]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/iavf/iavf_main.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25         "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28  *
29  * Wildcard entries (PCI_ANY_ID) should come last
30  * Last entry must be all 0s
31  *
32  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33  *   Class, Class Mask, private data (not used) }
34  */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40         /* required last entry */
41         {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56  * @hw:   pointer to the HW structure
57  * @mem:  ptr to mem struct to fill out
58  * @size: size of memory requested
59  * @alignment: what to align the allocation to
60  **/
61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62                                          struct iavf_dma_mem *mem,
63                                          u64 size, u32 alignment)
64 {
65         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67         if (!mem)
68                 return IAVF_ERR_PARAM;
69
70         mem->size = ALIGN(size, alignment);
71         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
73         if (mem->va)
74                 return 0;
75         else
76                 return IAVF_ERR_NO_MEMORY;
77 }
78
79 /**
80  * iavf_free_dma_mem_d - OS specific memory free for shared code
81  * @hw:   pointer to the HW structure
82  * @mem:  ptr to mem struct to free
83  **/
84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85                                      struct iavf_dma_mem *mem)
86 {
87         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89         if (!mem || !mem->va)
90                 return IAVF_ERR_PARAM;
91         dma_free_coherent(&adapter->pdev->dev, mem->size,
92                           mem->va, (dma_addr_t)mem->pa);
93         return 0;
94 }
95
96 /**
97  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98  * @hw:   pointer to the HW structure
99  * @mem:  ptr to mem struct to fill out
100  * @size: size of memory requested
101  **/
102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103                                           struct iavf_virt_mem *mem, u32 size)
104 {
105         if (!mem)
106                 return IAVF_ERR_PARAM;
107
108         mem->size = size;
109         mem->va = kzalloc(size, GFP_KERNEL);
110
111         if (mem->va)
112                 return 0;
113         else
114                 return IAVF_ERR_NO_MEMORY;
115 }
116
117 /**
118  * iavf_free_virt_mem_d - OS specific memory free for shared code
119  * @hw:   pointer to the HW structure
120  * @mem:  ptr to mem struct to free
121  **/
122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123                                       struct iavf_virt_mem *mem)
124 {
125         if (!mem)
126                 return IAVF_ERR_PARAM;
127
128         /* it's ok to kfree a NULL pointer */
129         kfree(mem->va);
130
131         return 0;
132 }
133
134 /**
135  * iavf_schedule_reset - Set the flags and schedule a reset event
136  * @adapter: board private structure
137  **/
138 void iavf_schedule_reset(struct iavf_adapter *adapter)
139 {
140         if (!(adapter->flags &
141               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
142                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
143                 queue_work(iavf_wq, &adapter->reset_task);
144         }
145 }
146
147 /**
148  * iavf_tx_timeout - Respond to a Tx Hang
149  * @netdev: network interface device structure
150  **/
151 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
152 {
153         struct iavf_adapter *adapter = netdev_priv(netdev);
154
155         adapter->tx_timeout_count++;
156         iavf_schedule_reset(adapter);
157 }
158
159 /**
160  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
161  * @adapter: board private structure
162  **/
163 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
164 {
165         struct iavf_hw *hw = &adapter->hw;
166
167         if (!adapter->msix_entries)
168                 return;
169
170         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
171
172         iavf_flush(hw);
173
174         synchronize_irq(adapter->msix_entries[0].vector);
175 }
176
177 /**
178  * iavf_misc_irq_enable - Enable default interrupt generation settings
179  * @adapter: board private structure
180  **/
181 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
182 {
183         struct iavf_hw *hw = &adapter->hw;
184
185         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
186                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
187         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
188
189         iavf_flush(hw);
190 }
191
192 /**
193  * iavf_irq_disable - Mask off interrupt generation on the NIC
194  * @adapter: board private structure
195  **/
196 static void iavf_irq_disable(struct iavf_adapter *adapter)
197 {
198         int i;
199         struct iavf_hw *hw = &adapter->hw;
200
201         if (!adapter->msix_entries)
202                 return;
203
204         for (i = 1; i < adapter->num_msix_vectors; i++) {
205                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
206                 synchronize_irq(adapter->msix_entries[i].vector);
207         }
208         iavf_flush(hw);
209 }
210
211 /**
212  * iavf_irq_enable_queues - Enable interrupt for specified queues
213  * @adapter: board private structure
214  * @mask: bitmap of queues to enable
215  **/
216 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
217 {
218         struct iavf_hw *hw = &adapter->hw;
219         int i;
220
221         for (i = 1; i < adapter->num_msix_vectors; i++) {
222                 if (mask & BIT(i - 1)) {
223                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
224                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
225                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
226                 }
227         }
228 }
229
230 /**
231  * iavf_irq_enable - Enable default interrupt generation settings
232  * @adapter: board private structure
233  * @flush: boolean value whether to run rd32()
234  **/
235 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
236 {
237         struct iavf_hw *hw = &adapter->hw;
238
239         iavf_misc_irq_enable(adapter);
240         iavf_irq_enable_queues(adapter, ~0);
241
242         if (flush)
243                 iavf_flush(hw);
244 }
245
246 /**
247  * iavf_msix_aq - Interrupt handler for vector 0
248  * @irq: interrupt number
249  * @data: pointer to netdev
250  **/
251 static irqreturn_t iavf_msix_aq(int irq, void *data)
252 {
253         struct net_device *netdev = data;
254         struct iavf_adapter *adapter = netdev_priv(netdev);
255         struct iavf_hw *hw = &adapter->hw;
256
257         /* handle non-queue interrupts, these reads clear the registers */
258         rd32(hw, IAVF_VFINT_ICR01);
259         rd32(hw, IAVF_VFINT_ICR0_ENA1);
260
261         /* schedule work on the private workqueue */
262         queue_work(iavf_wq, &adapter->adminq_task);
263
264         return IRQ_HANDLED;
265 }
266
267 /**
268  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
269  * @irq: interrupt number
270  * @data: pointer to a q_vector
271  **/
272 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
273 {
274         struct iavf_q_vector *q_vector = data;
275
276         if (!q_vector->tx.ring && !q_vector->rx.ring)
277                 return IRQ_HANDLED;
278
279         napi_schedule_irqoff(&q_vector->napi);
280
281         return IRQ_HANDLED;
282 }
283
284 /**
285  * iavf_map_vector_to_rxq - associate irqs with rx queues
286  * @adapter: board private structure
287  * @v_idx: interrupt number
288  * @r_idx: queue number
289  **/
290 static void
291 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
292 {
293         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
294         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
295         struct iavf_hw *hw = &adapter->hw;
296
297         rx_ring->q_vector = q_vector;
298         rx_ring->next = q_vector->rx.ring;
299         rx_ring->vsi = &adapter->vsi;
300         q_vector->rx.ring = rx_ring;
301         q_vector->rx.count++;
302         q_vector->rx.next_update = jiffies + 1;
303         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
304         q_vector->ring_mask |= BIT(r_idx);
305         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
306              q_vector->rx.current_itr >> 1);
307         q_vector->rx.current_itr = q_vector->rx.target_itr;
308 }
309
310 /**
311  * iavf_map_vector_to_txq - associate irqs with tx queues
312  * @adapter: board private structure
313  * @v_idx: interrupt number
314  * @t_idx: queue number
315  **/
316 static void
317 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
318 {
319         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
320         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
321         struct iavf_hw *hw = &adapter->hw;
322
323         tx_ring->q_vector = q_vector;
324         tx_ring->next = q_vector->tx.ring;
325         tx_ring->vsi = &adapter->vsi;
326         q_vector->tx.ring = tx_ring;
327         q_vector->tx.count++;
328         q_vector->tx.next_update = jiffies + 1;
329         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
330         q_vector->num_ringpairs++;
331         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
332              q_vector->tx.target_itr >> 1);
333         q_vector->tx.current_itr = q_vector->tx.target_itr;
334 }
335
336 /**
337  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
338  * @adapter: board private structure to initialize
339  *
340  * This function maps descriptor rings to the queue-specific vectors
341  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
342  * one vector per ring/queue, but on a constrained vector budget, we
343  * group the rings as "efficiently" as possible.  You would add new
344  * mapping configurations in here.
345  **/
346 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
347 {
348         int rings_remaining = adapter->num_active_queues;
349         int ridx = 0, vidx = 0;
350         int q_vectors;
351
352         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
353
354         for (; ridx < rings_remaining; ridx++) {
355                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
356                 iavf_map_vector_to_txq(adapter, vidx, ridx);
357
358                 /* In the case where we have more queues than vectors, continue
359                  * round-robin on vectors until all queues are mapped.
360                  */
361                 if (++vidx >= q_vectors)
362                         vidx = 0;
363         }
364
365         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
366 }
367
368 /**
369  * iavf_irq_affinity_notify - Callback for affinity changes
370  * @notify: context as to what irq was changed
371  * @mask: the new affinity mask
372  *
373  * This is a callback function used by the irq_set_affinity_notifier function
374  * so that we may register to receive changes to the irq affinity masks.
375  **/
376 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
377                                      const cpumask_t *mask)
378 {
379         struct iavf_q_vector *q_vector =
380                 container_of(notify, struct iavf_q_vector, affinity_notify);
381
382         cpumask_copy(&q_vector->affinity_mask, mask);
383 }
384
385 /**
386  * iavf_irq_affinity_release - Callback for affinity notifier release
387  * @ref: internal core kernel usage
388  *
389  * This is a callback function used by the irq_set_affinity_notifier function
390  * to inform the current notification subscriber that they will no longer
391  * receive notifications.
392  **/
393 static void iavf_irq_affinity_release(struct kref *ref) {}
394
395 /**
396  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
397  * @adapter: board private structure
398  * @basename: device basename
399  *
400  * Allocates MSI-X vectors for tx and rx handling, and requests
401  * interrupts from the kernel.
402  **/
403 static int
404 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
405 {
406         unsigned int vector, q_vectors;
407         unsigned int rx_int_idx = 0, tx_int_idx = 0;
408         int irq_num, err;
409         int cpu;
410
411         iavf_irq_disable(adapter);
412         /* Decrement for Other and TCP Timer vectors */
413         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
414
415         for (vector = 0; vector < q_vectors; vector++) {
416                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
417
418                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
419
420                 if (q_vector->tx.ring && q_vector->rx.ring) {
421                         snprintf(q_vector->name, sizeof(q_vector->name),
422                                  "iavf-%s-TxRx-%d", basename, rx_int_idx++);
423                         tx_int_idx++;
424                 } else if (q_vector->rx.ring) {
425                         snprintf(q_vector->name, sizeof(q_vector->name),
426                                  "iavf-%s-rx-%d", basename, rx_int_idx++);
427                 } else if (q_vector->tx.ring) {
428                         snprintf(q_vector->name, sizeof(q_vector->name),
429                                  "iavf-%s-tx-%d", basename, tx_int_idx++);
430                 } else {
431                         /* skip this unused q_vector */
432                         continue;
433                 }
434                 err = request_irq(irq_num,
435                                   iavf_msix_clean_rings,
436                                   0,
437                                   q_vector->name,
438                                   q_vector);
439                 if (err) {
440                         dev_info(&adapter->pdev->dev,
441                                  "Request_irq failed, error: %d\n", err);
442                         goto free_queue_irqs;
443                 }
444                 /* register for affinity change notifications */
445                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
446                 q_vector->affinity_notify.release =
447                                                    iavf_irq_affinity_release;
448                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
449                 /* Spread the IRQ affinity hints across online CPUs. Note that
450                  * get_cpu_mask returns a mask with a permanent lifetime so
451                  * it's safe to use as a hint for irq_set_affinity_hint.
452                  */
453                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
454                 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
455         }
456
457         return 0;
458
459 free_queue_irqs:
460         while (vector) {
461                 vector--;
462                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
463                 irq_set_affinity_notifier(irq_num, NULL);
464                 irq_set_affinity_hint(irq_num, NULL);
465                 free_irq(irq_num, &adapter->q_vectors[vector]);
466         }
467         return err;
468 }
469
470 /**
471  * iavf_request_misc_irq - Initialize MSI-X interrupts
472  * @adapter: board private structure
473  *
474  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
475  * vector is only for the admin queue, and stays active even when the netdev
476  * is closed.
477  **/
478 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
479 {
480         struct net_device *netdev = adapter->netdev;
481         int err;
482
483         snprintf(adapter->misc_vector_name,
484                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
485                  dev_name(&adapter->pdev->dev));
486         err = request_irq(adapter->msix_entries[0].vector,
487                           &iavf_msix_aq, 0,
488                           adapter->misc_vector_name, netdev);
489         if (err) {
490                 dev_err(&adapter->pdev->dev,
491                         "request_irq for %s failed: %d\n",
492                         adapter->misc_vector_name, err);
493                 free_irq(adapter->msix_entries[0].vector, netdev);
494         }
495         return err;
496 }
497
498 /**
499  * iavf_free_traffic_irqs - Free MSI-X interrupts
500  * @adapter: board private structure
501  *
502  * Frees all MSI-X vectors other than 0.
503  **/
504 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
505 {
506         int vector, irq_num, q_vectors;
507
508         if (!adapter->msix_entries)
509                 return;
510
511         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
512
513         for (vector = 0; vector < q_vectors; vector++) {
514                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
515                 irq_set_affinity_notifier(irq_num, NULL);
516                 irq_set_affinity_hint(irq_num, NULL);
517                 free_irq(irq_num, &adapter->q_vectors[vector]);
518         }
519 }
520
521 /**
522  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
523  * @adapter: board private structure
524  *
525  * Frees MSI-X vector 0.
526  **/
527 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
528 {
529         struct net_device *netdev = adapter->netdev;
530
531         if (!adapter->msix_entries)
532                 return;
533
534         free_irq(adapter->msix_entries[0].vector, netdev);
535 }
536
537 /**
538  * iavf_configure_tx - Configure Transmit Unit after Reset
539  * @adapter: board private structure
540  *
541  * Configure the Tx unit of the MAC after a reset.
542  **/
543 static void iavf_configure_tx(struct iavf_adapter *adapter)
544 {
545         struct iavf_hw *hw = &adapter->hw;
546         int i;
547
548         for (i = 0; i < adapter->num_active_queues; i++)
549                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
550 }
551
552 /**
553  * iavf_configure_rx - Configure Receive Unit after Reset
554  * @adapter: board private structure
555  *
556  * Configure the Rx unit of the MAC after a reset.
557  **/
558 static void iavf_configure_rx(struct iavf_adapter *adapter)
559 {
560         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
561         struct iavf_hw *hw = &adapter->hw;
562         int i;
563
564         /* Legacy Rx will always default to a 2048 buffer size. */
565 #if (PAGE_SIZE < 8192)
566         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
567                 struct net_device *netdev = adapter->netdev;
568
569                 /* For jumbo frames on systems with 4K pages we have to use
570                  * an order 1 page, so we might as well increase the size
571                  * of our Rx buffer to make better use of the available space
572                  */
573                 rx_buf_len = IAVF_RXBUFFER_3072;
574
575                 /* We use a 1536 buffer size for configurations with
576                  * standard Ethernet mtu.  On x86 this gives us enough room
577                  * for shared info and 192 bytes of padding.
578                  */
579                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
580                     (netdev->mtu <= ETH_DATA_LEN))
581                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
582         }
583 #endif
584
585         for (i = 0; i < adapter->num_active_queues; i++) {
586                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
587                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
588
589                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
590                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
591                 else
592                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
593         }
594 }
595
596 /**
597  * iavf_find_vlan - Search filter list for specific vlan filter
598  * @adapter: board private structure
599  * @vlan: vlan tag
600  *
601  * Returns ptr to the filter object or NULL. Must be called while holding the
602  * mac_vlan_list_lock.
603  **/
604 static struct
605 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
606 {
607         struct iavf_vlan_filter *f;
608
609         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
610                 if (vlan == f->vlan)
611                         return f;
612         }
613         return NULL;
614 }
615
616 /**
617  * iavf_add_vlan - Add a vlan filter to the list
618  * @adapter: board private structure
619  * @vlan: VLAN tag
620  *
621  * Returns ptr to the filter object or NULL when no memory available.
622  **/
623 static struct
624 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
625 {
626         struct iavf_vlan_filter *f = NULL;
627
628         spin_lock_bh(&adapter->mac_vlan_list_lock);
629
630         f = iavf_find_vlan(adapter, vlan);
631         if (!f) {
632                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
633                 if (!f)
634                         goto clearout;
635
636                 f->vlan = vlan;
637
638                 list_add_tail(&f->list, &adapter->vlan_filter_list);
639                 f->add = true;
640                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
641         }
642
643 clearout:
644         spin_unlock_bh(&adapter->mac_vlan_list_lock);
645         return f;
646 }
647
648 /**
649  * iavf_del_vlan - Remove a vlan filter from the list
650  * @adapter: board private structure
651  * @vlan: VLAN tag
652  **/
653 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
654 {
655         struct iavf_vlan_filter *f;
656
657         spin_lock_bh(&adapter->mac_vlan_list_lock);
658
659         f = iavf_find_vlan(adapter, vlan);
660         if (f) {
661                 f->remove = true;
662                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
663         }
664
665         spin_unlock_bh(&adapter->mac_vlan_list_lock);
666 }
667
668 /**
669  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
670  * @netdev: network device struct
671  * @proto: unused protocol data
672  * @vid: VLAN tag
673  **/
674 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
675                                 __always_unused __be16 proto, u16 vid)
676 {
677         struct iavf_adapter *adapter = netdev_priv(netdev);
678
679         if (!VLAN_ALLOWED(adapter))
680                 return -EIO;
681         if (iavf_add_vlan(adapter, vid) == NULL)
682                 return -ENOMEM;
683         return 0;
684 }
685
686 /**
687  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
688  * @netdev: network device struct
689  * @proto: unused protocol data
690  * @vid: VLAN tag
691  **/
692 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
693                                  __always_unused __be16 proto, u16 vid)
694 {
695         struct iavf_adapter *adapter = netdev_priv(netdev);
696
697         if (VLAN_ALLOWED(adapter)) {
698                 iavf_del_vlan(adapter, vid);
699                 return 0;
700         }
701         return -EIO;
702 }
703
704 /**
705  * iavf_find_filter - Search filter list for specific mac filter
706  * @adapter: board private structure
707  * @macaddr: the MAC address
708  *
709  * Returns ptr to the filter object or NULL. Must be called while holding the
710  * mac_vlan_list_lock.
711  **/
712 static struct
713 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
714                                   const u8 *macaddr)
715 {
716         struct iavf_mac_filter *f;
717
718         if (!macaddr)
719                 return NULL;
720
721         list_for_each_entry(f, &adapter->mac_filter_list, list) {
722                 if (ether_addr_equal(macaddr, f->macaddr))
723                         return f;
724         }
725         return NULL;
726 }
727
728 /**
729  * iavf_add_filter - Add a mac filter to the filter list
730  * @adapter: board private structure
731  * @macaddr: the MAC address
732  *
733  * Returns ptr to the filter object or NULL when no memory available.
734  **/
735 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
736                                         const u8 *macaddr)
737 {
738         struct iavf_mac_filter *f;
739
740         if (!macaddr)
741                 return NULL;
742
743         f = iavf_find_filter(adapter, macaddr);
744         if (!f) {
745                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
746                 if (!f)
747                         return f;
748
749                 ether_addr_copy(f->macaddr, macaddr);
750
751                 list_add_tail(&f->list, &adapter->mac_filter_list);
752                 f->add = true;
753                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
754         } else {
755                 f->remove = false;
756         }
757
758         return f;
759 }
760
761 /**
762  * iavf_set_mac - NDO callback to set port mac address
763  * @netdev: network interface device structure
764  * @p: pointer to an address structure
765  *
766  * Returns 0 on success, negative on failure
767  **/
768 static int iavf_set_mac(struct net_device *netdev, void *p)
769 {
770         struct iavf_adapter *adapter = netdev_priv(netdev);
771         struct iavf_hw *hw = &adapter->hw;
772         struct iavf_mac_filter *f;
773         struct sockaddr *addr = p;
774
775         if (!is_valid_ether_addr(addr->sa_data))
776                 return -EADDRNOTAVAIL;
777
778         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
779                 return 0;
780
781         spin_lock_bh(&adapter->mac_vlan_list_lock);
782
783         f = iavf_find_filter(adapter, hw->mac.addr);
784         if (f) {
785                 f->remove = true;
786                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
787         }
788
789         f = iavf_add_filter(adapter, addr->sa_data);
790
791         spin_unlock_bh(&adapter->mac_vlan_list_lock);
792
793         if (f) {
794                 ether_addr_copy(hw->mac.addr, addr->sa_data);
795         }
796
797         return (f == NULL) ? -ENOMEM : 0;
798 }
799
800 /**
801  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
802  * @netdev: the netdevice
803  * @addr: address to add
804  *
805  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
806  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
807  */
808 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
809 {
810         struct iavf_adapter *adapter = netdev_priv(netdev);
811
812         if (iavf_add_filter(adapter, addr))
813                 return 0;
814         else
815                 return -ENOMEM;
816 }
817
818 /**
819  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
820  * @netdev: the netdevice
821  * @addr: address to add
822  *
823  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
824  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
825  */
826 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
827 {
828         struct iavf_adapter *adapter = netdev_priv(netdev);
829         struct iavf_mac_filter *f;
830
831         /* Under some circumstances, we might receive a request to delete
832          * our own device address from our uc list. Because we store the
833          * device address in the VSI's MAC/VLAN filter list, we need to ignore
834          * such requests and not delete our device address from this list.
835          */
836         if (ether_addr_equal(addr, netdev->dev_addr))
837                 return 0;
838
839         f = iavf_find_filter(adapter, addr);
840         if (f) {
841                 f->remove = true;
842                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
843         }
844         return 0;
845 }
846
847 /**
848  * iavf_set_rx_mode - NDO callback to set the netdev filters
849  * @netdev: network interface device structure
850  **/
851 static void iavf_set_rx_mode(struct net_device *netdev)
852 {
853         struct iavf_adapter *adapter = netdev_priv(netdev);
854
855         spin_lock_bh(&adapter->mac_vlan_list_lock);
856         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
857         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
858         spin_unlock_bh(&adapter->mac_vlan_list_lock);
859
860         if (netdev->flags & IFF_PROMISC &&
861             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
862                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
863         else if (!(netdev->flags & IFF_PROMISC) &&
864                  adapter->flags & IAVF_FLAG_PROMISC_ON)
865                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
866
867         if (netdev->flags & IFF_ALLMULTI &&
868             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
869                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
870         else if (!(netdev->flags & IFF_ALLMULTI) &&
871                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
872                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
873 }
874
875 /**
876  * iavf_napi_enable_all - enable NAPI on all queue vectors
877  * @adapter: board private structure
878  **/
879 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
880 {
881         int q_idx;
882         struct iavf_q_vector *q_vector;
883         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
884
885         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
886                 struct napi_struct *napi;
887
888                 q_vector = &adapter->q_vectors[q_idx];
889                 napi = &q_vector->napi;
890                 napi_enable(napi);
891         }
892 }
893
894 /**
895  * iavf_napi_disable_all - disable NAPI on all queue vectors
896  * @adapter: board private structure
897  **/
898 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
899 {
900         int q_idx;
901         struct iavf_q_vector *q_vector;
902         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
903
904         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
905                 q_vector = &adapter->q_vectors[q_idx];
906                 napi_disable(&q_vector->napi);
907         }
908 }
909
910 /**
911  * iavf_configure - set up transmit and receive data structures
912  * @adapter: board private structure
913  **/
914 static void iavf_configure(struct iavf_adapter *adapter)
915 {
916         struct net_device *netdev = adapter->netdev;
917         int i;
918
919         iavf_set_rx_mode(netdev);
920
921         iavf_configure_tx(adapter);
922         iavf_configure_rx(adapter);
923         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
924
925         for (i = 0; i < adapter->num_active_queues; i++) {
926                 struct iavf_ring *ring = &adapter->rx_rings[i];
927
928                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
929         }
930 }
931
932 /**
933  * iavf_up_complete - Finish the last steps of bringing up a connection
934  * @adapter: board private structure
935  *
936  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
937  **/
938 static void iavf_up_complete(struct iavf_adapter *adapter)
939 {
940         adapter->state = __IAVF_RUNNING;
941         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
942
943         iavf_napi_enable_all(adapter);
944
945         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
946         if (CLIENT_ENABLED(adapter))
947                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
948         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
949 }
950
951 /**
952  * iavf_down - Shutdown the connection processing
953  * @adapter: board private structure
954  *
955  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
956  **/
957 void iavf_down(struct iavf_adapter *adapter)
958 {
959         struct net_device *netdev = adapter->netdev;
960         struct iavf_vlan_filter *vlf;
961         struct iavf_mac_filter *f;
962         struct iavf_cloud_filter *cf;
963
964         if (adapter->state <= __IAVF_DOWN_PENDING)
965                 return;
966
967         netif_carrier_off(netdev);
968         netif_tx_disable(netdev);
969         adapter->link_up = false;
970         iavf_napi_disable_all(adapter);
971         iavf_irq_disable(adapter);
972
973         spin_lock_bh(&adapter->mac_vlan_list_lock);
974
975         /* clear the sync flag on all filters */
976         __dev_uc_unsync(adapter->netdev, NULL);
977         __dev_mc_unsync(adapter->netdev, NULL);
978
979         /* remove all MAC filters */
980         list_for_each_entry(f, &adapter->mac_filter_list, list) {
981                 f->remove = true;
982         }
983
984         /* remove all VLAN filters */
985         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
986                 vlf->remove = true;
987         }
988
989         spin_unlock_bh(&adapter->mac_vlan_list_lock);
990
991         /* remove all cloud filters */
992         spin_lock_bh(&adapter->cloud_filter_list_lock);
993         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
994                 cf->del = true;
995         }
996         spin_unlock_bh(&adapter->cloud_filter_list_lock);
997
998         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
999             adapter->state != __IAVF_RESETTING) {
1000                 /* cancel any current operation */
1001                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1002                 /* Schedule operations to close down the HW. Don't wait
1003                  * here for this to complete. The watchdog is still running
1004                  * and it will take care of this.
1005                  */
1006                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1007                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1008                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1009                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1010         }
1011
1012         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1013 }
1014
1015 /**
1016  * iavf_acquire_msix_vectors - Setup the MSIX capability
1017  * @adapter: board private structure
1018  * @vectors: number of vectors to request
1019  *
1020  * Work with the OS to set up the MSIX vectors needed.
1021  *
1022  * Returns 0 on success, negative on failure
1023  **/
1024 static int
1025 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1026 {
1027         int err, vector_threshold;
1028
1029         /* We'll want at least 3 (vector_threshold):
1030          * 0) Other (Admin Queue and link, mostly)
1031          * 1) TxQ[0] Cleanup
1032          * 2) RxQ[0] Cleanup
1033          */
1034         vector_threshold = MIN_MSIX_COUNT;
1035
1036         /* The more we get, the more we will assign to Tx/Rx Cleanup
1037          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1038          * Right now, we simply care about how many we'll get; we'll
1039          * set them up later while requesting irq's.
1040          */
1041         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1042                                     vector_threshold, vectors);
1043         if (err < 0) {
1044                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1045                 kfree(adapter->msix_entries);
1046                 adapter->msix_entries = NULL;
1047                 return err;
1048         }
1049
1050         /* Adjust for only the vectors we'll use, which is minimum
1051          * of max_msix_q_vectors + NONQ_VECS, or the number of
1052          * vectors we were allocated.
1053          */
1054         adapter->num_msix_vectors = err;
1055         return 0;
1056 }
1057
1058 /**
1059  * iavf_free_queues - Free memory for all rings
1060  * @adapter: board private structure to initialize
1061  *
1062  * Free all of the memory associated with queue pairs.
1063  **/
1064 static void iavf_free_queues(struct iavf_adapter *adapter)
1065 {
1066         if (!adapter->vsi_res)
1067                 return;
1068         adapter->num_active_queues = 0;
1069         kfree(adapter->tx_rings);
1070         adapter->tx_rings = NULL;
1071         kfree(adapter->rx_rings);
1072         adapter->rx_rings = NULL;
1073 }
1074
1075 /**
1076  * iavf_alloc_queues - Allocate memory for all rings
1077  * @adapter: board private structure to initialize
1078  *
1079  * We allocate one ring per queue at run-time since we don't know the
1080  * number of queues at compile-time.  The polling_netdev array is
1081  * intended for Multiqueue, but should work fine with a single queue.
1082  **/
1083 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1084 {
1085         int i, num_active_queues;
1086
1087         /* If we're in reset reallocating queues we don't actually know yet for
1088          * certain the PF gave us the number of queues we asked for but we'll
1089          * assume it did.  Once basic reset is finished we'll confirm once we
1090          * start negotiating config with PF.
1091          */
1092         if (adapter->num_req_queues)
1093                 num_active_queues = adapter->num_req_queues;
1094         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1095                  adapter->num_tc)
1096                 num_active_queues = adapter->ch_config.total_qps;
1097         else
1098                 num_active_queues = min_t(int,
1099                                           adapter->vsi_res->num_queue_pairs,
1100                                           (int)(num_online_cpus()));
1101
1102
1103         adapter->tx_rings = kcalloc(num_active_queues,
1104                                     sizeof(struct iavf_ring), GFP_KERNEL);
1105         if (!adapter->tx_rings)
1106                 goto err_out;
1107         adapter->rx_rings = kcalloc(num_active_queues,
1108                                     sizeof(struct iavf_ring), GFP_KERNEL);
1109         if (!adapter->rx_rings)
1110                 goto err_out;
1111
1112         for (i = 0; i < num_active_queues; i++) {
1113                 struct iavf_ring *tx_ring;
1114                 struct iavf_ring *rx_ring;
1115
1116                 tx_ring = &adapter->tx_rings[i];
1117
1118                 tx_ring->queue_index = i;
1119                 tx_ring->netdev = adapter->netdev;
1120                 tx_ring->dev = &adapter->pdev->dev;
1121                 tx_ring->count = adapter->tx_desc_count;
1122                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1123                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1124                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1125
1126                 rx_ring = &adapter->rx_rings[i];
1127                 rx_ring->queue_index = i;
1128                 rx_ring->netdev = adapter->netdev;
1129                 rx_ring->dev = &adapter->pdev->dev;
1130                 rx_ring->count = adapter->rx_desc_count;
1131                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1132         }
1133
1134         adapter->num_active_queues = num_active_queues;
1135
1136         return 0;
1137
1138 err_out:
1139         iavf_free_queues(adapter);
1140         return -ENOMEM;
1141 }
1142
1143 /**
1144  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1145  * @adapter: board private structure to initialize
1146  *
1147  * Attempt to configure the interrupts using the best available
1148  * capabilities of the hardware and the kernel.
1149  **/
1150 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1151 {
1152         int vector, v_budget;
1153         int pairs = 0;
1154         int err = 0;
1155
1156         if (!adapter->vsi_res) {
1157                 err = -EIO;
1158                 goto out;
1159         }
1160         pairs = adapter->num_active_queues;
1161
1162         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1163          * us much good if we have more vectors than CPUs. However, we already
1164          * limit the total number of queues by the number of CPUs so we do not
1165          * need any further limiting here.
1166          */
1167         v_budget = min_t(int, pairs + NONQ_VECS,
1168                          (int)adapter->vf_res->max_vectors);
1169
1170         adapter->msix_entries = kcalloc(v_budget,
1171                                         sizeof(struct msix_entry), GFP_KERNEL);
1172         if (!adapter->msix_entries) {
1173                 err = -ENOMEM;
1174                 goto out;
1175         }
1176
1177         for (vector = 0; vector < v_budget; vector++)
1178                 adapter->msix_entries[vector].entry = vector;
1179
1180         err = iavf_acquire_msix_vectors(adapter, v_budget);
1181
1182 out:
1183         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1184         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1185         return err;
1186 }
1187
1188 /**
1189  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1190  * @adapter: board private structure
1191  *
1192  * Return 0 on success, negative on failure
1193  **/
1194 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1195 {
1196         struct iavf_aqc_get_set_rss_key_data *rss_key =
1197                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1198         struct iavf_hw *hw = &adapter->hw;
1199         int ret = 0;
1200
1201         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1202                 /* bail because we already have a command pending */
1203                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1204                         adapter->current_op);
1205                 return -EBUSY;
1206         }
1207
1208         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1209         if (ret) {
1210                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1211                         iavf_stat_str(hw, ret),
1212                         iavf_aq_str(hw, hw->aq.asq_last_status));
1213                 return ret;
1214
1215         }
1216
1217         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1218                                   adapter->rss_lut, adapter->rss_lut_size);
1219         if (ret) {
1220                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1221                         iavf_stat_str(hw, ret),
1222                         iavf_aq_str(hw, hw->aq.asq_last_status));
1223         }
1224
1225         return ret;
1226
1227 }
1228
1229 /**
1230  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1231  * @adapter: board private structure
1232  *
1233  * Returns 0 on success, negative on failure
1234  **/
1235 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1236 {
1237         struct iavf_hw *hw = &adapter->hw;
1238         u32 *dw;
1239         u16 i;
1240
1241         dw = (u32 *)adapter->rss_key;
1242         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1243                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1244
1245         dw = (u32 *)adapter->rss_lut;
1246         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1247                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1248
1249         iavf_flush(hw);
1250
1251         return 0;
1252 }
1253
1254 /**
1255  * iavf_config_rss - Configure RSS keys and lut
1256  * @adapter: board private structure
1257  *
1258  * Returns 0 on success, negative on failure
1259  **/
1260 int iavf_config_rss(struct iavf_adapter *adapter)
1261 {
1262
1263         if (RSS_PF(adapter)) {
1264                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1265                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1266                 return 0;
1267         } else if (RSS_AQ(adapter)) {
1268                 return iavf_config_rss_aq(adapter);
1269         } else {
1270                 return iavf_config_rss_reg(adapter);
1271         }
1272 }
1273
1274 /**
1275  * iavf_fill_rss_lut - Fill the lut with default values
1276  * @adapter: board private structure
1277  **/
1278 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1279 {
1280         u16 i;
1281
1282         for (i = 0; i < adapter->rss_lut_size; i++)
1283                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1284 }
1285
1286 /**
1287  * iavf_init_rss - Prepare for RSS
1288  * @adapter: board private structure
1289  *
1290  * Return 0 on success, negative on failure
1291  **/
1292 static int iavf_init_rss(struct iavf_adapter *adapter)
1293 {
1294         struct iavf_hw *hw = &adapter->hw;
1295         int ret;
1296
1297         if (!RSS_PF(adapter)) {
1298                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1299                 if (adapter->vf_res->vf_cap_flags &
1300                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1301                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1302                 else
1303                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1304
1305                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1306                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1307         }
1308
1309         iavf_fill_rss_lut(adapter);
1310         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1311         ret = iavf_config_rss(adapter);
1312
1313         return ret;
1314 }
1315
1316 /**
1317  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1318  * @adapter: board private structure to initialize
1319  *
1320  * We allocate one q_vector per queue interrupt.  If allocation fails we
1321  * return -ENOMEM.
1322  **/
1323 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1324 {
1325         int q_idx = 0, num_q_vectors;
1326         struct iavf_q_vector *q_vector;
1327
1328         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1329         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1330                                      GFP_KERNEL);
1331         if (!adapter->q_vectors)
1332                 return -ENOMEM;
1333
1334         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1335                 q_vector = &adapter->q_vectors[q_idx];
1336                 q_vector->adapter = adapter;
1337                 q_vector->vsi = &adapter->vsi;
1338                 q_vector->v_idx = q_idx;
1339                 q_vector->reg_idx = q_idx;
1340                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1341                 netif_napi_add(adapter->netdev, &q_vector->napi,
1342                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1343         }
1344
1345         return 0;
1346 }
1347
1348 /**
1349  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1350  * @adapter: board private structure to initialize
1351  *
1352  * This function frees the memory allocated to the q_vectors.  In addition if
1353  * NAPI is enabled it will delete any references to the NAPI struct prior
1354  * to freeing the q_vector.
1355  **/
1356 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1357 {
1358         int q_idx, num_q_vectors;
1359         int napi_vectors;
1360
1361         if (!adapter->q_vectors)
1362                 return;
1363
1364         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365         napi_vectors = adapter->num_active_queues;
1366
1367         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1368                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1369
1370                 if (q_idx < napi_vectors)
1371                         netif_napi_del(&q_vector->napi);
1372         }
1373         kfree(adapter->q_vectors);
1374         adapter->q_vectors = NULL;
1375 }
1376
1377 /**
1378  * iavf_reset_interrupt_capability - Reset MSIX setup
1379  * @adapter: board private structure
1380  *
1381  **/
1382 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1383 {
1384         if (!adapter->msix_entries)
1385                 return;
1386
1387         pci_disable_msix(adapter->pdev);
1388         kfree(adapter->msix_entries);
1389         adapter->msix_entries = NULL;
1390 }
1391
1392 /**
1393  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1394  * @adapter: board private structure to initialize
1395  *
1396  **/
1397 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1398 {
1399         int err;
1400
1401         err = iavf_alloc_queues(adapter);
1402         if (err) {
1403                 dev_err(&adapter->pdev->dev,
1404                         "Unable to allocate memory for queues\n");
1405                 goto err_alloc_queues;
1406         }
1407
1408         rtnl_lock();
1409         err = iavf_set_interrupt_capability(adapter);
1410         rtnl_unlock();
1411         if (err) {
1412                 dev_err(&adapter->pdev->dev,
1413                         "Unable to setup interrupt capabilities\n");
1414                 goto err_set_interrupt;
1415         }
1416
1417         err = iavf_alloc_q_vectors(adapter);
1418         if (err) {
1419                 dev_err(&adapter->pdev->dev,
1420                         "Unable to allocate memory for queue vectors\n");
1421                 goto err_alloc_q_vectors;
1422         }
1423
1424         /* If we've made it so far while ADq flag being ON, then we haven't
1425          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1426          * resources have been allocated in the reset path.
1427          * Now we can truly claim that ADq is enabled.
1428          */
1429         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1430             adapter->num_tc)
1431                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1432                          adapter->num_tc);
1433
1434         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1435                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1436                  adapter->num_active_queues);
1437
1438         return 0;
1439 err_alloc_q_vectors:
1440         iavf_reset_interrupt_capability(adapter);
1441 err_set_interrupt:
1442         iavf_free_queues(adapter);
1443 err_alloc_queues:
1444         return err;
1445 }
1446
1447 /**
1448  * iavf_free_rss - Free memory used by RSS structs
1449  * @adapter: board private structure
1450  **/
1451 static void iavf_free_rss(struct iavf_adapter *adapter)
1452 {
1453         kfree(adapter->rss_key);
1454         adapter->rss_key = NULL;
1455
1456         kfree(adapter->rss_lut);
1457         adapter->rss_lut = NULL;
1458 }
1459
1460 /**
1461  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1462  * @adapter: board private structure
1463  *
1464  * Returns 0 on success, negative on failure
1465  **/
1466 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1467 {
1468         struct net_device *netdev = adapter->netdev;
1469         int err;
1470
1471         if (netif_running(netdev))
1472                 iavf_free_traffic_irqs(adapter);
1473         iavf_free_misc_irq(adapter);
1474         iavf_reset_interrupt_capability(adapter);
1475         iavf_free_q_vectors(adapter);
1476         iavf_free_queues(adapter);
1477
1478         err =  iavf_init_interrupt_scheme(adapter);
1479         if (err)
1480                 goto err;
1481
1482         netif_tx_stop_all_queues(netdev);
1483
1484         err = iavf_request_misc_irq(adapter);
1485         if (err)
1486                 goto err;
1487
1488         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1489
1490         iavf_map_rings_to_vectors(adapter);
1491
1492         if (RSS_AQ(adapter))
1493                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1494         else
1495                 err = iavf_init_rss(adapter);
1496 err:
1497         return err;
1498 }
1499
1500 /**
1501  * iavf_process_aq_command - process aq_required flags
1502  * and sends aq command
1503  * @adapter: pointer to iavf adapter structure
1504  *
1505  * Returns 0 on success
1506  * Returns error code if no command was sent
1507  * or error code if the command failed.
1508  **/
1509 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1510 {
1511         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1512                 return iavf_send_vf_config_msg(adapter);
1513         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1514                 iavf_disable_queues(adapter);
1515                 return 0;
1516         }
1517
1518         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1519                 iavf_map_queues(adapter);
1520                 return 0;
1521         }
1522
1523         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1524                 iavf_add_ether_addrs(adapter);
1525                 return 0;
1526         }
1527
1528         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1529                 iavf_add_vlans(adapter);
1530                 return 0;
1531         }
1532
1533         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1534                 iavf_del_ether_addrs(adapter);
1535                 return 0;
1536         }
1537
1538         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1539                 iavf_del_vlans(adapter);
1540                 return 0;
1541         }
1542
1543         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1544                 iavf_enable_vlan_stripping(adapter);
1545                 return 0;
1546         }
1547
1548         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1549                 iavf_disable_vlan_stripping(adapter);
1550                 return 0;
1551         }
1552
1553         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1554                 iavf_configure_queues(adapter);
1555                 return 0;
1556         }
1557
1558         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1559                 iavf_enable_queues(adapter);
1560                 return 0;
1561         }
1562
1563         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1564                 /* This message goes straight to the firmware, not the
1565                  * PF, so we don't have to set current_op as we will
1566                  * not get a response through the ARQ.
1567                  */
1568                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1569                 return 0;
1570         }
1571         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1572                 iavf_get_hena(adapter);
1573                 return 0;
1574         }
1575         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1576                 iavf_set_hena(adapter);
1577                 return 0;
1578         }
1579         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1580                 iavf_set_rss_key(adapter);
1581                 return 0;
1582         }
1583         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1584                 iavf_set_rss_lut(adapter);
1585                 return 0;
1586         }
1587
1588         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1589                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1590                                        FLAG_VF_MULTICAST_PROMISC);
1591                 return 0;
1592         }
1593
1594         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1595                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1596                 return 0;
1597         }
1598
1599         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1600             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1601                 iavf_set_promiscuous(adapter, 0);
1602                 return 0;
1603         }
1604
1605         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1606                 iavf_enable_channels(adapter);
1607                 return 0;
1608         }
1609
1610         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1611                 iavf_disable_channels(adapter);
1612                 return 0;
1613         }
1614         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1615                 iavf_add_cloud_filter(adapter);
1616                 return 0;
1617         }
1618
1619         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1620                 iavf_del_cloud_filter(adapter);
1621                 return 0;
1622         }
1623         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1624                 iavf_del_cloud_filter(adapter);
1625                 return 0;
1626         }
1627         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1628                 iavf_add_cloud_filter(adapter);
1629                 return 0;
1630         }
1631         return -EAGAIN;
1632 }
1633
1634 /**
1635  * iavf_startup - first step of driver startup
1636  * @adapter: board private structure
1637  *
1638  * Function process __IAVF_STARTUP driver state.
1639  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1640  * when fails it returns -EAGAIN
1641  **/
1642 static int iavf_startup(struct iavf_adapter *adapter)
1643 {
1644         struct pci_dev *pdev = adapter->pdev;
1645         struct iavf_hw *hw = &adapter->hw;
1646         int err;
1647
1648         WARN_ON(adapter->state != __IAVF_STARTUP);
1649
1650         /* driver loaded, probe complete */
1651         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1652         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1653         err = iavf_set_mac_type(hw);
1654         if (err) {
1655                 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1656                 goto err;
1657         }
1658
1659         err = iavf_check_reset_complete(hw);
1660         if (err) {
1661                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1662                          err);
1663                 goto err;
1664         }
1665         hw->aq.num_arq_entries = IAVF_AQ_LEN;
1666         hw->aq.num_asq_entries = IAVF_AQ_LEN;
1667         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1668         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1669
1670         err = iavf_init_adminq(hw);
1671         if (err) {
1672                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1673                 goto err;
1674         }
1675         err = iavf_send_api_ver(adapter);
1676         if (err) {
1677                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1678                 iavf_shutdown_adminq(hw);
1679                 goto err;
1680         }
1681         adapter->state = __IAVF_INIT_VERSION_CHECK;
1682 err:
1683         return err;
1684 }
1685
1686 /**
1687  * iavf_init_version_check - second step of driver startup
1688  * @adapter: board private structure
1689  *
1690  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1691  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1692  * when fails it returns -EAGAIN
1693  **/
1694 static int iavf_init_version_check(struct iavf_adapter *adapter)
1695 {
1696         struct pci_dev *pdev = adapter->pdev;
1697         struct iavf_hw *hw = &adapter->hw;
1698         int err = -EAGAIN;
1699
1700         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1701
1702         if (!iavf_asq_done(hw)) {
1703                 dev_err(&pdev->dev, "Admin queue command never completed\n");
1704                 iavf_shutdown_adminq(hw);
1705                 adapter->state = __IAVF_STARTUP;
1706                 goto err;
1707         }
1708
1709         /* aq msg sent, awaiting reply */
1710         err = iavf_verify_api_ver(adapter);
1711         if (err) {
1712                 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1713                         err = iavf_send_api_ver(adapter);
1714                 else
1715                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1716                                 adapter->pf_version.major,
1717                                 adapter->pf_version.minor,
1718                                 VIRTCHNL_VERSION_MAJOR,
1719                                 VIRTCHNL_VERSION_MINOR);
1720                 goto err;
1721         }
1722         err = iavf_send_vf_config_msg(adapter);
1723         if (err) {
1724                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1725                         err);
1726                 goto err;
1727         }
1728         adapter->state = __IAVF_INIT_GET_RESOURCES;
1729
1730 err:
1731         return err;
1732 }
1733
1734 /**
1735  * iavf_init_get_resources - third step of driver startup
1736  * @adapter: board private structure
1737  *
1738  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1739  * finishes driver initialization procedure.
1740  * When success the state is changed to __IAVF_DOWN
1741  * when fails it returns -EAGAIN
1742  **/
1743 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1744 {
1745         struct net_device *netdev = adapter->netdev;
1746         struct pci_dev *pdev = adapter->pdev;
1747         struct iavf_hw *hw = &adapter->hw;
1748         int err;
1749
1750         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1751         /* aq msg sent, awaiting reply */
1752         if (!adapter->vf_res) {
1753                 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1754                                           GFP_KERNEL);
1755                 if (!adapter->vf_res) {
1756                         err = -ENOMEM;
1757                         goto err;
1758                 }
1759         }
1760         err = iavf_get_vf_config(adapter);
1761         if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1762                 err = iavf_send_vf_config_msg(adapter);
1763                 goto err;
1764         } else if (err == IAVF_ERR_PARAM) {
1765                 /* We only get ERR_PARAM if the device is in a very bad
1766                  * state or if we've been disabled for previous bad
1767                  * behavior. Either way, we're done now.
1768                  */
1769                 iavf_shutdown_adminq(hw);
1770                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1771                 return 0;
1772         }
1773         if (err) {
1774                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1775                 goto err_alloc;
1776         }
1777
1778         if (iavf_process_config(adapter))
1779                 goto err_alloc;
1780         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1781
1782         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1783
1784         netdev->netdev_ops = &iavf_netdev_ops;
1785         iavf_set_ethtool_ops(netdev);
1786         netdev->watchdog_timeo = 5 * HZ;
1787
1788         /* MTU range: 68 - 9710 */
1789         netdev->min_mtu = ETH_MIN_MTU;
1790         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1791
1792         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1793                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1794                          adapter->hw.mac.addr);
1795                 eth_hw_addr_random(netdev);
1796                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1797         } else {
1798                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1799                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1800         }
1801
1802         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1803         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1804         err = iavf_init_interrupt_scheme(adapter);
1805         if (err)
1806                 goto err_sw_init;
1807         iavf_map_rings_to_vectors(adapter);
1808         if (adapter->vf_res->vf_cap_flags &
1809                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1810                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1811
1812         err = iavf_request_misc_irq(adapter);
1813         if (err)
1814                 goto err_sw_init;
1815
1816         netif_carrier_off(netdev);
1817         adapter->link_up = false;
1818
1819         /* set the semaphore to prevent any callbacks after device registration
1820          * up to time when state of driver will be set to __IAVF_DOWN
1821          */
1822         rtnl_lock();
1823         if (!adapter->netdev_registered) {
1824                 err = register_netdevice(netdev);
1825                 if (err) {
1826                         rtnl_unlock();
1827                         goto err_register;
1828                 }
1829         }
1830
1831         adapter->netdev_registered = true;
1832
1833         netif_tx_stop_all_queues(netdev);
1834         if (CLIENT_ALLOWED(adapter)) {
1835                 err = iavf_lan_add_device(adapter);
1836                 if (err) {
1837                         rtnl_unlock();
1838                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1839                                  err);
1840                 }
1841         }
1842         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1843         if (netdev->features & NETIF_F_GRO)
1844                 dev_info(&pdev->dev, "GRO is enabled\n");
1845
1846         adapter->state = __IAVF_DOWN;
1847         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1848         rtnl_unlock();
1849
1850         iavf_misc_irq_enable(adapter);
1851         wake_up(&adapter->down_waitqueue);
1852
1853         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1854         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1855         if (!adapter->rss_key || !adapter->rss_lut) {
1856                 err = -ENOMEM;
1857                 goto err_mem;
1858         }
1859         if (RSS_AQ(adapter))
1860                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1861         else
1862                 iavf_init_rss(adapter);
1863
1864         return err;
1865 err_mem:
1866         iavf_free_rss(adapter);
1867 err_register:
1868         iavf_free_misc_irq(adapter);
1869 err_sw_init:
1870         iavf_reset_interrupt_capability(adapter);
1871 err_alloc:
1872         kfree(adapter->vf_res);
1873         adapter->vf_res = NULL;
1874 err:
1875         return err;
1876 }
1877
1878 /**
1879  * iavf_watchdog_task - Periodic call-back task
1880  * @work: pointer to work_struct
1881  **/
1882 static void iavf_watchdog_task(struct work_struct *work)
1883 {
1884         struct iavf_adapter *adapter = container_of(work,
1885                                                     struct iavf_adapter,
1886                                                     watchdog_task.work);
1887         struct iavf_hw *hw = &adapter->hw;
1888         u32 reg_val;
1889
1890         if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1891                 goto restart_watchdog;
1892
1893         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1894                 adapter->state = __IAVF_COMM_FAILED;
1895
1896         switch (adapter->state) {
1897         case __IAVF_COMM_FAILED:
1898                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1899                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1900                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1901                     reg_val == VIRTCHNL_VFR_COMPLETED) {
1902                         /* A chance for redemption! */
1903                         dev_err(&adapter->pdev->dev,
1904                                 "Hardware came out of reset. Attempting reinit.\n");
1905                         adapter->state = __IAVF_STARTUP;
1906                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1907                         queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1908                         clear_bit(__IAVF_IN_CRITICAL_TASK,
1909                                   &adapter->crit_section);
1910                         /* Don't reschedule the watchdog, since we've restarted
1911                          * the init task. When init_task contacts the PF and
1912                          * gets everything set up again, it'll restart the
1913                          * watchdog for us. Down, boy. Sit. Stay. Woof.
1914                          */
1915                         return;
1916                 }
1917                 adapter->aq_required = 0;
1918                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1919                 clear_bit(__IAVF_IN_CRITICAL_TASK,
1920                           &adapter->crit_section);
1921                 queue_delayed_work(iavf_wq,
1922                                    &adapter->watchdog_task,
1923                                    msecs_to_jiffies(10));
1924                 goto watchdog_done;
1925         case __IAVF_RESETTING:
1926                 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1927                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1928                 return;
1929         case __IAVF_DOWN:
1930         case __IAVF_DOWN_PENDING:
1931         case __IAVF_TESTING:
1932         case __IAVF_RUNNING:
1933                 if (adapter->current_op) {
1934                         if (!iavf_asq_done(hw)) {
1935                                 dev_dbg(&adapter->pdev->dev,
1936                                         "Admin queue timeout\n");
1937                                 iavf_send_api_ver(adapter);
1938                         }
1939                 } else {
1940                         /* An error will be returned if no commands were
1941                          * processed; use this opportunity to update stats
1942                          */
1943                         if (iavf_process_aq_command(adapter) &&
1944                             adapter->state == __IAVF_RUNNING)
1945                                 iavf_request_stats(adapter);
1946                 }
1947                 break;
1948         case __IAVF_REMOVE:
1949                 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1950                 return;
1951         default:
1952                 goto restart_watchdog;
1953         }
1954
1955                 /* check for hw reset */
1956         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1957         if (!reg_val) {
1958                 adapter->state = __IAVF_RESETTING;
1959                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1960                 adapter->aq_required = 0;
1961                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1962                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1963                 queue_work(iavf_wq, &adapter->reset_task);
1964                 goto watchdog_done;
1965         }
1966
1967         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1968 watchdog_done:
1969         if (adapter->state == __IAVF_RUNNING ||
1970             adapter->state == __IAVF_COMM_FAILED)
1971                 iavf_detect_recover_hung(&adapter->vsi);
1972         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1973 restart_watchdog:
1974         if (adapter->aq_required)
1975                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1976                                    msecs_to_jiffies(20));
1977         else
1978                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1979         queue_work(iavf_wq, &adapter->adminq_task);
1980 }
1981
1982 static void iavf_disable_vf(struct iavf_adapter *adapter)
1983 {
1984         struct iavf_mac_filter *f, *ftmp;
1985         struct iavf_vlan_filter *fv, *fvtmp;
1986         struct iavf_cloud_filter *cf, *cftmp;
1987
1988         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1989
1990         /* We don't use netif_running() because it may be true prior to
1991          * ndo_open() returning, so we can't assume it means all our open
1992          * tasks have finished, since we're not holding the rtnl_lock here.
1993          */
1994         if (adapter->state == __IAVF_RUNNING) {
1995                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1996                 netif_carrier_off(adapter->netdev);
1997                 netif_tx_disable(adapter->netdev);
1998                 adapter->link_up = false;
1999                 iavf_napi_disable_all(adapter);
2000                 iavf_irq_disable(adapter);
2001                 iavf_free_traffic_irqs(adapter);
2002                 iavf_free_all_tx_resources(adapter);
2003                 iavf_free_all_rx_resources(adapter);
2004         }
2005
2006         spin_lock_bh(&adapter->mac_vlan_list_lock);
2007
2008         /* Delete all of the filters */
2009         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2010                 list_del(&f->list);
2011                 kfree(f);
2012         }
2013
2014         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2015                 list_del(&fv->list);
2016                 kfree(fv);
2017         }
2018
2019         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2020
2021         spin_lock_bh(&adapter->cloud_filter_list_lock);
2022         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2023                 list_del(&cf->list);
2024                 kfree(cf);
2025                 adapter->num_cloud_filters--;
2026         }
2027         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2028
2029         iavf_free_misc_irq(adapter);
2030         iavf_reset_interrupt_capability(adapter);
2031         iavf_free_queues(adapter);
2032         iavf_free_q_vectors(adapter);
2033         memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2034         iavf_shutdown_adminq(&adapter->hw);
2035         adapter->netdev->flags &= ~IFF_UP;
2036         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2037         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2038         adapter->state = __IAVF_DOWN;
2039         wake_up(&adapter->down_waitqueue);
2040         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2041 }
2042
2043 /**
2044  * iavf_reset_task - Call-back task to handle hardware reset
2045  * @work: pointer to work_struct
2046  *
2047  * During reset we need to shut down and reinitialize the admin queue
2048  * before we can use it to communicate with the PF again. We also clear
2049  * and reinit the rings because that context is lost as well.
2050  **/
2051 static void iavf_reset_task(struct work_struct *work)
2052 {
2053         struct iavf_adapter *adapter = container_of(work,
2054                                                       struct iavf_adapter,
2055                                                       reset_task);
2056         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2057         struct net_device *netdev = adapter->netdev;
2058         struct iavf_hw *hw = &adapter->hw;
2059         struct iavf_mac_filter *f, *ftmp;
2060         struct iavf_vlan_filter *vlf;
2061         struct iavf_cloud_filter *cf;
2062         u32 reg_val;
2063         int i = 0, err;
2064         bool running;
2065
2066         /* When device is being removed it doesn't make sense to run the reset
2067          * task, just return in such a case.
2068          */
2069         if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2070                 return;
2071
2072         while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2073                                 &adapter->crit_section))
2074                 usleep_range(500, 1000);
2075         if (CLIENT_ENABLED(adapter)) {
2076                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2077                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2078                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2079                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2080                 cancel_delayed_work_sync(&adapter->client_task);
2081                 iavf_notify_client_close(&adapter->vsi, true);
2082         }
2083         iavf_misc_irq_disable(adapter);
2084         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2085                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2086                 /* Restart the AQ here. If we have been reset but didn't
2087                  * detect it, or if the PF had to reinit, our AQ will be hosed.
2088                  */
2089                 iavf_shutdown_adminq(hw);
2090                 iavf_init_adminq(hw);
2091                 iavf_request_reset(adapter);
2092         }
2093         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2094
2095         /* poll until we see the reset actually happen */
2096         for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2097                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2098                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2099                 if (!reg_val)
2100                         break;
2101                 usleep_range(5000, 10000);
2102         }
2103         if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2104                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2105                 goto continue_reset; /* act like the reset happened */
2106         }
2107
2108         /* wait until the reset is complete and the PF is responding to us */
2109         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2110                 /* sleep first to make sure a minimum wait time is met */
2111                 msleep(IAVF_RESET_WAIT_MS);
2112
2113                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2114                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2115                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2116                         break;
2117         }
2118
2119         pci_set_master(adapter->pdev);
2120
2121         if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2122                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2123                         reg_val);
2124                 iavf_disable_vf(adapter);
2125                 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2126                 return; /* Do not attempt to reinit. It's dead, Jim. */
2127         }
2128
2129 continue_reset:
2130         /* We don't use netif_running() because it may be true prior to
2131          * ndo_open() returning, so we can't assume it means all our open
2132          * tasks have finished, since we're not holding the rtnl_lock here.
2133          */
2134         running = ((adapter->state == __IAVF_RUNNING) ||
2135                    (adapter->state == __IAVF_RESETTING));
2136
2137         if (running) {
2138                 netif_carrier_off(netdev);
2139                 netif_tx_stop_all_queues(netdev);
2140                 adapter->link_up = false;
2141                 iavf_napi_disable_all(adapter);
2142         }
2143         iavf_irq_disable(adapter);
2144
2145         adapter->state = __IAVF_RESETTING;
2146         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2147
2148         /* free the Tx/Rx rings and descriptors, might be better to just
2149          * re-use them sometime in the future
2150          */
2151         iavf_free_all_rx_resources(adapter);
2152         iavf_free_all_tx_resources(adapter);
2153
2154         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2155         /* kill and reinit the admin queue */
2156         iavf_shutdown_adminq(hw);
2157         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2158         err = iavf_init_adminq(hw);
2159         if (err)
2160                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2161                          err);
2162         adapter->aq_required = 0;
2163
2164         if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2165                 err = iavf_reinit_interrupt_scheme(adapter);
2166                 if (err)
2167                         goto reset_err;
2168         }
2169
2170         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2171         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2172
2173         spin_lock_bh(&adapter->mac_vlan_list_lock);
2174
2175         /* Delete filter for the current MAC address, it could have
2176          * been changed by the PF via administratively set MAC.
2177          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2178          */
2179         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2180                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2181                         list_del(&f->list);
2182                         kfree(f);
2183                 }
2184         }
2185         /* re-add all MAC filters */
2186         list_for_each_entry(f, &adapter->mac_filter_list, list) {
2187                 f->add = true;
2188         }
2189         /* re-add all VLAN filters */
2190         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2191                 vlf->add = true;
2192         }
2193
2194         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2195
2196         /* check if TCs are running and re-add all cloud filters */
2197         spin_lock_bh(&adapter->cloud_filter_list_lock);
2198         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2199             adapter->num_tc) {
2200                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2201                         cf->add = true;
2202                 }
2203         }
2204         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2205
2206         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2207         adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2208         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2209         iavf_misc_irq_enable(adapter);
2210
2211         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2212
2213         /* We were running when the reset started, so we need to restore some
2214          * state here.
2215          */
2216         if (running) {
2217                 /* allocate transmit descriptors */
2218                 err = iavf_setup_all_tx_resources(adapter);
2219                 if (err)
2220                         goto reset_err;
2221
2222                 /* allocate receive descriptors */
2223                 err = iavf_setup_all_rx_resources(adapter);
2224                 if (err)
2225                         goto reset_err;
2226
2227                 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2228                         err = iavf_request_traffic_irqs(adapter, netdev->name);
2229                         if (err)
2230                                 goto reset_err;
2231
2232                         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2233                 }
2234
2235                 iavf_configure(adapter);
2236
2237                 iavf_up_complete(adapter);
2238
2239                 iavf_irq_enable(adapter, true);
2240         } else {
2241                 adapter->state = __IAVF_DOWN;
2242                 wake_up(&adapter->down_waitqueue);
2243         }
2244         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2245         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2246
2247         return;
2248 reset_err:
2249         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2250         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2251         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2252         iavf_close(netdev);
2253 }
2254
2255 /**
2256  * iavf_adminq_task - worker thread to clean the admin queue
2257  * @work: pointer to work_struct containing our data
2258  **/
2259 static void iavf_adminq_task(struct work_struct *work)
2260 {
2261         struct iavf_adapter *adapter =
2262                 container_of(work, struct iavf_adapter, adminq_task);
2263         struct iavf_hw *hw = &adapter->hw;
2264         struct iavf_arq_event_info event;
2265         enum virtchnl_ops v_op;
2266         enum iavf_status ret, v_ret;
2267         u32 val, oldval;
2268         u16 pending;
2269
2270         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2271                 goto out;
2272
2273         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2274         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2275         if (!event.msg_buf)
2276                 goto out;
2277
2278         do {
2279                 ret = iavf_clean_arq_element(hw, &event, &pending);
2280                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2281                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2282
2283                 if (ret || !v_op)
2284                         break; /* No event to process or error cleaning ARQ */
2285
2286                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2287                                          event.msg_len);
2288                 if (pending != 0)
2289                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2290         } while (pending);
2291
2292         if ((adapter->flags &
2293              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2294             adapter->state == __IAVF_RESETTING)
2295                 goto freedom;
2296
2297         /* check for error indications */
2298         val = rd32(hw, hw->aq.arq.len);
2299         if (val == 0xdeadbeef) /* indicates device in reset */
2300                 goto freedom;
2301         oldval = val;
2302         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2303                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2304                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2305         }
2306         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2307                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2308                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2309         }
2310         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2311                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2312                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2313         }
2314         if (oldval != val)
2315                 wr32(hw, hw->aq.arq.len, val);
2316
2317         val = rd32(hw, hw->aq.asq.len);
2318         oldval = val;
2319         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2320                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2321                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2322         }
2323         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2324                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2325                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2326         }
2327         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2328                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2329                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2330         }
2331         if (oldval != val)
2332                 wr32(hw, hw->aq.asq.len, val);
2333
2334 freedom:
2335         kfree(event.msg_buf);
2336 out:
2337         /* re-enable Admin queue interrupt cause */
2338         iavf_misc_irq_enable(adapter);
2339 }
2340
2341 /**
2342  * iavf_client_task - worker thread to perform client work
2343  * @work: pointer to work_struct containing our data
2344  *
2345  * This task handles client interactions. Because client calls can be
2346  * reentrant, we can't handle them in the watchdog.
2347  **/
2348 static void iavf_client_task(struct work_struct *work)
2349 {
2350         struct iavf_adapter *adapter =
2351                 container_of(work, struct iavf_adapter, client_task.work);
2352
2353         /* If we can't get the client bit, just give up. We'll be rescheduled
2354          * later.
2355          */
2356
2357         if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2358                 return;
2359
2360         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2361                 iavf_client_subtask(adapter);
2362                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2363                 goto out;
2364         }
2365         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2366                 iavf_notify_client_l2_params(&adapter->vsi);
2367                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2368                 goto out;
2369         }
2370         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2371                 iavf_notify_client_close(&adapter->vsi, false);
2372                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2373                 goto out;
2374         }
2375         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2376                 iavf_notify_client_open(&adapter->vsi);
2377                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2378         }
2379 out:
2380         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2381 }
2382
2383 /**
2384  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2385  * @adapter: board private structure
2386  *
2387  * Free all transmit software resources
2388  **/
2389 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2390 {
2391         int i;
2392
2393         if (!adapter->tx_rings)
2394                 return;
2395
2396         for (i = 0; i < adapter->num_active_queues; i++)
2397                 if (adapter->tx_rings[i].desc)
2398                         iavf_free_tx_resources(&adapter->tx_rings[i]);
2399 }
2400
2401 /**
2402  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2403  * @adapter: board private structure
2404  *
2405  * If this function returns with an error, then it's possible one or
2406  * more of the rings is populated (while the rest are not).  It is the
2407  * callers duty to clean those orphaned rings.
2408  *
2409  * Return 0 on success, negative on failure
2410  **/
2411 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2412 {
2413         int i, err = 0;
2414
2415         for (i = 0; i < adapter->num_active_queues; i++) {
2416                 adapter->tx_rings[i].count = adapter->tx_desc_count;
2417                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2418                 if (!err)
2419                         continue;
2420                 dev_err(&adapter->pdev->dev,
2421                         "Allocation for Tx Queue %u failed\n", i);
2422                 break;
2423         }
2424
2425         return err;
2426 }
2427
2428 /**
2429  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2430  * @adapter: board private structure
2431  *
2432  * If this function returns with an error, then it's possible one or
2433  * more of the rings is populated (while the rest are not).  It is the
2434  * callers duty to clean those orphaned rings.
2435  *
2436  * Return 0 on success, negative on failure
2437  **/
2438 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2439 {
2440         int i, err = 0;
2441
2442         for (i = 0; i < adapter->num_active_queues; i++) {
2443                 adapter->rx_rings[i].count = adapter->rx_desc_count;
2444                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2445                 if (!err)
2446                         continue;
2447                 dev_err(&adapter->pdev->dev,
2448                         "Allocation for Rx Queue %u failed\n", i);
2449                 break;
2450         }
2451         return err;
2452 }
2453
2454 /**
2455  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2456  * @adapter: board private structure
2457  *
2458  * Free all receive software resources
2459  **/
2460 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2461 {
2462         int i;
2463
2464         if (!adapter->rx_rings)
2465                 return;
2466
2467         for (i = 0; i < adapter->num_active_queues; i++)
2468                 if (adapter->rx_rings[i].desc)
2469                         iavf_free_rx_resources(&adapter->rx_rings[i]);
2470 }
2471
2472 /**
2473  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2474  * @adapter: board private structure
2475  * @max_tx_rate: max Tx bw for a tc
2476  **/
2477 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2478                                       u64 max_tx_rate)
2479 {
2480         int speed = 0, ret = 0;
2481
2482         if (ADV_LINK_SUPPORT(adapter)) {
2483                 if (adapter->link_speed_mbps < U32_MAX) {
2484                         speed = adapter->link_speed_mbps;
2485                         goto validate_bw;
2486                 } else {
2487                         dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2488                         return -EINVAL;
2489                 }
2490         }
2491
2492         switch (adapter->link_speed) {
2493         case VIRTCHNL_LINK_SPEED_40GB:
2494                 speed = SPEED_40000;
2495                 break;
2496         case VIRTCHNL_LINK_SPEED_25GB:
2497                 speed = SPEED_25000;
2498                 break;
2499         case VIRTCHNL_LINK_SPEED_20GB:
2500                 speed = SPEED_20000;
2501                 break;
2502         case VIRTCHNL_LINK_SPEED_10GB:
2503                 speed = SPEED_10000;
2504                 break;
2505         case VIRTCHNL_LINK_SPEED_5GB:
2506                 speed = SPEED_5000;
2507                 break;
2508         case VIRTCHNL_LINK_SPEED_2_5GB:
2509                 speed = SPEED_2500;
2510                 break;
2511         case VIRTCHNL_LINK_SPEED_1GB:
2512                 speed = SPEED_1000;
2513                 break;
2514         case VIRTCHNL_LINK_SPEED_100MB:
2515                 speed = SPEED_100;
2516                 break;
2517         default:
2518                 break;
2519         }
2520
2521 validate_bw:
2522         if (max_tx_rate > speed) {
2523                 dev_err(&adapter->pdev->dev,
2524                         "Invalid tx rate specified\n");
2525                 ret = -EINVAL;
2526         }
2527
2528         return ret;
2529 }
2530
2531 /**
2532  * iavf_validate_channel_config - validate queue mapping info
2533  * @adapter: board private structure
2534  * @mqprio_qopt: queue parameters
2535  *
2536  * This function validates if the config provided by the user to
2537  * configure queue channels is valid or not. Returns 0 on a valid
2538  * config.
2539  **/
2540 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2541                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
2542 {
2543         u64 total_max_rate = 0;
2544         int i, num_qps = 0;
2545         u64 tx_rate = 0;
2546         int ret = 0;
2547
2548         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2549             mqprio_qopt->qopt.num_tc < 1)
2550                 return -EINVAL;
2551
2552         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2553                 if (!mqprio_qopt->qopt.count[i] ||
2554                     mqprio_qopt->qopt.offset[i] != num_qps)
2555                         return -EINVAL;
2556                 if (mqprio_qopt->min_rate[i]) {
2557                         dev_err(&adapter->pdev->dev,
2558                                 "Invalid min tx rate (greater than 0) specified\n");
2559                         return -EINVAL;
2560                 }
2561                 /*convert to Mbps */
2562                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2563                                   IAVF_MBPS_DIVISOR);
2564                 total_max_rate += tx_rate;
2565                 num_qps += mqprio_qopt->qopt.count[i];
2566         }
2567         if (num_qps > IAVF_MAX_REQ_QUEUES)
2568                 return -EINVAL;
2569
2570         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2571         return ret;
2572 }
2573
2574 /**
2575  * iavf_del_all_cloud_filters - delete all cloud filters
2576  * on the traffic classes
2577  **/
2578 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2579 {
2580         struct iavf_cloud_filter *cf, *cftmp;
2581
2582         spin_lock_bh(&adapter->cloud_filter_list_lock);
2583         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2584                                  list) {
2585                 list_del(&cf->list);
2586                 kfree(cf);
2587                 adapter->num_cloud_filters--;
2588         }
2589         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2590 }
2591
2592 /**
2593  * __iavf_setup_tc - configure multiple traffic classes
2594  * @netdev: network interface device structure
2595  * @type_date: tc offload data
2596  *
2597  * This function processes the config information provided by the
2598  * user to configure traffic classes/queue channels and packages the
2599  * information to request the PF to setup traffic classes.
2600  *
2601  * Returns 0 on success.
2602  **/
2603 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2604 {
2605         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2606         struct iavf_adapter *adapter = netdev_priv(netdev);
2607         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2608         u8 num_tc = 0, total_qps = 0;
2609         int ret = 0, netdev_tc = 0;
2610         u64 max_tx_rate;
2611         u16 mode;
2612         int i;
2613
2614         num_tc = mqprio_qopt->qopt.num_tc;
2615         mode = mqprio_qopt->mode;
2616
2617         /* delete queue_channel */
2618         if (!mqprio_qopt->qopt.hw) {
2619                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2620                         /* reset the tc configuration */
2621                         netdev_reset_tc(netdev);
2622                         adapter->num_tc = 0;
2623                         netif_tx_stop_all_queues(netdev);
2624                         netif_tx_disable(netdev);
2625                         iavf_del_all_cloud_filters(adapter);
2626                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2627                         goto exit;
2628                 } else {
2629                         return -EINVAL;
2630                 }
2631         }
2632
2633         /* add queue channel */
2634         if (mode == TC_MQPRIO_MODE_CHANNEL) {
2635                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2636                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
2637                         return -EOPNOTSUPP;
2638                 }
2639                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2640                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2641                         return -EINVAL;
2642                 }
2643
2644                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2645                 if (ret)
2646                         return ret;
2647                 /* Return if same TC config is requested */
2648                 if (adapter->num_tc == num_tc)
2649                         return 0;
2650                 adapter->num_tc = num_tc;
2651
2652                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2653                         if (i < num_tc) {
2654                                 adapter->ch_config.ch_info[i].count =
2655                                         mqprio_qopt->qopt.count[i];
2656                                 adapter->ch_config.ch_info[i].offset =
2657                                         mqprio_qopt->qopt.offset[i];
2658                                 total_qps += mqprio_qopt->qopt.count[i];
2659                                 max_tx_rate = mqprio_qopt->max_rate[i];
2660                                 /* convert to Mbps */
2661                                 max_tx_rate = div_u64(max_tx_rate,
2662                                                       IAVF_MBPS_DIVISOR);
2663                                 adapter->ch_config.ch_info[i].max_tx_rate =
2664                                         max_tx_rate;
2665                         } else {
2666                                 adapter->ch_config.ch_info[i].count = 1;
2667                                 adapter->ch_config.ch_info[i].offset = 0;
2668                         }
2669                 }
2670                 adapter->ch_config.total_qps = total_qps;
2671                 netif_tx_stop_all_queues(netdev);
2672                 netif_tx_disable(netdev);
2673                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2674                 netdev_reset_tc(netdev);
2675                 /* Report the tc mapping up the stack */
2676                 netdev_set_num_tc(adapter->netdev, num_tc);
2677                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2678                         u16 qcount = mqprio_qopt->qopt.count[i];
2679                         u16 qoffset = mqprio_qopt->qopt.offset[i];
2680
2681                         if (i < num_tc)
2682                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2683                                                     qoffset);
2684                 }
2685         }
2686 exit:
2687         return ret;
2688 }
2689
2690 /**
2691  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2692  * @adapter: board private structure
2693  * @cls_flower: pointer to struct flow_cls_offload
2694  * @filter: pointer to cloud filter structure
2695  */
2696 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2697                                  struct flow_cls_offload *f,
2698                                  struct iavf_cloud_filter *filter)
2699 {
2700         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2701         struct flow_dissector *dissector = rule->match.dissector;
2702         u16 n_proto_mask = 0;
2703         u16 n_proto_key = 0;
2704         u8 field_flags = 0;
2705         u16 addr_type = 0;
2706         u16 n_proto = 0;
2707         int i = 0;
2708         struct virtchnl_filter *vf = &filter->f;
2709
2710         if (dissector->used_keys &
2711             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2712               BIT(FLOW_DISSECTOR_KEY_BASIC) |
2713               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2714               BIT(FLOW_DISSECTOR_KEY_VLAN) |
2715               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2716               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2717               BIT(FLOW_DISSECTOR_KEY_PORTS) |
2718               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2719                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2720                         dissector->used_keys);
2721                 return -EOPNOTSUPP;
2722         }
2723
2724         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2725                 struct flow_match_enc_keyid match;
2726
2727                 flow_rule_match_enc_keyid(rule, &match);
2728                 if (match.mask->keyid != 0)
2729                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2730         }
2731
2732         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2733                 struct flow_match_basic match;
2734
2735                 flow_rule_match_basic(rule, &match);
2736                 n_proto_key = ntohs(match.key->n_proto);
2737                 n_proto_mask = ntohs(match.mask->n_proto);
2738
2739                 if (n_proto_key == ETH_P_ALL) {
2740                         n_proto_key = 0;
2741                         n_proto_mask = 0;
2742                 }
2743                 n_proto = n_proto_key & n_proto_mask;
2744                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2745                         return -EINVAL;
2746                 if (n_proto == ETH_P_IPV6) {
2747                         /* specify flow type as TCP IPv6 */
2748                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2749                 }
2750
2751                 if (match.key->ip_proto != IPPROTO_TCP) {
2752                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2753                         return -EINVAL;
2754                 }
2755         }
2756
2757         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2758                 struct flow_match_eth_addrs match;
2759
2760                 flow_rule_match_eth_addrs(rule, &match);
2761
2762                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2763                 if (!is_zero_ether_addr(match.mask->dst)) {
2764                         if (is_broadcast_ether_addr(match.mask->dst)) {
2765                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2766                         } else {
2767                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2768                                         match.mask->dst);
2769                                 return IAVF_ERR_CONFIG;
2770                         }
2771                 }
2772
2773                 if (!is_zero_ether_addr(match.mask->src)) {
2774                         if (is_broadcast_ether_addr(match.mask->src)) {
2775                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2776                         } else {
2777                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2778                                         match.mask->src);
2779                                 return IAVF_ERR_CONFIG;
2780                         }
2781                 }
2782
2783                 if (!is_zero_ether_addr(match.key->dst))
2784                         if (is_valid_ether_addr(match.key->dst) ||
2785                             is_multicast_ether_addr(match.key->dst)) {
2786                                 /* set the mask if a valid dst_mac address */
2787                                 for (i = 0; i < ETH_ALEN; i++)
2788                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2789                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2790                                                 match.key->dst);
2791                         }
2792
2793                 if (!is_zero_ether_addr(match.key->src))
2794                         if (is_valid_ether_addr(match.key->src) ||
2795                             is_multicast_ether_addr(match.key->src)) {
2796                                 /* set the mask if a valid dst_mac address */
2797                                 for (i = 0; i < ETH_ALEN; i++)
2798                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
2799                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
2800                                                 match.key->src);
2801                 }
2802         }
2803
2804         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2805                 struct flow_match_vlan match;
2806
2807                 flow_rule_match_vlan(rule, &match);
2808                 if (match.mask->vlan_id) {
2809                         if (match.mask->vlan_id == VLAN_VID_MASK) {
2810                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2811                         } else {
2812                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2813                                         match.mask->vlan_id);
2814                                 return IAVF_ERR_CONFIG;
2815                         }
2816                 }
2817                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2818                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2819         }
2820
2821         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2822                 struct flow_match_control match;
2823
2824                 flow_rule_match_control(rule, &match);
2825                 addr_type = match.key->addr_type;
2826         }
2827
2828         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2829                 struct flow_match_ipv4_addrs match;
2830
2831                 flow_rule_match_ipv4_addrs(rule, &match);
2832                 if (match.mask->dst) {
2833                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2834                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2835                         } else {
2836                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2837                                         be32_to_cpu(match.mask->dst));
2838                                 return IAVF_ERR_CONFIG;
2839                         }
2840                 }
2841
2842                 if (match.mask->src) {
2843                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
2844                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2845                         } else {
2846                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2847                                         be32_to_cpu(match.mask->dst));
2848                                 return IAVF_ERR_CONFIG;
2849                         }
2850                 }
2851
2852                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2853                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2854                         return IAVF_ERR_CONFIG;
2855                 }
2856                 if (match.key->dst) {
2857                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2858                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2859                 }
2860                 if (match.key->src) {
2861                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2862                         vf->data.tcp_spec.src_ip[0] = match.key->src;
2863                 }
2864         }
2865
2866         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2867                 struct flow_match_ipv6_addrs match;
2868
2869                 flow_rule_match_ipv6_addrs(rule, &match);
2870
2871                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2872                 if (ipv6_addr_any(&match.mask->dst)) {
2873                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2874                                 IPV6_ADDR_ANY);
2875                         return IAVF_ERR_CONFIG;
2876                 }
2877
2878                 /* src and dest IPv6 address should not be LOOPBACK
2879                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
2880                  */
2881                 if (ipv6_addr_loopback(&match.key->dst) ||
2882                     ipv6_addr_loopback(&match.key->src)) {
2883                         dev_err(&adapter->pdev->dev,
2884                                 "ipv6 addr should not be loopback\n");
2885                         return IAVF_ERR_CONFIG;
2886                 }
2887                 if (!ipv6_addr_any(&match.mask->dst) ||
2888                     !ipv6_addr_any(&match.mask->src))
2889                         field_flags |= IAVF_CLOUD_FIELD_IIP;
2890
2891                 for (i = 0; i < 4; i++)
2892                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2893                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2894                        sizeof(vf->data.tcp_spec.dst_ip));
2895                 for (i = 0; i < 4; i++)
2896                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2897                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2898                        sizeof(vf->data.tcp_spec.src_ip));
2899         }
2900         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2901                 struct flow_match_ports match;
2902
2903                 flow_rule_match_ports(rule, &match);
2904                 if (match.mask->src) {
2905                         if (match.mask->src == cpu_to_be16(0xffff)) {
2906                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2907                         } else {
2908                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2909                                         be16_to_cpu(match.mask->src));
2910                                 return IAVF_ERR_CONFIG;
2911                         }
2912                 }
2913
2914                 if (match.mask->dst) {
2915                         if (match.mask->dst == cpu_to_be16(0xffff)) {
2916                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2917                         } else {
2918                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2919                                         be16_to_cpu(match.mask->dst));
2920                                 return IAVF_ERR_CONFIG;
2921                         }
2922                 }
2923                 if (match.key->dst) {
2924                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2925                         vf->data.tcp_spec.dst_port = match.key->dst;
2926                 }
2927
2928                 if (match.key->src) {
2929                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2930                         vf->data.tcp_spec.src_port = match.key->src;
2931                 }
2932         }
2933         vf->field_flags = field_flags;
2934
2935         return 0;
2936 }
2937
2938 /**
2939  * iavf_handle_tclass - Forward to a traffic class on the device
2940  * @adapter: board private structure
2941  * @tc: traffic class index on the device
2942  * @filter: pointer to cloud filter structure
2943  */
2944 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2945                               struct iavf_cloud_filter *filter)
2946 {
2947         if (tc == 0)
2948                 return 0;
2949         if (tc < adapter->num_tc) {
2950                 if (!filter->f.data.tcp_spec.dst_port) {
2951                         dev_err(&adapter->pdev->dev,
2952                                 "Specify destination port to redirect to traffic class other than TC0\n");
2953                         return -EINVAL;
2954                 }
2955         }
2956         /* redirect to a traffic class on the same device */
2957         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2958         filter->f.action_meta = tc;
2959         return 0;
2960 }
2961
2962 /**
2963  * iavf_configure_clsflower - Add tc flower filters
2964  * @adapter: board private structure
2965  * @cls_flower: Pointer to struct flow_cls_offload
2966  */
2967 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2968                                     struct flow_cls_offload *cls_flower)
2969 {
2970         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2971         struct iavf_cloud_filter *filter = NULL;
2972         int err = -EINVAL, count = 50;
2973
2974         if (tc < 0) {
2975                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2976                 return -EINVAL;
2977         }
2978
2979         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2980         if (!filter)
2981                 return -ENOMEM;
2982
2983         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2984                                 &adapter->crit_section)) {
2985                 if (--count == 0)
2986                         goto err;
2987                 udelay(1);
2988         }
2989
2990         filter->cookie = cls_flower->cookie;
2991
2992         /* set the mask to all zeroes to begin with */
2993         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2994         /* start out with flow type and eth type IPv4 to begin with */
2995         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2996         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2997         if (err < 0)
2998                 goto err;
2999
3000         err = iavf_handle_tclass(adapter, tc, filter);
3001         if (err < 0)
3002                 goto err;
3003
3004         /* add filter to the list */
3005         spin_lock_bh(&adapter->cloud_filter_list_lock);
3006         list_add_tail(&filter->list, &adapter->cloud_filter_list);
3007         adapter->num_cloud_filters++;
3008         filter->add = true;
3009         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3010         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3011 err:
3012         if (err)
3013                 kfree(filter);
3014
3015         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3016         return err;
3017 }
3018
3019 /* iavf_find_cf - Find the cloud filter in the list
3020  * @adapter: Board private structure
3021  * @cookie: filter specific cookie
3022  *
3023  * Returns ptr to the filter object or NULL. Must be called while holding the
3024  * cloud_filter_list_lock.
3025  */
3026 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3027                                               unsigned long *cookie)
3028 {
3029         struct iavf_cloud_filter *filter = NULL;
3030
3031         if (!cookie)
3032                 return NULL;
3033
3034         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3035                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3036                         return filter;
3037         }
3038         return NULL;
3039 }
3040
3041 /**
3042  * iavf_delete_clsflower - Remove tc flower filters
3043  * @adapter: board private structure
3044  * @cls_flower: Pointer to struct flow_cls_offload
3045  */
3046 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3047                                  struct flow_cls_offload *cls_flower)
3048 {
3049         struct iavf_cloud_filter *filter = NULL;
3050         int err = 0;
3051
3052         spin_lock_bh(&adapter->cloud_filter_list_lock);
3053         filter = iavf_find_cf(adapter, &cls_flower->cookie);
3054         if (filter) {
3055                 filter->del = true;
3056                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3057         } else {
3058                 err = -EINVAL;
3059         }
3060         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3061
3062         return err;
3063 }
3064
3065 /**
3066  * iavf_setup_tc_cls_flower - flower classifier offloads
3067  * @netdev: net device to configure
3068  * @type_data: offload data
3069  */
3070 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3071                                     struct flow_cls_offload *cls_flower)
3072 {
3073         switch (cls_flower->command) {
3074         case FLOW_CLS_REPLACE:
3075                 return iavf_configure_clsflower(adapter, cls_flower);
3076         case FLOW_CLS_DESTROY:
3077                 return iavf_delete_clsflower(adapter, cls_flower);
3078         case FLOW_CLS_STATS:
3079                 return -EOPNOTSUPP;
3080         default:
3081                 return -EOPNOTSUPP;
3082         }
3083 }
3084
3085 /**
3086  * iavf_setup_tc_block_cb - block callback for tc
3087  * @type: type of offload
3088  * @type_data: offload data
3089  * @cb_priv:
3090  *
3091  * This function is the block callback for traffic classes
3092  **/
3093 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3094                                   void *cb_priv)
3095 {
3096         struct iavf_adapter *adapter = cb_priv;
3097
3098         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3099                 return -EOPNOTSUPP;
3100
3101         switch (type) {
3102         case TC_SETUP_CLSFLOWER:
3103                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3104         default:
3105                 return -EOPNOTSUPP;
3106         }
3107 }
3108
3109 static LIST_HEAD(iavf_block_cb_list);
3110
3111 /**
3112  * iavf_setup_tc - configure multiple traffic classes
3113  * @netdev: network interface device structure
3114  * @type: type of offload
3115  * @type_date: tc offload data
3116  *
3117  * This function is the callback to ndo_setup_tc in the
3118  * netdev_ops.
3119  *
3120  * Returns 0 on success
3121  **/
3122 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3123                          void *type_data)
3124 {
3125         struct iavf_adapter *adapter = netdev_priv(netdev);
3126
3127         switch (type) {
3128         case TC_SETUP_QDISC_MQPRIO:
3129                 return __iavf_setup_tc(netdev, type_data);
3130         case TC_SETUP_BLOCK:
3131                 return flow_block_cb_setup_simple(type_data,
3132                                                   &iavf_block_cb_list,
3133                                                   iavf_setup_tc_block_cb,
3134                                                   adapter, adapter, true);
3135         default:
3136                 return -EOPNOTSUPP;
3137         }
3138 }
3139
3140 /**
3141  * iavf_open - Called when a network interface is made active
3142  * @netdev: network interface device structure
3143  *
3144  * Returns 0 on success, negative value on failure
3145  *
3146  * The open entry point is called when a network interface is made
3147  * active by the system (IFF_UP).  At this point all resources needed
3148  * for transmit and receive operations are allocated, the interrupt
3149  * handler is registered with the OS, the watchdog is started,
3150  * and the stack is notified that the interface is ready.
3151  **/
3152 static int iavf_open(struct net_device *netdev)
3153 {
3154         struct iavf_adapter *adapter = netdev_priv(netdev);
3155         int err;
3156
3157         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3158                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3159                 return -EIO;
3160         }
3161
3162         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3163                                 &adapter->crit_section))
3164                 usleep_range(500, 1000);
3165
3166         if (adapter->state != __IAVF_DOWN) {
3167                 err = -EBUSY;
3168                 goto err_unlock;
3169         }
3170
3171         /* allocate transmit descriptors */
3172         err = iavf_setup_all_tx_resources(adapter);
3173         if (err)
3174                 goto err_setup_tx;
3175
3176         /* allocate receive descriptors */
3177         err = iavf_setup_all_rx_resources(adapter);
3178         if (err)
3179                 goto err_setup_rx;
3180
3181         /* clear any pending interrupts, may auto mask */
3182         err = iavf_request_traffic_irqs(adapter, netdev->name);
3183         if (err)
3184                 goto err_req_irq;
3185
3186         spin_lock_bh(&adapter->mac_vlan_list_lock);
3187
3188         iavf_add_filter(adapter, adapter->hw.mac.addr);
3189
3190         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3191
3192         iavf_configure(adapter);
3193
3194         iavf_up_complete(adapter);
3195
3196         iavf_irq_enable(adapter, true);
3197
3198         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3199
3200         return 0;
3201
3202 err_req_irq:
3203         iavf_down(adapter);
3204         iavf_free_traffic_irqs(adapter);
3205 err_setup_rx:
3206         iavf_free_all_rx_resources(adapter);
3207 err_setup_tx:
3208         iavf_free_all_tx_resources(adapter);
3209 err_unlock:
3210         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3211
3212         return err;
3213 }
3214
3215 /**
3216  * iavf_close - Disables a network interface
3217  * @netdev: network interface device structure
3218  *
3219  * Returns 0, this is not allowed to fail
3220  *
3221  * The close entry point is called when an interface is de-activated
3222  * by the OS.  The hardware is still under the drivers control, but
3223  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3224  * are freed, along with all transmit and receive resources.
3225  **/
3226 static int iavf_close(struct net_device *netdev)
3227 {
3228         struct iavf_adapter *adapter = netdev_priv(netdev);
3229         int status;
3230
3231         if (adapter->state <= __IAVF_DOWN_PENDING)
3232                 return 0;
3233
3234         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3235                                 &adapter->crit_section))
3236                 usleep_range(500, 1000);
3237
3238         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3239         if (CLIENT_ENABLED(adapter))
3240                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3241
3242         iavf_down(adapter);
3243         adapter->state = __IAVF_DOWN_PENDING;
3244         iavf_free_traffic_irqs(adapter);
3245
3246         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3247
3248         /* We explicitly don't free resources here because the hardware is
3249          * still active and can DMA into memory. Resources are cleared in
3250          * iavf_virtchnl_completion() after we get confirmation from the PF
3251          * driver that the rings have been stopped.
3252          *
3253          * Also, we wait for state to transition to __IAVF_DOWN before
3254          * returning. State change occurs in iavf_virtchnl_completion() after
3255          * VF resources are released (which occurs after PF driver processes and
3256          * responds to admin queue commands).
3257          */
3258
3259         status = wait_event_timeout(adapter->down_waitqueue,
3260                                     adapter->state == __IAVF_DOWN,
3261                                     msecs_to_jiffies(500));
3262         if (!status)
3263                 netdev_warn(netdev, "Device resources not yet released\n");
3264         return 0;
3265 }
3266
3267 /**
3268  * iavf_change_mtu - Change the Maximum Transfer Unit
3269  * @netdev: network interface device structure
3270  * @new_mtu: new value for maximum frame size
3271  *
3272  * Returns 0 on success, negative on failure
3273  **/
3274 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3275 {
3276         struct iavf_adapter *adapter = netdev_priv(netdev);
3277
3278         netdev->mtu = new_mtu;
3279         if (CLIENT_ENABLED(adapter)) {
3280                 iavf_notify_client_l2_params(&adapter->vsi);
3281                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3282         }
3283         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3284         queue_work(iavf_wq, &adapter->reset_task);
3285
3286         return 0;
3287 }
3288
3289 /**
3290  * iavf_set_features - set the netdev feature flags
3291  * @netdev: ptr to the netdev being adjusted
3292  * @features: the feature set that the stack is suggesting
3293  * Note: expects to be called while under rtnl_lock()
3294  **/
3295 static int iavf_set_features(struct net_device *netdev,
3296                              netdev_features_t features)
3297 {
3298         struct iavf_adapter *adapter = netdev_priv(netdev);
3299
3300         /* Don't allow changing VLAN_RX flag when adapter is not capable
3301          * of VLAN offload
3302          */
3303         if (!VLAN_ALLOWED(adapter)) {
3304                 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3305                         return -EINVAL;
3306         } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3307                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3308                         adapter->aq_required |=
3309                                 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3310                 else
3311                         adapter->aq_required |=
3312                                 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3313         }
3314
3315         return 0;
3316 }
3317
3318 /**
3319  * iavf_features_check - Validate encapsulated packet conforms to limits
3320  * @skb: skb buff
3321  * @dev: This physical port's netdev
3322  * @features: Offload features that the stack believes apply
3323  **/
3324 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3325                                              struct net_device *dev,
3326                                              netdev_features_t features)
3327 {
3328         size_t len;
3329
3330         /* No point in doing any of this if neither checksum nor GSO are
3331          * being requested for this frame.  We can rule out both by just
3332          * checking for CHECKSUM_PARTIAL
3333          */
3334         if (skb->ip_summed != CHECKSUM_PARTIAL)
3335                 return features;
3336
3337         /* We cannot support GSO if the MSS is going to be less than
3338          * 64 bytes.  If it is then we need to drop support for GSO.
3339          */
3340         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3341                 features &= ~NETIF_F_GSO_MASK;
3342
3343         /* MACLEN can support at most 63 words */
3344         len = skb_network_header(skb) - skb->data;
3345         if (len & ~(63 * 2))
3346                 goto out_err;
3347
3348         /* IPLEN and EIPLEN can support at most 127 dwords */
3349         len = skb_transport_header(skb) - skb_network_header(skb);
3350         if (len & ~(127 * 4))
3351                 goto out_err;
3352
3353         if (skb->encapsulation) {
3354                 /* L4TUNLEN can support 127 words */
3355                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3356                 if (len & ~(127 * 2))
3357                         goto out_err;
3358
3359                 /* IPLEN can support at most 127 dwords */
3360                 len = skb_inner_transport_header(skb) -
3361                       skb_inner_network_header(skb);
3362                 if (len & ~(127 * 4))
3363                         goto out_err;
3364         }
3365
3366         /* No need to validate L4LEN as TCP is the only protocol with a
3367          * a flexible value and we support all possible values supported
3368          * by TCP, which is at most 15 dwords
3369          */
3370
3371         return features;
3372 out_err:
3373         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3374 }
3375
3376 /**
3377  * iavf_fix_features - fix up the netdev feature bits
3378  * @netdev: our net device
3379  * @features: desired feature bits
3380  *
3381  * Returns fixed-up features bits
3382  **/
3383 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3384                                            netdev_features_t features)
3385 {
3386         struct iavf_adapter *adapter = netdev_priv(netdev);
3387
3388         if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3389                 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3390                               NETIF_F_HW_VLAN_CTAG_RX |
3391                               NETIF_F_HW_VLAN_CTAG_FILTER);
3392
3393         return features;
3394 }
3395
3396 static const struct net_device_ops iavf_netdev_ops = {
3397         .ndo_open               = iavf_open,
3398         .ndo_stop               = iavf_close,
3399         .ndo_start_xmit         = iavf_xmit_frame,
3400         .ndo_set_rx_mode        = iavf_set_rx_mode,
3401         .ndo_validate_addr      = eth_validate_addr,
3402         .ndo_set_mac_address    = iavf_set_mac,
3403         .ndo_change_mtu         = iavf_change_mtu,
3404         .ndo_tx_timeout         = iavf_tx_timeout,
3405         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3406         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3407         .ndo_features_check     = iavf_features_check,
3408         .ndo_fix_features       = iavf_fix_features,
3409         .ndo_set_features       = iavf_set_features,
3410         .ndo_setup_tc           = iavf_setup_tc,
3411 };
3412
3413 /**
3414  * iavf_check_reset_complete - check that VF reset is complete
3415  * @hw: pointer to hw struct
3416  *
3417  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3418  **/
3419 static int iavf_check_reset_complete(struct iavf_hw *hw)
3420 {
3421         u32 rstat;
3422         int i;
3423
3424         for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3425                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3426                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3427                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3428                     (rstat == VIRTCHNL_VFR_COMPLETED))
3429                         return 0;
3430                 usleep_range(10, 20);
3431         }
3432         return -EBUSY;
3433 }
3434
3435 /**
3436  * iavf_process_config - Process the config information we got from the PF
3437  * @adapter: board private structure
3438  *
3439  * Verify that we have a valid config struct, and set up our netdev features
3440  * and our VSI struct.
3441  **/
3442 int iavf_process_config(struct iavf_adapter *adapter)
3443 {
3444         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3445         int i, num_req_queues = adapter->num_req_queues;
3446         struct net_device *netdev = adapter->netdev;
3447         struct iavf_vsi *vsi = &adapter->vsi;
3448         netdev_features_t hw_enc_features;
3449         netdev_features_t hw_features;
3450
3451         /* got VF config message back from PF, now we can parse it */
3452         for (i = 0; i < vfres->num_vsis; i++) {
3453                 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3454                         adapter->vsi_res = &vfres->vsi_res[i];
3455         }
3456         if (!adapter->vsi_res) {
3457                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3458                 return -ENODEV;
3459         }
3460
3461         if (num_req_queues &&
3462             num_req_queues > adapter->vsi_res->num_queue_pairs) {
3463                 /* Problem.  The PF gave us fewer queues than what we had
3464                  * negotiated in our request.  Need a reset to see if we can't
3465                  * get back to a working state.
3466                  */
3467                 dev_err(&adapter->pdev->dev,
3468                         "Requested %d queues, but PF only gave us %d.\n",
3469                         num_req_queues,
3470                         adapter->vsi_res->num_queue_pairs);
3471                 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3472                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3473                 iavf_schedule_reset(adapter);
3474                 return -ENODEV;
3475         }
3476         adapter->num_req_queues = 0;
3477
3478         hw_enc_features = NETIF_F_SG                    |
3479                           NETIF_F_IP_CSUM               |
3480                           NETIF_F_IPV6_CSUM             |
3481                           NETIF_F_HIGHDMA               |
3482                           NETIF_F_SOFT_FEATURES |
3483                           NETIF_F_TSO                   |
3484                           NETIF_F_TSO_ECN               |
3485                           NETIF_F_TSO6                  |
3486                           NETIF_F_SCTP_CRC              |
3487                           NETIF_F_RXHASH                |
3488                           NETIF_F_RXCSUM                |
3489                           0;
3490
3491         /* advertise to stack only if offloads for encapsulated packets is
3492          * supported
3493          */
3494         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3495                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3496                                    NETIF_F_GSO_GRE              |
3497                                    NETIF_F_GSO_GRE_CSUM         |
3498                                    NETIF_F_GSO_IPXIP4           |
3499                                    NETIF_F_GSO_IPXIP6           |
3500                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3501                                    NETIF_F_GSO_PARTIAL          |
3502                                    0;
3503
3504                 if (!(vfres->vf_cap_flags &
3505                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3506                         netdev->gso_partial_features |=
3507                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3508
3509                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3510                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3511                 netdev->hw_enc_features |= hw_enc_features;
3512         }
3513         /* record features VLANs can make use of */
3514         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3515
3516         /* Write features and hw_features separately to avoid polluting
3517          * with, or dropping, features that are set when we registered.
3518          */
3519         hw_features = hw_enc_features;
3520
3521         /* Enable VLAN features if supported */
3522         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3524                                 NETIF_F_HW_VLAN_CTAG_RX);
3525         /* Enable cloud filter if ADQ is supported */
3526         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3527                 hw_features |= NETIF_F_HW_TC;
3528
3529         netdev->hw_features |= hw_features;
3530
3531         netdev->features |= hw_features;
3532
3533         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3534                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3535
3536         netdev->priv_flags |= IFF_UNICAST_FLT;
3537
3538         /* Do not turn on offloads when they are requested to be turned off.
3539          * TSO needs minimum 576 bytes to work correctly.
3540          */
3541         if (netdev->wanted_features) {
3542                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3543                     netdev->mtu < 576)
3544                         netdev->features &= ~NETIF_F_TSO;
3545                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3546                     netdev->mtu < 576)
3547                         netdev->features &= ~NETIF_F_TSO6;
3548                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3549                         netdev->features &= ~NETIF_F_TSO_ECN;
3550                 if (!(netdev->wanted_features & NETIF_F_GRO))
3551                         netdev->features &= ~NETIF_F_GRO;
3552                 if (!(netdev->wanted_features & NETIF_F_GSO))
3553                         netdev->features &= ~NETIF_F_GSO;
3554         }
3555
3556         adapter->vsi.id = adapter->vsi_res->vsi_id;
3557
3558         adapter->vsi.back = adapter;
3559         adapter->vsi.base_vector = 1;
3560         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3561         vsi->netdev = adapter->netdev;
3562         vsi->qs_handle = adapter->vsi_res->qset_handle;
3563         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3564                 adapter->rss_key_size = vfres->rss_key_size;
3565                 adapter->rss_lut_size = vfres->rss_lut_size;
3566         } else {
3567                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3568                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3569         }
3570
3571         return 0;
3572 }
3573
3574 /**
3575  * iavf_init_task - worker thread to perform delayed initialization
3576  * @work: pointer to work_struct containing our data
3577  *
3578  * This task completes the work that was begun in probe. Due to the nature
3579  * of VF-PF communications, we may need to wait tens of milliseconds to get
3580  * responses back from the PF. Rather than busy-wait in probe and bog down the
3581  * whole system, we'll do it in a task so we can sleep.
3582  * This task only runs during driver init. Once we've established
3583  * communications with the PF driver and set up our netdev, the watchdog
3584  * takes over.
3585  **/
3586 static void iavf_init_task(struct work_struct *work)
3587 {
3588         struct iavf_adapter *adapter = container_of(work,
3589                                                     struct iavf_adapter,
3590                                                     init_task.work);
3591         struct iavf_hw *hw = &adapter->hw;
3592
3593         switch (adapter->state) {
3594         case __IAVF_STARTUP:
3595                 if (iavf_startup(adapter) < 0)
3596                         goto init_failed;
3597                 break;
3598         case __IAVF_INIT_VERSION_CHECK:
3599                 if (iavf_init_version_check(adapter) < 0)
3600                         goto init_failed;
3601                 break;
3602         case __IAVF_INIT_GET_RESOURCES:
3603                 if (iavf_init_get_resources(adapter) < 0)
3604                         goto init_failed;
3605                 return;
3606         default:
3607                 goto init_failed;
3608         }
3609
3610         queue_delayed_work(iavf_wq, &adapter->init_task,
3611                            msecs_to_jiffies(30));
3612         return;
3613 init_failed:
3614         if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3615                 dev_err(&adapter->pdev->dev,
3616                         "Failed to communicate with PF; waiting before retry\n");
3617                 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3618                 iavf_shutdown_adminq(hw);
3619                 adapter->state = __IAVF_STARTUP;
3620                 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3621                 return;
3622         }
3623         queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3624 }
3625
3626 /**
3627  * iavf_shutdown - Shutdown the device in preparation for a reboot
3628  * @pdev: pci device structure
3629  **/
3630 static void iavf_shutdown(struct pci_dev *pdev)
3631 {
3632         struct net_device *netdev = pci_get_drvdata(pdev);
3633         struct iavf_adapter *adapter = netdev_priv(netdev);
3634
3635         netif_device_detach(netdev);
3636
3637         if (netif_running(netdev))
3638                 iavf_close(netdev);
3639
3640         /* Prevent the watchdog from running. */
3641         adapter->state = __IAVF_REMOVE;
3642         adapter->aq_required = 0;
3643
3644 #ifdef CONFIG_PM
3645         pci_save_state(pdev);
3646
3647 #endif
3648         pci_disable_device(pdev);
3649 }
3650
3651 /**
3652  * iavf_probe - Device Initialization Routine
3653  * @pdev: PCI device information struct
3654  * @ent: entry in iavf_pci_tbl
3655  *
3656  * Returns 0 on success, negative on failure
3657  *
3658  * iavf_probe initializes an adapter identified by a pci_dev structure.
3659  * The OS initialization, configuring of the adapter private structure,
3660  * and a hardware reset occur.
3661  **/
3662 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3663 {
3664         struct net_device *netdev;
3665         struct iavf_adapter *adapter = NULL;
3666         struct iavf_hw *hw = NULL;
3667         int err;
3668
3669         err = pci_enable_device(pdev);
3670         if (err)
3671                 return err;
3672
3673         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3674         if (err) {
3675                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3676                 if (err) {
3677                         dev_err(&pdev->dev,
3678                                 "DMA configuration failed: 0x%x\n", err);
3679                         goto err_dma;
3680                 }
3681         }
3682
3683         err = pci_request_regions(pdev, iavf_driver_name);
3684         if (err) {
3685                 dev_err(&pdev->dev,
3686                         "pci_request_regions failed 0x%x\n", err);
3687                 goto err_pci_reg;
3688         }
3689
3690         pci_enable_pcie_error_reporting(pdev);
3691
3692         pci_set_master(pdev);
3693
3694         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3695                                    IAVF_MAX_REQ_QUEUES);
3696         if (!netdev) {
3697                 err = -ENOMEM;
3698                 goto err_alloc_etherdev;
3699         }
3700
3701         SET_NETDEV_DEV(netdev, &pdev->dev);
3702
3703         pci_set_drvdata(pdev, netdev);
3704         adapter = netdev_priv(netdev);
3705
3706         adapter->netdev = netdev;
3707         adapter->pdev = pdev;
3708
3709         hw = &adapter->hw;
3710         hw->back = adapter;
3711
3712         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3713         adapter->state = __IAVF_STARTUP;
3714
3715         /* Call save state here because it relies on the adapter struct. */
3716         pci_save_state(pdev);
3717
3718         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3719                               pci_resource_len(pdev, 0));
3720         if (!hw->hw_addr) {
3721                 err = -EIO;
3722                 goto err_ioremap;
3723         }
3724         hw->vendor_id = pdev->vendor;
3725         hw->device_id = pdev->device;
3726         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3727         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3728         hw->subsystem_device_id = pdev->subsystem_device;
3729         hw->bus.device = PCI_SLOT(pdev->devfn);
3730         hw->bus.func = PCI_FUNC(pdev->devfn);
3731         hw->bus.bus_id = pdev->bus->number;
3732
3733         /* set up the locks for the AQ, do this only once in probe
3734          * and destroy them only once in remove
3735          */
3736         mutex_init(&hw->aq.asq_mutex);
3737         mutex_init(&hw->aq.arq_mutex);
3738
3739         spin_lock_init(&adapter->mac_vlan_list_lock);
3740         spin_lock_init(&adapter->cloud_filter_list_lock);
3741
3742         INIT_LIST_HEAD(&adapter->mac_filter_list);
3743         INIT_LIST_HEAD(&adapter->vlan_filter_list);
3744         INIT_LIST_HEAD(&adapter->cloud_filter_list);
3745
3746         INIT_WORK(&adapter->reset_task, iavf_reset_task);
3747         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3748         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3749         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3750         INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3751         queue_delayed_work(iavf_wq, &adapter->init_task,
3752                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3753
3754         /* Setup the wait queue for indicating transition to down status */
3755         init_waitqueue_head(&adapter->down_waitqueue);
3756
3757         return 0;
3758
3759 err_ioremap:
3760         free_netdev(netdev);
3761 err_alloc_etherdev:
3762         pci_release_regions(pdev);
3763 err_pci_reg:
3764 err_dma:
3765         pci_disable_device(pdev);
3766         return err;
3767 }
3768
3769 /**
3770  * iavf_suspend - Power management suspend routine
3771  * @pdev: PCI device information struct
3772  * @state: unused
3773  *
3774  * Called when the system (VM) is entering sleep/suspend.
3775  **/
3776 static int __maybe_unused iavf_suspend(struct device *dev_d)
3777 {
3778         struct net_device *netdev = dev_get_drvdata(dev_d);
3779         struct iavf_adapter *adapter = netdev_priv(netdev);
3780
3781         netif_device_detach(netdev);
3782
3783         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3784                                 &adapter->crit_section))
3785                 usleep_range(500, 1000);
3786
3787         if (netif_running(netdev)) {
3788                 rtnl_lock();
3789                 iavf_down(adapter);
3790                 rtnl_unlock();
3791         }
3792         iavf_free_misc_irq(adapter);
3793         iavf_reset_interrupt_capability(adapter);
3794
3795         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3796
3797         return 0;
3798 }
3799
3800 /**
3801  * iavf_resume - Power management resume routine
3802  * @pdev: PCI device information struct
3803  *
3804  * Called when the system (VM) is resumed from sleep/suspend.
3805  **/
3806 static int __maybe_unused iavf_resume(struct device *dev_d)
3807 {
3808         struct pci_dev *pdev = to_pci_dev(dev_d);
3809         struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3810         struct net_device *netdev = adapter->netdev;
3811         u32 err;
3812
3813         pci_set_master(pdev);
3814
3815         rtnl_lock();
3816         err = iavf_set_interrupt_capability(adapter);
3817         if (err) {
3818                 rtnl_unlock();
3819                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3820                 return err;
3821         }
3822         err = iavf_request_misc_irq(adapter);
3823         rtnl_unlock();
3824         if (err) {
3825                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3826                 return err;
3827         }
3828
3829         queue_work(iavf_wq, &adapter->reset_task);
3830
3831         netif_device_attach(netdev);
3832
3833         return err;
3834 }
3835
3836 /**
3837  * iavf_remove - Device Removal Routine
3838  * @pdev: PCI device information struct
3839  *
3840  * iavf_remove is called by the PCI subsystem to alert the driver
3841  * that it should release a PCI device.  The could be caused by a
3842  * Hot-Plug event, or because the driver is going to be removed from
3843  * memory.
3844  **/
3845 static void iavf_remove(struct pci_dev *pdev)
3846 {
3847         struct net_device *netdev = pci_get_drvdata(pdev);
3848         struct iavf_adapter *adapter = netdev_priv(netdev);
3849         struct iavf_vlan_filter *vlf, *vlftmp;
3850         struct iavf_mac_filter *f, *ftmp;
3851         struct iavf_cloud_filter *cf, *cftmp;
3852         struct iavf_hw *hw = &adapter->hw;
3853         int err;
3854         /* Indicate we are in remove and not to run reset_task */
3855         set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856         cancel_delayed_work_sync(&adapter->init_task);
3857         cancel_work_sync(&adapter->reset_task);
3858         cancel_delayed_work_sync(&adapter->client_task);
3859         if (adapter->netdev_registered) {
3860                 unregister_netdev(netdev);
3861                 adapter->netdev_registered = false;
3862         }
3863         if (CLIENT_ALLOWED(adapter)) {
3864                 err = iavf_lan_del_device(adapter);
3865                 if (err)
3866                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867                                  err);
3868         }
3869
3870         /* Shut down all the garbage mashers on the detention level */
3871         adapter->state = __IAVF_REMOVE;
3872         adapter->aq_required = 0;
3873         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874         iavf_request_reset(adapter);
3875         msleep(50);
3876         /* If the FW isn't responding, kick it once, but only once. */
3877         if (!iavf_asq_done(hw)) {
3878                 iavf_request_reset(adapter);
3879                 msleep(50);
3880         }
3881         iavf_free_all_tx_resources(adapter);
3882         iavf_free_all_rx_resources(adapter);
3883         iavf_misc_irq_disable(adapter);
3884         iavf_free_misc_irq(adapter);
3885         iavf_reset_interrupt_capability(adapter);
3886         iavf_free_q_vectors(adapter);
3887
3888         cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890         cancel_work_sync(&adapter->adminq_task);
3891
3892         iavf_free_rss(adapter);
3893
3894         if (hw->aq.asq.count)
3895                 iavf_shutdown_adminq(hw);
3896
3897         /* destroy the locks only once, here */
3898         mutex_destroy(&hw->aq.arq_mutex);
3899         mutex_destroy(&hw->aq.asq_mutex);
3900
3901         iounmap(hw->hw_addr);
3902         pci_release_regions(pdev);
3903         iavf_free_all_tx_resources(adapter);
3904         iavf_free_all_rx_resources(adapter);
3905         iavf_free_queues(adapter);
3906         kfree(adapter->vf_res);
3907         spin_lock_bh(&adapter->mac_vlan_list_lock);
3908         /* If we got removed before an up/down sequence, we've got a filter
3909          * hanging out there that we need to get rid of.
3910          */
3911         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912                 list_del(&f->list);
3913                 kfree(f);
3914         }
3915         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916                                  list) {
3917                 list_del(&vlf->list);
3918                 kfree(vlf);
3919         }
3920
3921         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923         spin_lock_bh(&adapter->cloud_filter_list_lock);
3924         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925                 list_del(&cf->list);
3926                 kfree(cf);
3927         }
3928         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930         free_netdev(netdev);
3931
3932         pci_disable_pcie_error_reporting(pdev);
3933
3934         pci_disable_device(pdev);
3935 }
3936
3937 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3938
3939 static struct pci_driver iavf_driver = {
3940         .name      = iavf_driver_name,
3941         .id_table  = iavf_pci_tbl,
3942         .probe     = iavf_probe,
3943         .remove    = iavf_remove,
3944         .driver.pm = &iavf_pm_ops,
3945         .shutdown  = iavf_shutdown,
3946 };
3947
3948 /**
3949  * iavf_init_module - Driver Registration Routine
3950  *
3951  * iavf_init_module is the first routine called when the driver is
3952  * loaded. All it does is register with the PCI subsystem.
3953  **/
3954 static int __init iavf_init_module(void)
3955 {
3956         int ret;
3957
3958         pr_info("iavf: %s\n", iavf_driver_string);
3959
3960         pr_info("%s\n", iavf_copyright);
3961
3962         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3963                                   iavf_driver_name);
3964         if (!iavf_wq) {
3965                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3966                 return -ENOMEM;
3967         }
3968         ret = pci_register_driver(&iavf_driver);
3969         return ret;
3970 }
3971
3972 module_init(iavf_init_module);
3973
3974 /**
3975  * iavf_exit_module - Driver Exit Cleanup Routine
3976  *
3977  * iavf_exit_module is called just before the driver is removed
3978  * from memory.
3979  **/
3980 static void __exit iavf_exit_module(void)
3981 {
3982         pci_unregister_driver(&iavf_driver);
3983         destroy_workqueue(iavf_wq);
3984 }
3985
3986 module_exit(iavf_exit_module);
3987
3988 /* iavf_main.c */
This page took 0.267326 seconds and 4 git commands to generate.