1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
43 static struct igbvf_info igbvf_vf_info = {
47 .init_ops = e1000_init_function_pointers_vf,
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
54 .init_ops = e1000_init_function_pointers_vf,
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @rx_ring: address of receive ring structure
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @status: descriptor status field as written by hardware
78 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
79 * @skb: pointer to sk_buff to be indicated to stack
81 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
82 struct net_device *netdev,
88 if (status & E1000_RXD_STAT_VP) {
89 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
90 (status & E1000_RXDEXT_STATERR_LB))
91 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
93 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 if (test_bit(vid, adapter->active_vlans))
95 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 u32 status_err, struct sk_buff *skb)
104 skb_checksum_none_assert(skb);
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
107 if ((status_err & E1000_RXD_STAT_IXSM) ||
108 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 /* TCP/UDP checksum error bit is set */
113 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
114 /* let the stack verify checksum errors */
115 adapter->hw_csum_err++;
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
123 adapter->hw_csum_good++;
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
131 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
149 bufsz = adapter->rx_buffer_len;
151 while (cleaned_count--) {
152 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
154 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
155 if (!buffer_info->page) {
156 buffer_info->page = alloc_page(GFP_ATOMIC);
157 if (!buffer_info->page) {
158 adapter->alloc_rx_buff_failed++;
161 buffer_info->page_offset = 0;
163 buffer_info->page_offset ^= PAGE_SIZE / 2;
165 buffer_info->page_dma =
166 dma_map_page(&pdev->dev, buffer_info->page,
167 buffer_info->page_offset,
170 if (dma_mapping_error(&pdev->dev,
171 buffer_info->page_dma)) {
172 __free_page(buffer_info->page);
173 buffer_info->page = NULL;
174 dev_err(&pdev->dev, "RX DMA map failed\n");
179 if (!buffer_info->skb) {
180 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
182 adapter->alloc_rx_buff_failed++;
186 buffer_info->skb = skb;
187 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
191 dev_kfree_skb(buffer_info->skb);
192 buffer_info->skb = NULL;
193 dev_err(&pdev->dev, "RX DMA map failed\n");
197 /* Refresh the desc even if buffer_addrs didn't change because
198 * each write-back erases this info.
200 if (adapter->rx_ps_hdr_size) {
201 rx_desc->read.pkt_addr =
202 cpu_to_le64(buffer_info->page_dma);
203 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
205 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
206 rx_desc->read.hdr_addr = 0;
210 if (i == rx_ring->count)
212 buffer_info = &rx_ring->buffer_info[i];
216 if (rx_ring->next_to_use != i) {
217 rx_ring->next_to_use = i;
219 i = (rx_ring->count - 1);
223 /* Force memory writes to complete before letting h/w
224 * know there are new descriptors to fetch. (Only
225 * applicable for weak-ordered memory model archs,
229 writel(i, adapter->hw.hw_addr + rx_ring->tail);
234 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
235 * @adapter: board private structure
237 * the return value indicates whether actual cleaning was done, there
238 * is no guarantee that everything was cleaned
240 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
241 int *work_done, int work_to_do)
243 struct igbvf_ring *rx_ring = adapter->rx_ring;
244 struct net_device *netdev = adapter->netdev;
245 struct pci_dev *pdev = adapter->pdev;
246 union e1000_adv_rx_desc *rx_desc, *next_rxd;
247 struct igbvf_buffer *buffer_info, *next_buffer;
249 bool cleaned = false;
250 int cleaned_count = 0;
251 unsigned int total_bytes = 0, total_packets = 0;
253 u32 length, hlen, staterr;
255 i = rx_ring->next_to_clean;
256 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
257 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
259 while (staterr & E1000_RXD_STAT_DD) {
260 if (*work_done >= work_to_do)
263 rmb(); /* read descriptor and rx_buffer_info after status DD */
265 buffer_info = &rx_ring->buffer_info[i];
267 /* HW will not DMA in data larger than the given buffer, even
268 * if it parses the (NFS, of course) header to be larger. In
269 * that case, it fills the header buffer and spills the rest
272 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
273 & E1000_RXDADV_HDRBUFLEN_MASK) >>
274 E1000_RXDADV_HDRBUFLEN_SHIFT;
275 if (hlen > adapter->rx_ps_hdr_size)
276 hlen = adapter->rx_ps_hdr_size;
278 length = le16_to_cpu(rx_desc->wb.upper.length);
282 skb = buffer_info->skb;
283 prefetch(skb->data - NET_IP_ALIGN);
284 buffer_info->skb = NULL;
285 if (!adapter->rx_ps_hdr_size) {
286 dma_unmap_single(&pdev->dev, buffer_info->dma,
287 adapter->rx_buffer_len,
289 buffer_info->dma = 0;
290 skb_put(skb, length);
294 if (!skb_shinfo(skb)->nr_frags) {
295 dma_unmap_single(&pdev->dev, buffer_info->dma,
296 adapter->rx_ps_hdr_size,
298 buffer_info->dma = 0;
303 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306 buffer_info->page_dma = 0;
308 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
310 buffer_info->page_offset,
313 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
314 (page_count(buffer_info->page) != 1))
315 buffer_info->page = NULL;
317 get_page(buffer_info->page);
320 skb->data_len += length;
321 skb->truesize += PAGE_SIZE / 2;
325 if (i == rx_ring->count)
327 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
329 next_buffer = &rx_ring->buffer_info[i];
331 if (!(staterr & E1000_RXD_STAT_EOP)) {
332 buffer_info->skb = next_buffer->skb;
333 buffer_info->dma = next_buffer->dma;
334 next_buffer->skb = skb;
335 next_buffer->dma = 0;
339 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
340 dev_kfree_skb_irq(skb);
344 total_bytes += skb->len;
347 igbvf_rx_checksum_adv(adapter, staterr, skb);
349 skb->protocol = eth_type_trans(skb, netdev);
351 igbvf_receive_skb(adapter, netdev, skb, staterr,
352 rx_desc->wb.upper.vlan);
355 rx_desc->wb.upper.status_error = 0;
357 /* return some buffers to hardware, one at a time is too slow */
358 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
359 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 /* use prefetched values */
365 buffer_info = next_buffer;
367 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370 rx_ring->next_to_clean = i;
371 cleaned_count = igbvf_desc_unused(rx_ring);
374 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
376 adapter->total_rx_packets += total_packets;
377 adapter->total_rx_bytes += total_bytes;
378 netdev->stats.rx_bytes += total_bytes;
379 netdev->stats.rx_packets += total_packets;
383 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
384 struct igbvf_buffer *buffer_info)
386 if (buffer_info->dma) {
387 if (buffer_info->mapped_as_page)
388 dma_unmap_page(&adapter->pdev->dev,
393 dma_unmap_single(&adapter->pdev->dev,
397 buffer_info->dma = 0;
399 if (buffer_info->skb) {
400 dev_kfree_skb_any(buffer_info->skb);
401 buffer_info->skb = NULL;
403 buffer_info->time_stamp = 0;
407 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
408 * @adapter: board private structure
410 * Return 0 on success, negative on failure
412 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
413 struct igbvf_ring *tx_ring)
415 struct pci_dev *pdev = adapter->pdev;
418 size = sizeof(struct igbvf_buffer) * tx_ring->count;
419 tx_ring->buffer_info = vzalloc(size);
420 if (!tx_ring->buffer_info)
423 /* round up to nearest 4K */
424 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
425 tx_ring->size = ALIGN(tx_ring->size, 4096);
427 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
428 &tx_ring->dma, GFP_KERNEL);
432 tx_ring->adapter = adapter;
433 tx_ring->next_to_use = 0;
434 tx_ring->next_to_clean = 0;
438 vfree(tx_ring->buffer_info);
439 dev_err(&adapter->pdev->dev,
440 "Unable to allocate memory for the transmit descriptor ring\n");
445 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
446 * @adapter: board private structure
448 * Returns 0 on success, negative on failure
450 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
451 struct igbvf_ring *rx_ring)
453 struct pci_dev *pdev = adapter->pdev;
456 size = sizeof(struct igbvf_buffer) * rx_ring->count;
457 rx_ring->buffer_info = vzalloc(size);
458 if (!rx_ring->buffer_info)
461 desc_len = sizeof(union e1000_adv_rx_desc);
463 /* Round up to nearest 4K */
464 rx_ring->size = rx_ring->count * desc_len;
465 rx_ring->size = ALIGN(rx_ring->size, 4096);
467 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
468 &rx_ring->dma, GFP_KERNEL);
472 rx_ring->next_to_clean = 0;
473 rx_ring->next_to_use = 0;
475 rx_ring->adapter = adapter;
480 vfree(rx_ring->buffer_info);
481 rx_ring->buffer_info = NULL;
482 dev_err(&adapter->pdev->dev,
483 "Unable to allocate memory for the receive descriptor ring\n");
488 * igbvf_clean_tx_ring - Free Tx Buffers
489 * @tx_ring: ring to be cleaned
491 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
493 struct igbvf_adapter *adapter = tx_ring->adapter;
494 struct igbvf_buffer *buffer_info;
498 if (!tx_ring->buffer_info)
501 /* Free all the Tx ring sk_buffs */
502 for (i = 0; i < tx_ring->count; i++) {
503 buffer_info = &tx_ring->buffer_info[i];
504 igbvf_put_txbuf(adapter, buffer_info);
507 size = sizeof(struct igbvf_buffer) * tx_ring->count;
508 memset(tx_ring->buffer_info, 0, size);
510 /* Zero out the descriptor ring */
511 memset(tx_ring->desc, 0, tx_ring->size);
513 tx_ring->next_to_use = 0;
514 tx_ring->next_to_clean = 0;
516 writel(0, adapter->hw.hw_addr + tx_ring->head);
517 writel(0, adapter->hw.hw_addr + tx_ring->tail);
521 * igbvf_free_tx_resources - Free Tx Resources per Queue
522 * @tx_ring: ring to free resources from
524 * Free all transmit software resources
526 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
528 struct pci_dev *pdev = tx_ring->adapter->pdev;
530 igbvf_clean_tx_ring(tx_ring);
532 vfree(tx_ring->buffer_info);
533 tx_ring->buffer_info = NULL;
535 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538 tx_ring->desc = NULL;
542 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
543 * @adapter: board private structure
545 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
547 struct igbvf_adapter *adapter = rx_ring->adapter;
548 struct igbvf_buffer *buffer_info;
549 struct pci_dev *pdev = adapter->pdev;
553 if (!rx_ring->buffer_info)
556 /* Free all the Rx ring sk_buffs */
557 for (i = 0; i < rx_ring->count; i++) {
558 buffer_info = &rx_ring->buffer_info[i];
559 if (buffer_info->dma) {
560 if (adapter->rx_ps_hdr_size) {
561 dma_unmap_single(&pdev->dev, buffer_info->dma,
562 adapter->rx_ps_hdr_size,
565 dma_unmap_single(&pdev->dev, buffer_info->dma,
566 adapter->rx_buffer_len,
569 buffer_info->dma = 0;
572 if (buffer_info->skb) {
573 dev_kfree_skb(buffer_info->skb);
574 buffer_info->skb = NULL;
577 if (buffer_info->page) {
578 if (buffer_info->page_dma)
579 dma_unmap_page(&pdev->dev,
580 buffer_info->page_dma,
583 put_page(buffer_info->page);
584 buffer_info->page = NULL;
585 buffer_info->page_dma = 0;
586 buffer_info->page_offset = 0;
590 size = sizeof(struct igbvf_buffer) * rx_ring->count;
591 memset(rx_ring->buffer_info, 0, size);
593 /* Zero out the descriptor ring */
594 memset(rx_ring->desc, 0, rx_ring->size);
596 rx_ring->next_to_clean = 0;
597 rx_ring->next_to_use = 0;
599 writel(0, adapter->hw.hw_addr + rx_ring->head);
600 writel(0, adapter->hw.hw_addr + rx_ring->tail);
604 * igbvf_free_rx_resources - Free Rx Resources
605 * @rx_ring: ring to clean the resources from
607 * Free all receive software resources
610 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
612 struct pci_dev *pdev = rx_ring->adapter->pdev;
614 igbvf_clean_rx_ring(rx_ring);
616 vfree(rx_ring->buffer_info);
617 rx_ring->buffer_info = NULL;
619 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
621 rx_ring->desc = NULL;
625 * igbvf_update_itr - update the dynamic ITR value based on statistics
626 * @adapter: pointer to adapter
627 * @itr_setting: current adapter->itr
628 * @packets: the number of packets during this measurement interval
629 * @bytes: the number of bytes during this measurement interval
631 * Stores a new ITR value based on packets and byte counts during the last
632 * interrupt. The advantage of per interrupt computation is faster updates
633 * and more accurate ITR for the current traffic pattern. Constants in this
634 * function were computed based on theoretical maximum wire speed and thresholds
635 * were set based on testing data as well as attempting to minimize response
636 * time while increasing bulk throughput.
638 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
639 enum latency_range itr_setting,
640 int packets, int bytes)
642 enum latency_range retval = itr_setting;
645 goto update_itr_done;
647 switch (itr_setting) {
649 /* handle TSO and jumbo frames */
650 if (bytes/packets > 8000)
651 retval = bulk_latency;
652 else if ((packets < 5) && (bytes > 512))
653 retval = low_latency;
655 case low_latency: /* 50 usec aka 20000 ints/s */
657 /* this if handles the TSO accounting */
658 if (bytes/packets > 8000)
659 retval = bulk_latency;
660 else if ((packets < 10) || ((bytes/packets) > 1200))
661 retval = bulk_latency;
662 else if ((packets > 35))
663 retval = lowest_latency;
664 } else if (bytes/packets > 2000) {
665 retval = bulk_latency;
666 } else if (packets <= 2 && bytes < 512) {
667 retval = lowest_latency;
670 case bulk_latency: /* 250 usec aka 4000 ints/s */
673 retval = low_latency;
674 } else if (bytes < 6000) {
675 retval = low_latency;
686 static int igbvf_range_to_itr(enum latency_range current_range)
690 switch (current_range) {
691 /* counts and packets in update_itr are dependent on these numbers */
693 new_itr = IGBVF_70K_ITR;
696 new_itr = IGBVF_20K_ITR;
699 new_itr = IGBVF_4K_ITR;
702 new_itr = IGBVF_START_ITR;
708 static void igbvf_set_itr(struct igbvf_adapter *adapter)
712 adapter->tx_ring->itr_range =
713 igbvf_update_itr(adapter,
714 adapter->tx_ring->itr_val,
715 adapter->total_tx_packets,
716 adapter->total_tx_bytes);
718 /* conservative mode (itr 3) eliminates the lowest_latency setting */
719 if (adapter->requested_itr == 3 &&
720 adapter->tx_ring->itr_range == lowest_latency)
721 adapter->tx_ring->itr_range = low_latency;
723 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
725 if (new_itr != adapter->tx_ring->itr_val) {
726 u32 current_itr = adapter->tx_ring->itr_val;
727 /* this attempts to bias the interrupt rate towards Bulk
728 * by adding intermediate steps when interrupt rate is
731 new_itr = new_itr > current_itr ?
732 min(current_itr + (new_itr >> 2), new_itr) :
734 adapter->tx_ring->itr_val = new_itr;
736 adapter->tx_ring->set_itr = 1;
739 adapter->rx_ring->itr_range =
740 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
741 adapter->total_rx_packets,
742 adapter->total_rx_bytes);
743 if (adapter->requested_itr == 3 &&
744 adapter->rx_ring->itr_range == lowest_latency)
745 adapter->rx_ring->itr_range = low_latency;
747 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
749 if (new_itr != adapter->rx_ring->itr_val) {
750 u32 current_itr = adapter->rx_ring->itr_val;
752 new_itr = new_itr > current_itr ?
753 min(current_itr + (new_itr >> 2), new_itr) :
755 adapter->rx_ring->itr_val = new_itr;
757 adapter->rx_ring->set_itr = 1;
762 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
763 * @adapter: board private structure
765 * returns true if ring is completely cleaned
767 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
769 struct igbvf_adapter *adapter = tx_ring->adapter;
770 struct net_device *netdev = adapter->netdev;
771 struct igbvf_buffer *buffer_info;
773 union e1000_adv_tx_desc *tx_desc, *eop_desc;
774 unsigned int total_bytes = 0, total_packets = 0;
775 unsigned int i, count = 0;
776 bool cleaned = false;
778 i = tx_ring->next_to_clean;
779 buffer_info = &tx_ring->buffer_info[i];
780 eop_desc = buffer_info->next_to_watch;
783 /* if next_to_watch is not set then there is no work pending */
787 /* prevent any other reads prior to eop_desc */
790 /* if DD is not set pending work has not been completed */
791 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794 /* clear next_to_watch to prevent false hangs */
795 buffer_info->next_to_watch = NULL;
797 for (cleaned = false; !cleaned; count++) {
798 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
799 cleaned = (tx_desc == eop_desc);
800 skb = buffer_info->skb;
803 unsigned int segs, bytecount;
805 /* gso_segs is currently only valid for tcp */
806 segs = skb_shinfo(skb)->gso_segs ?: 1;
807 /* multiply data chunks by size of headers */
808 bytecount = ((segs - 1) * skb_headlen(skb)) +
810 total_packets += segs;
811 total_bytes += bytecount;
814 igbvf_put_txbuf(adapter, buffer_info);
815 tx_desc->wb.status = 0;
818 if (i == tx_ring->count)
821 buffer_info = &tx_ring->buffer_info[i];
824 eop_desc = buffer_info->next_to_watch;
825 } while (count < tx_ring->count);
827 tx_ring->next_to_clean = i;
829 if (unlikely(count && netif_carrier_ok(netdev) &&
830 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
831 /* Make sure that anybody stopping the queue after this
832 * sees the new next_to_clean.
835 if (netif_queue_stopped(netdev) &&
836 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
837 netif_wake_queue(netdev);
838 ++adapter->restart_queue;
842 netdev->stats.tx_bytes += total_bytes;
843 netdev->stats.tx_packets += total_packets;
844 return count < tx_ring->count;
847 static irqreturn_t igbvf_msix_other(int irq, void *data)
849 struct net_device *netdev = data;
850 struct igbvf_adapter *adapter = netdev_priv(netdev);
851 struct e1000_hw *hw = &adapter->hw;
853 adapter->int_counter1++;
855 hw->mac.get_link_status = 1;
856 if (!test_bit(__IGBVF_DOWN, &adapter->state))
857 mod_timer(&adapter->watchdog_timer, jiffies + 1);
859 ew32(EIMS, adapter->eims_other);
864 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
866 struct net_device *netdev = data;
867 struct igbvf_adapter *adapter = netdev_priv(netdev);
868 struct e1000_hw *hw = &adapter->hw;
869 struct igbvf_ring *tx_ring = adapter->tx_ring;
871 if (tx_ring->set_itr) {
872 writel(tx_ring->itr_val,
873 adapter->hw.hw_addr + tx_ring->itr_register);
874 adapter->tx_ring->set_itr = 0;
877 adapter->total_tx_bytes = 0;
878 adapter->total_tx_packets = 0;
880 /* auto mask will automatically re-enable the interrupt when we write
883 if (!igbvf_clean_tx_irq(tx_ring))
884 /* Ring was not completely cleaned, so fire another interrupt */
885 ew32(EICS, tx_ring->eims_value);
887 ew32(EIMS, tx_ring->eims_value);
892 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
894 struct net_device *netdev = data;
895 struct igbvf_adapter *adapter = netdev_priv(netdev);
897 adapter->int_counter0++;
899 /* Write the ITR value calculated at the end of the
900 * previous interrupt.
902 if (adapter->rx_ring->set_itr) {
903 writel(adapter->rx_ring->itr_val,
904 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
905 adapter->rx_ring->set_itr = 0;
908 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
909 adapter->total_rx_bytes = 0;
910 adapter->total_rx_packets = 0;
911 __napi_schedule(&adapter->rx_ring->napi);
917 #define IGBVF_NO_QUEUE -1
919 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
920 int tx_queue, int msix_vector)
922 struct e1000_hw *hw = &adapter->hw;
925 /* 82576 uses a table-based method for assigning vectors.
926 * Each queue has a single entry in the table to which we write
927 * a vector number along with a "valid" bit. Sadly, the layout
928 * of the table is somewhat counterintuitive.
930 if (rx_queue > IGBVF_NO_QUEUE) {
931 index = (rx_queue >> 1);
932 ivar = array_er32(IVAR0, index);
933 if (rx_queue & 0x1) {
934 /* vector goes into third byte of register */
935 ivar = ivar & 0xFF00FFFF;
936 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
938 /* vector goes into low byte of register */
939 ivar = ivar & 0xFFFFFF00;
940 ivar |= msix_vector | E1000_IVAR_VALID;
942 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
943 array_ew32(IVAR0, index, ivar);
945 if (tx_queue > IGBVF_NO_QUEUE) {
946 index = (tx_queue >> 1);
947 ivar = array_er32(IVAR0, index);
948 if (tx_queue & 0x1) {
949 /* vector goes into high byte of register */
950 ivar = ivar & 0x00FFFFFF;
951 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
953 /* vector goes into second byte of register */
954 ivar = ivar & 0xFFFF00FF;
955 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
957 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
958 array_ew32(IVAR0, index, ivar);
963 * igbvf_configure_msix - Configure MSI-X hardware
964 * @adapter: board private structure
966 * igbvf_configure_msix sets up the hardware to properly
967 * generate MSI-X interrupts.
969 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972 struct e1000_hw *hw = &adapter->hw;
973 struct igbvf_ring *tx_ring = adapter->tx_ring;
974 struct igbvf_ring *rx_ring = adapter->rx_ring;
977 adapter->eims_enable_mask = 0;
979 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
980 adapter->eims_enable_mask |= tx_ring->eims_value;
981 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
982 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
983 adapter->eims_enable_mask |= rx_ring->eims_value;
984 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
986 /* set vector for other causes, i.e. link changes */
988 tmp = (vector++ | E1000_IVAR_VALID);
990 ew32(IVAR_MISC, tmp);
992 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
993 adapter->eims_other = BIT(vector - 1);
997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
999 if (adapter->msix_entries) {
1000 pci_disable_msix(adapter->pdev);
1001 kfree(adapter->msix_entries);
1002 adapter->msix_entries = NULL;
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1008 * @adapter: board private structure
1010 * Attempt to configure interrupts using the best available
1011 * capabilities of the hardware and kernel.
1013 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1018 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1019 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1021 if (adapter->msix_entries) {
1022 for (i = 0; i < 3; i++)
1023 adapter->msix_entries[i].entry = i;
1025 err = pci_enable_msix_range(adapter->pdev,
1026 adapter->msix_entries, 3, 3);
1031 dev_err(&adapter->pdev->dev,
1032 "Failed to initialize MSI-X interrupts.\n");
1033 igbvf_reset_interrupt_capability(adapter);
1038 * igbvf_request_msix - Initialize MSI-X interrupts
1039 * @adapter: board private structure
1041 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1044 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1046 struct net_device *netdev = adapter->netdev;
1047 int err = 0, vector = 0;
1049 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1050 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1051 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1053 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1054 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057 err = request_irq(adapter->msix_entries[vector].vector,
1058 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1063 adapter->tx_ring->itr_register = E1000_EITR(vector);
1064 adapter->tx_ring->itr_val = adapter->current_itr;
1067 err = request_irq(adapter->msix_entries[vector].vector,
1068 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1073 adapter->rx_ring->itr_register = E1000_EITR(vector);
1074 adapter->rx_ring->itr_val = adapter->current_itr;
1077 err = request_irq(adapter->msix_entries[vector].vector,
1078 igbvf_msix_other, 0, netdev->name, netdev);
1082 igbvf_configure_msix(adapter);
1089 * igbvf_alloc_queues - Allocate memory for all rings
1090 * @adapter: board private structure to initialize
1092 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1094 struct net_device *netdev = adapter->netdev;
1096 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1097 if (!adapter->tx_ring)
1100 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1101 if (!adapter->rx_ring) {
1102 kfree(adapter->tx_ring);
1106 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1112 * igbvf_request_irq - initialize interrupts
1113 * @adapter: board private structure
1115 * Attempts to configure interrupts using the best available
1116 * capabilities of the hardware and kernel.
1118 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1122 /* igbvf supports msi-x only */
1123 if (adapter->msix_entries)
1124 err = igbvf_request_msix(adapter);
1129 dev_err(&adapter->pdev->dev,
1130 "Unable to allocate interrupt, Error: %d\n", err);
1135 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1137 struct net_device *netdev = adapter->netdev;
1140 if (adapter->msix_entries) {
1141 for (vector = 0; vector < 3; vector++)
1142 free_irq(adapter->msix_entries[vector].vector, netdev);
1147 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1148 * @adapter: board private structure
1150 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1152 struct e1000_hw *hw = &adapter->hw;
1156 if (adapter->msix_entries)
1161 * igbvf_irq_enable - Enable default interrupt generation settings
1162 * @adapter: board private structure
1164 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1166 struct e1000_hw *hw = &adapter->hw;
1168 ew32(EIAC, adapter->eims_enable_mask);
1169 ew32(EIAM, adapter->eims_enable_mask);
1170 ew32(EIMS, adapter->eims_enable_mask);
1174 * igbvf_poll - NAPI Rx polling callback
1175 * @napi: struct associated with this polling callback
1176 * @budget: amount of packets driver is allowed to process this poll
1178 static int igbvf_poll(struct napi_struct *napi, int budget)
1180 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1181 struct igbvf_adapter *adapter = rx_ring->adapter;
1182 struct e1000_hw *hw = &adapter->hw;
1185 igbvf_clean_rx_irq(adapter, &work_done, budget);
1187 if (work_done == budget)
1190 /* Exit the polling mode, but don't re-enable interrupts if stack might
1191 * poll us due to busy-polling
1193 if (likely(napi_complete_done(napi, work_done))) {
1194 if (adapter->requested_itr & 3)
1195 igbvf_set_itr(adapter);
1197 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1198 ew32(EIMS, adapter->rx_ring->eims_value);
1205 * igbvf_set_rlpml - set receive large packet maximum length
1206 * @adapter: board private structure
1208 * Configure the maximum size of packets that will be received
1210 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1213 struct e1000_hw *hw = &adapter->hw;
1215 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1217 spin_lock_bh(&hw->mbx_lock);
1219 e1000_rlpml_set_vf(hw, max_frame_size);
1221 spin_unlock_bh(&hw->mbx_lock);
1224 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1225 __be16 proto, u16 vid)
1227 struct igbvf_adapter *adapter = netdev_priv(netdev);
1228 struct e1000_hw *hw = &adapter->hw;
1230 spin_lock_bh(&hw->mbx_lock);
1232 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1233 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1234 spin_unlock_bh(&hw->mbx_lock);
1238 spin_unlock_bh(&hw->mbx_lock);
1240 set_bit(vid, adapter->active_vlans);
1244 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1245 __be16 proto, u16 vid)
1247 struct igbvf_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1250 spin_lock_bh(&hw->mbx_lock);
1252 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1253 dev_err(&adapter->pdev->dev,
1254 "Failed to remove vlan id %d\n", vid);
1255 spin_unlock_bh(&hw->mbx_lock);
1259 spin_unlock_bh(&hw->mbx_lock);
1261 clear_bit(vid, adapter->active_vlans);
1265 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1269 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1270 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1274 * igbvf_configure_tx - Configure Transmit Unit after Reset
1275 * @adapter: board private structure
1277 * Configure the Tx unit of the MAC after a reset.
1279 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1281 struct e1000_hw *hw = &adapter->hw;
1282 struct igbvf_ring *tx_ring = adapter->tx_ring;
1284 u32 txdctl, dca_txctrl;
1286 /* disable transmits */
1287 txdctl = er32(TXDCTL(0));
1288 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1292 /* Setup the HW Tx Head and Tail descriptor pointers */
1293 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1294 tdba = tx_ring->dma;
1295 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1296 ew32(TDBAH(0), (tdba >> 32));
1299 tx_ring->head = E1000_TDH(0);
1300 tx_ring->tail = E1000_TDT(0);
1302 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1303 * MUST be delivered in order or it will completely screw up
1306 dca_txctrl = er32(DCA_TXCTRL(0));
1307 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1308 ew32(DCA_TXCTRL(0), dca_txctrl);
1310 /* enable transmits */
1311 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1312 ew32(TXDCTL(0), txdctl);
1314 /* Setup Transmit Descriptor Settings for eop descriptor */
1315 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1317 /* enable Report Status bit */
1318 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1322 * igbvf_setup_srrctl - configure the receive control registers
1323 * @adapter: Board private structure
1325 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1327 struct e1000_hw *hw = &adapter->hw;
1330 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1331 E1000_SRRCTL_BSIZEHDR_MASK |
1332 E1000_SRRCTL_BSIZEPKT_MASK);
1334 /* Enable queue drop to avoid head of line blocking */
1335 srrctl |= E1000_SRRCTL_DROP_EN;
1337 /* Setup buffer sizes */
1338 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1339 E1000_SRRCTL_BSIZEPKT_SHIFT;
1341 if (adapter->rx_buffer_len < 2048) {
1342 adapter->rx_ps_hdr_size = 0;
1343 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1345 adapter->rx_ps_hdr_size = 128;
1346 srrctl |= adapter->rx_ps_hdr_size <<
1347 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1348 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1351 ew32(SRRCTL(0), srrctl);
1355 * igbvf_configure_rx - Configure Receive Unit after Reset
1356 * @adapter: board private structure
1358 * Configure the Rx unit of the MAC after a reset.
1360 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1362 struct e1000_hw *hw = &adapter->hw;
1363 struct igbvf_ring *rx_ring = adapter->rx_ring;
1367 /* disable receives */
1368 rxdctl = er32(RXDCTL(0));
1369 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1373 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1376 rdba = rx_ring->dma;
1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba >> 32));
1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 rx_ring->head = E1000_RDH(0);
1381 rx_ring->tail = E1000_RDT(0);
1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 rxdctl &= 0xFFF00000;
1387 rxdctl |= IGBVF_RX_PTHRESH;
1388 rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 rxdctl |= IGBVF_RX_WTHRESH << 16;
1391 igbvf_set_rlpml(adapter);
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl);
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1406 static void igbvf_set_multi(struct net_device *netdev)
1408 struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct netdev_hw_addr *ha;
1411 u8 *mta_list = NULL;
1414 if (!netdev_mc_empty(netdev)) {
1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421 /* prepare a packed array of only addresses. */
1423 netdev_for_each_mc_addr(ha, netdev)
1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1426 spin_lock_bh(&hw->mbx_lock);
1428 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1430 spin_unlock_bh(&hw->mbx_lock);
1435 * igbvf_set_uni - Configure unicast MAC filters
1436 * @netdev: network interface device structure
1438 * This routine is responsible for configuring the hardware for proper
1441 static int igbvf_set_uni(struct net_device *netdev)
1443 struct igbvf_adapter *adapter = netdev_priv(netdev);
1444 struct e1000_hw *hw = &adapter->hw;
1446 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1447 pr_err("Too many unicast filters - No Space\n");
1451 spin_lock_bh(&hw->mbx_lock);
1453 /* Clear all unicast MAC filters */
1454 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1456 spin_unlock_bh(&hw->mbx_lock);
1458 if (!netdev_uc_empty(netdev)) {
1459 struct netdev_hw_addr *ha;
1461 /* Add MAC filters one by one */
1462 netdev_for_each_uc_addr(ha, netdev) {
1463 spin_lock_bh(&hw->mbx_lock);
1465 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1468 spin_unlock_bh(&hw->mbx_lock);
1476 static void igbvf_set_rx_mode(struct net_device *netdev)
1478 igbvf_set_multi(netdev);
1479 igbvf_set_uni(netdev);
1483 * igbvf_configure - configure the hardware for Rx and Tx
1484 * @adapter: private board structure
1486 static void igbvf_configure(struct igbvf_adapter *adapter)
1488 igbvf_set_rx_mode(adapter->netdev);
1490 igbvf_restore_vlan(adapter);
1492 igbvf_configure_tx(adapter);
1493 igbvf_setup_srrctl(adapter);
1494 igbvf_configure_rx(adapter);
1495 igbvf_alloc_rx_buffers(adapter->rx_ring,
1496 igbvf_desc_unused(adapter->rx_ring));
1499 /* igbvf_reset - bring the hardware into a known good state
1500 * @adapter: private board structure
1502 * This function boots the hardware and enables some settings that
1503 * require a configuration cycle of the hardware - those cannot be
1504 * set/changed during runtime. After reset the device needs to be
1505 * properly configured for Rx, Tx etc.
1507 static void igbvf_reset(struct igbvf_adapter *adapter)
1509 struct e1000_mac_info *mac = &adapter->hw.mac;
1510 struct net_device *netdev = adapter->netdev;
1511 struct e1000_hw *hw = &adapter->hw;
1513 spin_lock_bh(&hw->mbx_lock);
1515 /* Allow time for pending master requests to run */
1516 if (mac->ops.reset_hw(hw))
1517 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1519 mac->ops.init_hw(hw);
1521 spin_unlock_bh(&hw->mbx_lock);
1523 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1524 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1526 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1530 adapter->last_reset = jiffies;
1533 int igbvf_up(struct igbvf_adapter *adapter)
1535 struct e1000_hw *hw = &adapter->hw;
1537 /* hardware has been reset, we need to reload some things */
1538 igbvf_configure(adapter);
1540 clear_bit(__IGBVF_DOWN, &adapter->state);
1542 napi_enable(&adapter->rx_ring->napi);
1543 if (adapter->msix_entries)
1544 igbvf_configure_msix(adapter);
1546 /* Clear any pending interrupts. */
1548 igbvf_irq_enable(adapter);
1550 /* start the watchdog */
1551 hw->mac.get_link_status = 1;
1552 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1557 void igbvf_down(struct igbvf_adapter *adapter)
1559 struct net_device *netdev = adapter->netdev;
1560 struct e1000_hw *hw = &adapter->hw;
1563 /* signal that we're down so the interrupt handler does not
1564 * reschedule our watchdog timer
1566 set_bit(__IGBVF_DOWN, &adapter->state);
1568 /* disable receives in the hardware */
1569 rxdctl = er32(RXDCTL(0));
1570 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1572 netif_carrier_off(netdev);
1573 netif_stop_queue(netdev);
1575 /* disable transmits in the hardware */
1576 txdctl = er32(TXDCTL(0));
1577 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1579 /* flush both disables and wait for them to finish */
1583 napi_disable(&adapter->rx_ring->napi);
1585 igbvf_irq_disable(adapter);
1587 del_timer_sync(&adapter->watchdog_timer);
1589 /* record the stats before reset*/
1590 igbvf_update_stats(adapter);
1592 adapter->link_speed = 0;
1593 adapter->link_duplex = 0;
1595 igbvf_reset(adapter);
1596 igbvf_clean_tx_ring(adapter->tx_ring);
1597 igbvf_clean_rx_ring(adapter->rx_ring);
1600 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1603 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1604 usleep_range(1000, 2000);
1605 igbvf_down(adapter);
1607 clear_bit(__IGBVF_RESETTING, &adapter->state);
1611 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1612 * @adapter: board private structure to initialize
1614 * igbvf_sw_init initializes the Adapter private data structure.
1615 * Fields are initialized based on PCI device information and
1616 * OS network device settings (MTU size).
1618 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1620 struct net_device *netdev = adapter->netdev;
1623 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1624 adapter->rx_ps_hdr_size = 0;
1625 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1626 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1628 adapter->tx_int_delay = 8;
1629 adapter->tx_abs_int_delay = 32;
1630 adapter->rx_int_delay = 0;
1631 adapter->rx_abs_int_delay = 8;
1632 adapter->requested_itr = 3;
1633 adapter->current_itr = IGBVF_START_ITR;
1635 /* Set various function pointers */
1636 adapter->ei->init_ops(&adapter->hw);
1638 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1642 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1646 igbvf_set_interrupt_capability(adapter);
1648 if (igbvf_alloc_queues(adapter))
1651 spin_lock_init(&adapter->tx_queue_lock);
1653 /* Explicitly disable IRQ since the NIC can be in any state. */
1654 igbvf_irq_disable(adapter);
1656 spin_lock_init(&adapter->stats_lock);
1657 spin_lock_init(&adapter->hw.mbx_lock);
1659 set_bit(__IGBVF_DOWN, &adapter->state);
1663 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1665 struct e1000_hw *hw = &adapter->hw;
1667 adapter->stats.last_gprc = er32(VFGPRC);
1668 adapter->stats.last_gorc = er32(VFGORC);
1669 adapter->stats.last_gptc = er32(VFGPTC);
1670 adapter->stats.last_gotc = er32(VFGOTC);
1671 adapter->stats.last_mprc = er32(VFMPRC);
1672 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1673 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1674 adapter->stats.last_gorlbc = er32(VFGORLBC);
1675 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1677 adapter->stats.base_gprc = er32(VFGPRC);
1678 adapter->stats.base_gorc = er32(VFGORC);
1679 adapter->stats.base_gptc = er32(VFGPTC);
1680 adapter->stats.base_gotc = er32(VFGOTC);
1681 adapter->stats.base_mprc = er32(VFMPRC);
1682 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1683 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1684 adapter->stats.base_gorlbc = er32(VFGORLBC);
1685 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1689 * igbvf_open - Called when a network interface is made active
1690 * @netdev: network interface device structure
1692 * Returns 0 on success, negative value on failure
1694 * The open entry point is called when a network interface is made
1695 * active by the system (IFF_UP). At this point all resources needed
1696 * for transmit and receive operations are allocated, the interrupt
1697 * handler is registered with the OS, the watchdog timer is started,
1698 * and the stack is notified that the interface is ready.
1700 static int igbvf_open(struct net_device *netdev)
1702 struct igbvf_adapter *adapter = netdev_priv(netdev);
1703 struct e1000_hw *hw = &adapter->hw;
1706 /* disallow open during test */
1707 if (test_bit(__IGBVF_TESTING, &adapter->state))
1710 /* allocate transmit descriptors */
1711 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1715 /* allocate receive descriptors */
1716 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1720 /* before we allocate an interrupt, we must be ready to handle it.
1721 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1722 * as soon as we call pci_request_irq, so we have to setup our
1723 * clean_rx handler before we do so.
1725 igbvf_configure(adapter);
1727 err = igbvf_request_irq(adapter);
1731 /* From here on the code is the same as igbvf_up() */
1732 clear_bit(__IGBVF_DOWN, &adapter->state);
1734 napi_enable(&adapter->rx_ring->napi);
1736 /* clear any pending interrupts */
1739 igbvf_irq_enable(adapter);
1741 /* start the watchdog */
1742 hw->mac.get_link_status = 1;
1743 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1748 igbvf_free_rx_resources(adapter->rx_ring);
1750 igbvf_free_tx_resources(adapter->tx_ring);
1752 igbvf_reset(adapter);
1758 * igbvf_close - Disables a network interface
1759 * @netdev: network interface device structure
1761 * Returns 0, this is not allowed to fail
1763 * The close entry point is called when an interface is de-activated
1764 * by the OS. The hardware is still under the drivers control, but
1765 * needs to be disabled. A global MAC reset is issued to stop the
1766 * hardware, and all transmit and receive resources are freed.
1768 static int igbvf_close(struct net_device *netdev)
1770 struct igbvf_adapter *adapter = netdev_priv(netdev);
1772 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1773 igbvf_down(adapter);
1775 igbvf_free_irq(adapter);
1777 igbvf_free_tx_resources(adapter->tx_ring);
1778 igbvf_free_rx_resources(adapter->rx_ring);
1784 * igbvf_set_mac - Change the Ethernet Address of the NIC
1785 * @netdev: network interface device structure
1786 * @p: pointer to an address structure
1788 * Returns 0 on success, negative on failure
1790 static int igbvf_set_mac(struct net_device *netdev, void *p)
1792 struct igbvf_adapter *adapter = netdev_priv(netdev);
1793 struct e1000_hw *hw = &adapter->hw;
1794 struct sockaddr *addr = p;
1796 if (!is_valid_ether_addr(addr->sa_data))
1797 return -EADDRNOTAVAIL;
1799 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1801 spin_lock_bh(&hw->mbx_lock);
1803 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1805 spin_unlock_bh(&hw->mbx_lock);
1807 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1808 return -EADDRNOTAVAIL;
1810 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1815 #define UPDATE_VF_COUNTER(reg, name) \
1817 u32 current_counter = er32(reg); \
1818 if (current_counter < adapter->stats.last_##name) \
1819 adapter->stats.name += 0x100000000LL; \
1820 adapter->stats.last_##name = current_counter; \
1821 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1822 adapter->stats.name |= current_counter; \
1826 * igbvf_update_stats - Update the board statistics counters
1827 * @adapter: board private structure
1829 void igbvf_update_stats(struct igbvf_adapter *adapter)
1831 struct e1000_hw *hw = &adapter->hw;
1832 struct pci_dev *pdev = adapter->pdev;
1834 /* Prevent stats update while adapter is being reset, link is down
1835 * or if the pci connection is down.
1837 if (adapter->link_speed == 0)
1840 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1843 if (pci_channel_offline(pdev))
1846 UPDATE_VF_COUNTER(VFGPRC, gprc);
1847 UPDATE_VF_COUNTER(VFGORC, gorc);
1848 UPDATE_VF_COUNTER(VFGPTC, gptc);
1849 UPDATE_VF_COUNTER(VFGOTC, gotc);
1850 UPDATE_VF_COUNTER(VFMPRC, mprc);
1851 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1852 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1853 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1854 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1856 /* Fill out the OS statistics structure */
1857 adapter->netdev->stats.multicast = adapter->stats.mprc;
1860 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1862 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1863 adapter->link_speed,
1864 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1867 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1869 struct e1000_hw *hw = &adapter->hw;
1870 s32 ret_val = E1000_SUCCESS;
1873 /* If interface is down, stay link down */
1874 if (test_bit(__IGBVF_DOWN, &adapter->state))
1877 spin_lock_bh(&hw->mbx_lock);
1879 ret_val = hw->mac.ops.check_for_link(hw);
1881 spin_unlock_bh(&hw->mbx_lock);
1883 link_active = !hw->mac.get_link_status;
1885 /* if check for link returns error we will need to reset */
1886 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1887 schedule_work(&adapter->reset_task);
1893 * igbvf_watchdog - Timer Call-back
1894 * @data: pointer to adapter cast into an unsigned long
1896 static void igbvf_watchdog(struct timer_list *t)
1898 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1900 /* Do the rest outside of interrupt context */
1901 schedule_work(&adapter->watchdog_task);
1904 static void igbvf_watchdog_task(struct work_struct *work)
1906 struct igbvf_adapter *adapter = container_of(work,
1907 struct igbvf_adapter,
1909 struct net_device *netdev = adapter->netdev;
1910 struct e1000_mac_info *mac = &adapter->hw.mac;
1911 struct igbvf_ring *tx_ring = adapter->tx_ring;
1912 struct e1000_hw *hw = &adapter->hw;
1916 link = igbvf_has_link(adapter);
1919 if (!netif_carrier_ok(netdev)) {
1920 mac->ops.get_link_up_info(&adapter->hw,
1921 &adapter->link_speed,
1922 &adapter->link_duplex);
1923 igbvf_print_link_info(adapter);
1925 netif_carrier_on(netdev);
1926 netif_wake_queue(netdev);
1929 if (netif_carrier_ok(netdev)) {
1930 adapter->link_speed = 0;
1931 adapter->link_duplex = 0;
1932 dev_info(&adapter->pdev->dev, "Link is Down\n");
1933 netif_carrier_off(netdev);
1934 netif_stop_queue(netdev);
1938 if (netif_carrier_ok(netdev)) {
1939 igbvf_update_stats(adapter);
1941 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944 /* We've lost link, so the controller stops DMA,
1945 * but we've got queued Tx work that's never going
1946 * to get done, so reset controller to flush Tx.
1947 * (Do the reset outside of interrupt context).
1949 adapter->tx_timeout_count++;
1950 schedule_work(&adapter->reset_task);
1954 /* Cause software interrupt to ensure Rx ring is cleaned */
1955 ew32(EICS, adapter->rx_ring->eims_value);
1957 /* Reset the timer */
1958 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1959 mod_timer(&adapter->watchdog_timer,
1960 round_jiffies(jiffies + (2 * HZ)));
1963 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1964 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1965 #define IGBVF_TX_FLAGS_TSO 0x00000004
1966 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1967 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1968 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1970 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1971 u32 type_tucmd, u32 mss_l4len_idx)
1973 struct e1000_adv_tx_context_desc *context_desc;
1974 struct igbvf_buffer *buffer_info;
1975 u16 i = tx_ring->next_to_use;
1977 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1978 buffer_info = &tx_ring->buffer_info[i];
1981 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1983 /* set bits to identify this as an advanced context descriptor */
1984 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1986 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1987 context_desc->seqnum_seed = 0;
1988 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1989 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1991 buffer_info->time_stamp = jiffies;
1992 buffer_info->dma = 0;
1995 static int igbvf_tso(struct igbvf_ring *tx_ring,
1996 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1998 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2008 u32 paylen, l4_offset;
2011 if (skb->ip_summed != CHECKSUM_PARTIAL)
2014 if (!skb_is_gso(skb))
2017 err = skb_cow_head(skb, 0);
2021 ip.hdr = skb_network_header(skb);
2022 l4.hdr = skb_checksum_start(skb);
2024 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2025 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2027 /* initialize outer IP header fields */
2028 if (ip.v4->version == 4) {
2029 unsigned char *csum_start = skb_checksum_start(skb);
2030 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2032 /* IP header will have to cancel out any data that
2033 * is not a part of the outer IP header
2035 ip.v4->check = csum_fold(csum_partial(trans_start,
2036 csum_start - trans_start,
2038 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2042 ip.v6->payload_len = 0;
2045 /* determine offset of inner transport header */
2046 l4_offset = l4.hdr - skb->data;
2048 /* compute length of segmentation header */
2049 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2051 /* remove payload length from inner checksum */
2052 paylen = skb->len - l4_offset;
2053 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2056 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2057 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2059 /* VLAN MACLEN IPLEN */
2060 vlan_macip_lens = l4.hdr - ip.hdr;
2061 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2062 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2064 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2069 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2071 unsigned int offset = 0;
2073 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2075 return offset == skb_checksum_start_offset(skb);
2078 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2079 u32 tx_flags, __be16 protocol)
2081 u32 vlan_macip_lens = 0;
2084 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2086 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2091 switch (skb->csum_offset) {
2092 case offsetof(struct tcphdr, check):
2093 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2095 case offsetof(struct udphdr, check):
2097 case offsetof(struct sctphdr, checksum):
2098 /* validate that this is actually an SCTP request */
2099 if (((protocol == htons(ETH_P_IP)) &&
2100 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2101 ((protocol == htons(ETH_P_IPV6)) &&
2102 igbvf_ipv6_csum_is_sctp(skb))) {
2103 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2108 skb_checksum_help(skb);
2112 vlan_macip_lens = skb_checksum_start_offset(skb) -
2113 skb_network_offset(skb);
2115 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2116 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2118 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2122 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2124 struct igbvf_adapter *adapter = netdev_priv(netdev);
2126 /* there is enough descriptors then we don't need to worry */
2127 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2130 netif_stop_queue(netdev);
2132 /* Herbert's original patch had:
2133 * smp_mb__after_netif_stop_queue();
2134 * but since that doesn't exist yet, just open code it.
2138 /* We need to check again just in case room has been made available */
2139 if (igbvf_desc_unused(adapter->tx_ring) < size)
2142 netif_wake_queue(netdev);
2144 ++adapter->restart_queue;
2148 #define IGBVF_MAX_TXD_PWR 16
2149 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2151 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2152 struct igbvf_ring *tx_ring,
2153 struct sk_buff *skb)
2155 struct igbvf_buffer *buffer_info;
2156 struct pci_dev *pdev = adapter->pdev;
2157 unsigned int len = skb_headlen(skb);
2158 unsigned int count = 0, i;
2161 i = tx_ring->next_to_use;
2163 buffer_info = &tx_ring->buffer_info[i];
2164 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2165 buffer_info->length = len;
2166 /* set time_stamp *before* dma to help avoid a possible race */
2167 buffer_info->time_stamp = jiffies;
2168 buffer_info->mapped_as_page = false;
2169 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2171 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2174 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2175 const skb_frag_t *frag;
2179 if (i == tx_ring->count)
2182 frag = &skb_shinfo(skb)->frags[f];
2183 len = skb_frag_size(frag);
2185 buffer_info = &tx_ring->buffer_info[i];
2186 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187 buffer_info->length = len;
2188 buffer_info->time_stamp = jiffies;
2189 buffer_info->mapped_as_page = true;
2190 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2192 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2196 tx_ring->buffer_info[i].skb = skb;
2201 dev_err(&pdev->dev, "TX DMA map failed\n");
2203 /* clear timestamp and dma mappings for failed buffer_info mapping */
2204 buffer_info->dma = 0;
2205 buffer_info->time_stamp = 0;
2206 buffer_info->length = 0;
2207 buffer_info->mapped_as_page = false;
2211 /* clear timestamp and dma mappings for remaining portion of packet */
2214 i += tx_ring->count;
2216 buffer_info = &tx_ring->buffer_info[i];
2217 igbvf_put_txbuf(adapter, buffer_info);
2223 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2224 struct igbvf_ring *tx_ring,
2225 int tx_flags, int count,
2226 unsigned int first, u32 paylen,
2229 union e1000_adv_tx_desc *tx_desc = NULL;
2230 struct igbvf_buffer *buffer_info;
2231 u32 olinfo_status = 0, cmd_type_len;
2234 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2235 E1000_ADVTXD_DCMD_DEXT);
2237 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2238 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2240 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2241 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2243 /* insert tcp checksum */
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2246 /* insert ip checksum */
2247 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2248 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2250 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2251 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2254 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2256 i = tx_ring->next_to_use;
2258 buffer_info = &tx_ring->buffer_info[i];
2259 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2260 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2261 tx_desc->read.cmd_type_len =
2262 cpu_to_le32(cmd_type_len | buffer_info->length);
2263 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2265 if (i == tx_ring->count)
2269 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2270 /* Force memory writes to complete before letting h/w
2271 * know there are new descriptors to fetch. (Only
2272 * applicable for weak-ordered memory model archs,
2277 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2278 tx_ring->next_to_use = i;
2279 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2282 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2283 struct net_device *netdev,
2284 struct igbvf_ring *tx_ring)
2286 struct igbvf_adapter *adapter = netdev_priv(netdev);
2287 unsigned int first, tx_flags = 0;
2291 __be16 protocol = vlan_get_protocol(skb);
2293 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2294 dev_kfree_skb_any(skb);
2295 return NETDEV_TX_OK;
2298 if (skb->len <= 0) {
2299 dev_kfree_skb_any(skb);
2300 return NETDEV_TX_OK;
2303 /* need: count + 4 desc gap to keep tail from touching
2304 * + 2 desc gap to keep tail from touching head,
2305 * + 1 desc for skb->data,
2306 * + 1 desc for context descriptor,
2307 * head, otherwise try next time
2309 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2310 /* this is a hard error */
2311 return NETDEV_TX_BUSY;
2314 if (skb_vlan_tag_present(skb)) {
2315 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2316 tx_flags |= (skb_vlan_tag_get(skb) <<
2317 IGBVF_TX_FLAGS_VLAN_SHIFT);
2320 if (protocol == htons(ETH_P_IP))
2321 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2323 first = tx_ring->next_to_use;
2325 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2326 if (unlikely(tso < 0)) {
2327 dev_kfree_skb_any(skb);
2328 return NETDEV_TX_OK;
2332 tx_flags |= IGBVF_TX_FLAGS_TSO;
2333 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2334 (skb->ip_summed == CHECKSUM_PARTIAL))
2335 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2337 /* count reflects descriptors mapped, if 0 then mapping error
2338 * has occurred and we need to rewind the descriptor queue
2340 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2343 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2344 first, skb->len, hdr_len);
2345 /* Make sure there is space in the ring for the next send. */
2346 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2348 dev_kfree_skb_any(skb);
2349 tx_ring->buffer_info[first].time_stamp = 0;
2350 tx_ring->next_to_use = first;
2353 return NETDEV_TX_OK;
2356 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2357 struct net_device *netdev)
2359 struct igbvf_adapter *adapter = netdev_priv(netdev);
2360 struct igbvf_ring *tx_ring;
2362 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2363 dev_kfree_skb_any(skb);
2364 return NETDEV_TX_OK;
2367 tx_ring = &adapter->tx_ring[0];
2369 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2373 * igbvf_tx_timeout - Respond to a Tx Hang
2374 * @netdev: network interface device structure
2376 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2378 struct igbvf_adapter *adapter = netdev_priv(netdev);
2380 /* Do the reset outside of interrupt context */
2381 adapter->tx_timeout_count++;
2382 schedule_work(&adapter->reset_task);
2385 static void igbvf_reset_task(struct work_struct *work)
2387 struct igbvf_adapter *adapter;
2389 adapter = container_of(work, struct igbvf_adapter, reset_task);
2391 igbvf_reinit_locked(adapter);
2395 * igbvf_change_mtu - Change the Maximum Transfer Unit
2396 * @netdev: network interface device structure
2397 * @new_mtu: new value for maximum frame size
2399 * Returns 0 on success, negative on failure
2401 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2403 struct igbvf_adapter *adapter = netdev_priv(netdev);
2404 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2406 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2407 usleep_range(1000, 2000);
2408 /* igbvf_down has a dependency on max_frame_size */
2409 adapter->max_frame_size = max_frame;
2410 if (netif_running(netdev))
2411 igbvf_down(adapter);
2413 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2414 * means we reserve 2 more, this pushes us to allocate from the next
2416 * i.e. RXBUFFER_2048 --> size-4096 slab
2417 * However with the new *_jumbo_rx* routines, jumbo receives will use
2421 if (max_frame <= 1024)
2422 adapter->rx_buffer_len = 1024;
2423 else if (max_frame <= 2048)
2424 adapter->rx_buffer_len = 2048;
2426 #if (PAGE_SIZE / 2) > 16384
2427 adapter->rx_buffer_len = 16384;
2429 adapter->rx_buffer_len = PAGE_SIZE / 2;
2432 /* adjust allocation if LPE protects us, and we aren't using SBP */
2433 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2434 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2435 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2438 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2439 netdev->mtu, new_mtu);
2440 netdev->mtu = new_mtu;
2442 if (netif_running(netdev))
2445 igbvf_reset(adapter);
2447 clear_bit(__IGBVF_RESETTING, &adapter->state);
2452 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2460 static int igbvf_suspend(struct device *dev_d)
2462 struct net_device *netdev = dev_get_drvdata(dev_d);
2463 struct igbvf_adapter *adapter = netdev_priv(netdev);
2465 netif_device_detach(netdev);
2467 if (netif_running(netdev)) {
2468 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2469 igbvf_down(adapter);
2470 igbvf_free_irq(adapter);
2476 static int __maybe_unused igbvf_resume(struct device *dev_d)
2478 struct pci_dev *pdev = to_pci_dev(dev_d);
2479 struct net_device *netdev = pci_get_drvdata(pdev);
2480 struct igbvf_adapter *adapter = netdev_priv(netdev);
2483 pci_set_master(pdev);
2485 if (netif_running(netdev)) {
2486 err = igbvf_request_irq(adapter);
2491 igbvf_reset(adapter);
2493 if (netif_running(netdev))
2496 netif_device_attach(netdev);
2501 static void igbvf_shutdown(struct pci_dev *pdev)
2503 igbvf_suspend(&pdev->dev);
2506 #ifdef CONFIG_NET_POLL_CONTROLLER
2507 /* Polling 'interrupt' - used by things like netconsole to send skbs
2508 * without having to re-enable interrupts. It's not called while
2509 * the interrupt routine is executing.
2511 static void igbvf_netpoll(struct net_device *netdev)
2513 struct igbvf_adapter *adapter = netdev_priv(netdev);
2515 disable_irq(adapter->pdev->irq);
2517 igbvf_clean_tx_irq(adapter->tx_ring);
2519 enable_irq(adapter->pdev->irq);
2524 * igbvf_io_error_detected - called when PCI error is detected
2525 * @pdev: Pointer to PCI device
2526 * @state: The current pci connection state
2528 * This function is called after a PCI bus error affecting
2529 * this device has been detected.
2531 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2532 pci_channel_state_t state)
2534 struct net_device *netdev = pci_get_drvdata(pdev);
2535 struct igbvf_adapter *adapter = netdev_priv(netdev);
2537 netif_device_detach(netdev);
2539 if (state == pci_channel_io_perm_failure)
2540 return PCI_ERS_RESULT_DISCONNECT;
2542 if (netif_running(netdev))
2543 igbvf_down(adapter);
2544 pci_disable_device(pdev);
2546 /* Request a slot slot reset. */
2547 return PCI_ERS_RESULT_NEED_RESET;
2551 * igbvf_io_slot_reset - called after the pci bus has been reset.
2552 * @pdev: Pointer to PCI device
2554 * Restart the card from scratch, as if from a cold-boot. Implementation
2555 * resembles the first-half of the igbvf_resume routine.
2557 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2559 struct net_device *netdev = pci_get_drvdata(pdev);
2560 struct igbvf_adapter *adapter = netdev_priv(netdev);
2562 if (pci_enable_device_mem(pdev)) {
2564 "Cannot re-enable PCI device after reset.\n");
2565 return PCI_ERS_RESULT_DISCONNECT;
2567 pci_set_master(pdev);
2569 igbvf_reset(adapter);
2571 return PCI_ERS_RESULT_RECOVERED;
2575 * igbvf_io_resume - called when traffic can start flowing again.
2576 * @pdev: Pointer to PCI device
2578 * This callback is called when the error recovery driver tells us that
2579 * its OK to resume normal operation. Implementation resembles the
2580 * second-half of the igbvf_resume routine.
2582 static void igbvf_io_resume(struct pci_dev *pdev)
2584 struct net_device *netdev = pci_get_drvdata(pdev);
2585 struct igbvf_adapter *adapter = netdev_priv(netdev);
2587 if (netif_running(netdev)) {
2588 if (igbvf_up(adapter)) {
2590 "can't bring device back up after reset\n");
2595 netif_device_attach(netdev);
2598 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2600 struct e1000_hw *hw = &adapter->hw;
2601 struct net_device *netdev = adapter->netdev;
2602 struct pci_dev *pdev = adapter->pdev;
2604 if (hw->mac.type == e1000_vfadapt_i350)
2605 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2607 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2608 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2611 static int igbvf_set_features(struct net_device *netdev,
2612 netdev_features_t features)
2614 struct igbvf_adapter *adapter = netdev_priv(netdev);
2616 if (features & NETIF_F_RXCSUM)
2617 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2619 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2624 #define IGBVF_MAX_MAC_HDR_LEN 127
2625 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2627 static netdev_features_t
2628 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2629 netdev_features_t features)
2631 unsigned int network_hdr_len, mac_hdr_len;
2633 /* Make certain the headers can be described by a context descriptor */
2634 mac_hdr_len = skb_network_header(skb) - skb->data;
2635 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2636 return features & ~(NETIF_F_HW_CSUM |
2638 NETIF_F_HW_VLAN_CTAG_TX |
2642 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2643 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2644 return features & ~(NETIF_F_HW_CSUM |
2649 /* We can only support IPV4 TSO in tunnels if we can mangle the
2650 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2652 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2653 features &= ~NETIF_F_TSO;
2658 static const struct net_device_ops igbvf_netdev_ops = {
2659 .ndo_open = igbvf_open,
2660 .ndo_stop = igbvf_close,
2661 .ndo_start_xmit = igbvf_xmit_frame,
2662 .ndo_set_rx_mode = igbvf_set_rx_mode,
2663 .ndo_set_mac_address = igbvf_set_mac,
2664 .ndo_change_mtu = igbvf_change_mtu,
2665 .ndo_do_ioctl = igbvf_ioctl,
2666 .ndo_tx_timeout = igbvf_tx_timeout,
2667 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2668 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2669 #ifdef CONFIG_NET_POLL_CONTROLLER
2670 .ndo_poll_controller = igbvf_netpoll,
2672 .ndo_set_features = igbvf_set_features,
2673 .ndo_features_check = igbvf_features_check,
2677 * igbvf_probe - Device Initialization Routine
2678 * @pdev: PCI device information struct
2679 * @ent: entry in igbvf_pci_tbl
2681 * Returns 0 on success, negative on failure
2683 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2684 * The OS initialization, configuring of the adapter private structure,
2685 * and a hardware reset occur.
2687 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2689 struct net_device *netdev;
2690 struct igbvf_adapter *adapter;
2691 struct e1000_hw *hw;
2692 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2694 static int cards_found;
2695 int err, pci_using_dac;
2697 err = pci_enable_device_mem(pdev);
2702 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2706 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2709 "No usable DMA configuration, aborting\n");
2714 err = pci_request_regions(pdev, igbvf_driver_name);
2718 pci_set_master(pdev);
2721 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2723 goto err_alloc_etherdev;
2725 SET_NETDEV_DEV(netdev, &pdev->dev);
2727 pci_set_drvdata(pdev, netdev);
2728 adapter = netdev_priv(netdev);
2730 adapter->netdev = netdev;
2731 adapter->pdev = pdev;
2733 adapter->pba = ei->pba;
2734 adapter->flags = ei->flags;
2735 adapter->hw.back = adapter;
2736 adapter->hw.mac.type = ei->mac;
2737 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2739 /* PCI config space info */
2741 hw->vendor_id = pdev->vendor;
2742 hw->device_id = pdev->device;
2743 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2744 hw->subsystem_device_id = pdev->subsystem_device;
2745 hw->revision_id = pdev->revision;
2748 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2749 pci_resource_len(pdev, 0));
2751 if (!adapter->hw.hw_addr)
2754 if (ei->get_variants) {
2755 err = ei->get_variants(adapter);
2757 goto err_get_variants;
2760 /* setup adapter struct */
2761 err = igbvf_sw_init(adapter);
2765 /* construct the net_device struct */
2766 netdev->netdev_ops = &igbvf_netdev_ops;
2768 igbvf_set_ethtool_ops(netdev);
2769 netdev->watchdog_timeo = 5 * HZ;
2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2772 adapter->bd_number = cards_found++;
2774 netdev->hw_features = NETIF_F_SG |
2781 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2782 NETIF_F_GSO_GRE_CSUM | \
2783 NETIF_F_GSO_IPXIP4 | \
2784 NETIF_F_GSO_IPXIP6 | \
2785 NETIF_F_GSO_UDP_TUNNEL | \
2786 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2788 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2789 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2790 IGBVF_GSO_PARTIAL_FEATURES;
2792 netdev->features = netdev->hw_features;
2795 netdev->features |= NETIF_F_HIGHDMA;
2797 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2798 netdev->mpls_features |= NETIF_F_HW_CSUM;
2799 netdev->hw_enc_features |= netdev->vlan_features;
2801 /* set this bit last since it cannot be part of vlan_features */
2802 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2803 NETIF_F_HW_VLAN_CTAG_RX |
2804 NETIF_F_HW_VLAN_CTAG_TX;
2806 /* MTU range: 68 - 9216 */
2807 netdev->min_mtu = ETH_MIN_MTU;
2808 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2810 spin_lock_bh(&hw->mbx_lock);
2812 /*reset the controller to put the device in a known good state */
2813 err = hw->mac.ops.reset_hw(hw);
2815 dev_info(&pdev->dev,
2816 "PF still in reset state. Is the PF interface up?\n");
2818 err = hw->mac.ops.read_mac_addr(hw);
2820 dev_info(&pdev->dev, "Error reading MAC address.\n");
2821 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2822 dev_info(&pdev->dev,
2823 "MAC address not assigned by administrator.\n");
2824 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2828 spin_unlock_bh(&hw->mbx_lock);
2830 if (!is_valid_ether_addr(netdev->dev_addr)) {
2831 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2832 eth_hw_addr_random(netdev);
2833 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2837 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2839 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2840 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2842 /* ring size defaults */
2843 adapter->rx_ring->count = 1024;
2844 adapter->tx_ring->count = 1024;
2846 /* reset the hardware with the new settings */
2847 igbvf_reset(adapter);
2849 /* set hardware-specific flags */
2850 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2851 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2853 strcpy(netdev->name, "eth%d");
2854 err = register_netdev(netdev);
2858 /* tell the stack to leave us alone until igbvf_open() is called */
2859 netif_carrier_off(netdev);
2860 netif_stop_queue(netdev);
2862 igbvf_print_device_info(adapter);
2864 igbvf_initialize_last_counter_stats(adapter);
2869 kfree(adapter->tx_ring);
2870 kfree(adapter->rx_ring);
2872 igbvf_reset_interrupt_capability(adapter);
2874 iounmap(adapter->hw.hw_addr);
2876 free_netdev(netdev);
2878 pci_release_regions(pdev);
2881 pci_disable_device(pdev);
2886 * igbvf_remove - Device Removal Routine
2887 * @pdev: PCI device information struct
2889 * igbvf_remove is called by the PCI subsystem to alert the driver
2890 * that it should release a PCI device. The could be caused by a
2891 * Hot-Plug event, or because the driver is going to be removed from
2894 static void igbvf_remove(struct pci_dev *pdev)
2896 struct net_device *netdev = pci_get_drvdata(pdev);
2897 struct igbvf_adapter *adapter = netdev_priv(netdev);
2898 struct e1000_hw *hw = &adapter->hw;
2900 /* The watchdog timer may be rescheduled, so explicitly
2901 * disable it from being rescheduled.
2903 set_bit(__IGBVF_DOWN, &adapter->state);
2904 del_timer_sync(&adapter->watchdog_timer);
2906 cancel_work_sync(&adapter->reset_task);
2907 cancel_work_sync(&adapter->watchdog_task);
2909 unregister_netdev(netdev);
2911 igbvf_reset_interrupt_capability(adapter);
2913 /* it is important to delete the NAPI struct prior to freeing the
2914 * Rx ring so that you do not end up with null pointer refs
2916 netif_napi_del(&adapter->rx_ring->napi);
2917 kfree(adapter->tx_ring);
2918 kfree(adapter->rx_ring);
2920 iounmap(hw->hw_addr);
2921 if (hw->flash_address)
2922 iounmap(hw->flash_address);
2923 pci_release_regions(pdev);
2925 free_netdev(netdev);
2927 pci_disable_device(pdev);
2930 /* PCI Error Recovery (ERS) */
2931 static const struct pci_error_handlers igbvf_err_handler = {
2932 .error_detected = igbvf_io_error_detected,
2933 .slot_reset = igbvf_io_slot_reset,
2934 .resume = igbvf_io_resume,
2937 static const struct pci_device_id igbvf_pci_tbl[] = {
2938 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2940 { } /* terminate list */
2942 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2944 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2946 /* PCI Device API Driver */
2947 static struct pci_driver igbvf_driver = {
2948 .name = igbvf_driver_name,
2949 .id_table = igbvf_pci_tbl,
2950 .probe = igbvf_probe,
2951 .remove = igbvf_remove,
2952 .driver.pm = &igbvf_pm_ops,
2953 .shutdown = igbvf_shutdown,
2954 .err_handler = &igbvf_err_handler
2958 * igbvf_init_module - Driver Registration Routine
2960 * igbvf_init_module is the first routine called when the driver is
2961 * loaded. All it does is register with the PCI subsystem.
2963 static int __init igbvf_init_module(void)
2967 pr_info("%s\n", igbvf_driver_string);
2968 pr_info("%s\n", igbvf_copyright);
2970 ret = pci_register_driver(&igbvf_driver);
2974 module_init(igbvf_init_module);
2977 * igbvf_exit_module - Driver Exit Cleanup Routine
2979 * igbvf_exit_module is called just before the driver is removed
2982 static void __exit igbvf_exit_module(void)
2984 pci_unregister_driver(&igbvf_driver);
2986 module_exit(igbvf_exit_module);
2989 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2990 MODULE_LICENSE("GPL v2");