffer_info->page) != 1))
315                                 buffer_info->page = NULL;
316                         else
317                                 get_page(buffer_info->page);
318
319                         skb->len += length;
320                         skb->data_len += length;
321                         skb->truesize += PAGE_SIZE / 2;
322                 }
323 send_up:
324                 i++;
325                 if (i == rx_ring->count)
326                         i = 0;
327                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
328                 prefetch(next_rxd);
329                 next_buffer = &rx_ring->buffer_info[i];
330
331                 if (!(staterr & E1000_RXD_STAT_EOP)) {
332                         buffer_info->skb = next_buffer->skb;
333                         buffer_info->dma = next_buffer->dma;
334                         next_buffer->skb = skb;
335                         next_buffer->dma = 0;
336                         goto next_desc;
337                 }
338
339                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
340                         dev_kfree_skb_irq(skb);
341                         goto next_desc;
342                 }
343
344                 total_bytes += skb->len;
345                 total_packets++;
346
347                 igbvf_rx_checksum_adv(adapter, staterr, skb);
348
349                 skb->protocol = eth_type_trans(skb, netdev);
350
351                 igbvf_receive_skb(adapter, netdev, skb, staterr,
352                                   rx_desc->wb.upper.vlan);
353
354 next_desc:
355                 rx_desc->wb.upper.status_error = 0;
356
357                 /* return some buffers to hardware, one at a time is too slow */
358                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
359                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
360                         cleaned_count = 0;
361                 }
362
363                 /* use prefetched values */
364                 rx_desc = next_rxd;
365                 buffer_info = next_buffer;
366
367                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
368         }
369
370         rx_ring->next_to_clean = i;
371         cleaned_count = igbvf_desc_unused(rx_ring);
372
373         if (cleaned_count)
374                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
375
376         adapter->total_rx_packets += total_packets;
377         adapter->total_rx_bytes += total_bytes;
378         netdev->stats.rx_bytes += total_bytes;
379         netdev->stats.rx_packets += total_packets;
380         return cleaned;
381 }
382
383 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
384                             struct igbvf_buffer *buffer_info)
385 {
386         if (buffer_info->dma) {
387                 if (buffer_info->mapped_as_page)
388                         dma_unmap_page(&adapter->pdev->dev,
389                                        buffer_info->dma,
390                                        buffer_info->length,
391                                        DMA_TO_DEVICE);
392                 else
393                         dma_unmap_single(&adapter->pdev->dev,
394                                          buffer_info->dma,
395                                          buffer_info->length,
396                                          DMA_TO_DEVICE);
397                 buffer_info->dma = 0;
398         }
399         if (buffer_info->skb) {
400                 dev_kfree_skb_any(buffer_info->skb);
401                 buffer_info->skb = NULL;
402         }
403         buffer_info->time_stamp = 0;
404 }
405
406 /**
407  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
408  * @adapter: board private structure
409  *
410  * Return 0 on success, negative on failure
411  **/
412 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
413                              struct igbvf_ring *tx_ring)
414 {
415         struct pci_dev *pdev = adapter->pdev;
416         int size;
417
418         size = sizeof(struct igbvf_buffer) * tx_ring->count;
419         tx_ring->buffer_info = vzalloc(size);
420         if (!tx_ring->buffer_info)
421                 goto err;
422
423         /* round up to nearest 4K */
424         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
425         tx_ring->size = ALIGN(tx_ring->size, 4096);
426
427         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
428                                            &tx_ring->dma, GFP_KERNEL);
429         if (!tx_ring->desc)
430                 goto err;
431
432         tx_ring->adapter = adapter;
433         tx_ring->next_to_use = 0;
434         tx_ring->next_to_clean = 0;
435
436         return 0;
437 err:
438         vfree(tx_ring->buffer_info);
439         dev_err(&adapter->pdev->dev,
440                 "Unable to allocate memory for the transmit descriptor ring\n");
441         return -ENOMEM;
442 }
443
444 /**
445  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
446  * @adapter: board private structure
447  *
448  * Returns 0 on success, negative on failure
449  **/
450 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
451                              struct igbvf_ring *rx_ring)
452 {
453         struct pci_dev *pdev = adapter->pdev;
454         int size, desc_len;
455
456         size = sizeof(struct igbvf_buffer) * rx_ring->count;
457         rx_ring->buffer_info = vzalloc(size);
458         if (!rx_ring->buffer_info)
459                 goto err;
460
461         desc_len = sizeof(union e1000_adv_rx_desc);
462
463         /* Round up to nearest 4K */
464         rx_ring->size = rx_ring->count * desc_len;
465         rx_ring->size = ALIGN(rx_ring->size, 4096);
466
467         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
468                                            &rx_ring->dma, GFP_KERNEL);
469         if (!rx_ring->desc)
470                 goto err;
471
472         rx_ring->next_to_clean = 0;
473         rx_ring->next_to_use = 0;
474
475         rx_ring->adapter = adapter;
476
477         return 0;
478
479 err:
480         vfree(rx_ring->buffer_info);
481         rx_ring->buffer_info = NULL;
482         dev_err(&adapter->pdev->dev,
483                 "Unable to allocate memory for the receive descriptor ring\n");
484         return -ENOMEM;
485 }
486
487 /**
488  * igbvf_clean_tx_ring - Free Tx Buffers
489  * @tx_ring: ring to be cleaned
490  **/
491 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
492 {
493         struct igbvf_adapter *adapter = tx_ring->adapter;
494         struct igbvf_buffer *buffer_info;
495         unsigned long size;
496         unsigned int i;
497
498         if (!tx_ring->buffer_info)
499                 return;
500
501         /* Free all the Tx ring sk_buffs */
502         for (i = 0; i < tx_ring->count; i++) {
503                 buffer_info = &tx_ring->buffer_info[i];
504                 igbvf_put_txbuf(adapter, buffer_info);
505         }
506
507         size = sizeof(struct igbvf_buffer) * tx_ring->count;
508         memset(tx_ring->buffer_info, 0, size);
509
510         /* Zero out the descriptor ring */
511         memset(tx_ring->desc, 0, tx_ring->size);
512
513         tx_ring->next_to_use = 0;
514         tx_ring->next_to_clean = 0;
515
516         writel(0, adapter->hw.hw_addr + tx_ring->head);
517         writel(0, adapter->hw.hw_addr + tx_ring->tail);
518 }
519
520 /**
521  * igbvf_free_tx_resources - Free Tx Resources per Queue
522  * @tx_ring: ring to free resources from
523  *
524  * Free all transmit software resources
525  **/
526 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
527 {
528         struct pci_dev *pdev = tx_ring->adapter->pdev;
529
530         igbvf_clean_tx_ring(tx_ring);
531
532         vfree(tx_ring->buffer_info);
533         tx_ring->buffer_info = NULL;
534
535         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
536                           tx_ring->dma);
537
538         tx_ring->desc = NULL;
539 }
540
541 /**
542  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
543  * @adapter: board private structure
544  **/
545 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
546 {
547         struct igbvf_adapter *adapter = rx_ring->adapter;
548         struct igbvf_buffer *buffer_info;
549         struct pci_dev *pdev = adapter->pdev;
550         unsigned long size;
551         unsigned int i;
552
553         if (!rx_ring->buffer_info)
554                 return;
555
556         /* Free all the Rx ring sk_buffs */
557         for (i = 0; i < rx_ring->count; i++) {
558                 buffer_info = &rx_ring->buffer_info[i];
559                 if (buffer_info->dma) {
560                         if (adapter->rx_ps_hdr_size) {
561                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
562                                                  adapter->rx_ps_hdr_size,
563                                                  DMA_FROM_DEVICE);
564                         } else {
565                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
566                                                  adapter->rx_buffer_len,
567                                                  DMA_FROM_DEVICE);
568                         }
569                         buffer_info->dma = 0;
570                 }
571
572                 if (buffer_info->skb) {
573                         dev_kfree_skb(buffer_info->skb);
574                         buffer_info->skb = NULL;
575                 }
576
577                 if (buffer_info->page) {
578                         if (buffer_info->page_dma)
579                                 dma_unmap_page(&pdev->dev,
580                                                buffer_info->page_dma,
581                                                PAGE_SIZE / 2,
582                                                DMA_FROM_DEVICE);
583                         put_page(buffer_info->page);
584                         buffer_info->page = NULL;
585                         buffer_info->page_dma = 0;
586                         buffer_info->page_offset = 0;
587                 }
588         }
589
590         size = sizeof(struct igbvf_buffer) * rx_ring->count;
591         memset(rx_ring->buffer_info, 0, size);
592
593         /* Zero out the descriptor ring */
594         memset(rx_ring->desc, 0, rx_ring->size);
595
596         rx_ring->next_to_clean = 0;
597         rx_ring->next_to_use = 0;
598
599         writel(0, adapter->hw.hw_addr + rx_ring->head);
600         writel(0, adapter->hw.hw_addr + rx_ring->tail);
601 }
602
603 /**
604  * igbvf_free_rx_resources - Free Rx Resources
605  * @rx_ring: ring to clean the resources from
606  *
607  * Free all receive software resources
608  **/
609
610 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
611 {
612         struct pci_dev *pdev = rx_ring->adapter->pdev;
613
614         igbvf_clean_rx_ring(rx_ring);
615
616         vfree(rx_ring->buffer_info);
617         rx_ring->buffer_info = NULL;
618
619         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
620                           rx_ring->dma);
621         rx_ring->desc = NULL;
622 }
623
624 /**
625  * igbvf_update_itr - update the dynamic ITR value based on statistics
626  * @adapter: pointer to adapter
627  * @itr_setting: current adapter->itr
628  * @packets: the number of packets during this measurement interval
629  * @bytes: the number of bytes during this measurement interval
630  *
631  * Stores a new ITR value based on packets and byte counts during the last
632  * interrupt.  The advantage of per interrupt computation is faster updates
633  * and more accurate ITR for the current traffic pattern.  Constants in this
634  * function were computed based on theoretical maximum wire speed and thresholds
635  * were set based on testing data as well as attempting to minimize response
636  * time while increasing bulk throughput.
637  **/
638 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
639                                            enum latency_range itr_setting,
640                                            int packets, int bytes)
641 {
642         enum latency_range retval = itr_setting;
643
644         if (packets == 0)
645                 goto update_itr_done;
646
647         switch (itr_setting) {
648         case lowest_latency:
649                 /* handle TSO and jumbo frames */
650                 if (bytes/packets > 8000)
651                         retval = bulk_latency;
652                 else if ((packets < 5) && (bytes > 512))
653                         retval = low_latency;
654                 break;
655         case low_latency:  /* 50 usec aka 20000 ints/s */
656                 if (bytes > 10000) {
657                         /* this if handles the TSO accounting */
658                         if (bytes/packets > 8000)
659                                 retval = bulk_latency;
660                         else if ((packets < 10) || ((bytes/packets) > 1200))
661                                 retval = bulk_latency;
662                         else if ((packets > 35))
663                                 retval = lowest_latency;
664                 } else if (bytes/packets > 2000) {
665                         retval = bulk_latency;
666                 } else if (packets <= 2 && bytes < 512) {
667                         retval = lowest_latency;
668                 }
669                 break;
670         case bulk_latency: /* 250 usec aka 4000 ints/s */
671                 if (bytes > 25000) {
672                         if (packets > 35)
673                                 retval = low_latency;
674                 } else if (bytes < 6000) {
675                         retval = low_latency;
676                 }
677                 break;
678         default:
679                 break;
680         }
681
682 update_itr_done:
683         return retval;
684 }
685
686 static int igbvf_range_to_itr(enum latency_range current_range)
687 {
688         int new_itr;
689
690         switch (current_range) {
691         /* counts and packets in update_itr are dependent on these numbers */
692         case lowest_latency:
693                 new_itr = IGBVF_70K_ITR;
694                 break;
695         case low_latency:
696                 new_itr = IGBVF_20K_ITR;
697                 break;
698         case bulk_latency:
699                 new_itr = IGBVF_4K_ITR;
700                 break;
701         default:
702                 new_itr = IGBVF_START_ITR;
703                 break;
704         }
705         return new_itr;
706 }
707
708 static void igbvf_set_itr(struct igbvf_adapter *adapter)
709 {
710         u32 new_itr;
711
712         adapter->tx_ring->itr_range =
713                         igbvf_update_itr(adapter,
714                                          adapter->tx_ring->itr_val,
715                                          adapter->total_tx_packets,
716                                          adapter->total_tx_bytes);
717
718         /* conservative mode (itr 3) eliminates the lowest_latency setting */
719         if (adapter->requested_itr == 3 &&
720             adapter->tx_ring->itr_range == lowest_latency)
721                 adapter->tx_ring->itr_range = low_latency;
722
723         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
724
725         if (new_itr != adapter->tx_ring->itr_val) {
726                 u32 current_itr = adapter->tx_ring->itr_val;
727                 /* this attempts to bias the interrupt rate towards Bulk
728                  * by adding intermediate steps when interrupt rate is
729                  * increasing
730                  */
731                 new_itr = new_itr > current_itr ?
732                           min(current_itr + (new_itr >> 2), new_itr) :
733                           new_itr;
734                 adapter->tx_ring->itr_val = new_itr;
735
736                 adapter->tx_ring->set_itr = 1;
737         }
738
739         adapter->rx_ring->itr_range =
740                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
741                                          adapter->total_rx_packets,
742                                          adapter->total_rx_bytes);
743         if (adapter->requested_itr == 3 &&
744             adapter->rx_ring->itr_range == lowest_latency)
745                 adapter->rx_ring->itr_range = low_latency;
746
747         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
748
749         if (new_itr != adapter->rx_ring->itr_val) {
750                 u32 current_itr = adapter->rx_ring->itr_val;
751
752                 new_itr = new_itr > current_itr ?
753                           min(current_itr + (new_itr >> 2), new_itr) :
754                           new_itr;
755                 adapter->rx_ring->itr_val = new_itr;
756
757                 adapter->rx_ring->set_itr = 1;
758         }
759 }
760
761 /**
762  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
763  * @adapter: board private structure
764  *
765  * returns true if ring is completely cleaned
766  **/
767 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
768 {
769         struct igbvf_adapter *adapter = tx_ring->adapter;
770         struct net_device *netdev = adapter->netdev;
771         struct igbvf_buffer *buffer_info;
772         struct sk_buff *skb;
773         union e1000_adv_tx_desc *tx_desc, *eop_desc;
774         unsigned int total_bytes = 0, total_packets = 0;
775         unsigned int i, count = 0;
776         bool cleaned = false;
777
778         i = tx_ring->next_to_clean;
779         buffer_info = &tx_ring->buffer_info[i];
780         eop_desc = buffer_info->next_to_watch;
781
782         do {
783                 /* if next_to_watch is not set then there is no work pending */
784                 if (!eop_desc)
785                         break;
786
787                 /* prevent any other reads prior to eop_desc */
788                 smp_rmb();
789
790                 /* if DD is not set pending work has not been completed */
791                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
792                         break;
793
794                 /* clear next_to_watch to prevent false hangs */
795                 buffer_info->next_to_watch = NULL;
796
797                 for (cleaned = false; !cleaned; count++) {
798                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
799                         cleaned = (tx_desc == eop_desc);
800                         skb = buffer_info->skb;
801
802                         if (skb) {
803                                 unsigned int segs, bytecount;
804
805                                 /* gso_segs is currently only valid for tcp */
806                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
807                                 /* multiply data chunks by size of headers */
808                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
809                                             skb->len;
810                                 total_packets += segs;
811                                 total_bytes += bytecount;
812                         }
813
814                         igbvf_put_txbuf(adapter, buffer_info);
815                         tx_desc->wb.status = 0;
816
817                         i++;
818                         if (i == tx_ring->count)
819                                 i = 0;
820
821                         buffer_info = &tx_ring->buffer_info[i];
822                 }
823
824                 eop_desc = buffer_info->next_to_watch;
825         } while (count < tx_ring->count);
826
827         tx_ring->next_to_clean = i;
828
829         if (unlikely(count && netif_carrier_ok(netdev) &&
830             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
831                 /* Make sure that anybody stopping the queue after this
832                  * sees the new next_to_clean.
833                  */
834                 smp_mb();
835                 if (netif_queue_stopped(netdev) &&
836                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
837                         netif_wake_queue(netdev);
838                         ++adapter->restart_queue;
839                 }
840         }
841
842         netdev->stats.tx_bytes += total_bytes;
843         netdev->stats.tx_packets += total_packets;
844         return count < tx_ring->count;
845 }
846
847 static irqreturn_t igbvf_msix_other(int irq, void *data)
848 {
849         struct net_device *netdev = data;
850         struct igbvf_adapter *adapter = netdev_priv(netdev);
851         struct e1000_hw *hw = &adapter->hw;
852
853         adapter->int_counter1++;
854
855         hw->mac.get_link_status = 1;
856         if (!test_bit(__IGBVF_DOWN, &adapter->state))
857                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
858
859         ew32(EIMS, adapter->eims_other);
860
861         return IRQ_HANDLED;
862 }
863
864 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
865 {
866         struct net_device *netdev = data;
867         struct igbvf_adapter *adapter = netdev_priv(netdev);
868         struct e1000_hw *hw = &adapter->hw;
869         struct igbvf_ring *tx_ring = adapter->tx_ring;
870
871         if (tx_ring->set_itr) {
872                 writel(tx_ring->itr_val,
873                        adapter->hw.hw_addr + tx_ring->itr_register);
874                 adapter->tx_ring->set_itr = 0;
875         }
876
877         adapter->total_tx_bytes = 0;
878         adapter->total_tx_packets = 0;
879
880         /* auto mask will automatically re-enable the interrupt when we write
881          * EICS
882          */
883         if (!igbvf_clean_tx_irq(tx_ring))
884                 /* Ring was not completely cleaned, so fire another interrupt */
885                 ew32(EICS, tx_ring->eims_value);
886         else
887                 ew32(EIMS, tx_ring->eims_value);
888
889         return IRQ_HANDLED;
890 }
891
892 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
893 {
894         struct net_device *netdev = data;
895         struct igbvf_adapter *adapter = netdev_priv(netdev);
896
897         adapter->int_counter0++;
898
899         /* Write the ITR value calculated at the end of the
900          * previous interrupt.
901          */
902         if (adapter->rx_ring->set_itr) {
903                 writel(adapter->rx_ring->itr_val,
904                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
905                 adapter->rx_ring->set_itr = 0;
906         }
907
908         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
909                 adapter->total_rx_bytes = 0;
910                 adapter->total_rx_packets = 0;
911                 __napi_schedule(&adapter->rx_ring->napi);
912         }
913
914         return IRQ_HANDLED;
915 }
916
917 #define IGBVF_NO_QUEUE -1
918
919 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
920                                 int tx_queue, int msix_vector)
921 {
922         struct e1000_hw *hw = &adapter->hw;
923         u32 ivar, index;
924
925         /* 82576 uses a table-based method for assigning vectors.
926          * Each queue has a single entry in the table to which we write
927          * a vector number along with a "valid" bit.  Sadly, the layout
928          * of the table is somewhat counterintuitive.
929          */
930         if (rx_queue > IGBVF_NO_QUEUE) {
931                 index = (rx_queue >> 1);
932                 ivar = array_er32(IVAR0, index);
933                 if (rx_queue & 0x1) {
934                         /* vector goes into third byte of register */
935                         ivar = ivar & 0xFF00FFFF;
936                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
937                 } else {
938                         /* vector goes into low byte of register */
939                         ivar = ivar & 0xFFFFFF00;
940                         ivar |= msix_vector | E1000_IVAR_VALID;
941                 }
942                 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
943                 array_ew32(IVAR0, index, ivar);
944         }
945         if (tx_queue > IGBVF_NO_QUEUE) {
946                 index = (tx_queue >> 1);
947                 ivar = array_er32(IVAR0, index);
948                 if (tx_queue & 0x1) {
949                         /* vector goes into high byte of register */
950                         ivar = ivar & 0x00FFFFFF;
951                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
952                 } else {
953                         /* vector goes into second byte of register */
954                         ivar = ivar & 0xFFFF00FF;
955                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
956                 }
957                 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
958                 array_ew32(IVAR0, index, ivar);
959         }
960 }
961
962 /**
963  * igbvf_configure_msix - Configure MSI-X hardware
964  * @adapter: board private structure
965  *
966  * igbvf_configure_msix sets up the hardware to properly
967  * generate MSI-X interrupts.
968  **/
969 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
970 {
971         u32 tmp;
972         struct e1000_hw *hw = &adapter->hw;
973         struct igbvf_ring *tx_ring = adapter->tx_ring;
974         struct igbvf_ring *rx_ring = adapter->rx_ring;
975         int vector = 0;
976
977         adapter->eims_enable_mask = 0;
978
979         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
980         adapter->eims_enable_mask |= tx_ring->eims_value;
981         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
982         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
983         adapter->eims_enable_mask |= rx_ring->eims_value;
984         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
985
986         /* set vector for other causes, i.e. link changes */
987
988         tmp = (vector++ | E1000_IVAR_VALID);
989
990         ew32(IVAR_MISC, tmp);
991
992         adapter->eims_enable_mask = GENMASK(vector - 1, 0);
993         adapter->eims_other = BIT(vector - 1);
994         e1e_flush();
995 }
996
997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
998 {
999         if (adapter->msix_entries) {
1000                 pci_disable_msix(adapter->pdev);
1001                 kfree(adapter->msix_entries);
1002                 adapter->msix_entries = NULL;
1003         }
1004 }
1005
1006 /**
1007  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008  * @adapter: board private structure
1009  *
1010  * Attempt to configure interrupts using the best available
1011  * capabilities of the hardware and kernel.
1012  **/
1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1014 {
1015         int err = -ENOMEM;
1016         int i;
1017
1018         /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1019         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1020                                         GFP_KERNEL);
1021         if (adapter->msix_entries) {
1022                 for (i = 0; i < 3; i++)
1023                         adapter->msix_entries[i].entry = i;
1024
1025                 err = pci_enable_msix_range(adapter->pdev,
1026                                             adapter->msix_entries, 3, 3);
1027         }
1028
1029         if (err < 0) {
1030                 /* MSI-X failed */
1031                 dev_err(&adapter->pdev->dev,
1032                         "Failed to initialize MSI-X interrupts.\n");
1033                 igbvf_reset_interrupt_capability(adapter);
1034         }
1035 }
1036
1037 /**
1038  * igbvf_request_msix - Initialize MSI-X interrupts
1039  * @adapter: board private structure
1040  *
1041  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1042  * kernel.
1043  **/
1044 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1045 {
1046         struct net_device *netdev = adapter->netdev;
1047         int err = 0, vector = 0;
1048
1049         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1050                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1051                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1052         } else {
1053                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1054                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1055         }
1056
1057         err = request_irq(adapter->msix_entries[vector].vector,
1058                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1059                           netdev);
1060         if (err)
1061                 goto out;
1062
1063         adapter->tx_ring->itr_register = E1000_EITR(vector);
1064         adapter->tx_ring->itr_val = adapter->current_itr;
1065         vector++;
1066
1067         err = request_irq(adapter->msix_entries[vector].vector,
1068                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1069                           netdev);
1070         if (err)
1071                 goto out;
1072
1073         adapter->rx_ring->itr_register = E1000_EITR(vector);
1074         adapter->rx_ring->itr_val = adapter->current_itr;
1075         vector++;
1076
1077         err = request_irq(adapter->msix_entries[vector].vector,
1078                           igbvf_msix_other, 0, netdev->name, netdev);
1079         if (err)
1080                 goto out;
1081
1082         igbvf_configure_msix(adapter);
1083         return 0;
1084 out:
1085         return err;
1086 }
1087
1088 /**
1089  * igbvf_alloc_queues - Allocate memory for all rings
1090  * @adapter: board private structure to initialize
1091  **/
1092 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1093 {
1094         struct net_device *netdev = adapter->netdev;
1095
1096         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1097         if (!adapter->tx_ring)
1098                 return -ENOMEM;
1099
1100         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1101         if (!adapter->rx_ring) {
1102                 kfree(adapter->tx_ring);
1103                 return -ENOMEM;
1104         }
1105
1106         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1107
1108         return 0;
1109 }
1110
1111 /**
1112  * igbvf_request_irq - initialize interrupts
1113  * @adapter: board private structure
1114  *
1115  * Attempts to configure interrupts using the best available
1116  * capabilities of the hardware and kernel.
1117  **/
1118 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1119 {
1120         int err = -1;
1121
1122         /* igbvf supports msi-x only */
1123         if (adapter->msix_entries)
1124                 err = igbvf_request_msix(adapter);
1125
1126         if (!err)
1127                 return err;
1128
1129         dev_err(&adapter->pdev->dev,
1130                 "Unable to allocate interrupt, Error: %d\n", err);
1131
1132         return err;
1133 }
1134
1135 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1136 {
1137         struct net_device *netdev = adapter->netdev;
1138         int vector;
1139
1140         if (adapter->msix_entries) {
1141                 for (vector = 0; vector < 3; vector++)
1142                         free_irq(adapter->msix_entries[vector].vector, netdev);
1143         }
1144 }
1145
1146 /**
1147  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1148  * @adapter: board private structure
1149  **/
1150 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1151 {
1152         struct e1000_hw *hw = &adapter->hw;
1153
1154         ew32(EIMC, ~0);
1155
1156         if (adapter->msix_entries)
1157                 ew32(EIAC, 0);
1158 }
1159
1160 /**
1161  * igbvf_irq_enable - Enable default interrupt generation settings
1162  * @adapter: board private structure
1163  **/
1164 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1165 {
1166         struct e1000_hw *hw = &adapter->hw;
1167
1168         ew32(EIAC, adapter->eims_enable_mask);
1169         ew32(EIAM, adapter->eims_enable_mask);
1170         ew32(EIMS, adapter->eims_enable_mask);
1171 }
1172
1173 /**
1174  * igbvf_poll - NAPI Rx polling callback
1175  * @napi: struct associated with this polling callback
1176  * @budget: amount of packets driver is allowed to process this poll
1177  **/
1178 static int igbvf_poll(struct napi_struct *napi, int budget)
1179 {
1180         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1181         struct igbvf_adapter *adapter = rx_ring->adapter;
1182         struct e1000_hw *hw = &adapter->hw;
1183         int work_done = 0;
1184
1185         igbvf_clean_rx_irq(adapter, &work_done, budget);
1186
1187         if (work_done == budget)
1188                 return budget;
1189
1190         /* Exit the polling mode, but don't re-enable interrupts if stack might
1191          * poll us due to busy-polling
1192          */
1193         if (likely(napi_complete_done(napi, work_done))) {
1194                 if (adapter->requested_itr & 3)
1195                         igbvf_set_itr(adapter);
1196
1197                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1198                         ew32(EIMS, adapter->rx_ring->eims_value);
1199         }
1200
1201         return work_done;
1202 }
1203
1204 /**
1205  * igbvf_set_rlpml - set receive large packet maximum length
1206  * @adapter: board private structure
1207  *
1208  * Configure the maximum size of packets that will be received
1209  */
1210 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1211 {
1212         int max_frame_size;
1213         struct e1000_hw *hw = &adapter->hw;
1214
1215         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1216
1217         spin_lock_bh(&hw->mbx_lock);
1218
1219         e1000_rlpml_set_vf(hw, max_frame_size);
1220
1221         spin_unlock_bh(&hw->mbx_lock);
1222 }
1223
1224 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1225                                  __be16 proto, u16 vid)
1226 {
1227         struct igbvf_adapter *adapter = netdev_priv(netdev);
1228         struct e1000_hw *hw = &adapter->hw;
1229
1230         spin_lock_bh(&hw->mbx_lock);
1231
1232         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1233                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1234                 spin_unlock_bh(&hw->mbx_lock);
1235                 return -EINVAL;
1236         }
1237
1238         spin_unlock_bh(&hw->mbx_lock);
1239
1240         set_bit(vid, adapter->active_vlans);
1241         return 0;
1242 }
1243
1244 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1245                                   __be16 proto, u16 vid)
1246 {
1247         struct igbvf_adapter *adapter = netdev_priv(netdev);
1248         struct e1000_hw *hw = &adapter->hw;
1249
1250         spin_lock_bh(&hw->mbx_lock);
1251
1252         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1253                 dev_err(&adapter->pdev->dev,
1254                         "Failed to remove vlan id %d\n", vid);
1255                 spin_unlock_bh(&hw->mbx_lock);
1256                 return -EINVAL;
1257         }
1258
1259         spin_unlock_bh(&hw->mbx_lock);
1260
1261         clear_bit(vid, adapter->active_vlans);
1262         return 0;
1263 }
1264
1265 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1266 {
1267         u16 vid;
1268
1269         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1270                 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1271 }
1272
1273 /**
1274  * igbvf_configure_tx - Configure Transmit Unit after Reset
1275  * @adapter: board private structure
1276  *
1277  * Configure the Tx unit of the MAC after a reset.
1278  **/
1279 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1280 {
1281         struct e1000_hw *hw = &adapter->hw;
1282         struct igbvf_ring *tx_ring = adapter->tx_ring;
1283         u64 tdba;
1284         u32 txdctl, dca_txctrl;
1285
1286         /* disable transmits */
1287         txdctl = er32(TXDCTL(0));
1288         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1289         e1e_flush();
1290         msleep(10);
1291
1292         /* Setup the HW Tx Head and Tail descriptor pointers */
1293         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1294         tdba = tx_ring->dma;
1295         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1296         ew32(TDBAH(0), (tdba >> 32));
1297         ew32(TDH(0), 0);
1298         ew32(TDT(0), 0);
1299         tx_ring->head = E1000_TDH(0);
1300         tx_ring->tail = E1000_TDT(0);
1301
1302         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1303          * MUST be delivered in order or it will completely screw up
1304          * our bookkeeping.
1305          */
1306         dca_txctrl = er32(DCA_TXCTRL(0));
1307         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1308         ew32(DCA_TXCTRL(0), dca_txctrl);
1309
1310         /* enable transmits */
1311         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1312         ew32(TXDCTL(0), txdctl);
1313
1314         /* Setup Transmit Descriptor Settings for eop descriptor */
1315         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1316
1317         /* enable Report Status bit */
1318         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1319 }
1320
1321 /**
1322  * igbvf_setup_srrctl - configure the receive control registers
1323  * @adapter: Board private structure
1324  **/
1325 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1326 {
1327         struct e1000_hw *hw = &adapter->hw;
1328         u32 srrctl = 0;
1329
1330         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1331                     E1000_SRRCTL_BSIZEHDR_MASK |
1332                     E1000_SRRCTL_BSIZEPKT_MASK);
1333
1334         /* Enable queue drop to avoid head of line blocking */
1335         srrctl |= E1000_SRRCTL_DROP_EN;
1336
1337         /* Setup buffer sizes */
1338         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1339                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1340
1341         if (adapter->rx_buffer_len < 2048) {
1342                 adapter->rx_ps_hdr_size = 0;
1343                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1344         } else {
1345                 adapter->rx_ps_hdr_size = 128;
1346                 srrctl |= adapter->rx_ps_hdr_size <<
1347                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1348                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1349         }
1350
1351         ew32(SRRCTL(0), srrctl);
1352 }
1353
1354 /**
1355  * igbvf_configure_rx - Configure Receive Unit after Reset
1356  * @adapter: board private structure
1357  *
1358  * Configure the Rx unit of the MAC after a reset.
1359  **/
1360 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1361 {
1362         struct e1000_hw *hw = &adapter->hw;
1363         struct igbvf_ring *rx_ring = adapter->rx_ring;
1364         u64 rdba;
1365         u32 rxdctl;
1366
1367         /* disable receives */
1368         rxdctl = er32(RXDCTL(0));
1369         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1370         e1e_flush();
1371         msleep(10);
1372
1373         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1374          * the Base and Length of the Rx Descriptor Ring
1375          */
1376         rdba = rx_ring->dma;
1377         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378         ew32(RDBAH(0), (rdba >> 32));
1379         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380         rx_ring->head = E1000_RDH(0);
1381         rx_ring->tail = E1000_RDT(0);
1382         ew32(RDH(0), 0);
1383         ew32(RDT(0), 0);
1384
1385         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386         rxdctl &= 0xFFF00000;
1387         rxdctl |= IGBVF_RX_PTHRESH;
1388         rxdctl |= IGBVF_RX_HTHRESH << 8;
1389         rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391         igbvf_set_rlpml(adapter);
1392
1393         /* enable receives */
1394         ew32(RXDCTL(0), rxdctl);
1395 }
1396
1397 /**
1398  * igbvf_set_multi - Multicast and Promiscuous mode set
1399  * @netdev: network interface device structure
1400  *
1401  * The set_multi entry point is called whenever the multicast address
1402  * list or the network interface flags are updated.  This routine is
1403  * responsible for configuring the hardware for proper multicast,
1404  * promiscuous mode, and all-multi behavior.
1405  **/
1406 static void igbvf_set_multi(struct net_device *netdev)
1407 {
1408         struct igbvf_adapter *adapter = netdev_priv(netdev);
1409         struct e1000_hw *hw = &adapter->hw;
1410         struct netdev_hw_addr *ha;
1411         u8  *mta_list = NULL;
1412         int i;
1413
1414         if (!netdev_mc_empty(netdev)) {
1415                 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416                                          GFP_ATOMIC);
1417                 if (!mta_list)
1418                         return;
1419         }
1420
1421         /* prepare a packed array of only addresses. */
1422         i = 0;
1423         netdev_for_each_mc_addr(ha, netdev)
1424                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426         spin_lock_bh(&hw->mbx_lock);
1427
1428         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1429
1430         spin_unlock_bh(&hw->mbx_lock);
1431         kfree(mta_list);
1432 }
1433
1434 /**
1435  * igbvf_set_uni - Configure unicast MAC filters
1436  * @netdev: network interface device structure
1437  *
1438  * This routine is responsible for configuring the hardware for proper
1439  * unicast filters.
1440  **/
1441 static int igbvf_set_uni(struct net_device *netdev)
1442 {
1443         struct igbvf_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445
1446         if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1447                 pr_err("Too many unicast filters - No Space\n");
1448                 return -ENOSPC;
1449         }
1450
1451         spin_lock_bh(&hw->mbx_lock);
1452
1453         /* Clear all unicast MAC filters */
1454         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1455
1456         spin_unlock_bh(&hw->mbx_lock);
1457
1458         if (!netdev_uc_empty(netdev)) {
1459                 struct netdev_hw_addr *ha;
1460
1461                 /* Add MAC filters one by one */
1462                 netdev_for_each_uc_addr(ha, netdev) {
1463                         spin_lock_bh(&hw->mbx_lock);
1464
1465                         hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1466                                                 ha->addr);
1467
1468                         spin_unlock_bh(&hw->mbx_lock);
1469                         udelay(200);
1470                 }
1471         }
1472
1473         return 0;
1474 }
1475
1476 static void igbvf_set_rx_mode(struct net_device *netdev)
1477 {
1478         igbvf_set_multi(netdev);
1479         igbvf_set_uni(netdev);
1480 }
1481
1482 /**
1483  * igbvf_configure - configure the hardware for Rx and Tx
1484  * @adapter: private board structure
1485  **/
1486 static void igbvf_configure(struct igbvf_adapter *adapter)
1487 {
1488         igbvf_set_rx_mode(adapter->netdev);
1489
1490         igbvf_restore_vlan(adapter);
1491
1492         igbvf_configure_tx(adapter);
1493         igbvf_setup_srrctl(adapter);
1494         igbvf_configure_rx(adapter);
1495         igbvf_alloc_rx_buffers(adapter->rx_ring,
1496                                igbvf_desc_unused(adapter->rx_ring));
1497 }
1498
1499 /* igbvf_reset - bring the hardware into a known good state
1500  * @adapter: private board structure
1501  *
1502  * This function boots the hardware and enables some settings that
1503  * require a configuration cycle of the hardware - those cannot be
1504  * set/changed during runtime. After reset the device needs to be
1505  * properly configured for Rx, Tx etc.
1506  */
1507 static void igbvf_reset(struct igbvf_adapter *adapter)
1508 {
1509         struct e1000_mac_info *mac = &adapter->hw.mac;
1510         struct net_device *netdev = adapter->netdev;
1511         struct e1000_hw *hw = &adapter->hw;
1512
1513         spin_lock_bh(&hw->mbx_lock);
1514
1515         /* Allow time for pending master requests to run */
1516         if (mac->ops.reset_hw(hw))
1517                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1518
1519         mac->ops.init_hw(hw);
1520
1521         spin_unlock_bh(&hw->mbx_lock);
1522
1523         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1524                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1525                        netdev->addr_len);
1526                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1527                        netdev->addr_len);
1528         }
1529
1530         adapter->last_reset = jiffies;
1531 }
1532
1533 int igbvf_up(struct igbvf_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536
1537         /* hardware has been reset, we need to reload some things */
1538         igbvf_configure(adapter);
1539
1540         clear_bit(__IGBVF_DOWN, &adapter->state);
1541
1542         napi_enable(&adapter->rx_ring->napi);
1543         if (adapter->msix_entries)
1544                 igbvf_configure_msix(adapter);
1545
1546         /* Clear any pending interrupts. */
1547         er32(EICR);
1548         igbvf_irq_enable(adapter);
1549
1550         /* start the watchdog */
1551         hw->mac.get_link_status = 1;
1552         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1553
1554         return 0;
1555 }
1556
1557 void igbvf_down(struct igbvf_adapter *adapter)
1558 {
1559         struct net_device *netdev = adapter->netdev;
1560         struct e1000_hw *hw = &adapter->hw;
1561         u32 rxdctl, txdctl;
1562
1563         /* signal that we're down so the interrupt handler does not
1564          * reschedule our watchdog timer
1565          */
1566         set_bit(__IGBVF_DOWN, &adapter->state);
1567
1568         /* disable receives in the hardware */
1569         rxdctl = er32(RXDCTL(0));
1570         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1571
1572         netif_carrier_off(netdev);
1573         netif_stop_queue(netdev);
1574
1575         /* disable transmits in the hardware */
1576         txdctl = er32(TXDCTL(0));
1577         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1578
1579         /* flush both disables and wait for them to finish */
1580         e1e_flush();
1581         msleep(10);
1582
1583         napi_disable(&adapter->rx_ring->napi);
1584
1585         igbvf_irq_disable(adapter);
1586
1587         del_timer_sync(&adapter->watchdog_timer);
1588
1589         /* record the stats before reset*/
1590         igbvf_update_stats(adapter);
1591
1592         adapter->link_speed = 0;
1593         adapter->link_duplex = 0;
1594
1595         igbvf_reset(adapter);
1596         igbvf_clean_tx_ring(adapter->tx_ring);
1597         igbvf_clean_rx_ring(adapter->rx_ring);
1598 }
1599
1600 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1601 {
1602         might_sleep();
1603         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1604                 usleep_range(1000, 2000);
1605         igbvf_down(adapter);
1606         igbvf_up(adapter);
1607         clear_bit(__IGBVF_RESETTING, &adapter->state);
1608 }
1609
1610 /**
1611  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1612  * @adapter: board private structure to initialize
1613  *
1614  * igbvf_sw_init initializes the Adapter private data structure.
1615  * Fields are initialized based on PCI device information and
1616  * OS network device settings (MTU size).
1617  **/
1618 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1619 {
1620         struct net_device *netdev = adapter->netdev;
1621         s32 rc;
1622
1623         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1624         adapter->rx_ps_hdr_size = 0;
1625         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1626         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1627
1628         adapter->tx_int_delay = 8;
1629         adapter->tx_abs_int_delay = 32;
1630         adapter->rx_int_delay = 0;
1631         adapter->rx_abs_int_delay = 8;
1632         adapter->requested_itr = 3;
1633         adapter->current_itr = IGBVF_START_ITR;
1634
1635         /* Set various function pointers */
1636         adapter->ei->init_ops(&adapter->hw);
1637
1638         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1639         if (rc)
1640                 return rc;
1641
1642         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1643         if (rc)
1644                 return rc;
1645
1646         igbvf_set_interrupt_capability(adapter);
1647
1648         if (igbvf_alloc_queues(adapter))
1649                 return -ENOMEM;
1650
1651         spin_lock_init(&adapter->tx_queue_lock);
1652
1653         /* Explicitly disable IRQ since the NIC can be in any state. */
1654         igbvf_irq_disable(adapter);
1655
1656         spin_lock_init(&adapter->stats_lock);
1657         spin_lock_init(&adapter->hw.mbx_lock);
1658
1659         set_bit(__IGBVF_DOWN, &adapter->state);
1660         return 0;
1661 }
1662
1663 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1664 {
1665         struct e1000_hw *hw = &adapter->hw;
1666
1667         adapter->stats.last_gprc = er32(VFGPRC);
1668         adapter->stats.last_gorc = er32(VFGORC);
1669         adapter->stats.last_gptc = er32(VFGPTC);
1670         adapter->stats.last_gotc = er32(VFGOTC);
1671         adapter->stats.last_mprc = er32(VFMPRC);
1672         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1673         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1674         adapter->stats.last_gorlbc = er32(VFGORLBC);
1675         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1676
1677         adapter->stats.base_gprc = er32(VFGPRC);
1678         adapter->stats.base_gorc = er32(VFGORC);
1679         adapter->stats.base_gptc = er32(VFGPTC);
1680         adapter->stats.base_gotc = er32(VFGOTC);
1681         adapter->stats.base_mprc = er32(VFMPRC);
1682         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1683         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1684         adapter->stats.base_gorlbc = er32(VFGORLBC);
1685         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1686 }
1687
1688 /**
1689  * igbvf_open - Called when a network interface is made active
1690  * @netdev: network interface device structure
1691  *
1692  * Returns 0 on success, negative value on failure
1693  *
1694  * The open entry point is called when a network interface is made
1695  * active by the system (IFF_UP).  At this point all resources needed
1696  * for transmit and receive operations are allocated, the interrupt
1697  * handler is registered with the OS, the watchdog timer is started,
1698  * and the stack is notified that the interface is ready.
1699  **/
1700 static int igbvf_open(struct net_device *netdev)
1701 {
1702         struct igbvf_adapter *adapter = netdev_priv(netdev);
1703         struct e1000_hw *hw = &adapter->hw;
1704         int err;
1705
1706         /* disallow open during test */
1707         if (test_bit(__IGBVF_TESTING, &adapter->state))
1708                 return -EBUSY;
1709
1710         /* allocate transmit descriptors */
1711         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1712         if (err)
1713                 goto err_setup_tx;
1714
1715         /* allocate receive descriptors */
1716         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1717         if (err)
1718                 goto err_setup_rx;
1719
1720         /* before we allocate an interrupt, we must be ready to handle it.
1721          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1722          * as soon as we call pci_request_irq, so we have to setup our
1723          * clean_rx handler before we do so.
1724          */
1725         igbvf_configure(adapter);
1726
1727         err = igbvf_request_irq(adapter);
1728         if (err)
1729                 goto err_req_irq;
1730
1731         /* From here on the code is the same as igbvf_up() */
1732         clear_bit(__IGBVF_DOWN, &adapter->state);
1733
1734         napi_enable(&adapter->rx_ring->napi);
1735
1736         /* clear any pending interrupts */
1737         er32(EICR);
1738
1739         igbvf_irq_enable(adapter);
1740
1741         /* start the watchdog */
1742         hw->mac.get_link_status = 1;
1743         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1744
1745         return 0;
1746
1747 err_req_irq:
1748         igbvf_free_rx_resources(adapter->rx_ring);
1749 err_setup_rx:
1750         igbvf_free_tx_resources(adapter->tx_ring);
1751 err_setup_tx:
1752         igbvf_reset(adapter);
1753
1754         return err;
1755 }
1756
1757 /**
1758  * igbvf_close - Disables a network interface
1759  * @netdev: network interface device structure
1760  *
1761  * Returns 0, this is not allowed to fail
1762  *
1763  * The close entry point is called when an interface is de-activated
1764  * by the OS.  The hardware is still under the drivers control, but
1765  * needs to be disabled.  A global MAC reset is issued to stop the
1766  * hardware, and all transmit and receive resources are freed.
1767  **/
1768 static int igbvf_close(struct net_device *netdev)
1769 {
1770         struct igbvf_adapter *adapter = netdev_priv(netdev);
1771
1772         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1773         igbvf_down(adapter);
1774
1775         igbvf_free_irq(adapter);
1776
1777         igbvf_free_tx_resources(adapter->tx_ring);
1778         igbvf_free_rx_resources(adapter->rx_ring);
1779
1780         return 0;
1781 }
1782
1783 /**
1784  * igbvf_set_mac - Change the Ethernet Address of the NIC
1785  * @netdev: network interface device structure
1786  * @p: pointer to an address structure
1787  *
1788  * Returns 0 on success, negative on failure
1789  **/
1790 static int igbvf_set_mac(struct net_device *netdev, void *p)
1791 {
1792         struct igbvf_adapter *adapter = netdev_priv(netdev);
1793         struct e1000_hw *hw = &adapter->hw;
1794         struct sockaddr *addr = p;
1795
1796         if (!is_valid_ether_addr(addr->sa_data))
1797                 return -EADDRNOTAVAIL;
1798
1799         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1800
1801         spin_lock_bh(&hw->mbx_lock);
1802
1803         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1804
1805         spin_unlock_bh(&hw->mbx_lock);
1806
1807         if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1808                 return -EADDRNOTAVAIL;
1809
1810         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1811
1812         return 0;
1813 }
1814
1815 #define UPDATE_VF_COUNTER(reg, name) \
1816 { \
1817         u32 current_counter = er32(reg); \
1818         if (current_counter < adapter->stats.last_##name) \
1819                 adapter->stats.name += 0x100000000LL; \
1820         adapter->stats.last_##name = current_counter; \
1821         adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1822         adapter->stats.name |= current_counter; \
1823 }
1824
1825 /**
1826  * igbvf_update_stats - Update the board statistics counters
1827  * @adapter: board private structure
1828 **/
1829 void igbvf_update_stats(struct igbvf_adapter *adapter)
1830 {
1831         struct e1000_hw *hw = &adapter->hw;
1832         struct pci_dev *pdev = adapter->pdev;
1833
1834         /* Prevent stats update while adapter is being reset, link is down
1835          * or if the pci connection is down.
1836          */
1837         if (adapter->link_speed == 0)
1838                 return;
1839
1840         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1841                 return;
1842
1843         if (pci_channel_offline(pdev))
1844                 return;
1845
1846         UPDATE_VF_COUNTER(VFGPRC, gprc);
1847         UPDATE_VF_COUNTER(VFGORC, gorc);
1848         UPDATE_VF_COUNTER(VFGPTC, gptc);
1849         UPDATE_VF_COUNTER(VFGOTC, gotc);
1850         UPDATE_VF_COUNTER(VFMPRC, mprc);
1851         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1852         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1853         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1854         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1855
1856         /* Fill out the OS statistics structure */
1857         adapter->netdev->stats.multicast = adapter->stats.mprc;
1858 }
1859
1860 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1861 {
1862         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1863                  adapter->link_speed,
1864                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1865 }
1866
1867 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1868 {
1869         struct e1000_hw *hw = &adapter->hw;
1870         s32 ret_val = E1000_SUCCESS;
1871         bool link_active;
1872
1873         /* If interface is down, stay link down */
1874         if (test_bit(__IGBVF_DOWN, &adapter->state))
1875                 return false;
1876
1877         spin_lock_bh(&hw->mbx_lock);
1878
1879         ret_val = hw->mac.ops.check_for_link(hw);
1880
1881         spin_unlock_bh(&hw->mbx_lock);
1882
1883         link_active = !hw->mac.get_link_status;
1884
1885         /* if check for link returns error we will need to reset */
1886         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1887                 schedule_work(&adapter->reset_task);
1888
1889         return link_active;
1890 }
1891
1892 /**
1893  * igbvf_watchdog - Timer Call-back
1894  * @data: pointer to adapter cast into an unsigned long
1895  **/
1896 static void igbvf_watchdog(struct timer_list *t)
1897 {
1898         struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1899
1900         /* Do the rest outside of interrupt context */
1901         schedule_work(&adapter->watchdog_task);
1902 }
1903
1904 static void igbvf_watchdog_task(struct work_struct *work)
1905 {
1906         struct igbvf_adapter *adapter = container_of(work,
1907                                                      struct igbvf_adapter,
1908                                                      watchdog_task);
1909         struct net_device *netdev = adapter->netdev;
1910         struct e1000_mac_info *mac = &adapter->hw.mac;
1911         struct igbvf_ring *tx_ring = adapter->tx_ring;
1912         struct e1000_hw *hw = &adapter->hw;
1913         u32 link;
1914         int tx_pending = 0;
1915
1916         link = igbvf_has_link(adapter);
1917
1918         if (link) {
1919                 if (!netif_carrier_ok(netdev)) {
1920                         mac->ops.get_link_up_info(&adapter->hw,
1921                                                   &adapter->link_speed,
1922                                                   &adapter->link_duplex);
1923                         igbvf_print_link_info(adapter);
1924
1925                         netif_carrier_on(netdev);
1926                         netif_wake_queue(netdev);
1927                 }
1928         } else {
1929                 if (netif_carrier_ok(netdev)) {
1930                         adapter->link_speed = 0;
1931                         adapter->link_duplex = 0;
1932                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1933                         netif_carrier_off(netdev);
1934                         netif_stop_queue(netdev);
1935                 }
1936         }
1937
1938         if (netif_carrier_ok(netdev)) {
1939                 igbvf_update_stats(adapter);
1940         } else {
1941                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1942                               tx_ring->count);
1943                 if (tx_pending) {
1944                         /* We've lost link, so the controller stops DMA,
1945                          * but we've got queued Tx work that's never going
1946                          * to get done, so reset controller to flush Tx.
1947                          * (Do the reset outside of interrupt context).
1948                          */
1949                         adapter->tx_timeout_count++;
1950                         schedule_work(&adapter->reset_task);
1951                 }
1952         }
1953
1954         /* Cause software interrupt to ensure Rx ring is cleaned */
1955         ew32(EICS, adapter->rx_ring->eims_value);
1956
1957         /* Reset the timer */
1958         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1959                 mod_timer(&adapter->watchdog_timer,
1960                           round_jiffies(jiffies + (2 * HZ)));
1961 }
1962
1963 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1964 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1965 #define IGBVF_TX_FLAGS_TSO              0x00000004
1966 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1967 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1968 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1969
1970 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1971                               u32 type_tucmd, u32 mss_l4len_idx)
1972 {
1973         struct e1000_adv_tx_context_desc *context_desc;
1974         struct igbvf_buffer *buffer_info;
1975         u16 i = tx_ring->next_to_use;
1976
1977         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1978         buffer_info = &tx_ring->buffer_info[i];
1979
1980         i++;
1981         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1982
1983         /* set bits to identify this as an advanced context descriptor */
1984         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1985
1986         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1987         context_desc->seqnum_seed       = 0;
1988         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1989         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1990
1991         buffer_info->time_stamp = jiffies;
1992         buffer_info->dma = 0;
1993 }
1994
1995 static int igbvf_tso(struct igbvf_ring *tx_ring,
1996                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1997 {
1998         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1999         union {
2000                 struct iphdr *v4;
2001                 struct ipv6hdr *v6;
2002                 unsigned char *hdr;
2003         } ip;
2004         union {
2005                 struct tcphdr *tcp;
2006                 unsigned char *hdr;
2007         } l4;
2008         u32 paylen, l4_offset;
2009         int err;
2010
2011         if (skb->ip_summed != CHECKSUM_PARTIAL)
2012                 return 0;
2013
2014         if (!skb_is_gso(skb))
2015                 return 0;
2016
2017         err = skb_cow_head(skb, 0);
2018         if (err < 0)
2019                 return err;
2020
2021         ip.hdr = skb_network_header(skb);
2022         l4.hdr = skb_checksum_start(skb);
2023
2024         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2025         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2026
2027         /* initialize outer IP header fields */
2028         if (ip.v4->version == 4) {
2029                 unsigned char *csum_start = skb_checksum_start(skb);
2030                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2031
2032                 /* IP header will have to cancel out any data that
2033                  * is not a part of the outer IP header
2034                  */
2035                 ip.v4->check = csum_fold(csum_partial(trans_start,
2036                                                       csum_start - trans_start,
2037                                                       0));
2038                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2039
2040                 ip.v4->tot_len = 0;
2041         } else {
2042                 ip.v6->payload_len = 0;
2043         }
2044
2045         /* determine offset of inner transport header */
2046         l4_offset = l4.hdr - skb->data;
2047
2048         /* compute length of segmentation header */
2049         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2050
2051         /* remove payload length from inner checksum */
2052         paylen = skb->len - l4_offset;
2053         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2054
2055         /* MSS L4LEN IDX */
2056         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2057         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2058
2059         /* VLAN MACLEN IPLEN */
2060         vlan_macip_lens = l4.hdr - ip.hdr;
2061         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2062         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2063
2064         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2065
2066         return 1;
2067 }
2068
2069 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2070 {
2071         unsigned int offset = 0;
2072
2073         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2074
2075         return offset == skb_checksum_start_offset(skb);
2076 }
2077
2078 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2079                           u32 tx_flags, __be16 protocol)
2080 {
2081         u32 vlan_macip_lens = 0;
2082         u32 type_tucmd = 0;
2083
2084         if (skb->ip_summed != CHECKSUM_PARTIAL) {
2085 csum_failed:
2086                 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2087                         return false;
2088                 goto no_csum;
2089         }
2090
2091         switch (skb->csum_offset) {
2092         case offsetof(struct tcphdr, check):
2093                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2094                 fallthrough;
2095         case offsetof(struct udphdr, check):
2096                 break;
2097         case offsetof(struct sctphdr, checksum):
2098                 /* validate that this is actually an SCTP request */
2099                 if (((protocol == htons(ETH_P_IP)) &&
2100                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2101                     ((protocol == htons(ETH_P_IPV6)) &&
2102                      igbvf_ipv6_csum_is_sctp(skb))) {
2103                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2104                         break;
2105                 }
2106                 fallthrough;
2107         default:
2108                 skb_checksum_help(skb);
2109                 goto csum_failed;
2110         }
2111
2112         vlan_macip_lens = skb_checksum_start_offset(skb) -
2113                           skb_network_offset(skb);
2114 no_csum:
2115         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2116         vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2117
2118         igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2119         return true;
2120 }
2121
2122 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2123 {
2124         struct igbvf_adapter *adapter = netdev_priv(netdev);
2125
2126         /* there is enough descriptors then we don't need to worry  */
2127         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2128                 return 0;
2129
2130         netif_stop_queue(netdev);
2131
2132         /* Herbert's original patch had:
2133          *  smp_mb__after_netif_stop_queue();
2134          * but since that doesn't exist yet, just open code it.
2135          */
2136         smp_mb();
2137
2138         /* We need to check again just in case room has been made available */
2139         if (igbvf_desc_unused(adapter->tx_ring) < size)
2140                 return -EBUSY;
2141
2142         netif_wake_queue(netdev);
2143
2144         ++adapter->restart_queue;
2145         return 0;
2146 }
2147
2148 #define IGBVF_MAX_TXD_PWR       16
2149 #define IGBVF_MAX_DATA_PER_TXD  (1u << IGBVF_MAX_TXD_PWR)
2150
2151 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2152                                    struct igbvf_ring *tx_ring,
2153                                    struct sk_buff *skb)
2154 {
2155         struct igbvf_buffer *buffer_info;
2156         struct pci_dev *pdev = adapter->pdev;
2157         unsigned int len = skb_headlen(skb);
2158         unsigned int count = 0, i;
2159         unsigned int f;
2160
2161         i = tx_ring->next_to_use;
2162
2163         buffer_info = &tx_ring->buffer_info[i];
2164         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2165         buffer_info->length = len;
2166         /* set time_stamp *before* dma to help avoid a possible race */
2167         buffer_info->time_stamp = jiffies;
2168         buffer_info->mapped_as_page = false;
2169         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2170                                           DMA_TO_DEVICE);
2171         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2172                 goto dma_error;
2173
2174         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2175                 const skb_frag_t *frag;
2176
2177                 count++;
2178                 i++;
2179                 if (i == tx_ring->count)
2180                         i = 0;
2181
2182                 frag = &skb_shinfo(skb)->frags[f];
2183                 len = skb_frag_size(frag);
2184
2185                 buffer_info = &tx_ring->buffer_info[i];
2186                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187                 buffer_info->length = len;
2188                 buffer_info->time_stamp = jiffies;
2189                 buffer_info->mapped_as_page = true;
2190                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2191                                                     DMA_TO_DEVICE);
2192                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2193                         goto dma_error;
2194         }
2195
2196         tx_ring->buffer_info[i].skb = skb;
2197
2198         return ++count;
2199
2200 dma_error:
2201         dev_err(&pdev->dev, "TX DMA map failed\n");
2202
2203         /* clear timestamp and dma mappings for failed buffer_info mapping */
2204         buffer_info->dma = 0;
2205         buffer_info->time_stamp = 0;
2206         buffer_info->length = 0;
2207         buffer_info->mapped_as_page = false;
2208         if (count)
2209                 count--;
2210
2211         /* clear timestamp and dma mappings for remaining portion of packet */
2212         while (count--) {
2213                 if (i == 0)
2214                         i += tx_ring->count;
2215                 i--;
2216                 buffer_info = &tx_ring->buffer_info[i];
2217                 igbvf_put_txbuf(adapter, buffer_info);
2218         }
2219
2220         return 0;
2221 }
2222
2223 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2224                                       struct igbvf_ring *tx_ring,
2225                                       int tx_flags, int count,
2226                                       unsigned int first, u32 paylen,
2227                                       u8 hdr_len)
2228 {
2229         union e1000_adv_tx_desc *tx_desc = NULL;
2230         struct igbvf_buffer *buffer_info;
2231         u32 olinfo_status = 0, cmd_type_len;
2232         unsigned int i;
2233
2234         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2235                         E1000_ADVTXD_DCMD_DEXT);
2236
2237         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2238                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2239
2240         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2241                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2242
2243                 /* insert tcp checksum */
2244                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245
2246                 /* insert ip checksum */
2247                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2248                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2249
2250         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2251                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2252         }
2253
2254         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2255
2256         i = tx_ring->next_to_use;
2257         while (count--) {
2258                 buffer_info = &tx_ring->buffer_info[i];
2259                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2260                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2261                 tx_desc->read.cmd_type_len =
2262                          cpu_to_le32(cmd_type_len | buffer_info->length);
2263                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2264                 i++;
2265                 if (i == tx_ring->count)
2266                         i = 0;
2267         }
2268
2269         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2270         /* Force memory writes to complete before letting h/w
2271          * know there are new descriptors to fetch.  (Only
2272          * applicable for weak-ordered memory model archs,
2273          * such as IA-64).
2274          */
2275         wmb();
2276
2277         tx_ring->buffer_info[first].next_to_watch = tx_desc;
2278         tx_ring->next_to_use = i;
2279         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2280 }
2281
2282 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2283                                              struct net_device *netdev,
2284                                              struct igbvf_ring *tx_ring)
2285 {
2286         struct igbvf_adapter *adapter = netdev_priv(netdev);
2287         unsigned int first, tx_flags = 0;
2288         u8 hdr_len = 0;
2289         int count = 0;
2290         int tso = 0;
2291         __be16 protocol = vlan_get_protocol(skb);
2292
2293         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2294                 dev_kfree_skb_any(skb);
2295                 return NETDEV_TX_OK;
2296         }
2297
2298         if (skb->len <= 0) {
2299                 dev_kfree_skb_any(skb);
2300                 return NETDEV_TX_OK;
2301         }
2302
2303         /* need: count + 4 desc gap to keep tail from touching
2304          *       + 2 desc gap to keep tail from touching head,
2305          *       + 1 desc for skb->data,
2306          *       + 1 desc for context descriptor,
2307          * head, otherwise try next time
2308          */
2309         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2310                 /* this is a hard error */
2311                 return NETDEV_TX_BUSY;
2312         }
2313
2314         if (skb_vlan_tag_present(skb)) {
2315                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2316                 tx_flags |= (skb_vlan_tag_get(skb) <<
2317                              IGBVF_TX_FLAGS_VLAN_SHIFT);
2318         }
2319
2320         if (protocol == htons(ETH_P_IP))
2321                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2322
2323         first = tx_ring->next_to_use;
2324
2325         tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2326         if (unlikely(tso < 0)) {
2327                 dev_kfree_skb_any(skb);
2328                 return NETDEV_TX_OK;
2329         }
2330
2331         if (tso)
2332                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2333         else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2334                  (skb->ip_summed == CHECKSUM_PARTIAL))
2335                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2336
2337         /* count reflects descriptors mapped, if 0 then mapping error
2338          * has occurred and we need to rewind the descriptor queue
2339          */
2340         count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2341
2342         if (count) {
2343                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2344                                    first, skb->len, hdr_len);
2345                 /* Make sure there is space in the ring for the next send. */
2346                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2347         } else {
2348                 dev_kfree_skb_any(skb);
2349                 tx_ring->buffer_info[first].time_stamp = 0;
2350                 tx_ring->next_to_use = first;
2351         }
2352
2353         return NETDEV_TX_OK;
2354 }
2355
2356 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2357                                     struct net_device *netdev)
2358 {
2359         struct igbvf_adapter *adapter = netdev_priv(netdev);
2360         struct igbvf_ring *tx_ring;
2361
2362         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2363                 dev_kfree_skb_any(skb);
2364                 return NETDEV_TX_OK;
2365         }
2366
2367         tx_ring = &adapter->tx_ring[0];
2368
2369         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2370 }
2371
2372 /**
2373  * igbvf_tx_timeout - Respond to a Tx Hang
2374  * @netdev: network interface device structure
2375  **/
2376 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2377 {
2378         struct igbvf_adapter *adapter = netdev_priv(netdev);
2379
2380         /* Do the reset outside of interrupt context */
2381         adapter->tx_timeout_count++;
2382         schedule_work(&adapter->reset_task);
2383 }
2384
2385 static void igbvf_reset_task(struct work_struct *work)
2386 {
2387         struct igbvf_adapter *adapter;
2388
2389         adapter = container_of(work, struct igbvf_adapter, reset_task);
2390
2391         igbvf_reinit_locked(adapter);
2392 }
2393
2394 /**
2395  * igbvf_change_mtu - Change the Maximum Transfer Unit
2396  * @netdev: network interface device structure
2397  * @new_mtu: new value for maximum frame size
2398  *
2399  * Returns 0 on success, negative on failure
2400  **/
2401 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2402 {
2403         struct igbvf_adapter *adapter = netdev_priv(netdev);
2404         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2405
2406         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2407                 usleep_range(1000, 2000);
2408         /* igbvf_down has a dependency on max_frame_size */
2409         adapter->max_frame_size = max_frame;
2410         if (netif_running(netdev))
2411                 igbvf_down(adapter);
2412
2413         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2414          * means we reserve 2 more, this pushes us to allocate from the next
2415          * larger slab size.
2416          * i.e. RXBUFFER_2048 --> size-4096 slab
2417          * However with the new *_jumbo_rx* routines, jumbo receives will use
2418          * fragmented skbs
2419          */
2420
2421         if (max_frame <= 1024)
2422                 adapter->rx_buffer_len = 1024;
2423         else if (max_frame <= 2048)
2424                 adapter->rx_buffer_len = 2048;
2425         else
2426 #if (PAGE_SIZE / 2) > 16384
2427                 adapter->rx_buffer_len = 16384;
2428 #else
2429                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2430 #endif
2431
2432         /* adjust allocation if LPE protects us, and we aren't using SBP */
2433         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2434             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2435                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2436                                          ETH_FCS_LEN;
2437
2438         netdev_dbg(netdev, "changing MTU from %d to %d\n",
2439                    netdev->mtu, new_mtu);
2440         netdev->mtu = new_mtu;
2441
2442         if (netif_running(netdev))
2443                 igbvf_up(adapter);
2444         else
2445                 igbvf_reset(adapter);
2446
2447         clear_bit(__IGBVF_RESETTING, &adapter->state);
2448
2449         return 0;
2450 }
2451
2452 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2453 {
2454         switch (cmd) {
2455         default:
2456                 return -EOPNOTSUPP;
2457         }
2458 }
2459
2460 static int igbvf_suspend(struct device *dev_d)
2461 {
2462         struct net_device *netdev = dev_get_drvdata(dev_d);
2463         struct igbvf_adapter *adapter = netdev_priv(netdev);
2464
2465         netif_device_detach(netdev);
2466
2467         if (netif_running(netdev)) {
2468                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2469                 igbvf_down(adapter);
2470                 igbvf_free_irq(adapter);
2471         }
2472
2473         return 0;
2474 }
2475
2476 static int __maybe_unused igbvf_resume(struct device *dev_d)
2477 {
2478         struct pci_dev *pdev = to_pci_dev(dev_d);
2479         struct net_device *netdev = pci_get_drvdata(pdev);
2480         struct igbvf_adapter *adapter = netdev_priv(netdev);
2481         u32 err;
2482
2483         pci_set_master(pdev);
2484
2485         if (netif_running(netdev)) {
2486                 err = igbvf_request_irq(adapter);
2487                 if (err)
2488                         return err;
2489         }
2490
2491         igbvf_reset(adapter);
2492
2493         if (netif_running(netdev))
2494                 igbvf_up(adapter);
2495
2496         netif_device_attach(netdev);
2497
2498         return 0;
2499 }
2500
2501 static void igbvf_shutdown(struct pci_dev *pdev)
2502 {
2503         igbvf_suspend(&pdev->dev);
2504 }
2505
2506 #ifdef CONFIG_NET_POLL_CONTROLLER
2507 /* Polling 'interrupt' - used by things like netconsole to send skbs
2508  * without having to re-enable interrupts. It's not called while
2509  * the interrupt routine is executing.
2510  */
2511 static void igbvf_netpoll(struct net_device *netdev)
2512 {
2513         struct igbvf_adapter *adapter = netdev_priv(netdev);
2514
2515         disable_irq(adapter->pdev->irq);
2516
2517         igbvf_clean_tx_irq(adapter->tx_ring);
2518
2519         enable_irq(adapter->pdev->irq);
2520 }
2521 #endif
2522
2523 /**
2524  * igbvf_io_error_detected - called when PCI error is detected
2525  * @pdev: Pointer to PCI device
2526  * @state: The current pci connection state
2527  *
2528  * This function is called after a PCI bus error affecting
2529  * this device has been detected.
2530  */
2531 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2532                                                 pci_channel_state_t state)
2533 {
2534         struct net_device *netdev = pci_get_drvdata(pdev);
2535         struct igbvf_adapter *adapter = netdev_priv(netdev);
2536
2537         netif_device_detach(netdev);
2538
2539         if (state == pci_channel_io_perm_failure)
2540                 return PCI_ERS_RESULT_DISCONNECT;
2541
2542         if (netif_running(netdev))
2543                 igbvf_down(adapter);
2544         pci_disable_device(pdev);
2545
2546         /* Request a slot slot reset. */
2547         return PCI_ERS_RESULT_NEED_RESET;
2548 }
2549
2550 /**
2551  * igbvf_io_slot_reset - called after the pci bus has been reset.
2552  * @pdev: Pointer to PCI device
2553  *
2554  * Restart the card from scratch, as if from a cold-boot. Implementation
2555  * resembles the first-half of the igbvf_resume routine.
2556  */
2557 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2558 {
2559         struct net_device *netdev = pci_get_drvdata(pdev);
2560         struct igbvf_adapter *adapter = netdev_priv(netdev);
2561
2562         if (pci_enable_device_mem(pdev)) {
2563                 dev_err(&pdev->dev,
2564                         "Cannot re-enable PCI device after reset.\n");
2565                 return PCI_ERS_RESULT_DISCONNECT;
2566         }
2567         pci_set_master(pdev);
2568
2569         igbvf_reset(adapter);
2570
2571         return PCI_ERS_RESULT_RECOVERED;
2572 }
2573
2574 /**
2575  * igbvf_io_resume - called when traffic can start flowing again.
2576  * @pdev: Pointer to PCI device
2577  *
2578  * This callback is called when the error recovery driver tells us that
2579  * its OK to resume normal operation. Implementation resembles the
2580  * second-half of the igbvf_resume routine.
2581  */
2582 static void igbvf_io_resume(struct pci_dev *pdev)
2583 {
2584         struct net_device *netdev = pci_get_drvdata(pdev);
2585         struct igbvf_adapter *adapter = netdev_priv(netdev);
2586
2587         if (netif_running(netdev)) {
2588                 if (igbvf_up(adapter)) {
2589                         dev_err(&pdev->dev,
2590                                 "can't bring device back up after reset\n");
2591                         return;
2592                 }
2593         }
2594
2595         netif_device_attach(netdev);
2596 }
2597
2598 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2599 {
2600         struct e1000_hw *hw = &adapter->hw;
2601         struct net_device *netdev = adapter->netdev;
2602         struct pci_dev *pdev = adapter->pdev;
2603
2604         if (hw->mac.type == e1000_vfadapt_i350)
2605                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2606         else
2607                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2608         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2609 }
2610
2611 static int igbvf_set_features(struct net_device *netdev,
2612                               netdev_features_t features)
2613 {
2614         struct igbvf_adapter *adapter = netdev_priv(netdev);
2615
2616         if (features & NETIF_F_RXCSUM)
2617                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2618         else
2619                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2620
2621         return 0;
2622 }
2623
2624 #define IGBVF_MAX_MAC_HDR_LEN           127
2625 #define IGBVF_MAX_NETWORK_HDR_LEN       511
2626
2627 static netdev_features_t
2628 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2629                      netdev_features_t features)
2630 {
2631         unsigned int network_hdr_len, mac_hdr_len;
2632
2633         /* Make certain the headers can be described by a context descriptor */
2634         mac_hdr_len = skb_network_header(skb) - skb->data;
2635         if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2636                 return features & ~(NETIF_F_HW_CSUM |
2637                                     NETIF_F_SCTP_CRC |
2638                                     NETIF_F_HW_VLAN_CTAG_TX |
2639                                     NETIF_F_TSO |
2640                                     NETIF_F_TSO6);
2641
2642         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2643         if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2644                 return features & ~(NETIF_F_HW_CSUM |
2645                                     NETIF_F_SCTP_CRC |
2646                                     NETIF_F_TSO |
2647                                     NETIF_F_TSO6);
2648
2649         /* We can only support IPV4 TSO in tunnels if we can mangle the
2650          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2651          */
2652         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2653                 features &= ~NETIF_F_TSO;
2654
2655         return features;
2656 }
2657
2658 static const struct net_device_ops igbvf_netdev_ops = {
2659         .ndo_open               = igbvf_open,
2660         .ndo_stop               = igbvf_close,
2661         .ndo_start_xmit         = igbvf_xmit_frame,
2662         .ndo_set_rx_mode        = igbvf_set_rx_mode,
2663         .ndo_set_mac_address    = igbvf_set_mac,
2664         .ndo_change_mtu         = igbvf_change_mtu,
2665         .ndo_do_ioctl           = igbvf_ioctl,
2666         .ndo_tx_timeout         = igbvf_tx_timeout,
2667         .ndo_vlan_rx_add_vid    = igbvf_vlan_rx_add_vid,
2668         .ndo_vlan_rx_kill_vid   = igbvf_vlan_rx_kill_vid,
2669 #ifdef CONFIG_NET_POLL_CONTROLLER
2670         .ndo_poll_controller    = igbvf_netpoll,
2671 #endif
2672         .ndo_set_features       = igbvf_set_features,
2673         .ndo_features_check     = igbvf_features_check,
2674 };
2675
2676 /**
2677  * igbvf_probe - Device Initialization Routine
2678  * @pdev: PCI device information struct
2679  * @ent: entry in igbvf_pci_tbl
2680  *
2681  * Returns 0 on success, negative on failure
2682  *
2683  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2684  * The OS initialization, configuring of the adapter private structure,
2685  * and a hardware reset occur.
2686  **/
2687 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2688 {
2689         struct net_device *netdev;
2690         struct igbvf_adapter *adapter;
2691         struct e1000_hw *hw;
2692         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2693
2694         static int cards_found;
2695         int err, pci_using_dac;
2696
2697         err = pci_enable_device_mem(pdev);
2698         if (err)
2699                 return err;
2700
2701         pci_using_dac = 0;
2702         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2703         if (!err) {
2704                 pci_using_dac = 1;
2705         } else {
2706                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2707                 if (err) {
2708                         dev_err(&pdev->dev,
2709                                 "No usable DMA configuration, aborting\n");
2710                         goto err_dma;
2711                 }
2712         }
2713
2714         err = pci_request_regions(pdev, igbvf_driver_name);
2715         if (err)
2716                 goto err_pci_reg;
2717
2718         pci_set_master(pdev);
2719
2720         err = -ENOMEM;
2721         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2722         if (!netdev)
2723                 goto err_alloc_etherdev;
2724
2725         SET_NETDEV_DEV(netdev, &pdev->dev);
2726
2727         pci_set_drvdata(pdev, netdev);
2728         adapter = netdev_priv(netdev);
2729         hw = &adapter->hw;
2730         adapter->netdev = netdev;
2731         adapter->pdev = pdev;
2732         adapter->ei = ei;
2733         adapter->pba = ei->pba;
2734         adapter->flags = ei->flags;
2735         adapter->hw.back = adapter;
2736         adapter->hw.mac.type = ei->mac;
2737         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2738
2739         /* PCI config space info */
2740
2741         hw->vendor_id = pdev->vendor;
2742         hw->device_id = pdev->device;
2743         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2744         hw->subsystem_device_id = pdev->subsystem_device;
2745         hw->revision_id = pdev->revision;
2746
2747         err = -EIO;
2748         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2749                                       pci_resource_len(pdev, 0));
2750
2751         if (!adapter->hw.hw_addr)
2752                 goto err_ioremap;
2753
2754         if (ei->get_variants) {
2755                 err = ei->get_variants(adapter);
2756                 if (err)
2757                         goto err_get_variants;
2758         }
2759
2760         /* setup adapter struct */
2761         err = igbvf_sw_init(adapter);
2762         if (err)
2763                 goto err_sw_init;
2764
2765         /* construct the net_device struct */
2766         netdev->netdev_ops = &igbvf_netdev_ops;
2767
2768         igbvf_set_ethtool_ops(netdev);
2769         netdev->watchdog_timeo = 5 * HZ;
2770         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772         adapter->bd_number = cards_found++;
2773
2774         netdev->hw_features = NETIF_F_SG |
2775                               NETIF_F_TSO |
2776                               NETIF_F_TSO6 |
2777                               NETIF_F_RXCSUM |
2778                               NETIF_F_HW_CSUM |
2779                               NETIF_F_SCTP_CRC;
2780
2781 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2782                                     NETIF_F_GSO_GRE_CSUM | \
2783                                     NETIF_F_GSO_IPXIP4 | \
2784                                     NETIF_F_GSO_IPXIP6 | \
2785                                     NETIF_F_GSO_UDP_TUNNEL | \
2786                                     NETIF_F_GSO_UDP_TUNNEL_CSUM)
2787
2788         netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2789         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2790                                IGBVF_GSO_PARTIAL_FEATURES;
2791
2792         netdev->features = netdev->hw_features;
2793
2794         if (pci_using_dac)
2795                 netdev->features |= NETIF_F_HIGHDMA;
2796
2797         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2798         netdev->mpls_features |= NETIF_F_HW_CSUM;
2799         netdev->hw_enc_features |= netdev->vlan_features;
2800
2801         /* set this bit last since it cannot be part of vlan_features */
2802         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2803                             NETIF_F_HW_VLAN_CTAG_RX |
2804                             NETIF_F_HW_VLAN_CTAG_TX;
2805
2806         /* MTU range: 68 - 9216 */
2807         netdev->min_mtu = ETH_MIN_MTU;
2808         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2809
2810         spin_lock_bh(&hw->mbx_lock);
2811
2812         /*reset the controller to put the device in a known good state */
2813         err = hw->mac.ops.reset_hw(hw);
2814         if (err) {
2815                 dev_info(&pdev->dev,
2816                          "PF still in reset state. Is the PF interface up?\n");
2817         } else {
2818                 err = hw->mac.ops.read_mac_addr(hw);
2819                 if (err)
2820                         dev_info(&pdev->dev, "Error reading MAC address.\n");
2821                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2822                         dev_info(&pdev->dev,
2823                                  "MAC address not assigned by administrator.\n");
2824                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2825                        netdev->addr_len);
2826         }
2827
2828         spin_unlock_bh(&hw->mbx_lock);
2829
2830         if (!is_valid_ether_addr(netdev->dev_addr)) {
2831                 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2832                 eth_hw_addr_random(netdev);
2833                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2834                        netdev->addr_len);
2835         }
2836
2837         timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2838
2839         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2840         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2841
2842         /* ring size defaults */
2843         adapter->rx_ring->count = 1024;
2844         adapter->tx_ring->count = 1024;
2845
2846         /* reset the hardware with the new settings */
2847         igbvf_reset(adapter);
2848
2849         /* set hardware-specific flags */
2850         if (adapter->hw.mac.type == e1000_vfadapt_i350)
2851                 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2852
2853         strcpy(netdev->name, "eth%d");
2854         err = register_netdev(netdev);
2855         if (err)
2856                 goto err_hw_init;
2857
2858         /* tell the stack to leave us alone until igbvf_open() is called */
2859         netif_carrier_off(netdev);
2860         netif_stop_queue(netdev);
2861
2862         igbvf_print_device_info(adapter);
2863
2864         igbvf_initialize_last_counter_stats(adapter);
2865
2866         return 0;
2867
2868 err_hw_init:
2869         kfree(adapter->tx_ring);
2870         kfree(adapter->rx_ring);
2871 err_sw_init:
2872         igbvf_reset_interrupt_capability(adapter);
2873 err_get_variants:
2874         iounmap(adapter->hw.hw_addr);
2875 err_ioremap:
2876         free_netdev(netdev);
2877 err_alloc_etherdev:
2878         pci_release_regions(pdev);
2879 err_pci_reg:
2880 err_dma:
2881         pci_disable_device(pdev);
2882         return err;
2883 }
2884
2885 /**
2886  * igbvf_remove - Device Removal Routine
2887  * @pdev: PCI device information struct
2888  *
2889  * igbvf_remove is called by the PCI subsystem to alert the driver
2890  * that it should release a PCI device.  The could be caused by a
2891  * Hot-Plug event, or because the driver is going to be removed from
2892  * memory.
2893  **/
2894 static void igbvf_remove(struct pci_dev *pdev)
2895 {
2896         struct net_device *netdev = pci_get_drvdata(pdev);
2897         struct igbvf_adapter *adapter = netdev_priv(netdev);
2898         struct e1000_hw *hw = &adapter->hw;
2899
2900         /* The watchdog timer may be rescheduled, so explicitly
2901          * disable it from being rescheduled.
2902          */
2903         set_bit(__IGBVF_DOWN, &adapter->state);
2904         del_timer_sync(&adapter->watchdog_timer);
2905
2906         cancel_work_sync(&adapter->reset_task);
2907         cancel_work_sync(&adapter->watchdog_task);
2908
2909         unregister_netdev(netdev);
2910
2911         igbvf_reset_interrupt_capability(adapter);
2912
2913         /* it is important to delete the NAPI struct prior to freeing the
2914          * Rx ring so that you do not end up with null pointer refs
2915          */
2916         netif_napi_del(&adapter->rx_ring->napi);
2917         kfree(adapter->tx_ring);
2918         kfree(adapter->rx_ring);
2919
2920         iounmap(hw->hw_addr);
2921         if (hw->flash_address)
2922                 iounmap(hw->flash_address);
2923         pci_release_regions(pdev);
2924
2925         free_netdev(netdev);
2926
2927         pci_disable_device(pdev);
2928 }
2929
2930 /* PCI Error Recovery (ERS) */
2931 static const struct pci_error_handlers igbvf_err_handler = {
2932         .error_detected = igbvf_io_error_detected,
2933         .slot_reset = igbvf_io_slot_reset,
2934         .resume = igbvf_io_resume,
2935 };
2936
2937 static const struct pci_device_id igbvf_pci_tbl[] = {
2938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2940         { } /* terminate list */
2941 };
2942 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2943
2944 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2945
2946 /* PCI Device API Driver */
2947 static struct pci_driver igbvf_driver = {
2948         .name           = igbvf_driver_name,
2949         .id_table       = igbvf_pci_tbl,
2950         .probe          = igbvf_probe,
2951         .remove         = igbvf_remove,
2952         .driver.pm      = &igbvf_pm_ops,
2953         .shutdown       = igbvf_shutdown,
2954         .err_handler    = &igbvf_err_handler
2955 };
2956
2957 /**
2958  * igbvf_init_module - Driver Registration Routine
2959  *
2960  * igbvf_init_module is the first routine called when the driver is
2961  * loaded. All it does is register with the PCI subsystem.
2962  **/
2963 static int __init igbvf_init_module(void)
2964 {
2965         int ret;
2966
2967         pr_info("%s\n", igbvf_driver_string);
2968         pr_info("%s\n", igbvf_copyright);
2969
2970         ret = pci_register_driver(&igbvf_driver);
2971
2972         return ret;
2973 }
2974 module_init(igbvf_init_module);
2975
2976 /**
2977  * igbvf_exit_module - Driver Exit Cleanup Routine
2978  *
2979  * igbvf_exit_module is called just before the driver is removed
2980  * from memory.
2981  **/
2982 static void __exit igbvf_exit_module(void)
2983 {
2984         pci_unregister_driver(&igbvf_driver);
2985 }
2986 module_exit(igbvf_exit_module);
2987
2988 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
2989 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2990 MODULE_LICENSE("GPL v2");
2991
2992 /* netdev.c */
This page took 0.204749 seconds and 4 git commands to generate.