1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
10 * ice_validate_vf_id - helper to check if VF ID is valid
11 * @pf: pointer to the PF structure
12 * @vf_id: the ID of the VF to check
14 static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id)
16 /* vf_id range is only valid for 0-255, and should always be unsigned */
17 if (vf_id >= pf->num_alloc_vfs) {
18 dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id);
25 * ice_check_vf_init - helper to check if VF init complete
26 * @pf: pointer to the PF structure
27 * @vf: the pointer to the VF to check
29 static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
31 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
32 dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
40 * ice_err_to_virt_err - translate errors for VF return code
41 * @ice_err: error return code
43 static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
47 return VIRTCHNL_STATUS_SUCCESS;
49 case ICE_ERR_INVAL_SIZE:
50 case ICE_ERR_DEVICE_NOT_SUPPORTED:
53 return VIRTCHNL_STATUS_ERR_PARAM;
54 case ICE_ERR_NO_MEMORY:
55 return VIRTCHNL_STATUS_ERR_NO_MEMORY;
56 case ICE_ERR_NOT_READY:
57 case ICE_ERR_RESET_FAILED:
58 case ICE_ERR_FW_API_VER:
59 case ICE_ERR_AQ_ERROR:
60 case ICE_ERR_AQ_TIMEOUT:
62 case ICE_ERR_AQ_NO_WORK:
63 case ICE_ERR_AQ_EMPTY:
64 return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
66 return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
71 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
72 * @pf: pointer to the PF structure
73 * @v_opcode: operation code
74 * @v_retval: return value
75 * @msg: pointer to the msg buffer
79 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
80 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
82 struct ice_hw *hw = &pf->hw;
85 ice_for_each_vf(pf, i) {
86 struct ice_vf *vf = &pf->vf[i];
88 /* Not all vfs are enabled so skip the ones that are not */
89 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
90 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
93 /* Ignore return value on purpose - a given VF may fail, but
94 * we need to keep going and send to all of them
96 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
102 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
103 * @vf: pointer to the VF structure
104 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
105 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
106 * @link_up: whether or not to set the link up/down
109 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
110 int ice_link_speed, bool link_up)
112 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
113 pfe->event_data.link_event_adv.link_status = link_up;
115 pfe->event_data.link_event_adv.link_speed =
116 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
118 pfe->event_data.link_event.link_status = link_up;
119 /* Legacy method for virtchnl link speeds */
120 pfe->event_data.link_event.link_speed =
121 (enum virtchnl_link_speed)
122 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
127 * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
128 * @vf: the VF to check
130 * Returns true if the VF has no Rx and no Tx queues enabled and returns false
133 static bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
135 return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
136 !bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
140 * ice_is_vf_link_up - check if the VF's link is up
141 * @vf: VF to check if link is up
143 static bool ice_is_vf_link_up(struct ice_vf *vf)
145 struct ice_pf *pf = vf->pf;
147 if (ice_check_vf_init(pf, vf))
150 if (ice_vf_has_no_qs_ena(vf))
152 else if (vf->link_forced)
155 return pf->hw.port_info->phy.link_info.link_info &
160 * ice_vc_notify_vf_link_state - Inform a VF of link status
161 * @vf: pointer to the VF structure
163 * send a link status message to a single VF
165 static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
167 struct virtchnl_pf_event pfe = { 0 };
168 struct ice_hw *hw = &vf->pf->hw;
170 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
171 pfe.severity = PF_EVENT_SEVERITY_INFO;
173 if (ice_is_vf_link_up(vf))
174 ice_set_pfe_link(vf, &pfe,
175 hw->port_info->phy.link_info.link_speed, true);
177 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
179 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
180 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
185 * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
186 * @vf: VF to remove access to VSI for
188 static void ice_vf_invalidate_vsi(struct ice_vf *vf)
190 vf->lan_vsi_idx = ICE_NO_VSI;
191 vf->lan_vsi_num = ICE_NO_VSI;
195 * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
196 * @vf: invalidate this VF's VSI after freeing it
198 static void ice_vf_vsi_release(struct ice_vf *vf)
200 ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]);
201 ice_vf_invalidate_vsi(vf);
205 * ice_free_vf_res - Free a VF's resources
206 * @vf: pointer to the VF info
208 static void ice_free_vf_res(struct ice_vf *vf)
210 struct ice_pf *pf = vf->pf;
211 int i, last_vector_idx;
213 /* First, disable VF's configuration API to prevent OS from
214 * accessing the VF's VSI after it's freed or invalidated.
216 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
218 /* free VSI and disconnect it from the parent uplink */
219 if (vf->lan_vsi_idx != ICE_NO_VSI) {
220 ice_vf_vsi_release(vf);
224 last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1;
226 /* clear VF MDD event information */
227 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
228 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
230 /* Disable interrupts so that VF starts in a known state */
231 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
232 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
235 /* reset some of the state variables keeping track of the resources */
236 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
237 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
241 * ice_dis_vf_mappings
242 * @vf: pointer to the VF structure
244 static void ice_dis_vf_mappings(struct ice_vf *vf)
246 struct ice_pf *pf = vf->pf;
253 vsi = pf->vsi[vf->lan_vsi_idx];
255 dev = ice_pf_to_dev(pf);
256 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
257 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
259 first = vf->first_vector_idx;
260 last = first + pf->num_msix_per_vf - 1;
261 for (v = first; v <= last; v++) {
264 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
265 GLINT_VECT2FUNC_IS_PF_M) |
266 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
267 GLINT_VECT2FUNC_PF_NUM_M));
268 wr32(hw, GLINT_VECT2FUNC(v), reg);
271 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
272 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
274 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
276 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
277 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
279 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
283 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
284 * @pf: pointer to the PF structure
286 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
287 * the pf->sriov_base_vector.
289 * Returns 0 on success, and -EINVAL on error.
291 static int ice_sriov_free_msix_res(struct ice_pf *pf)
293 struct ice_res_tracker *res;
298 res = pf->irq_tracker;
302 /* give back irq_tracker resources used */
303 WARN_ON(pf->sriov_base_vector < res->num_entries);
305 pf->sriov_base_vector = 0;
311 * ice_set_vf_state_qs_dis - Set VF queues state to disabled
312 * @vf: pointer to the VF structure
314 void ice_set_vf_state_qs_dis(struct ice_vf *vf)
316 /* Clear Rx/Tx enabled queues flag */
317 bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
318 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
319 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
323 * ice_dis_vf_qs - Disable the VF queues
324 * @vf: pointer to the VF structure
326 static void ice_dis_vf_qs(struct ice_vf *vf)
328 struct ice_pf *pf = vf->pf;
331 vsi = pf->vsi[vf->lan_vsi_idx];
333 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
334 ice_vsi_stop_all_rx_rings(vsi);
335 ice_set_vf_state_qs_dis(vf);
339 * ice_free_vfs - Free all VFs
340 * @pf: pointer to the PF structure
342 void ice_free_vfs(struct ice_pf *pf)
344 struct device *dev = ice_pf_to_dev(pf);
345 struct ice_hw *hw = &pf->hw;
351 while (test_and_set_bit(__ICE_VF_DIS, pf->state))
352 usleep_range(1000, 2000);
354 /* Disable IOV before freeing resources. This lets any VF drivers
355 * running in the host get themselves cleaned up before we yank
356 * the carpet out from underneath their feet.
358 if (!pci_vfs_assigned(pf->pdev))
359 pci_disable_sriov(pf->pdev);
361 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
363 /* Avoid wait time by stopping all VFs at the same time */
364 ice_for_each_vf(pf, i)
365 if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
366 ice_dis_vf_qs(&pf->vf[i]);
368 tmp = pf->num_alloc_vfs;
369 pf->num_qps_per_vf = 0;
370 pf->num_alloc_vfs = 0;
371 for (i = 0; i < tmp; i++) {
372 if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
373 /* disable VF qp mappings and set VF disable state */
374 ice_dis_vf_mappings(&pf->vf[i]);
375 set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states);
376 ice_free_vf_res(&pf->vf[i]);
380 if (ice_sriov_free_msix_res(pf))
381 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
383 devm_kfree(dev, pf->vf);
386 /* This check is for when the driver is unloaded while VFs are
387 * assigned. Setting the number of VFs to 0 through sysfs is caught
388 * before this function ever gets called.
390 if (!pci_vfs_assigned(pf->pdev)) {
393 /* Acknowledge VFLR for all VFs. Without this, VFs will fail to
394 * work correctly when SR-IOV gets re-enabled.
396 for (vf_id = 0; vf_id < tmp; vf_id++) {
397 u32 reg_idx, bit_idx;
399 reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
400 bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
401 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
404 clear_bit(__ICE_VF_DIS, pf->state);
405 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
409 * ice_trigger_vf_reset - Reset a VF on HW
410 * @vf: pointer to the VF structure
411 * @is_vflr: true if VFLR was issued, false if not
412 * @is_pfr: true if the reset was triggered due to a previous PFR
414 * Trigger hardware to start a reset for a particular VF. Expects the caller
415 * to wait the proper amount of time to allow hardware to reset the VF before
416 * it cleans up and restores VF functionality.
418 static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
420 struct ice_pf *pf = vf->pf;
421 u32 reg, reg_idx, bit_idx;
422 unsigned int vf_abs_id, i;
426 dev = ice_pf_to_dev(pf);
428 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
430 /* Inform VF that it is no longer active, as a warning */
431 clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
433 /* Disable VF's configuration API during reset. The flag is re-enabled
434 * when it's safe again to access VF's VSI.
436 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
438 /* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it
439 * in the case of VFR. If this is done for PFR, it can mess up VF
440 * resets because the VF driver may already have started cleanup
441 * by the time we get here.
444 wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
446 /* In the case of a VFLR, the HW has already reset the VF and we
447 * just need to clean up, so don't hit the VFRTRIG register.
450 /* reset VF using VPGEN_VFRTRIG reg */
451 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
452 reg |= VPGEN_VFRTRIG_VFSWR_M;
453 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
455 /* clear the VFLR bit in GLGEN_VFLRSTAT */
456 reg_idx = (vf_abs_id) / 32;
457 bit_idx = (vf_abs_id) % 32;
458 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
461 wr32(hw, PF_PCI_CIAA,
462 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
463 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
464 reg = rd32(hw, PF_PCI_CIAD);
465 /* no transactions pending so stop polling */
466 if ((reg & VF_TRANS_PENDING_M) == 0)
469 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
470 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
475 * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
476 * @vsi: the VSI to update
477 * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
478 * @enable: true for enable PVID false for disable
480 static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
482 struct ice_hw *hw = &vsi->back->hw;
483 struct ice_aqc_vsi_props *info;
484 struct ice_vsi_ctx *ctxt;
485 enum ice_status status;
488 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
492 ctxt->info = vsi->info;
495 info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
496 ICE_AQ_VSI_PVLAN_INSERT_PVID |
497 ICE_AQ_VSI_VLAN_EMOD_STR;
498 info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
500 info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
501 ICE_AQ_VSI_VLAN_MODE_ALL;
502 info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
505 info->pvid = cpu_to_le16(pvid_info);
506 info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
507 ICE_AQ_VSI_PROP_SW_VALID);
509 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
511 dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n",
512 ice_stat_str(status),
513 ice_aq_str(hw->adminq.sq_last_status));
518 vsi->info.vlan_flags = info->vlan_flags;
519 vsi->info.sw_flags2 = info->sw_flags2;
520 vsi->info.pvid = info->pvid;
527 * ice_vf_get_port_info - Get the VF's port info structure
528 * @vf: VF used to get the port info structure for
530 static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
532 return vf->pf->hw.port_info;
536 * ice_vf_vsi_setup - Set up a VF VSI
537 * @vf: VF to setup VSI for
539 * Returns pointer to the successfully allocated VSI struct on success,
540 * otherwise returns NULL on failure.
542 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
544 struct ice_port_info *pi = ice_vf_get_port_info(vf);
545 struct ice_pf *pf = vf->pf;
548 vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
551 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
552 ice_vf_invalidate_vsi(vf);
556 vf->lan_vsi_idx = vsi->idx;
557 vf->lan_vsi_num = vsi->vsi_num;
563 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
564 * @pf: pointer to PF structure
565 * @vf: pointer to VF that the first MSIX vector index is being calculated for
567 * This returns the first MSIX vector index in PF space that is used by this VF.
568 * This index is used when accessing PF relative registers such as
569 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
570 * This will always be the OICR index in the AVF driver so any functionality
571 * using vf->first_vector_idx for queue configuration will have to increment by
572 * 1 to avoid meddling with the OICR index.
574 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
576 return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf;
580 * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
581 * @vf: VF to add MAC filters for
583 * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
584 * always re-adds either a VLAN 0 or port VLAN based filter after reset.
586 static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
588 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
589 struct device *dev = ice_pf_to_dev(vf->pf);
593 if (vf->port_vlan_info) {
594 err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
596 dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
601 vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
604 /* vlan_id will either be 0 or the port VLAN number */
605 err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
607 dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
608 vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
617 * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
618 * @vf: VF to add MAC filters for
620 * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
621 * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
623 static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
625 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
626 struct device *dev = ice_pf_to_dev(vf->pf);
627 enum ice_status status;
628 u8 broadcast[ETH_ALEN];
630 eth_broadcast_addr(broadcast);
631 status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
633 dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
634 vf->vf_id, ice_stat_str(status));
635 return ice_status_to_errno(status);
640 if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
641 status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
644 dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
645 &vf->dflt_lan_addr.addr[0], vf->vf_id,
646 ice_stat_str(status));
647 return ice_status_to_errno(status);
656 * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
657 * @vf: VF to configure trust setting for
659 static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
662 set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
664 clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
668 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
669 * @vf: VF to enable MSIX mappings for
671 * Some of the registers need to be indexed/configured using hardware global
672 * device values and other registers need 0-based values, which represent PF
675 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
677 int device_based_first_msix, device_based_last_msix;
678 int pf_based_first_msix, pf_based_last_msix, v;
679 struct ice_pf *pf = vf->pf;
680 int device_based_vf_id;
685 pf_based_first_msix = vf->first_vector_idx;
686 pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
688 device_based_first_msix = pf_based_first_msix +
689 pf->hw.func_caps.common_cap.msix_vector_first_id;
690 device_based_last_msix =
691 (device_based_first_msix + pf->num_msix_per_vf) - 1;
692 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
694 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
695 VPINT_ALLOC_FIRST_M) |
696 ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
697 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
698 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
700 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
701 & VPINT_ALLOC_PCI_FIRST_M) |
702 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
703 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
704 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
706 /* map the interrupts to its functions */
707 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
708 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
709 GLINT_VECT2FUNC_VF_NUM_M) |
710 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
711 GLINT_VECT2FUNC_PF_NUM_M));
712 wr32(hw, GLINT_VECT2FUNC(v), reg);
715 /* Map mailbox interrupt to VF MSI-X vector 0 */
716 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
720 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
721 * @vf: VF to enable the mappings for
722 * @max_txq: max Tx queues allowed on the VF's VSI
723 * @max_rxq: max Rx queues allowed on the VF's VSI
725 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
727 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
728 struct device *dev = ice_pf_to_dev(vf->pf);
729 struct ice_hw *hw = &vf->pf->hw;
732 /* set regardless of mapping mode */
733 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
735 /* VF Tx queues allocation */
736 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
737 /* set the VF PF Tx queue range
738 * VFNUMQ value should be set to (number of queues - 1). A value
739 * of 0 means 1 queue and a value of 255 means 256 queues
741 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
742 VPLAN_TX_QBASE_VFFIRSTQ_M) |
743 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
744 VPLAN_TX_QBASE_VFNUMQ_M));
745 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
747 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
750 /* set regardless of mapping mode */
751 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
753 /* VF Rx queues allocation */
754 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
755 /* set the VF PF Rx queue range
756 * VFNUMQ value should be set to (number of queues - 1). A value
757 * of 0 means 1 queue and a value of 255 means 256 queues
759 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
760 VPLAN_RX_QBASE_VFFIRSTQ_M) |
761 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
762 VPLAN_RX_QBASE_VFNUMQ_M));
763 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
765 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
770 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
771 * @vf: pointer to the VF structure
773 static void ice_ena_vf_mappings(struct ice_vf *vf)
775 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
777 ice_ena_vf_msix_mappings(vf);
778 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
783 * @pf: pointer to the PF structure
784 * @avail_res: available resources in the PF structure
785 * @max_res: maximum resources that can be given per VF
786 * @min_res: minimum resources that can be given per VF
788 * Returns non-zero value if resources (queues/vectors) are available or
789 * returns zero if PF cannot accommodate for all num_alloc_vfs.
792 ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
794 bool checked_min_res = false;
797 /* start by checking if PF can assign max number of resources for
799 * if yes, return number per VF
800 * If no, divide by 2 and roundup, check again
801 * repeat the loop till we reach a point where even minimum resources
802 * are not available, in that case return 0
805 while ((res >= min_res) && !checked_min_res) {
808 num_all_res = pf->num_alloc_vfs * res;
809 if (num_all_res <= avail_res)
813 checked_min_res = true;
815 res = DIV_ROUND_UP(res, 2);
821 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
822 * @vf: VF to calculate the register index for
823 * @q_vector: a q_vector associated to the VF
825 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
829 if (!vf || !q_vector)
834 /* always add one to account for the OICR being the first MSIX */
835 return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id +
840 * ice_get_max_valid_res_idx - Get the max valid resource index
841 * @res: pointer to the resource to find the max valid index for
843 * Start from the end of the ice_res_tracker and return right when we find the
844 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
845 * valid for SR-IOV because it is the only consumer that manipulates the
846 * res->end and this is always called when res->end is set to res->num_entries.
848 static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
855 for (i = res->num_entries - 1; i >= 0; i--)
856 if (res->list[i] & ICE_RES_VALID_BIT)
863 * ice_sriov_set_msix_res - Set any used MSIX resources
864 * @pf: pointer to PF structure
865 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
867 * This function allows SR-IOV resources to be taken from the end of the PF's
868 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
869 * just set the pf->sriov_base_vector and return success.
871 * If there are not enough resources available, return an error. This should
872 * always be caught by ice_set_per_vf_res().
874 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in
875 * in the PF's space available for SR-IOV.
877 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
879 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
880 int vectors_used = pf->irq_tracker->num_entries;
881 int sriov_base_vector;
883 sriov_base_vector = total_vectors - num_msix_needed;
885 /* make sure we only grab irq_tracker entries from the list end and
886 * that we have enough available MSIX vectors
888 if (sriov_base_vector < vectors_used)
891 pf->sriov_base_vector = sriov_base_vector;
897 * ice_set_per_vf_res - check if vectors and queues are available
898 * @pf: pointer to the PF structure
900 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
901 * get more vectors and can enable more queues per VF. Note that this does not
902 * grab any vectors from the SW pool already allocated. Also note, that all
903 * vector counts include one for each VF's miscellaneous interrupt vector
906 * Minimum VFs - 2 vectors, 1 queue pair
907 * Small VFs - 5 vectors, 4 queue pairs
908 * Medium VFs - 17 vectors, 16 queue pairs
910 * Second, determine number of queue pairs per VF by starting with a pre-defined
911 * maximum each VF supports. If this is not possible, then we adjust based on
912 * queue pairs available on the device.
914 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
915 * by each VF during VF initialization and reset.
917 static int ice_set_per_vf_res(struct ice_pf *pf)
919 int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
920 int msix_avail_per_vf, msix_avail_for_sriov;
921 struct device *dev = ice_pf_to_dev(pf);
922 u16 num_msix_per_vf, num_txq, num_rxq;
924 if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
927 /* determine MSI-X resources per VF */
928 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
929 pf->irq_tracker->num_entries;
930 msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs;
931 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
932 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
933 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
934 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
935 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
936 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
937 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
938 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
940 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
941 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
946 /* determine queue resources per VF */
947 num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
949 num_msix_per_vf - ICE_NONQ_VECS_VF,
950 ICE_MAX_RSS_QS_PER_VF),
953 num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
955 num_msix_per_vf - ICE_NONQ_VECS_VF,
956 ICE_MAX_RSS_QS_PER_VF),
959 if (!num_txq || !num_rxq) {
960 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
961 ICE_MIN_QS_PER_VF, pf->num_alloc_vfs);
965 if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) {
966 dev_err(dev, "Unable to set MSI-X resources for %d VFs\n",
971 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
972 pf->num_qps_per_vf = min_t(int, num_txq, num_rxq);
973 pf->num_msix_per_vf = num_msix_per_vf;
974 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
975 pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf);
981 * ice_clear_vf_reset_trigger - enable VF to access hardware
982 * @vf: VF to enabled hardware access for
984 static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
986 struct ice_hw *hw = &vf->pf->hw;
989 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
990 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
991 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
996 * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
997 * @vf: pointer to the VF info
998 * @vsi: the VSI being configured
999 * @promisc_m: mask of promiscuous config bits
1000 * @rm_promisc: promisc flag request from the VF to remove or add filter
1002 * This function configures VF VSI promiscuous mode, based on the VF requests,
1003 * for Unicast, Multicast and VLAN
1005 static enum ice_status
1006 ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
1009 struct ice_pf *pf = vf->pf;
1010 enum ice_status status = 0;
1014 if (vsi->num_vlan) {
1015 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
1017 } else if (vf->port_vlan_info) {
1019 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1020 vf->port_vlan_info);
1022 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1023 vf->port_vlan_info);
1026 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1029 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1036 static void ice_vf_clear_counters(struct ice_vf *vf)
1038 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
1042 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
1043 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
1047 * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
1048 * @vf: VF to perform pre VSI rebuild tasks
1050 * These tasks are items that don't need to be amortized since they are most
1051 * likely called in a for loop with all VF(s) in the reset_all_vfs() case.
1053 static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
1055 ice_vf_clear_counters(vf);
1056 ice_clear_vf_reset_trigger(vf);
1060 * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
1061 * @vf: VF to rebuild host configuration on
1063 static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
1065 struct device *dev = ice_pf_to_dev(vf->pf);
1067 ice_vf_set_host_trust_cfg(vf);
1069 if (ice_vf_rebuild_host_mac_cfg(vf))
1070 dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
1073 if (ice_vf_rebuild_host_vlan_cfg(vf))
1074 dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
1079 * ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
1080 * @vf: VF to release and setup the VSI for
1082 * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
1083 * configuration change, etc.).
1085 static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
1087 ice_vf_vsi_release(vf);
1088 if (!ice_vf_vsi_setup(vf))
1095 * ice_vf_rebuild_vsi - rebuild the VF's VSI
1096 * @vf: VF to rebuild the VSI for
1098 * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
1099 * host, PFR, CORER, etc.).
1101 static int ice_vf_rebuild_vsi(struct ice_vf *vf)
1103 struct ice_pf *pf = vf->pf;
1104 struct ice_vsi *vsi;
1106 vsi = pf->vsi[vf->lan_vsi_idx];
1108 if (ice_vsi_rebuild(vsi, true)) {
1109 dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
1113 /* vsi->idx will remain the same in this case so don't update
1116 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
1117 vf->lan_vsi_num = vsi->vsi_num;
1123 * ice_vf_set_initialized - VF is ready for VIRTCHNL communication
1124 * @vf: VF to set in initialized state
1126 * After this function the VF will be ready to receive/handle the
1127 * VIRTCHNL_OP_GET_VF_RESOURCES message
1129 static void ice_vf_set_initialized(struct ice_vf *vf)
1131 ice_set_vf_state_qs_dis(vf);
1132 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
1133 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
1134 clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
1135 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1139 * ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
1140 * @vf: VF to perform tasks on
1142 static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
1144 struct ice_pf *pf = vf->pf;
1149 ice_vf_rebuild_host_cfg(vf);
1151 ice_vf_set_initialized(vf);
1152 ice_ena_vf_mappings(vf);
1153 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1157 * ice_reset_all_vfs - reset all allocated VFs in one go
1158 * @pf: pointer to the PF structure
1159 * @is_vflr: true if VFLR was issued, false if not
1161 * First, tell the hardware to reset each VF, then do all the waiting in one
1162 * chunk, and finally finish restoring each VF after the wait. This is useful
1163 * during PF routines which need to reset all VFs, as otherwise it must perform
1164 * these resets in a serialized fashion.
1166 * Returns true if any VFs were reset, and false otherwise.
1168 bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
1170 struct device *dev = ice_pf_to_dev(pf);
1171 struct ice_hw *hw = &pf->hw;
1175 /* If we don't have any VFs, then there is nothing to reset */
1176 if (!pf->num_alloc_vfs)
1179 /* If VFs have been disabled, there is no need to reset */
1180 if (test_and_set_bit(__ICE_VF_DIS, pf->state))
1183 /* Begin reset on all VFs at once */
1184 ice_for_each_vf(pf, v)
1185 ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
1187 /* HW requires some time to make sure it can flush the FIFO for a VF
1188 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
1189 * sequence to make sure that it has completed. We'll keep track of
1190 * the VFs using a simple iterator that increments once that VF has
1191 * finished resetting.
1193 for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
1194 /* Check each VF in sequence */
1195 while (v < pf->num_alloc_vfs) {
1199 reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1200 if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
1201 /* only delay if the check failed */
1202 usleep_range(10, 20);
1206 /* If the current VF has finished resetting, move on
1207 * to the next VF in sequence.
1213 /* Display a warning if at least one VF didn't manage to reset in
1214 * time, but continue on with the operation.
1216 if (v < pf->num_alloc_vfs)
1217 dev_warn(dev, "VF reset check timeout\n");
1219 /* free VF resources to begin resetting the VSI state */
1220 ice_for_each_vf(pf, v) {
1223 ice_vf_pre_vsi_rebuild(vf);
1224 ice_vf_rebuild_vsi(vf);
1225 ice_vf_post_vsi_rebuild(vf);
1229 clear_bit(__ICE_VF_DIS, pf->state);
1235 * ice_is_vf_disabled
1236 * @vf: pointer to the VF info
1238 * Returns true if the PF or VF is disabled, false otherwise.
1240 static bool ice_is_vf_disabled(struct ice_vf *vf)
1242 struct ice_pf *pf = vf->pf;
1244 /* If the PF has been disabled, there is no need resetting VF until
1245 * PF is active again. Similarly, if the VF has been disabled, this
1246 * means something else is resetting the VF, so we shouldn't continue.
1247 * Otherwise, set disable VF state bit for actual reset, and continue.
1249 return (test_bit(__ICE_VF_DIS, pf->state) ||
1250 test_bit(ICE_VF_STATE_DIS, vf->vf_states));
1254 * ice_reset_vf - Reset a particular VF
1255 * @vf: pointer to the VF structure
1256 * @is_vflr: true if VFLR was issued, false if not
1258 * Returns true if the VF is currently in reset, resets successfully, or resets
1259 * are disabled and false otherwise.
1261 bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
1263 struct ice_pf *pf = vf->pf;
1264 struct ice_vsi *vsi;
1272 dev = ice_pf_to_dev(pf);
1274 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
1275 dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
1280 if (ice_is_vf_disabled(vf)) {
1281 dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
1286 /* Set VF disable bit state here, before triggering reset */
1287 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
1288 ice_trigger_vf_reset(vf, is_vflr, false);
1290 vsi = pf->vsi[vf->lan_vsi_idx];
1292 if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
1295 /* Call Disable LAN Tx queue AQ whether or not queues are
1296 * enabled. This is needed for successful completion of VFR.
1298 ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
1299 NULL, ICE_VF_RESET, vf->vf_id, NULL);
1302 /* poll VPGEN_VFRSTAT reg to make sure
1303 * that reset is complete
1305 for (i = 0; i < 10; i++) {
1306 /* VF reset requires driver to first reset the VF and then
1307 * poll the status register to make sure that the reset
1308 * completed successfully.
1310 reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1311 if (reg & VPGEN_VFRSTAT_VFRD_M) {
1316 /* only sleep if the reset is not done */
1317 usleep_range(10, 20);
1320 /* Display a warning if VF didn't manage to reset in time, but need to
1321 * continue on with the operation.
1324 dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
1326 /* disable promiscuous modes in case they were enabled
1327 * ignore any error if disabling process failed
1329 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
1330 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
1331 if (vf->port_vlan_info || vsi->num_vlan)
1332 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
1334 promisc_m = ICE_UCAST_PROMISC_BITS;
1336 vsi = pf->vsi[vf->lan_vsi_idx];
1337 if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
1338 dev_err(dev, "disabling promiscuous mode failed\n");
1341 ice_vf_pre_vsi_rebuild(vf);
1342 ice_vf_rebuild_vsi_with_release(vf);
1343 ice_vf_post_vsi_rebuild(vf);
1349 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
1350 * @pf: pointer to the PF structure
1352 void ice_vc_notify_link_state(struct ice_pf *pf)
1356 ice_for_each_vf(pf, i)
1357 ice_vc_notify_vf_link_state(&pf->vf[i]);
1361 * ice_vc_notify_reset - Send pending reset message to all VFs
1362 * @pf: pointer to the PF structure
1364 * indicate a pending reset to all VFs on a given PF
1366 void ice_vc_notify_reset(struct ice_pf *pf)
1368 struct virtchnl_pf_event pfe;
1370 if (!pf->num_alloc_vfs)
1373 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1374 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1375 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
1376 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
1380 * ice_vc_notify_vf_reset - Notify VF of a reset event
1381 * @vf: pointer to the VF structure
1383 static void ice_vc_notify_vf_reset(struct ice_vf *vf)
1385 struct virtchnl_pf_event pfe;
1392 if (ice_validate_vf_id(pf, vf->vf_id))
1395 /* Bail out if VF is in disabled state, neither initialized, nor active
1396 * state - otherwise proceed with notifications
1398 if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
1399 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
1400 test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1403 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1404 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1405 ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
1406 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
1411 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
1412 * @vf: VF to initialize/setup the VSI for
1414 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
1415 * VF VSI's broadcast filter and is only used during initial VF creation.
1417 static int ice_init_vf_vsi_res(struct ice_vf *vf)
1419 struct ice_pf *pf = vf->pf;
1420 u8 broadcast[ETH_ALEN];
1421 enum ice_status status;
1422 struct ice_vsi *vsi;
1426 vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
1428 dev = ice_pf_to_dev(pf);
1429 vsi = ice_vf_vsi_setup(vf);
1433 err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
1435 dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
1440 eth_broadcast_addr(broadcast);
1441 status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
1443 dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
1444 vf->vf_id, ice_stat_str(status));
1445 err = ice_status_to_errno(status);
1454 ice_vf_vsi_release(vf);
1459 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
1460 * @pf: PF the VFs are associated with
1462 static int ice_start_vfs(struct ice_pf *pf)
1464 struct ice_hw *hw = &pf->hw;
1467 ice_for_each_vf(pf, i) {
1468 struct ice_vf *vf = &pf->vf[i];
1470 ice_clear_vf_reset_trigger(vf);
1472 retval = ice_init_vf_vsi_res(vf);
1474 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
1479 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1480 ice_ena_vf_mappings(vf);
1481 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1488 for (i = i - 1; i >= 0; i--) {
1489 struct ice_vf *vf = &pf->vf[i];
1491 ice_dis_vf_mappings(vf);
1492 ice_vf_vsi_release(vf);
1499 * ice_set_dflt_settings - set VF defaults during initialization/creation
1500 * @pf: PF holding reference to all VFs for default configuration
1502 static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
1506 ice_for_each_vf(pf, i) {
1507 struct ice_vf *vf = &pf->vf[i];
1511 vf->vf_sw_id = pf->first_sw;
1512 /* assign default capabilities */
1513 set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
1514 vf->spoofchk = true;
1515 vf->num_vf_qs = pf->num_qps_per_vf;
1520 * ice_alloc_vfs - allocate num_vfs in the PF structure
1521 * @pf: PF to store the allocated VFs in
1522 * @num_vfs: number of VFs to allocate
1524 static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
1528 vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
1534 pf->num_alloc_vfs = num_vfs;
1540 * ice_ena_vfs - enable VFs so they are ready to be used
1541 * @pf: pointer to the PF structure
1542 * @num_vfs: number of VFs to enable
1544 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
1546 struct device *dev = ice_pf_to_dev(pf);
1547 struct ice_hw *hw = &pf->hw;
1550 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
1551 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1552 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
1553 set_bit(__ICE_OICR_INTR_DIS, pf->state);
1556 ret = pci_enable_sriov(pf->pdev, num_vfs);
1558 pf->num_alloc_vfs = 0;
1559 goto err_unroll_intr;
1562 ret = ice_alloc_vfs(pf, num_vfs);
1564 goto err_pci_disable_sriov;
1566 if (ice_set_per_vf_res(pf)) {
1567 dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
1570 goto err_unroll_sriov;
1573 ice_set_dflt_settings_vfs(pf);
1575 if (ice_start_vfs(pf)) {
1576 dev_err(dev, "Failed to start VF(s)\n");
1578 goto err_unroll_sriov;
1581 clear_bit(__ICE_VF_DIS, pf->state);
1585 devm_kfree(dev, pf->vf);
1587 pf->num_alloc_vfs = 0;
1588 err_pci_disable_sriov:
1589 pci_disable_sriov(pf->pdev);
1591 /* rearm interrupts here */
1592 ice_irq_dynamic_ena(hw, NULL, NULL);
1593 clear_bit(__ICE_OICR_INTR_DIS, pf->state);
1598 * ice_pci_sriov_ena - Enable or change number of VFs
1599 * @pf: pointer to the PF structure
1600 * @num_vfs: number of VFs to allocate
1602 * Returns 0 on success and negative on failure
1604 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
1606 int pre_existing_vfs = pci_num_vf(pf->pdev);
1607 struct device *dev = ice_pf_to_dev(pf);
1610 if (pre_existing_vfs && pre_existing_vfs != num_vfs)
1612 else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
1615 if (num_vfs > pf->num_vfs_supported) {
1616 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1617 num_vfs, pf->num_vfs_supported);
1621 dev_info(dev, "Enabling %d VFs\n", num_vfs);
1622 err = ice_ena_vfs(pf, num_vfs);
1624 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1628 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1633 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1634 * @pf: PF to enabled SR-IOV on
1636 static int ice_check_sriov_allowed(struct ice_pf *pf)
1638 struct device *dev = ice_pf_to_dev(pf);
1640 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1641 dev_err(dev, "This device is not capable of SR-IOV\n");
1645 if (ice_is_safe_mode(pf)) {
1646 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1650 if (!ice_pf_state_is_nominal(pf)) {
1651 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1659 * ice_sriov_configure - Enable or change number of VFs via sysfs
1660 * @pdev: pointer to a pci_dev structure
1661 * @num_vfs: number of VFs to allocate or 0 to free VFs
1663 * This function is called when the user updates the number of VFs in sysfs. On
1664 * success return whatever num_vfs was set to by the caller. Return negative on
1667 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1669 struct ice_pf *pf = pci_get_drvdata(pdev);
1670 struct device *dev = ice_pf_to_dev(pf);
1673 err = ice_check_sriov_allowed(pf);
1678 if (!pci_vfs_assigned(pdev)) {
1683 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1687 err = ice_pci_sriov_ena(pf, num_vfs);
1695 * ice_process_vflr_event - Free VF resources via IRQ calls
1696 * @pf: pointer to the PF structure
1698 * called from the VFLR IRQ handler to
1699 * free up VF resources and state variables
1701 void ice_process_vflr_event(struct ice_pf *pf)
1703 struct ice_hw *hw = &pf->hw;
1707 if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1711 ice_for_each_vf(pf, vf_id) {
1712 struct ice_vf *vf = &pf->vf[vf_id];
1713 u32 reg_idx, bit_idx;
1715 reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
1716 bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
1717 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1718 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1719 if (reg & BIT(bit_idx))
1720 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1721 ice_reset_vf(vf, true);
1726 * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
1727 * @vf: pointer to the VF info
1729 static void ice_vc_reset_vf(struct ice_vf *vf)
1731 ice_vc_notify_vf_reset(vf);
1732 ice_reset_vf(vf, false);
1736 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1737 * @pf: PF used to index all VFs
1738 * @pfq: queue index relative to the PF's function space
1740 * If no VF is found who owns the pfq then return NULL, otherwise return a
1741 * pointer to the VF who owns the pfq
1743 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1747 ice_for_each_vf(pf, vf_id) {
1748 struct ice_vf *vf = &pf->vf[vf_id];
1749 struct ice_vsi *vsi;
1752 vsi = pf->vsi[vf->lan_vsi_idx];
1754 ice_for_each_rxq(vsi, rxq_idx)
1755 if (vsi->rxq_map[rxq_idx] == pfq)
1763 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1764 * @pf: PF used for conversion
1765 * @globalq: global queue index used to convert to PF space queue index
1767 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1769 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1773 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1774 * @pf: PF that the LAN overflow event happened on
1775 * @event: structure holding the event information for the LAN overflow event
1777 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1778 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1779 * reset on the offending VF.
1782 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1784 u32 gldcb_rtctq, queue;
1787 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1788 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1790 /* event returns device global Rx queue number */
1791 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1792 GLDCB_RTCTQ_RXQNUM_S;
1794 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1798 ice_vc_reset_vf(vf);
1802 * ice_vc_send_msg_to_vf - Send message to VF
1803 * @vf: pointer to the VF info
1804 * @v_opcode: virtual channel opcode
1805 * @v_retval: virtual channel return value
1806 * @msg: pointer to the msg buffer
1807 * @msglen: msg length
1812 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
1813 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
1815 enum ice_status aq_ret;
1823 if (ice_validate_vf_id(pf, vf->vf_id))
1826 dev = ice_pf_to_dev(pf);
1828 /* single place to detect unsuccessful return values */
1830 vf->num_inval_msgs++;
1831 dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id,
1832 v_opcode, v_retval);
1833 if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
1834 dev_err(dev, "Number of invalid messages exceeded for VF %d\n",
1836 dev_err(dev, "Use PF Control I/F to enable the VF\n");
1837 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
1841 vf->num_valid_msgs++;
1842 /* reset the invalid counter, if a valid message is received. */
1843 vf->num_inval_msgs = 0;
1846 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
1848 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
1849 dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n",
1850 vf->vf_id, ice_stat_str(aq_ret),
1851 ice_aq_str(pf->hw.mailboxq.sq_last_status));
1859 * ice_vc_get_ver_msg
1860 * @vf: pointer to the VF info
1861 * @msg: pointer to the msg buffer
1863 * called from the VF to request the API version used by the PF
1865 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
1867 struct virtchnl_version_info info = {
1868 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
1871 vf->vf_ver = *(struct virtchnl_version_info *)msg;
1872 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
1873 if (VF_IS_V10(&vf->vf_ver))
1874 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
1876 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
1877 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
1878 sizeof(struct virtchnl_version_info));
1882 * ice_vc_get_vf_res_msg
1883 * @vf: pointer to the VF info
1884 * @msg: pointer to the msg buffer
1886 * called from the VF to request its resources
1888 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
1890 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1891 struct virtchnl_vf_resource *vfres = NULL;
1892 struct ice_pf *pf = vf->pf;
1893 struct ice_vsi *vsi;
1897 if (ice_check_vf_init(pf, vf)) {
1898 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1902 len = sizeof(struct virtchnl_vf_resource);
1904 vfres = kzalloc(len, GFP_KERNEL);
1906 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1910 if (VF_IS_V11(&vf->vf_ver))
1911 vf->driver_caps = *(u32 *)msg;
1913 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
1914 VIRTCHNL_VF_OFFLOAD_RSS_REG |
1915 VIRTCHNL_VF_OFFLOAD_VLAN;
1917 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
1918 vsi = pf->vsi[vf->lan_vsi_idx];
1920 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1924 if (!vsi->info.pvid)
1925 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
1927 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1928 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
1930 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
1931 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
1933 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
1936 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1937 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
1939 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
1940 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
1942 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
1943 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
1945 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
1946 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
1948 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1949 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
1951 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
1952 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
1954 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
1955 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
1957 vfres->num_vsis = 1;
1958 /* Tx and Rx queue are equal for VF */
1959 vfres->num_queue_pairs = vsi->num_txq;
1960 vfres->max_vectors = pf->num_msix_per_vf;
1961 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
1962 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
1964 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
1965 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
1966 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
1967 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
1968 vf->dflt_lan_addr.addr);
1970 /* match guest capabilities */
1971 vf->driver_caps = vfres->vf_cap_flags;
1973 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
1976 /* send the response back to the VF */
1977 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
1985 * ice_vc_reset_vf_msg
1986 * @vf: pointer to the VF info
1988 * called from the VF to reset itself,
1989 * unlike other virtchnl messages, PF driver
1990 * doesn't send the response back to the VF
1992 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
1994 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
1995 ice_reset_vf(vf, false);
1999 * ice_find_vsi_from_id
2000 * @pf: the PF structure to search for the VSI
2001 * @id: ID of the VSI it is searching for
2003 * searches for the VSI with the given ID
2005 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
2009 ice_for_each_vsi(pf, i)
2010 if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
2017 * ice_vc_isvalid_vsi_id
2018 * @vf: pointer to the VF info
2019 * @vsi_id: VF relative VSI ID
2021 * check for the valid VSI ID
2023 static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
2025 struct ice_pf *pf = vf->pf;
2026 struct ice_vsi *vsi;
2028 vsi = ice_find_vsi_from_id(pf, vsi_id);
2030 return (vsi && (vsi->vf_id == vf->vf_id));
2034 * ice_vc_isvalid_q_id
2035 * @vf: pointer to the VF info
2037 * @qid: VSI relative queue ID
2039 * check for the valid queue ID
2041 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
2043 struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
2044 /* allocated Tx and Rx queues should be always equal for VF VSI */
2045 return (vsi && (qid < vsi->alloc_txq));
2049 * ice_vc_isvalid_ring_len
2050 * @ring_len: length of ring
2052 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
2055 static bool ice_vc_isvalid_ring_len(u16 ring_len)
2057 return ring_len == 0 ||
2058 (ring_len >= ICE_MIN_NUM_DESC &&
2059 ring_len <= ICE_MAX_NUM_DESC &&
2060 !(ring_len % ICE_REQ_DESC_MULTIPLE));
2064 * ice_vc_config_rss_key
2065 * @vf: pointer to the VF info
2066 * @msg: pointer to the msg buffer
2068 * Configure the VF's RSS key
2070 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
2072 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2073 struct virtchnl_rss_key *vrk =
2074 (struct virtchnl_rss_key *)msg;
2075 struct ice_pf *pf = vf->pf;
2076 struct ice_vsi *vsi;
2078 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2079 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2083 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
2084 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2088 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
2089 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2093 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2094 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2098 vsi = pf->vsi[vf->lan_vsi_idx];
2100 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2104 if (ice_set_rss(vsi, vrk->key, NULL, 0))
2105 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2107 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
2112 * ice_vc_config_rss_lut
2113 * @vf: pointer to the VF info
2114 * @msg: pointer to the msg buffer
2116 * Configure the VF's RSS LUT
2118 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
2120 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
2121 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2122 struct ice_pf *pf = vf->pf;
2123 struct ice_vsi *vsi;
2125 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2126 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2130 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
2131 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2135 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
2136 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2140 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2141 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2145 vsi = pf->vsi[vf->lan_vsi_idx];
2147 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2151 if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
2152 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2154 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
2159 * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
2160 * @vf: The VF being resseting
2162 * The max poll time is about ~800ms, which is about the maximum time it takes
2163 * for a VF to be reset and/or a VF driver to be removed.
2165 static void ice_wait_on_vf_reset(struct ice_vf *vf)
2169 for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
2170 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
2172 msleep(ICE_MAX_VF_RESET_SLEEP_MS);
2177 * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
2178 * @vf: VF to check if it's ready to be configured/queried
2180 * The purpose of this function is to make sure the VF is not in reset, not
2181 * disabled, and initialized so it can be configured and/or queried by a host
2184 static int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
2188 ice_wait_on_vf_reset(vf);
2190 if (ice_is_vf_disabled(vf))
2194 if (ice_check_vf_init(pf, vf))
2201 * ice_set_vf_spoofchk
2202 * @netdev: network interface device structure
2203 * @vf_id: VF identifier
2204 * @ena: flag to enable or disable feature
2206 * Enable or disable VF spoof checking
2208 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
2210 struct ice_netdev_priv *np = netdev_priv(netdev);
2211 struct ice_pf *pf = np->vsi->back;
2212 struct ice_vsi_ctx *ctx;
2213 struct ice_vsi *vf_vsi;
2214 enum ice_status status;
2219 dev = ice_pf_to_dev(pf);
2220 if (ice_validate_vf_id(pf, vf_id))
2223 vf = &pf->vf[vf_id];
2224 ret = ice_check_vf_ready_for_cfg(vf);
2228 vf_vsi = pf->vsi[vf->lan_vsi_idx];
2230 netdev_err(netdev, "VSI %d for VF %d is null\n",
2231 vf->lan_vsi_idx, vf->vf_id);
2235 if (vf_vsi->type != ICE_VSI_VF) {
2236 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
2237 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
2241 if (ena == vf->spoofchk) {
2242 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
2246 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2250 ctx->info.sec_flags = vf_vsi->info.sec_flags;
2251 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
2253 ctx->info.sec_flags |=
2254 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2255 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2256 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2258 ctx->info.sec_flags &=
2259 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2260 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2261 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
2264 status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
2266 dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n",
2267 ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num,
2268 ice_stat_str(status));
2273 /* only update spoofchk state and VSI context on success */
2274 vf_vsi->info.sec_flags = ctx->info.sec_flags;
2283 * ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
2284 * @pf: PF structure for accessing VF(s)
2286 * Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
2289 bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
2293 ice_for_each_vf(pf, vf_idx) {
2294 struct ice_vf *vf = &pf->vf[vf_idx];
2296 /* found a VF that has promiscuous mode configured */
2297 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2298 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2306 * ice_vc_cfg_promiscuous_mode_msg
2307 * @vf: pointer to the VF info
2308 * @msg: pointer to the msg buffer
2310 * called from the VF to configure VF VSIs promiscuous mode
2312 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
2314 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2315 struct virtchnl_promisc_info *info =
2316 (struct virtchnl_promisc_info *)msg;
2317 struct ice_pf *pf = vf->pf;
2318 struct ice_vsi *vsi;
2323 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2324 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2328 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
2329 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2333 vsi = pf->vsi[vf->lan_vsi_idx];
2335 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2339 dev = ice_pf_to_dev(pf);
2340 if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) {
2341 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
2343 /* Leave v_ret alone, lie to the VF on purpose. */
2347 rm_promisc = !(info->flags & FLAG_VF_UNICAST_PROMISC) &&
2348 !(info->flags & FLAG_VF_MULTICAST_PROMISC);
2350 if (vsi->num_vlan || vf->port_vlan_info) {
2351 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
2352 struct net_device *pf_netdev;
2355 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2359 pf_netdev = pf_vsi->netdev;
2361 ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc);
2363 dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n",
2364 rm_promisc ? "ON" : "OFF", vf->vf_id,
2366 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2369 ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc);
2371 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
2372 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2377 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
2378 bool set_dflt_vsi = !!(info->flags & FLAG_VF_UNICAST_PROMISC);
2380 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
2381 /* only attempt to set the default forwarding VSI if
2382 * it's not currently set
2384 ret = ice_set_dflt_vsi(pf->first_sw, vsi);
2385 else if (!set_dflt_vsi &&
2386 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2387 /* only attempt to free the default forwarding VSI if we
2390 ret = ice_clear_dflt_vsi(pf->first_sw);
2393 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
2394 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
2395 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2399 enum ice_status status;
2402 if (info->flags & FLAG_VF_UNICAST_PROMISC) {
2403 if (vf->port_vlan_info || vsi->num_vlan)
2404 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
2406 promisc_m = ICE_UCAST_PROMISC_BITS;
2407 } else if (info->flags & FLAG_VF_MULTICAST_PROMISC) {
2408 if (vf->port_vlan_info || vsi->num_vlan)
2409 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
2411 promisc_m = ICE_MCAST_PROMISC_BITS;
2413 if (vf->port_vlan_info || vsi->num_vlan)
2414 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
2416 promisc_m = ICE_UCAST_PROMISC_BITS;
2419 /* Configure multicast/unicast with or without VLAN promiscuous
2422 status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc);
2424 dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n",
2425 rm_promisc ? "dis" : "en", vf->vf_id,
2426 ice_stat_str(status));
2427 v_ret = ice_err_to_virt_err(status);
2430 dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n",
2431 rm_promisc ? "dis" : "en", vf->vf_id);
2435 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
2436 set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
2438 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
2440 if (info->flags & FLAG_VF_UNICAST_PROMISC)
2441 set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
2443 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
2446 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
2451 * ice_vc_get_stats_msg
2452 * @vf: pointer to the VF info
2453 * @msg: pointer to the msg buffer
2455 * called from the VF to get VSI stats
2457 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
2459 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2460 struct virtchnl_queue_select *vqs =
2461 (struct virtchnl_queue_select *)msg;
2462 struct ice_eth_stats stats = { 0 };
2463 struct ice_pf *pf = vf->pf;
2464 struct ice_vsi *vsi;
2466 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2467 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2471 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2472 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2476 vsi = pf->vsi[vf->lan_vsi_idx];
2478 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2482 ice_update_eth_stats(vsi);
2484 stats = vsi->eth_stats;
2487 /* send the response to the VF */
2488 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
2489 (u8 *)&stats, sizeof(stats));
2493 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
2494 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
2496 * Return true on successful validation, else false
2498 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
2500 if ((!vqs->rx_queues && !vqs->tx_queues) ||
2501 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
2502 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
2509 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
2510 * @vsi: VSI of the VF to configure
2511 * @q_idx: VF queue index used to determine the queue in the PF's space
2513 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
2515 struct ice_hw *hw = &vsi->back->hw;
2516 u32 pfq = vsi->txq_map[q_idx];
2519 reg = rd32(hw, QINT_TQCTL(pfq));
2521 /* MSI-X index 0 in the VF's space is always for the OICR, which means
2522 * this is most likely a poll mode VF driver, so don't enable an
2523 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
2525 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
2528 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
2532 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
2533 * @vsi: VSI of the VF to configure
2534 * @q_idx: VF queue index used to determine the queue in the PF's space
2536 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
2538 struct ice_hw *hw = &vsi->back->hw;
2539 u32 pfq = vsi->rxq_map[q_idx];
2542 reg = rd32(hw, QINT_RQCTL(pfq));
2544 /* MSI-X index 0 in the VF's space is always for the OICR, which means
2545 * this is most likely a poll mode VF driver, so don't enable an
2546 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
2548 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
2551 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
2556 * @vf: pointer to the VF info
2557 * @msg: pointer to the msg buffer
2559 * called from the VF to enable all or specific queue(s)
2561 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
2563 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2564 struct virtchnl_queue_select *vqs =
2565 (struct virtchnl_queue_select *)msg;
2566 struct ice_pf *pf = vf->pf;
2567 struct ice_vsi *vsi;
2568 unsigned long q_map;
2571 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2572 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2576 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2577 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2581 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
2582 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2586 vsi = pf->vsi[vf->lan_vsi_idx];
2588 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2592 /* Enable only Rx rings, Tx rings were enabled by the FW when the
2593 * Tx queue group list was configured and the context bits were
2594 * programmed using ice_vsi_cfg_txqs
2596 q_map = vqs->rx_queues;
2597 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2598 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2599 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2603 /* Skip queue if enabled */
2604 if (test_bit(vf_q_id, vf->rxq_ena))
2607 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
2608 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
2609 vf_q_id, vsi->vsi_num);
2610 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2614 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
2615 set_bit(vf_q_id, vf->rxq_ena);
2618 vsi = pf->vsi[vf->lan_vsi_idx];
2619 q_map = vqs->tx_queues;
2620 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2621 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2622 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2626 /* Skip queue if enabled */
2627 if (test_bit(vf_q_id, vf->txq_ena))
2630 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
2631 set_bit(vf_q_id, vf->txq_ena);
2634 /* Set flag to indicate that queues are enabled */
2635 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
2636 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2639 /* send the response to the VF */
2640 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
2646 * @vf: pointer to the VF info
2647 * @msg: pointer to the msg buffer
2649 * called from the VF to disable all or specific
2652 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
2654 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2655 struct virtchnl_queue_select *vqs =
2656 (struct virtchnl_queue_select *)msg;
2657 struct ice_pf *pf = vf->pf;
2658 struct ice_vsi *vsi;
2659 unsigned long q_map;
2662 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
2663 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
2664 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2668 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2669 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2673 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
2674 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2678 vsi = pf->vsi[vf->lan_vsi_idx];
2680 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2684 if (vqs->tx_queues) {
2685 q_map = vqs->tx_queues;
2687 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2688 struct ice_ring *ring = vsi->tx_rings[vf_q_id];
2689 struct ice_txq_meta txq_meta = { 0 };
2691 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2692 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2696 /* Skip queue if not enabled */
2697 if (!test_bit(vf_q_id, vf->txq_ena))
2700 ice_fill_txq_meta(vsi, ring, &txq_meta);
2702 if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
2704 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
2705 vf_q_id, vsi->vsi_num);
2706 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2710 /* Clear enabled queues flag */
2711 clear_bit(vf_q_id, vf->txq_ena);
2715 q_map = vqs->rx_queues;
2716 /* speed up Rx queue disable by batching them if possible */
2718 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
2719 if (ice_vsi_stop_all_rx_rings(vsi)) {
2720 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
2722 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2726 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
2728 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2729 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2730 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2734 /* Skip queue if not enabled */
2735 if (!test_bit(vf_q_id, vf->rxq_ena))
2738 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
2740 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
2741 vf_q_id, vsi->vsi_num);
2742 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2746 /* Clear enabled queues flag */
2747 clear_bit(vf_q_id, vf->rxq_ena);
2751 /* Clear enabled queues flag */
2752 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
2753 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2756 /* send the response to the VF */
2757 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
2763 * @vf: pointer to the VF info
2764 * @vsi: the VSI being configured
2765 * @vector_id: vector ID
2766 * @map: vector map for mapping vectors to queues
2767 * @q_vector: structure for interrupt vector
2768 * configure the IRQ to queue map
2771 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
2772 struct virtchnl_vector_map *map,
2773 struct ice_q_vector *q_vector)
2775 u16 vsi_q_id, vsi_q_id_idx;
2778 q_vector->num_ring_rx = 0;
2779 q_vector->num_ring_tx = 0;
2781 qmap = map->rxq_map;
2782 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
2783 vsi_q_id = vsi_q_id_idx;
2785 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
2786 return VIRTCHNL_STATUS_ERR_PARAM;
2788 q_vector->num_ring_rx++;
2789 q_vector->rx.itr_idx = map->rxitr_idx;
2790 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
2791 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
2792 q_vector->rx.itr_idx);
2795 qmap = map->txq_map;
2796 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
2797 vsi_q_id = vsi_q_id_idx;
2799 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
2800 return VIRTCHNL_STATUS_ERR_PARAM;
2802 q_vector->num_ring_tx++;
2803 q_vector->tx.itr_idx = map->txitr_idx;
2804 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
2805 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
2806 q_vector->tx.itr_idx);
2809 return VIRTCHNL_STATUS_SUCCESS;
2813 * ice_vc_cfg_irq_map_msg
2814 * @vf: pointer to the VF info
2815 * @msg: pointer to the msg buffer
2817 * called from the VF to configure the IRQ to queue map
2819 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
2821 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2822 u16 num_q_vectors_mapped, vsi_id, vector_id;
2823 struct virtchnl_irq_map_info *irqmap_info;
2824 struct virtchnl_vector_map *map;
2825 struct ice_pf *pf = vf->pf;
2826 struct ice_vsi *vsi;
2829 irqmap_info = (struct virtchnl_irq_map_info *)msg;
2830 num_q_vectors_mapped = irqmap_info->num_vectors;
2832 /* Check to make sure number of VF vectors mapped is not greater than
2833 * number of VF vectors originally allocated, and check that
2834 * there is actually at least a single VF queue vector mapped
2836 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2837 pf->num_msix_per_vf < num_q_vectors_mapped ||
2838 !num_q_vectors_mapped) {
2839 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2843 vsi = pf->vsi[vf->lan_vsi_idx];
2845 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2849 for (i = 0; i < num_q_vectors_mapped; i++) {
2850 struct ice_q_vector *q_vector;
2852 map = &irqmap_info->vecmap[i];
2854 vector_id = map->vector_id;
2855 vsi_id = map->vsi_id;
2856 /* vector_id is always 0-based for each VF, and can never be
2857 * larger than or equal to the max allowed interrupts per VF
2859 if (!(vector_id < pf->num_msix_per_vf) ||
2860 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
2861 (!vector_id && (map->rxq_map || map->txq_map))) {
2862 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2866 /* No need to map VF miscellaneous or rogue vector */
2870 /* Subtract non queue vector from vector_id passed by VF
2871 * to get actual number of VSI queue vector array index
2873 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
2875 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2879 /* lookout for the invalid queue index */
2880 v_ret = (enum virtchnl_status_code)
2881 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
2887 /* send the response to the VF */
2888 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
2894 * @vf: pointer to the VF info
2895 * @msg: pointer to the msg buffer
2897 * called from the VF to configure the Rx/Tx queues
2899 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
2901 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2902 struct virtchnl_vsi_queue_config_info *qci =
2903 (struct virtchnl_vsi_queue_config_info *)msg;
2904 struct virtchnl_queue_pair_info *qpi;
2905 u16 num_rxq = 0, num_txq = 0;
2906 struct ice_pf *pf = vf->pf;
2907 struct ice_vsi *vsi;
2910 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2911 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2915 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
2916 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2920 vsi = pf->vsi[vf->lan_vsi_idx];
2922 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2926 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2927 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2928 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2929 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2930 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2934 for (i = 0; i < qci->num_queue_pairs; i++) {
2935 qpi = &qci->qpair[i];
2936 if (qpi->txq.vsi_id != qci->vsi_id ||
2937 qpi->rxq.vsi_id != qci->vsi_id ||
2938 qpi->rxq.queue_id != qpi->txq.queue_id ||
2939 qpi->txq.headwb_enabled ||
2940 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2941 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2942 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
2943 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2946 /* copy Tx queue info from VF into VSI */
2947 if (qpi->txq.ring_len > 0) {
2949 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
2950 vsi->tx_rings[i]->count = qpi->txq.ring_len;
2953 /* copy Rx queue info from VF into VSI */
2954 if (qpi->rxq.ring_len > 0) {
2956 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
2957 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
2959 if (qpi->rxq.databuffer_size != 0 &&
2960 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2961 qpi->rxq.databuffer_size < 1024)) {
2962 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2965 vsi->rx_buf_len = qpi->rxq.databuffer_size;
2966 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
2967 if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
2968 qpi->rxq.max_pkt_size < 64) {
2969 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2974 vsi->max_frame = qpi->rxq.max_pkt_size;
2977 /* VF can request to configure less than allocated queues or default
2978 * allocated queues. So update the VSI with new number
2980 vsi->num_txq = num_txq;
2981 vsi->num_rxq = num_rxq;
2982 /* All queues of VF VSI are in TC 0 */
2983 vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
2984 vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
2986 if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
2987 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2990 /* send the response to the VF */
2991 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
2997 * @vf: pointer to the VF info
2999 static bool ice_is_vf_trusted(struct ice_vf *vf)
3001 return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
3005 * ice_can_vf_change_mac
3006 * @vf: pointer to the VF info
3008 * Return true if the VF is allowed to change its MAC filters, false otherwise
3010 static bool ice_can_vf_change_mac(struct ice_vf *vf)
3012 /* If the VF MAC address has been set administratively (via the
3013 * ndo_set_vf_mac command), then deny permission to the VF to
3014 * add/delete unicast MAC addresses, unless the VF is trusted
3016 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
3023 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
3024 * @vf: pointer to the VF info
3025 * @vsi: pointer to the VF's VSI
3026 * @mac_addr: MAC address to add
3029 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3031 struct device *dev = ice_pf_to_dev(vf->pf);
3032 enum ice_status status;
3034 /* default unicast MAC already added */
3035 if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3038 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
3039 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
3043 status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3044 if (status == ICE_ERR_ALREADY_EXISTS) {
3045 dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr,
3048 } else if (status) {
3049 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n",
3050 mac_addr, vf->vf_id, ice_stat_str(status));
3054 /* Set the default LAN address to the latest unicast MAC address added
3055 * by the VF. The default LAN address is reported by the PF via
3056 * ndo_get_vf_config.
3058 if (is_unicast_ether_addr(mac_addr))
3059 ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
3067 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
3068 * @vf: pointer to the VF info
3069 * @vsi: pointer to the VF's VSI
3070 * @mac_addr: MAC address to delete
3073 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3075 struct device *dev = ice_pf_to_dev(vf->pf);
3076 enum ice_status status;
3078 if (!ice_can_vf_change_mac(vf) &&
3079 ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3082 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3083 if (status == ICE_ERR_DOES_NOT_EXIST) {
3084 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
3087 } else if (status) {
3088 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n",
3089 mac_addr, vf->vf_id, ice_stat_str(status));
3093 if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3094 eth_zero_addr(vf->dflt_lan_addr.addr);
3102 * ice_vc_handle_mac_addr_msg
3103 * @vf: pointer to the VF info
3104 * @msg: pointer to the msg buffer
3105 * @set: true if MAC filters are being set, false otherwise
3107 * add guest MAC address filter
3110 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
3112 int (*ice_vc_cfg_mac)
3113 (struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
3114 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3115 struct virtchnl_ether_addr_list *al =
3116 (struct virtchnl_ether_addr_list *)msg;
3117 struct ice_pf *pf = vf->pf;
3118 enum virtchnl_ops vc_op;
3119 struct ice_vsi *vsi;
3123 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
3124 ice_vc_cfg_mac = ice_vc_add_mac_addr;
3126 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
3127 ice_vc_cfg_mac = ice_vc_del_mac_addr;
3130 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3131 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3132 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3133 goto handle_mac_exit;
3136 /* If this VF is not privileged, then we can't add more than a
3137 * limited number of addresses. Check to make sure that the
3138 * additions do not push us over the limit.
3140 if (set && !ice_is_vf_trusted(vf) &&
3141 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
3142 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
3144 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3145 goto handle_mac_exit;
3148 vsi = pf->vsi[vf->lan_vsi_idx];
3150 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3151 goto handle_mac_exit;
3154 for (i = 0; i < al->num_elements; i++) {
3155 u8 *mac_addr = al->list[i].addr;
3158 if (is_broadcast_ether_addr(mac_addr) ||
3159 is_zero_ether_addr(mac_addr))
3162 result = ice_vc_cfg_mac(vf, vsi, mac_addr);
3163 if (result == -EEXIST || result == -ENOENT) {
3165 } else if (result) {
3166 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3167 goto handle_mac_exit;
3172 /* send the response to the VF */
3173 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
3177 * ice_vc_add_mac_addr_msg
3178 * @vf: pointer to the VF info
3179 * @msg: pointer to the msg buffer
3181 * add guest MAC address filter
3183 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3185 return ice_vc_handle_mac_addr_msg(vf, msg, true);
3189 * ice_vc_del_mac_addr_msg
3190 * @vf: pointer to the VF info
3191 * @msg: pointer to the msg buffer
3193 * remove guest MAC address filter
3195 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3197 return ice_vc_handle_mac_addr_msg(vf, msg, false);
3201 * ice_vc_request_qs_msg
3202 * @vf: pointer to the VF info
3203 * @msg: pointer to the msg buffer
3205 * VFs get a default number of queues but can use this message to request a
3206 * different number. If the request is successful, PF will reset the VF and
3207 * return 0. If unsuccessful, PF will send message informing VF of number of
3208 * available queue pairs via virtchnl message response to VF.
3210 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
3212 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3213 struct virtchnl_vf_res_request *vfres =
3214 (struct virtchnl_vf_res_request *)msg;
3215 u16 req_queues = vfres->num_queue_pairs;
3216 struct ice_pf *pf = vf->pf;
3217 u16 max_allowed_vf_queues;
3218 u16 tx_rx_queue_left;
3222 dev = ice_pf_to_dev(pf);
3223 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3224 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3228 cur_queues = vf->num_vf_qs;
3229 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
3230 ice_get_avail_rxq_count(pf));
3231 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
3233 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
3235 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
3236 dev_err(dev, "VF %d tried to request more than %d queues.\n",
3237 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
3238 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
3239 } else if (req_queues > cur_queues &&
3240 req_queues - cur_queues > tx_rx_queue_left) {
3241 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
3242 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
3243 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
3244 ICE_MAX_RSS_QS_PER_VF);
3246 /* request is successful, then reset VF */
3247 vf->num_req_qs = req_queues;
3248 ice_vc_reset_vf(vf);
3249 dev_info(dev, "VF %d granted request of %u queues.\n",
3250 vf->vf_id, req_queues);
3255 /* send the response to the VF */
3256 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
3257 v_ret, (u8 *)vfres, sizeof(*vfres));
3261 * ice_set_vf_port_vlan
3262 * @netdev: network interface device structure
3263 * @vf_id: VF identifier
3264 * @vlan_id: VLAN ID being set
3265 * @qos: priority setting
3266 * @vlan_proto: VLAN protocol
3268 * program VF Port VLAN ID and/or QoS
3271 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
3274 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3280 dev = ice_pf_to_dev(pf);
3281 if (ice_validate_vf_id(pf, vf_id))
3284 if (vlan_id >= VLAN_N_VID || qos > 7) {
3285 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
3286 vf_id, vlan_id, qos);
3290 if (vlan_proto != htons(ETH_P_8021Q)) {
3291 dev_err(dev, "VF VLAN protocol is not supported\n");
3292 return -EPROTONOSUPPORT;
3295 vf = &pf->vf[vf_id];
3296 ret = ice_check_vf_ready_for_cfg(vf);
3300 vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT);
3302 if (vf->port_vlan_info == vlanprio) {
3303 /* duplicate request, so just return success */
3304 dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
3308 vf->port_vlan_info = vlanprio;
3310 if (vf->port_vlan_info)
3311 dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
3312 vlan_id, qos, vf_id);
3314 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
3316 ice_vc_reset_vf(vf);
3322 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
3323 * @caps: VF driver negotiated capabilities
3325 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
3327 static bool ice_vf_vlan_offload_ena(u32 caps)
3329 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
3333 * ice_vc_process_vlan_msg
3334 * @vf: pointer to the VF info
3335 * @msg: pointer to the msg buffer
3336 * @add_v: Add VLAN if true, otherwise delete VLAN
3338 * Process virtchnl op to add or remove programmed guest VLAN ID
3340 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
3342 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3343 struct virtchnl_vlan_filter_list *vfl =
3344 (struct virtchnl_vlan_filter_list *)msg;
3345 struct ice_pf *pf = vf->pf;
3346 bool vlan_promisc = false;
3347 struct ice_vsi *vsi;
3354 dev = ice_pf_to_dev(pf);
3355 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3356 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3360 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3361 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3365 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
3366 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3370 for (i = 0; i < vfl->num_elements; i++) {
3371 if (vfl->vlan_id[i] >= VLAN_N_VID) {
3372 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3373 dev_err(dev, "invalid VF VLAN id %d\n",
3380 vsi = pf->vsi[vf->lan_vsi_idx];
3382 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3386 if (add_v && !ice_is_vf_trusted(vf) &&
3387 vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
3388 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
3390 /* There is no need to let VF know about being not trusted,
3391 * so we can just return success message here
3396 if (vsi->info.pvid) {
3397 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3401 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
3402 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
3403 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags))
3404 vlan_promisc = true;
3407 for (i = 0; i < vfl->num_elements; i++) {
3408 u16 vid = vfl->vlan_id[i];
3410 if (!ice_is_vf_trusted(vf) &&
3411 vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
3412 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
3414 /* There is no need to let VF know about being
3415 * not trusted, so we can just return success
3416 * message here as well.
3421 /* we add VLAN 0 by default for each VF so we can enable
3422 * Tx VLAN anti-spoof without triggering MDD events so
3423 * we don't need to add it again here
3428 status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3430 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3434 /* Enable VLAN pruning when non-zero VLAN is added */
3435 if (!vlan_promisc && vid &&
3436 !ice_vsi_is_vlan_pruning_ena(vsi)) {
3437 status = ice_cfg_vlan_pruning(vsi, true, false);
3439 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3440 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
3444 } else if (vlan_promisc) {
3445 /* Enable Ucast/Mcast VLAN promiscuous mode */
3446 promisc_m = ICE_PROMISC_VLAN_TX |
3447 ICE_PROMISC_VLAN_RX;
3449 status = ice_set_vsi_promisc(hw, vsi->idx,
3452 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3453 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
3459 /* In case of non_trusted VF, number of VLAN elements passed
3460 * to PF for removal might be greater than number of VLANs
3461 * filter programmed for that VF - So, use actual number of
3462 * VLANS added earlier with add VLAN opcode. In order to avoid
3463 * removing VLAN that doesn't exist, which result to sending
3464 * erroneous failed message back to the VF
3468 num_vf_vlan = vsi->num_vlan;
3469 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
3470 u16 vid = vfl->vlan_id[i];
3472 /* we add VLAN 0 by default for each VF so we can enable
3473 * Tx VLAN anti-spoof without triggering MDD events so
3474 * we don't want a VIRTCHNL request to remove it
3479 /* Make sure ice_vsi_kill_vlan is successful before
3480 * updating VLAN information
3482 status = ice_vsi_kill_vlan(vsi, vid);
3484 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3488 /* Disable VLAN pruning when only VLAN 0 is left */
3489 if (vsi->num_vlan == 1 &&
3490 ice_vsi_is_vlan_pruning_ena(vsi))
3491 ice_cfg_vlan_pruning(vsi, false, false);
3493 /* Disable Unicast/Multicast VLAN promiscuous mode */
3495 promisc_m = ICE_PROMISC_VLAN_TX |
3496 ICE_PROMISC_VLAN_RX;
3498 ice_clear_vsi_promisc(hw, vsi->idx,
3505 /* send the response to the VF */
3507 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
3510 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
3515 * ice_vc_add_vlan_msg
3516 * @vf: pointer to the VF info
3517 * @msg: pointer to the msg buffer
3519 * Add and program guest VLAN ID
3521 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
3523 return ice_vc_process_vlan_msg(vf, msg, true);
3527 * ice_vc_remove_vlan_msg
3528 * @vf: pointer to the VF info
3529 * @msg: pointer to the msg buffer
3531 * remove programmed guest VLAN ID
3533 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
3535 return ice_vc_process_vlan_msg(vf, msg, false);
3539 * ice_vc_ena_vlan_stripping
3540 * @vf: pointer to the VF info
3542 * Enable VLAN header stripping for a given VF
3544 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
3546 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3547 struct ice_pf *pf = vf->pf;
3548 struct ice_vsi *vsi;
3550 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3551 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3555 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3556 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3560 vsi = pf->vsi[vf->lan_vsi_idx];
3561 if (ice_vsi_manage_vlan_stripping(vsi, true))
3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3565 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3570 * ice_vc_dis_vlan_stripping
3571 * @vf: pointer to the VF info
3573 * Disable VLAN header stripping for a given VF
3575 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
3577 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3578 struct ice_pf *pf = vf->pf;
3579 struct ice_vsi *vsi;
3581 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3582 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3586 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3587 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591 vsi = pf->vsi[vf->lan_vsi_idx];
3593 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3597 if (ice_vsi_manage_vlan_stripping(vsi, false))
3598 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3601 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3606 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3607 * @vf: VF to enable/disable VLAN stripping for on initialization
3609 * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
3610 * the flag is cleared then we want to disable stripping. For example, the flag
3611 * will be cleared when port VLANs are configured by the administrator before
3612 * passing the VF to the guest or if the AVF driver doesn't support VLAN
3615 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3617 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
3622 /* don't modify stripping if port VLAN is configured */
3626 if (ice_vf_vlan_offload_ena(vf->driver_caps))
3627 return ice_vsi_manage_vlan_stripping(vsi, true);
3629 return ice_vsi_manage_vlan_stripping(vsi, false);
3633 * ice_vc_process_vf_msg - Process request from VF
3634 * @pf: pointer to the PF structure
3635 * @event: pointer to the AQ event
3637 * called from the common asq/arq handler to
3638 * process request from VF
3640 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3642 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3643 s16 vf_id = le16_to_cpu(event->desc.retval);
3644 u16 msglen = event->msg_len;
3645 u8 *msg = event->msg_buf;
3646 struct ice_vf *vf = NULL;
3650 dev = ice_pf_to_dev(pf);
3651 if (ice_validate_vf_id(pf, vf_id)) {
3656 vf = &pf->vf[vf_id];
3658 /* Check if VF is disabled. */
3659 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3664 /* Perform basic checks on the msg */
3665 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3667 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3675 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3677 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3678 vf_id, v_opcode, msglen, err);
3683 case VIRTCHNL_OP_VERSION:
3684 err = ice_vc_get_ver_msg(vf, msg);
3686 case VIRTCHNL_OP_GET_VF_RESOURCES:
3687 err = ice_vc_get_vf_res_msg(vf, msg);
3688 if (ice_vf_init_vlan_stripping(vf))
3689 dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
3691 ice_vc_notify_vf_link_state(vf);
3693 case VIRTCHNL_OP_RESET_VF:
3694 ice_vc_reset_vf_msg(vf);
3696 case VIRTCHNL_OP_ADD_ETH_ADDR:
3697 err = ice_vc_add_mac_addr_msg(vf, msg);
3699 case VIRTCHNL_OP_DEL_ETH_ADDR:
3700 err = ice_vc_del_mac_addr_msg(vf, msg);
3702 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3703 err = ice_vc_cfg_qs_msg(vf, msg);
3705 case VIRTCHNL_OP_ENABLE_QUEUES:
3706 err = ice_vc_ena_qs_msg(vf, msg);
3707 ice_vc_notify_vf_link_state(vf);
3709 case VIRTCHNL_OP_DISABLE_QUEUES:
3710 err = ice_vc_dis_qs_msg(vf, msg);
3712 case VIRTCHNL_OP_REQUEST_QUEUES:
3713 err = ice_vc_request_qs_msg(vf, msg);
3715 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3716 err = ice_vc_cfg_irq_map_msg(vf, msg);
3718 case VIRTCHNL_OP_CONFIG_RSS_KEY:
3719 err = ice_vc_config_rss_key(vf, msg);
3721 case VIRTCHNL_OP_CONFIG_RSS_LUT:
3722 err = ice_vc_config_rss_lut(vf, msg);
3724 case VIRTCHNL_OP_GET_STATS:
3725 err = ice_vc_get_stats_msg(vf, msg);
3727 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3728 err = ice_vc_cfg_promiscuous_mode_msg(vf, msg);
3730 case VIRTCHNL_OP_ADD_VLAN:
3731 err = ice_vc_add_vlan_msg(vf, msg);
3733 case VIRTCHNL_OP_DEL_VLAN:
3734 err = ice_vc_remove_vlan_msg(vf, msg);
3736 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3737 err = ice_vc_ena_vlan_stripping(vf);
3739 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3740 err = ice_vc_dis_vlan_stripping(vf);
3742 case VIRTCHNL_OP_UNKNOWN:
3744 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3746 err = ice_vc_send_msg_to_vf(vf, v_opcode,
3747 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3752 /* Helper function cares less about error return values here
3753 * as it is busy with pending work.
3755 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3756 vf_id, v_opcode, err);
3762 * @netdev: network interface device structure
3763 * @vf_id: VF identifier
3764 * @ivi: VF configuration structure
3766 * return VF configuration
3769 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
3771 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3774 if (ice_validate_vf_id(pf, vf_id))
3777 vf = &pf->vf[vf_id];
3779 if (ice_check_vf_init(pf, vf))
3783 ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
3785 /* VF configuration for VLAN and applicable QoS */
3786 ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK;
3787 ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3789 ivi->trusted = vf->trusted;
3790 ivi->spoofchk = vf->spoofchk;
3791 if (!vf->link_forced)
3792 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
3793 else if (vf->link_up)
3794 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
3796 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
3797 ivi->max_tx_rate = vf->tx_rate;
3798 ivi->min_tx_rate = 0;
3803 * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
3804 * @pf: PF used to reference the switch's rules
3805 * @umac: unicast MAC to compare against existing switch rules
3807 * Return true on the first/any match, else return false
3809 static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
3811 struct ice_sw_recipe *mac_recipe_list =
3812 &pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
3813 struct ice_fltr_mgmt_list_entry *list_itr;
3814 struct list_head *rule_head;
3815 struct mutex *rule_lock; /* protect MAC filter list access */
3817 rule_head = &mac_recipe_list->filt_rules;
3818 rule_lock = &mac_recipe_list->filt_rule_lock;
3820 mutex_lock(rule_lock);
3821 list_for_each_entry(list_itr, rule_head, list_entry) {
3822 u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3824 if (ether_addr_equal(existing_mac, umac)) {
3825 mutex_unlock(rule_lock);
3830 mutex_unlock(rule_lock);
3837 * @netdev: network interface device structure
3838 * @vf_id: VF identifier
3841 * program VF MAC address
3843 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
3845 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3849 if (ice_validate_vf_id(pf, vf_id))
3852 if (is_multicast_ether_addr(mac)) {
3853 netdev_err(netdev, "%pM not a valid unicast address\n", mac);
3857 vf = &pf->vf[vf_id];
3858 /* nothing left to do, unicast MAC already set */
3859 if (ether_addr_equal(vf->dflt_lan_addr.addr, mac))
3862 ret = ice_check_vf_ready_for_cfg(vf);
3866 if (ice_unicast_mac_exists(pf, mac)) {
3867 netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
3872 /* VF is notified of its new MAC via the PF's response to the
3873 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
3875 ether_addr_copy(vf->dflt_lan_addr.addr, mac);
3876 if (is_zero_ether_addr(mac)) {
3877 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
3878 vf->pf_set_mac = false;
3879 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
3882 /* PF will add MAC rule for the VF */
3883 vf->pf_set_mac = true;
3884 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
3888 ice_vc_reset_vf(vf);
3894 * @netdev: network interface device structure
3895 * @vf_id: VF identifier
3896 * @trusted: Boolean value to enable/disable trusted VF
3898 * Enable or disable a given VF as trusted
3900 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
3902 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3906 if (ice_validate_vf_id(pf, vf_id))
3909 vf = &pf->vf[vf_id];
3910 ret = ice_check_vf_ready_for_cfg(vf);
3914 /* Check if already trusted */
3915 if (trusted == vf->trusted)
3918 vf->trusted = trusted;
3919 ice_vc_reset_vf(vf);
3920 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
3921 vf_id, trusted ? "" : "un");
3927 * ice_set_vf_link_state
3928 * @netdev: network interface device structure
3929 * @vf_id: VF identifier
3930 * @link_state: required link state
3932 * Set VF's link state, irrespective of physical link state status
3934 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
3936 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3940 if (ice_validate_vf_id(pf, vf_id))
3943 vf = &pf->vf[vf_id];
3944 ret = ice_check_vf_ready_for_cfg(vf);
3948 switch (link_state) {
3949 case IFLA_VF_LINK_STATE_AUTO:
3950 vf->link_forced = false;
3952 case IFLA_VF_LINK_STATE_ENABLE:
3953 vf->link_forced = true;
3956 case IFLA_VF_LINK_STATE_DISABLE:
3957 vf->link_forced = true;
3958 vf->link_up = false;
3964 ice_vc_notify_vf_link_state(vf);
3970 * ice_get_vf_stats - populate some stats for the VF
3971 * @netdev: the netdev of the PF
3972 * @vf_id: the host OS identifier (0-255)
3973 * @vf_stats: pointer to the OS memory to be initialized
3975 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
3976 struct ifla_vf_stats *vf_stats)
3978 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3979 struct ice_eth_stats *stats;
3980 struct ice_vsi *vsi;
3984 if (ice_validate_vf_id(pf, vf_id))
3987 vf = &pf->vf[vf_id];
3988 ret = ice_check_vf_ready_for_cfg(vf);
3992 vsi = pf->vsi[vf->lan_vsi_idx];
3996 ice_update_eth_stats(vsi);
3997 stats = &vsi->eth_stats;
3999 memset(vf_stats, 0, sizeof(*vf_stats));
4001 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
4002 stats->rx_multicast;
4003 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
4004 stats->tx_multicast;
4005 vf_stats->rx_bytes = stats->rx_bytes;
4006 vf_stats->tx_bytes = stats->tx_bytes;
4007 vf_stats->broadcast = stats->rx_broadcast;
4008 vf_stats->multicast = stats->rx_multicast;
4009 vf_stats->rx_dropped = stats->rx_discards;
4010 vf_stats->tx_dropped = stats->tx_discards;
4016 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
4017 * @vf: pointer to the VF structure
4019 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
4021 struct ice_pf *pf = vf->pf;
4024 dev = ice_pf_to_dev(pf);
4026 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
4027 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
4028 vf->dflt_lan_addr.addr,
4029 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
4034 * ice_print_vfs_mdd_event - print VFs malicious driver detect event
4035 * @pf: pointer to the PF structure
4037 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
4039 void ice_print_vfs_mdd_events(struct ice_pf *pf)
4041 struct device *dev = ice_pf_to_dev(pf);
4042 struct ice_hw *hw = &pf->hw;
4045 /* check that there are pending MDD events to print */
4046 if (!test_and_clear_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state))
4049 /* VF MDD event logs are rate limited to one second intervals */
4050 if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1))
4053 pf->last_printed_mdd_jiffies = jiffies;
4055 ice_for_each_vf(pf, i) {
4056 struct ice_vf *vf = &pf->vf[i];
4058 /* only print Rx MDD event message if there are new events */
4059 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
4060 vf->mdd_rx_events.last_printed =
4061 vf->mdd_rx_events.count;
4062 ice_print_vf_rx_mdd_event(vf);
4065 /* only print Tx MDD event message if there are new events */
4066 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
4067 vf->mdd_tx_events.last_printed =
4068 vf->mdd_tx_events.count;
4070 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
4071 vf->mdd_tx_events.count, hw->pf_id, i,
4072 vf->dflt_lan_addr.addr);
4078 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
4079 * @pdev: pointer to a pci_dev structure
4081 * Called when recovering from a PF FLR to restore interrupt capability to
4084 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
4086 struct pci_dev *vfdev;
4090 if (!pci_num_vf(pdev))
4093 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4095 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
4097 vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
4099 if (vfdev->is_virtfn && vfdev->physfn == pdev)
4100 pci_restore_msi_state(vfdev);
4101 vfdev = pci_get_device(pdev->vendor, vf_id,