]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_main.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11
12 #include "fm10k.h"
13
14 #define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
15 char fm10k_driver_name[] = "fm10k";
16 static const char fm10k_driver_string[] = DRV_SUMMARY;
17 static const char fm10k_copyright[] =
18         "Copyright(c) 2013 - 2019 Intel Corporation.";
19
20 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
21 MODULE_DESCRIPTION(DRV_SUMMARY);
22 MODULE_LICENSE("GPL v2");
23
24 /* single workqueue for entire fm10k driver */
25 struct workqueue_struct *fm10k_workqueue;
26
27 /**
28  * fm10k_init_module - Driver Registration Routine
29  *
30  * fm10k_init_module is the first routine called when the driver is
31  * loaded.  All it does is register with the PCI subsystem.
32  **/
33 static int __init fm10k_init_module(void)
34 {
35         pr_info("%s\n", fm10k_driver_string);
36         pr_info("%s\n", fm10k_copyright);
37
38         /* create driver workqueue */
39         fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
40                                           fm10k_driver_name);
41         if (!fm10k_workqueue)
42                 return -ENOMEM;
43
44         fm10k_dbg_init();
45
46         return fm10k_register_pci_driver();
47 }
48 module_init(fm10k_init_module);
49
50 /**
51  * fm10k_exit_module - Driver Exit Cleanup Routine
52  *
53  * fm10k_exit_module is called just before the driver is removed
54  * from memory.
55  **/
56 static void __exit fm10k_exit_module(void)
57 {
58         fm10k_unregister_pci_driver();
59
60         fm10k_dbg_exit();
61
62         /* destroy driver workqueue */
63         destroy_workqueue(fm10k_workqueue);
64 }
65 module_exit(fm10k_exit_module);
66
67 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
68                                     struct fm10k_rx_buffer *bi)
69 {
70         struct page *page = bi->page;
71         dma_addr_t dma;
72
73         /* Only page will be NULL if buffer was consumed */
74         if (likely(page))
75                 return true;
76
77         /* alloc new page for storage */
78         page = dev_alloc_page();
79         if (unlikely(!page)) {
80                 rx_ring->rx_stats.alloc_failed++;
81                 return false;
82         }
83
84         /* map page for use */
85         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
86
87         /* if mapping failed free memory back to system since
88          * there isn't much point in holding memory we can't use
89          */
90         if (dma_mapping_error(rx_ring->dev, dma)) {
91                 __free_page(page);
92
93                 rx_ring->rx_stats.alloc_failed++;
94                 return false;
95         }
96
97         bi->dma = dma;
98         bi->page = page;
99         bi->page_offset = 0;
100
101         return true;
102 }
103
104 /**
105  * fm10k_alloc_rx_buffers - Replace used receive buffers
106  * @rx_ring: ring to place buffers on
107  * @cleaned_count: number of buffers to replace
108  **/
109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
110 {
111         union fm10k_rx_desc *rx_desc;
112         struct fm10k_rx_buffer *bi;
113         u16 i = rx_ring->next_to_use;
114
115         /* nothing to do */
116         if (!cleaned_count)
117                 return;
118
119         rx_desc = FM10K_RX_DESC(rx_ring, i);
120         bi = &rx_ring->rx_buffer[i];
121         i -= rx_ring->count;
122
123         do {
124                 if (!fm10k_alloc_mapped_page(rx_ring, bi))
125                         break;
126
127                 /* Refresh the desc even if buffer_addrs didn't change
128                  * because each write-back erases this info.
129                  */
130                 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
131
132                 rx_desc++;
133                 bi++;
134                 i++;
135                 if (unlikely(!i)) {
136                         rx_desc = FM10K_RX_DESC(rx_ring, 0);
137                         bi = rx_ring->rx_buffer;
138                         i -= rx_ring->count;
139                 }
140
141                 /* clear the status bits for the next_to_use descriptor */
142                 rx_desc->d.staterr = 0;
143
144                 cleaned_count--;
145         } while (cleaned_count);
146
147         i += rx_ring->count;
148
149         if (rx_ring->next_to_use != i) {
150                 /* record the next descriptor to use */
151                 rx_ring->next_to_use = i;
152
153                 /* update next to alloc since we have filled the ring */
154                 rx_ring->next_to_alloc = i;
155
156                 /* Force memory writes to complete before letting h/w
157                  * know there are new descriptors to fetch.  (Only
158                  * applicable for weak-ordered memory model archs,
159                  * such as IA-64).
160                  */
161                 wmb();
162
163                 /* notify hardware of new descriptors */
164                 writel(i, rx_ring->tail);
165         }
166 }
167
168 /**
169  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
170  * @rx_ring: rx descriptor ring to store buffers on
171  * @old_buff: donor buffer to have page reused
172  *
173  * Synchronizes page for reuse by the interface
174  **/
175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
176                                 struct fm10k_rx_buffer *old_buff)
177 {
178         struct fm10k_rx_buffer *new_buff;
179         u16 nta = rx_ring->next_to_alloc;
180
181         new_buff = &rx_ring->rx_buffer[nta];
182
183         /* update, and store next to alloc */
184         nta++;
185         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
186
187         /* transfer page from old buffer to new buffer */
188         *new_buff = *old_buff;
189
190         /* sync the buffer for use by the device */
191         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
192                                          old_buff->page_offset,
193                                          FM10K_RX_BUFSZ,
194                                          DMA_FROM_DEVICE);
195 }
196
197 static inline bool fm10k_page_is_reserved(struct page *page)
198 {
199         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
200 }
201
202 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
203                                     struct page *page,
204                                     unsigned int __maybe_unused truesize)
205 {
206         /* avoid re-using remote pages */
207         if (unlikely(fm10k_page_is_reserved(page)))
208                 return false;
209
210 #if (PAGE_SIZE < 8192)
211         /* if we are only owner of page we can reuse it */
212         if (unlikely(page_count(page) != 1))
213                 return false;
214
215         /* flip page offset to other buffer */
216         rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
217 #else
218         /* move offset up to the next cache line */
219         rx_buffer->page_offset += truesize;
220
221         if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
222                 return false;
223 #endif
224
225         /* Even if we own the page, we are not allowed to use atomic_set()
226          * This would break get_page_unless_zero() users.
227          */
228         page_ref_inc(page);
229
230         return true;
231 }
232
233 /**
234  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
235  * @rx_buffer: buffer containing page to add
236  * @size: packet size from rx_desc
237  * @rx_desc: descriptor containing length of buffer written by hardware
238  * @skb: sk_buff to place the data into
239  *
240  * This function will add the data contained in rx_buffer->page to the skb.
241  * This is done either through a direct copy if the data in the buffer is
242  * less than the skb header size, otherwise it will just attach the page as
243  * a frag to the skb.
244  *
245  * The function will then update the page offset if necessary and return
246  * true if the buffer can be reused by the interface.
247  **/
248 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
249                               unsigned int size,
250                               union fm10k_rx_desc *rx_desc,
251                               struct sk_buff *skb)
252 {
253         struct page *page = rx_buffer->page;
254         unsigned char *va = page_address(page) + rx_buffer->page_offset;
255 #if (PAGE_SIZE < 8192)
256         unsigned int truesize = FM10K_RX_BUFSZ;
257 #else
258         unsigned int truesize = ALIGN(size, 512);
259 #endif
260         unsigned int pull_len;
261
262         if (unlikely(skb_is_nonlinear(skb)))
263                 goto add_tail_frag;
264
265         if (likely(size <= FM10K_RX_HDR_LEN)) {
266                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
267
268                 /* page is not reserved, we can reuse buffer as-is */
269                 if (likely(!fm10k_page_is_reserved(page)))
270                         return true;
271
272                 /* this page cannot be reused so discard it */
273                 __free_page(page);
274                 return false;
275         }
276
277         /* we need the header to contain the greater of either ETH_HLEN or
278          * 60 bytes if the skb->len is less than 60 for skb_pad.
279          */
280         pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
281
282         /* align pull length to size of long to optimize memcpy performance */
283         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
284
285         /* update all of the pointers */
286         va += pull_len;
287         size -= pull_len;
288
289 add_tail_frag:
290         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
291                         (unsigned long)va & ~PAGE_MASK, size, truesize);
292
293         return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
294 }
295
296 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
297                                              union fm10k_rx_desc *rx_desc,
298                                              struct sk_buff *skb)
299 {
300         unsigned int size = le16_to_cpu(rx_desc->w.length);
301         struct fm10k_rx_buffer *rx_buffer;
302         struct page *page;
303
304         rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
305         page = rx_buffer->page;
306         prefetchw(page);
307
308         if (likely(!skb)) {
309                 void *page_addr = page_address(page) +
310                                   rx_buffer->page_offset;
311
312                 /* prefetch first cache line of first page */
313                 prefetch(page_addr);
314 #if L1_CACHE_BYTES < 128
315                 prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
316 #endif
317
318                 /* allocate a skb to store the frags */
319                 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
320                                      FM10K_RX_HDR_LEN);
321                 if (unlikely(!skb)) {
322                         rx_ring->rx_stats.alloc_failed++;
323                         return NULL;
324                 }
325
326                 /* we will be copying header into skb->data in
327                  * pskb_may_pull so it is in our interest to prefetch
328                  * it now to avoid a possible cache miss
329                  */
330                 prefetchw(skb->data);
331         }
332
333         /* we are reusing so sync this buffer for CPU use */
334         dma_sync_single_range_for_cpu(rx_ring->dev,
335                                       rx_buffer->dma,
336                                       rx_buffer->page_offset,
337                                       size,
338                                       DMA_FROM_DEVICE);
339
340         /* pull page into skb */
341         if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
342                 /* hand second half of page back to the ring */
343                 fm10k_reuse_rx_page(rx_ring, rx_buffer);
344         } else {
345                 /* we are not reusing the buffer so unmap it */
346                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
347                                PAGE_SIZE, DMA_FROM_DEVICE);
348         }
349
350         /* clear contents of rx_buffer */
351         rx_buffer->page = NULL;
352
353         return skb;
354 }
355
356 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
357                                      union fm10k_rx_desc *rx_desc,
358                                      struct sk_buff *skb)
359 {
360         skb_checksum_none_assert(skb);
361
362         /* Rx checksum disabled via ethtool */
363         if (!(ring->netdev->features & NETIF_F_RXCSUM))
364                 return;
365
366         /* TCP/UDP checksum error bit is set */
367         if (fm10k_test_staterr(rx_desc,
368                                FM10K_RXD_STATUS_L4E |
369                                FM10K_RXD_STATUS_L4E2 |
370                                FM10K_RXD_STATUS_IPE |
371                                FM10K_RXD_STATUS_IPE2)) {
372                 ring->rx_stats.csum_err++;
373                 return;
374         }
375
376         /* It must be a TCP or UDP packet with a valid checksum */
377         if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
378                 skb->encapsulation = true;
379         else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
380                 return;
381
382         skb->ip_summed = CHECKSUM_UNNECESSARY;
383
384         ring->rx_stats.csum_good++;
385 }
386
387 #define FM10K_RSS_L4_TYPES_MASK \
388         (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
389          BIT(FM10K_RSSTYPE_IPV4_UDP) | \
390          BIT(FM10K_RSSTYPE_IPV6_TCP) | \
391          BIT(FM10K_RSSTYPE_IPV6_UDP))
392
393 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
394                                  union fm10k_rx_desc *rx_desc,
395                                  struct sk_buff *skb)
396 {
397         u16 rss_type;
398
399         if (!(ring->netdev->features & NETIF_F_RXHASH))
400                 return;
401
402         rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
403         if (!rss_type)
404                 return;
405
406         skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
407                      (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
408                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
409 }
410
411 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
412                              union fm10k_rx_desc __maybe_unused *rx_desc,
413                              struct sk_buff *skb)
414 {
415         struct net_device *dev = rx_ring->netdev;
416         struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
417
418         /* check to see if DGLORT belongs to a MACVLAN */
419         if (l2_accel) {
420                 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
421
422                 idx -= l2_accel->dglort;
423                 if (idx < l2_accel->size && l2_accel->macvlan[idx])
424                         dev = l2_accel->macvlan[idx];
425                 else
426                         l2_accel = NULL;
427         }
428
429         /* Record Rx queue, or update macvlan statistics */
430         if (!l2_accel)
431                 skb_record_rx_queue(skb, rx_ring->queue_index);
432         else
433                 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
434                                  false);
435
436         skb->protocol = eth_type_trans(skb, dev);
437 }
438
439 /**
440  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
441  * @rx_ring: rx descriptor ring packet is being transacted on
442  * @rx_desc: pointer to the EOP Rx descriptor
443  * @skb: pointer to current skb being populated
444  *
445  * This function checks the ring, descriptor, and packet information in
446  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
447  * other fields within the skb.
448  **/
449 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
450                                              union fm10k_rx_desc *rx_desc,
451                                              struct sk_buff *skb)
452 {
453         unsigned int len = skb->len;
454
455         fm10k_rx_hash(rx_ring, rx_desc, skb);
456
457         fm10k_rx_checksum(rx_ring, rx_desc, skb);
458
459         FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
460
461         FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
462
463         FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
464
465         if (rx_desc->w.vlan) {
466                 u16 vid = le16_to_cpu(rx_desc->w.vlan);
467
468                 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
469                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
470                 else if (vid & VLAN_PRIO_MASK)
471                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
472                                                vid & VLAN_PRIO_MASK);
473         }
474
475         fm10k_type_trans(rx_ring, rx_desc, skb);
476
477         return len;
478 }
479
480 /**
481  * fm10k_is_non_eop - process handling of non-EOP buffers
482  * @rx_ring: Rx ring being processed
483  * @rx_desc: Rx descriptor for current buffer
484  *
485  * This function updates next to clean.  If the buffer is an EOP buffer
486  * this function exits returning false, otherwise it will place the
487  * sk_buff in the next buffer to be chained and return true indicating
488  * that this is in fact a non-EOP buffer.
489  **/
490 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
491                              union fm10k_rx_desc *rx_desc)
492 {
493         u32 ntc = rx_ring->next_to_clean + 1;
494
495         /* fetch, update, and store next to clean */
496         ntc = (ntc < rx_ring->count) ? ntc : 0;
497         rx_ring->next_to_clean = ntc;
498
499         prefetch(FM10K_RX_DESC(rx_ring, ntc));
500
501         if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
502                 return false;
503
504         return true;
505 }
506
507 /**
508  * fm10k_cleanup_headers - Correct corrupted or empty headers
509  * @rx_ring: rx descriptor ring packet is being transacted on
510  * @rx_desc: pointer to the EOP Rx descriptor
511  * @skb: pointer to current skb being fixed
512  *
513  * Address the case where we are pulling data in on pages only
514  * and as such no data is present in the skb header.
515  *
516  * In addition if skb is not at least 60 bytes we need to pad it so that
517  * it is large enough to qualify as a valid Ethernet frame.
518  *
519  * Returns true if an error was encountered and skb was freed.
520  **/
521 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
522                                   union fm10k_rx_desc *rx_desc,
523                                   struct sk_buff *skb)
524 {
525         if (unlikely((fm10k_test_staterr(rx_desc,
526                                          FM10K_RXD_STATUS_RXE)))) {
527 #define FM10K_TEST_RXD_BIT(rxd, bit) \
528         ((rxd)->w.csum_err & cpu_to_le16(bit))
529                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
530                         rx_ring->rx_stats.switch_errors++;
531                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
532                         rx_ring->rx_stats.drops++;
533                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
534                         rx_ring->rx_stats.pp_errors++;
535                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
536                         rx_ring->rx_stats.link_errors++;
537                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
538                         rx_ring->rx_stats.length_errors++;
539                 dev_kfree_skb_any(skb);
540                 rx_ring->rx_stats.errors++;
541                 return true;
542         }
543
544         /* if eth_skb_pad returns an error the skb was freed */
545         if (eth_skb_pad(skb))
546                 return true;
547
548         return false;
549 }
550
551 /**
552  * fm10k_receive_skb - helper function to handle rx indications
553  * @q_vector: structure containing interrupt and ring information
554  * @skb: packet to send up
555  **/
556 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
557                               struct sk_buff *skb)
558 {
559         napi_gro_receive(&q_vector->napi, skb);
560 }
561
562 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
563                               struct fm10k_ring *rx_ring,
564                               int budget)
565 {
566         struct sk_buff *skb = rx_ring->skb;
567         unsigned int total_bytes = 0, total_packets = 0;
568         u16 cleaned_count = fm10k_desc_unused(rx_ring);
569
570         while (likely(total_packets < budget)) {
571                 union fm10k_rx_desc *rx_desc;
572
573                 /* return some buffers to hardware, one at a time is too slow */
574                 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
575                         fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
576                         cleaned_count = 0;
577                 }
578
579                 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
580
581                 if (!rx_desc->d.staterr)
582                         break;
583
584                 /* This memory barrier is needed to keep us from reading
585                  * any other fields out of the rx_desc until we know the
586                  * descriptor has been written back
587                  */
588                 dma_rmb();
589
590                 /* retrieve a buffer from the ring */
591                 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
592
593                 /* exit if we failed to retrieve a buffer */
594                 if (!skb)
595                         break;
596
597                 cleaned_count++;
598
599                 /* fetch next buffer in frame if non-eop */
600                 if (fm10k_is_non_eop(rx_ring, rx_desc))
601                         continue;
602
603                 /* verify the packet layout is correct */
604                 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
605                         skb = NULL;
606                         continue;
607                 }
608
609                 /* populate checksum, timestamp, VLAN, and protocol */
610                 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
611
612                 fm10k_receive_skb(q_vector, skb);
613
614                 /* reset skb pointer */
615                 skb = NULL;
616
617                 /* update budget accounting */
618                 total_packets++;
619         }
620
621         /* place incomplete frames back on ring for completion */
622         rx_ring->skb = skb;
623
624         u64_stats_update_begin(&rx_ring->syncp);
625         rx_ring->stats.packets += total_packets;
626         rx_ring->stats.bytes += total_bytes;
627         u64_stats_update_end(&rx_ring->syncp);
628         q_vector->rx.total_packets += total_packets;
629         q_vector->rx.total_bytes += total_bytes;
630
631         return total_packets;
632 }
633
634 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
635 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
636 {
637         struct fm10k_intfc *interface = netdev_priv(skb->dev);
638
639         if (interface->vxlan_port != udp_hdr(skb)->dest)
640                 return NULL;
641
642         /* return offset of udp_hdr plus 8 bytes for VXLAN header */
643         return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
644 }
645
646 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
647 #define NVGRE_TNI htons(0x2000)
648 struct fm10k_nvgre_hdr {
649         __be16 flags;
650         __be16 proto;
651         __be32 tni;
652 };
653
654 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
655 {
656         struct fm10k_nvgre_hdr *nvgre_hdr;
657         int hlen = ip_hdrlen(skb);
658
659         /* currently only IPv4 is supported due to hlen above */
660         if (vlan_get_protocol(skb) != htons(ETH_P_IP))
661                 return NULL;
662
663         /* our transport header should be NVGRE */
664         nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
665
666         /* verify all reserved flags are 0 */
667         if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
668                 return NULL;
669
670         /* report start of ethernet header */
671         if (nvgre_hdr->flags & NVGRE_TNI)
672                 return (struct ethhdr *)(nvgre_hdr + 1);
673
674         return (struct ethhdr *)(&nvgre_hdr->tni);
675 }
676
677 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
678 {
679         u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
680         struct ethhdr *eth_hdr;
681
682         if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
683             skb->inner_protocol != htons(ETH_P_TEB))
684                 return 0;
685
686         switch (vlan_get_protocol(skb)) {
687         case htons(ETH_P_IP):
688                 l4_hdr = ip_hdr(skb)->protocol;
689                 break;
690         case htons(ETH_P_IPV6):
691                 l4_hdr = ipv6_hdr(skb)->nexthdr;
692                 break;
693         default:
694                 return 0;
695         }
696
697         switch (l4_hdr) {
698         case IPPROTO_UDP:
699                 eth_hdr = fm10k_port_is_vxlan(skb);
700                 break;
701         case IPPROTO_GRE:
702                 eth_hdr = fm10k_gre_is_nvgre(skb);
703                 break;
704         default:
705                 return 0;
706         }
707
708         if (!eth_hdr)
709                 return 0;
710
711         switch (eth_hdr->h_proto) {
712         case htons(ETH_P_IP):
713                 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
714                 break;
715         case htons(ETH_P_IPV6):
716                 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
717                 break;
718         default:
719                 return 0;
720         }
721
722         switch (inner_l4_hdr) {
723         case IPPROTO_TCP:
724                 inner_l4_hlen = inner_tcp_hdrlen(skb);
725                 break;
726         case IPPROTO_UDP:
727                 inner_l4_hlen = 8;
728                 break;
729         default:
730                 return 0;
731         }
732
733         /* The hardware allows tunnel offloads only if the combined inner and
734          * outer header is 184 bytes or less
735          */
736         if (skb_inner_transport_header(skb) + inner_l4_hlen -
737             skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
738                 return 0;
739
740         return eth_hdr->h_proto;
741 }
742
743 static int fm10k_tso(struct fm10k_ring *tx_ring,
744                      struct fm10k_tx_buffer *first)
745 {
746         struct sk_buff *skb = first->skb;
747         struct fm10k_tx_desc *tx_desc;
748         unsigned char *th;
749         u8 hdrlen;
750
751         if (skb->ip_summed != CHECKSUM_PARTIAL)
752                 return 0;
753
754         if (!skb_is_gso(skb))
755                 return 0;
756
757         /* compute header lengths */
758         if (skb->encapsulation) {
759                 if (!fm10k_tx_encap_offload(skb))
760                         goto err_vxlan;
761                 th = skb_inner_transport_header(skb);
762         } else {
763                 th = skb_transport_header(skb);
764         }
765
766         /* compute offset from SOF to transport header and add header len */
767         hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
768
769         first->tx_flags |= FM10K_TX_FLAGS_CSUM;
770
771         /* update gso size and bytecount with header size */
772         first->gso_segs = skb_shinfo(skb)->gso_segs;
773         first->bytecount += (first->gso_segs - 1) * hdrlen;
774
775         /* populate Tx descriptor header size and mss */
776         tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
777         tx_desc->hdrlen = hdrlen;
778         tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
779
780         return 1;
781
782 err_vxlan:
783         tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
784         if (net_ratelimit())
785                 netdev_err(tx_ring->netdev,
786                            "TSO requested for unsupported tunnel, disabling offload\n");
787         return -1;
788 }
789
790 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
791                           struct fm10k_tx_buffer *first)
792 {
793         struct sk_buff *skb = first->skb;
794         struct fm10k_tx_desc *tx_desc;
795         union {
796                 struct iphdr *ipv4;
797                 struct ipv6hdr *ipv6;
798                 u8 *raw;
799         } network_hdr;
800         u8 *transport_hdr;
801         __be16 frag_off;
802         __be16 protocol;
803         u8 l4_hdr = 0;
804
805         if (skb->ip_summed != CHECKSUM_PARTIAL)
806                 goto no_csum;
807
808         if (skb->encapsulation) {
809                 protocol = fm10k_tx_encap_offload(skb);
810                 if (!protocol) {
811                         if (skb_checksum_help(skb)) {
812                                 dev_warn(tx_ring->dev,
813                                          "failed to offload encap csum!\n");
814                                 tx_ring->tx_stats.csum_err++;
815                         }
816                         goto no_csum;
817                 }
818                 network_hdr.raw = skb_inner_network_header(skb);
819                 transport_hdr = skb_inner_transport_header(skb);
820         } else {
821                 protocol = vlan_get_protocol(skb);
822                 network_hdr.raw = skb_network_header(skb);
823                 transport_hdr = skb_transport_header(skb);
824         }
825
826         switch (protocol) {
827         case htons(ETH_P_IP):
828                 l4_hdr = network_hdr.ipv4->protocol;
829                 break;
830         case htons(ETH_P_IPV6):
831                 l4_hdr = network_hdr.ipv6->nexthdr;
832                 if (likely((transport_hdr - network_hdr.raw) ==
833                            sizeof(struct ipv6hdr)))
834                         break;
835                 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
836                                       sizeof(struct ipv6hdr),
837                                  &l4_hdr, &frag_off);
838                 if (unlikely(frag_off))
839                         l4_hdr = NEXTHDR_FRAGMENT;
840                 break;
841         default:
842                 break;
843         }
844
845         switch (l4_hdr) {
846         case IPPROTO_TCP:
847         case IPPROTO_UDP:
848                 break;
849         case IPPROTO_GRE:
850                 if (skb->encapsulation)
851                         break;
852                 fallthrough;
853         default:
854                 if (unlikely(net_ratelimit())) {
855                         dev_warn(tx_ring->dev,
856                                  "partial checksum, version=%d l4 proto=%x\n",
857                                  protocol, l4_hdr);
858                 }
859                 skb_checksum_help(skb);
860                 tx_ring->tx_stats.csum_err++;
861                 goto no_csum;
862         }
863
864         /* update TX checksum flag */
865         first->tx_flags |= FM10K_TX_FLAGS_CSUM;
866         tx_ring->tx_stats.csum_good++;
867
868 no_csum:
869         /* populate Tx descriptor header size and mss */
870         tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
871         tx_desc->hdrlen = 0;
872         tx_desc->mss = 0;
873 }
874
875 #define FM10K_SET_FLAG(_input, _flag, _result) \
876         ((_flag <= _result) ? \
877          ((u32)(_input & _flag) * (_result / _flag)) : \
878          ((u32)(_input & _flag) / (_flag / _result)))
879
880 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
881 {
882         /* set type for advanced descriptor with frame checksum insertion */
883         u32 desc_flags = 0;
884
885         /* set checksum offload bits */
886         desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
887                                      FM10K_TXD_FLAG_CSUM);
888
889         return desc_flags;
890 }
891
892 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
893                                struct fm10k_tx_desc *tx_desc, u16 i,
894                                dma_addr_t dma, unsigned int size, u8 desc_flags)
895 {
896         /* set RS and INT for last frame in a cache line */
897         if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
898                 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
899
900         /* record values to descriptor */
901         tx_desc->buffer_addr = cpu_to_le64(dma);
902         tx_desc->flags = desc_flags;
903         tx_desc->buflen = cpu_to_le16(size);
904
905         /* return true if we just wrapped the ring */
906         return i == tx_ring->count;
907 }
908
909 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
910 {
911         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
912
913         /* Memory barrier before checking head and tail */
914         smp_mb();
915
916         /* Check again in a case another CPU has just made room available */
917         if (likely(fm10k_desc_unused(tx_ring) < size))
918                 return -EBUSY;
919
920         /* A reprieve! - use start_queue because it doesn't call schedule */
921         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
922         ++tx_ring->tx_stats.restart_queue;
923         return 0;
924 }
925
926 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
927 {
928         if (likely(fm10k_desc_unused(tx_ring) >= size))
929                 return 0;
930         return __fm10k_maybe_stop_tx(tx_ring, size);
931 }
932
933 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
934                          struct fm10k_tx_buffer *first)
935 {
936         struct sk_buff *skb = first->skb;
937         struct fm10k_tx_buffer *tx_buffer;
938         struct fm10k_tx_desc *tx_desc;
939         skb_frag_t *frag;
940         unsigned char *data;
941         dma_addr_t dma;
942         unsigned int data_len, size;
943         u32 tx_flags = first->tx_flags;
944         u16 i = tx_ring->next_to_use;
945         u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
946
947         tx_desc = FM10K_TX_DESC(tx_ring, i);
948
949         /* add HW VLAN tag */
950         if (skb_vlan_tag_present(skb))
951                 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
952         else
953                 tx_desc->vlan = 0;
954
955         size = skb_headlen(skb);
956         data = skb->data;
957
958         dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
959
960         data_len = skb->data_len;
961         tx_buffer = first;
962
963         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
964                 if (dma_mapping_error(tx_ring->dev, dma))
965                         goto dma_error;
966
967                 /* record length, and DMA address */
968                 dma_unmap_len_set(tx_buffer, len, size);
969                 dma_unmap_addr_set(tx_buffer, dma, dma);
970
971                 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
972                         if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
973                                                FM10K_MAX_DATA_PER_TXD, flags)) {
974                                 tx_desc = FM10K_TX_DESC(tx_ring, 0);
975                                 i = 0;
976                         }
977
978                         dma += FM10K_MAX_DATA_PER_TXD;
979                         size -= FM10K_MAX_DATA_PER_TXD;
980                 }
981
982                 if (likely(!data_len))
983                         break;
984
985                 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
986                                        dma, size, flags)) {
987                         tx_desc = FM10K_TX_DESC(tx_ring, 0);
988                         i = 0;
989                 }
990
991                 size = skb_frag_size(frag);
992                 data_len -= size;
993
994                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
995                                        DMA_TO_DEVICE);
996
997                 tx_buffer = &tx_ring->tx_buffer[i];
998         }
999
1000         /* write last descriptor with LAST bit set */
1001         flags |= FM10K_TXD_FLAG_LAST;
1002
1003         if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1004                 i = 0;
1005
1006         /* record bytecount for BQL */
1007         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1008
1009         /* record SW timestamp if HW timestamp is not available */
1010         skb_tx_timestamp(first->skb);
1011
1012         /* Force memory writes to complete before letting h/w know there
1013          * are new descriptors to fetch.  (Only applicable for weak-ordered
1014          * memory model archs, such as IA-64).
1015          *
1016          * We also need this memory barrier to make certain all of the
1017          * status bits have been updated before next_to_watch is written.
1018          */
1019         wmb();
1020
1021         /* set next_to_watch value indicating a packet is present */
1022         first->next_to_watch = tx_desc;
1023
1024         tx_ring->next_to_use = i;
1025
1026         /* Make sure there is space in the ring for the next send. */
1027         fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1028
1029         /* notify HW of packet */
1030         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1031                 writel(i, tx_ring->tail);
1032         }
1033
1034         return;
1035 dma_error:
1036         dev_err(tx_ring->dev, "TX DMA map failed\n");
1037
1038         /* clear dma mappings for failed tx_buffer map */
1039         for (;;) {
1040                 tx_buffer = &tx_ring->tx_buffer[i];
1041                 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1042                 if (tx_buffer == first)
1043                         break;
1044                 if (i == 0)
1045                         i = tx_ring->count;
1046                 i--;
1047         }
1048
1049         tx_ring->next_to_use = i;
1050 }
1051
1052 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1053                                   struct fm10k_ring *tx_ring)
1054 {
1055         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1056         struct fm10k_tx_buffer *first;
1057         unsigned short f;
1058         u32 tx_flags = 0;
1059         int tso;
1060
1061         /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1062          *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1063          *       + 2 desc gap to keep tail from touching head
1064          * otherwise try next time
1065          */
1066         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1067                 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1068
1069                 count += TXD_USE_COUNT(skb_frag_size(frag));
1070         }
1071
1072         if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1073                 tx_ring->tx_stats.tx_busy++;
1074                 return NETDEV_TX_BUSY;
1075         }
1076
1077         /* record the location of the first descriptor for this packet */
1078         first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1079         first->skb = skb;
1080         first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1081         first->gso_segs = 1;
1082
1083         /* record initial flags and protocol */
1084         first->tx_flags = tx_flags;
1085
1086         tso = fm10k_tso(tx_ring, first);
1087         if (tso < 0)
1088                 goto out_drop;
1089         else if (!tso)
1090                 fm10k_tx_csum(tx_ring, first);
1091
1092         fm10k_tx_map(tx_ring, first);
1093
1094         return NETDEV_TX_OK;
1095
1096 out_drop:
1097         dev_kfree_skb_any(first->skb);
1098         first->skb = NULL;
1099
1100         return NETDEV_TX_OK;
1101 }
1102
1103 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1104 {
1105         return ring->stats.packets;
1106 }
1107
1108 /**
1109  * fm10k_get_tx_pending - how many Tx descriptors not processed
1110  * @ring: the ring structure
1111  * @in_sw: is tx_pending being checked in SW or in HW?
1112  */
1113 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1114 {
1115         struct fm10k_intfc *interface = ring->q_vector->interface;
1116         struct fm10k_hw *hw = &interface->hw;
1117         u32 head, tail;
1118
1119         if (likely(in_sw)) {
1120                 head = ring->next_to_clean;
1121                 tail = ring->next_to_use;
1122         } else {
1123                 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1124                 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1125         }
1126
1127         return ((head <= tail) ? tail : tail + ring->count) - head;
1128 }
1129
1130 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1131 {
1132         u32 tx_done = fm10k_get_tx_completed(tx_ring);
1133         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1134         u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1135
1136         clear_check_for_tx_hang(tx_ring);
1137
1138         /* Check for a hung queue, but be thorough. This verifies
1139          * that a transmit has been completed since the previous
1140          * check AND there is at least one packet pending. By
1141          * requiring this to fail twice we avoid races with
1142          * clearing the ARMED bit and conditions where we
1143          * run the check_tx_hang logic with a transmit completion
1144          * pending but without time to complete it yet.
1145          */
1146         if (!tx_pending || (tx_done_old != tx_done)) {
1147                 /* update completed stats and continue */
1148                 tx_ring->tx_stats.tx_done_old = tx_done;
1149                 /* reset the countdown */
1150                 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1151
1152                 return false;
1153         }
1154
1155         /* make sure it is true for two checks in a row */
1156         return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1157 }
1158
1159 /**
1160  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1161  * @interface: driver private struct
1162  **/
1163 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1164 {
1165         /* Do the reset outside of interrupt context */
1166         if (!test_bit(__FM10K_DOWN, interface->state)) {
1167                 interface->tx_timeout_count++;
1168                 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1169                 fm10k_service_event_schedule(interface);
1170         }
1171 }
1172
1173 /**
1174  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1175  * @q_vector: structure containing interrupt and ring information
1176  * @tx_ring: tx ring to clean
1177  * @napi_budget: Used to determine if we are in netpoll
1178  **/
1179 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1180                                struct fm10k_ring *tx_ring, int napi_budget)
1181 {
1182         struct fm10k_intfc *interface = q_vector->interface;
1183         struct fm10k_tx_buffer *tx_buffer;
1184         struct fm10k_tx_desc *tx_desc;
1185         unsigned int total_bytes = 0, total_packets = 0;
1186         unsigned int budget = q_vector->tx.work_limit;
1187         unsigned int i = tx_ring->next_to_clean;
1188
1189         if (test_bit(__FM10K_DOWN, interface->state))
1190                 return true;
1191
1192         tx_buffer = &tx_ring->tx_buffer[i];
1193         tx_desc = FM10K_TX_DESC(tx_ring, i);
1194         i -= tx_ring->count;
1195
1196         do {
1197                 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1198
1199                 /* if next_to_watch is not set then there is no work pending */
1200                 if (!eop_desc)
1201                         break;
1202
1203                 /* prevent any other reads prior to eop_desc */
1204                 smp_rmb();
1205
1206                 /* if DD is not set pending work has not been completed */
1207                 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1208                         break;
1209
1210                 /* clear next_to_watch to prevent false hangs */
1211                 tx_buffer->next_to_watch = NULL;
1212
1213                 /* update the statistics for this packet */
1214                 total_bytes += tx_buffer->bytecount;
1215                 total_packets += tx_buffer->gso_segs;
1216
1217                 /* free the skb */
1218                 napi_consume_skb(tx_buffer->skb, napi_budget);
1219
1220                 /* unmap skb header data */
1221                 dma_unmap_single(tx_ring->dev,
1222                                  dma_unmap_addr(tx_buffer, dma),
1223                                  dma_unmap_len(tx_buffer, len),
1224                                  DMA_TO_DEVICE);
1225
1226                 /* clear tx_buffer data */
1227                 tx_buffer->skb = NULL;
1228                 dma_unmap_len_set(tx_buffer, len, 0);
1229
1230                 /* unmap remaining buffers */
1231                 while (tx_desc != eop_desc) {
1232                         tx_buffer++;
1233                         tx_desc++;
1234                         i++;
1235                         if (unlikely(!i)) {
1236                                 i -= tx_ring->count;
1237                                 tx_buffer = tx_ring->tx_buffer;
1238                                 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1239                         }
1240
1241                         /* unmap any remaining paged data */
1242                         if (dma_unmap_len(tx_buffer, len)) {
1243                                 dma_unmap_page(tx_ring->dev,
1244                                                dma_unmap_addr(tx_buffer, dma),
1245                                                dma_unmap_len(tx_buffer, len),
1246                                                DMA_TO_DEVICE);
1247                                 dma_unmap_len_set(tx_buffer, len, 0);
1248                         }
1249                 }
1250
1251                 /* move us one more past the eop_desc for start of next pkt */
1252                 tx_buffer++;
1253                 tx_desc++;
1254                 i++;
1255                 if (unlikely(!i)) {
1256                         i -= tx_ring->count;
1257                         tx_buffer = tx_ring->tx_buffer;
1258                         tx_desc = FM10K_TX_DESC(tx_ring, 0);
1259                 }
1260
1261                 /* issue prefetch for next Tx descriptor */
1262                 prefetch(tx_desc);
1263
1264                 /* update budget accounting */
1265                 budget--;
1266         } while (likely(budget));
1267
1268         i += tx_ring->count;
1269         tx_ring->next_to_clean = i;
1270         u64_stats_update_begin(&tx_ring->syncp);
1271         tx_ring->stats.bytes += total_bytes;
1272         tx_ring->stats.packets += total_packets;
1273         u64_stats_update_end(&tx_ring->syncp);
1274         q_vector->tx.total_bytes += total_bytes;
1275         q_vector->tx.total_packets += total_packets;
1276
1277         if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1278                 /* schedule immediate reset if we believe we hung */
1279                 struct fm10k_hw *hw = &interface->hw;
1280
1281                 netif_err(interface, drv, tx_ring->netdev,
1282                           "Detected Tx Unit Hang\n"
1283                           "  Tx Queue             <%d>\n"
1284                           "  TDH, TDT             <%x>, <%x>\n"
1285                           "  next_to_use          <%x>\n"
1286                           "  next_to_clean        <%x>\n",
1287                           tx_ring->queue_index,
1288                           fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1289                           fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1290                           tx_ring->next_to_use, i);
1291
1292                 netif_stop_subqueue(tx_ring->netdev,
1293                                     tx_ring->queue_index);
1294
1295                 netif_info(interface, probe, tx_ring->netdev,
1296                            "tx hang %d detected on queue %d, resetting interface\n",
1297                            interface->tx_timeout_count + 1,
1298                            tx_ring->queue_index);
1299
1300                 fm10k_tx_timeout_reset(interface);
1301
1302                 /* the netdev is about to reset, no point in enabling stuff */
1303                 return true;
1304         }
1305
1306         /* notify netdev of completed buffers */
1307         netdev_tx_completed_queue(txring_txq(tx_ring),
1308                                   total_packets, total_bytes);
1309
1310 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1311         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1312                      (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1313                 /* Make sure that anybody stopping the queue after this
1314                  * sees the new next_to_clean.
1315                  */
1316                 smp_mb();
1317                 if (__netif_subqueue_stopped(tx_ring->netdev,
1318                                              tx_ring->queue_index) &&
1319                     !test_bit(__FM10K_DOWN, interface->state)) {
1320                         netif_wake_subqueue(tx_ring->netdev,
1321                                             tx_ring->queue_index);
1322                         ++tx_ring->tx_stats.restart_queue;
1323                 }
1324         }
1325
1326         return !!budget;
1327 }
1328
1329 /**
1330  * fm10k_update_itr - update the dynamic ITR value based on packet size
1331  *
1332  *      Stores a new ITR value based on strictly on packet size.  The
1333  *      divisors and thresholds used by this function were determined based
1334  *      on theoretical maximum wire speed and testing data, in order to
1335  *      minimize response time while increasing bulk throughput.
1336  *
1337  * @ring_container: Container for rings to have ITR updated
1338  **/
1339 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1340 {
1341         unsigned int avg_wire_size, packets, itr_round;
1342
1343         /* Only update ITR if we are using adaptive setting */
1344         if (!ITR_IS_ADAPTIVE(ring_container->itr))
1345                 goto clear_counts;
1346
1347         packets = ring_container->total_packets;
1348         if (!packets)
1349                 goto clear_counts;
1350
1351         avg_wire_size = ring_container->total_bytes / packets;
1352
1353         /* The following is a crude approximation of:
1354          *  wmem_default / (size + overhead) = desired_pkts_per_int
1355          *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1356          *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1357          *
1358          * Assuming wmem_default is 212992 and overhead is 640 bytes per
1359          * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1360          * formula down to
1361          *
1362          *  (34 * (size + 24)) / (size + 640) = ITR
1363          *
1364          * We first do some math on the packet size and then finally bitshift
1365          * by 8 after rounding up. We also have to account for PCIe link speed
1366          * difference as ITR scales based on this.
1367          */
1368         if (avg_wire_size <= 360) {
1369                 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1370                 avg_wire_size *= 8;
1371                 avg_wire_size += 376;
1372         } else if (avg_wire_size <= 1152) {
1373                 /* 77K ints/sec to 45K ints/sec */
1374                 avg_wire_size *= 3;
1375                 avg_wire_size += 2176;
1376         } else if (avg_wire_size <= 1920) {
1377                 /* 45K ints/sec to 38K ints/sec */
1378                 avg_wire_size += 4480;
1379         } else {
1380                 /* plateau at a limit of 38K ints/sec */
1381                 avg_wire_size = 6656;
1382         }
1383
1384         /* Perform final bitshift for division after rounding up to ensure
1385          * that the calculation will never get below a 1. The bit shift
1386          * accounts for changes in the ITR due to PCIe link speed.
1387          */
1388         itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1389         avg_wire_size += BIT(itr_round) - 1;
1390         avg_wire_size >>= itr_round;
1391
1392         /* write back value and retain adaptive flag */
1393         ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1394
1395 clear_counts:
1396         ring_container->total_bytes = 0;
1397         ring_container->total_packets = 0;
1398 }
1399
1400 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1401 {
1402         /* Enable auto-mask and clear the current mask */
1403         u32 itr = FM10K_ITR_ENABLE;
1404
1405         /* Update Tx ITR */
1406         fm10k_update_itr(&q_vector->tx);
1407
1408         /* Update Rx ITR */
1409         fm10k_update_itr(&q_vector->rx);
1410
1411         /* Store Tx itr in timer slot 0 */
1412         itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1413
1414         /* Shift Rx itr to timer slot 1 */
1415         itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1416
1417         /* Write the final value to the ITR register */
1418         writel(itr, q_vector->itr);
1419 }
1420
1421 static int fm10k_poll(struct napi_struct *napi, int budget)
1422 {
1423         struct fm10k_q_vector *q_vector =
1424                                container_of(napi, struct fm10k_q_vector, napi);
1425         struct fm10k_ring *ring;
1426         int per_ring_budget, work_done = 0;
1427         bool clean_complete = true;
1428
1429         fm10k_for_each_ring(ring, q_vector->tx) {
1430                 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1431                         clean_complete = false;
1432         }
1433
1434         /* Handle case where we are called by netpoll with a budget of 0 */
1435         if (budget <= 0)
1436                 return budget;
1437
1438         /* attempt to distribute budget to each queue fairly, but don't
1439          * allow the budget to go below 1 because we'll exit polling
1440          */
1441         if (q_vector->rx.count > 1)
1442                 per_ring_budget = max(budget / q_vector->rx.count, 1);
1443         else
1444                 per_ring_budget = budget;
1445
1446         fm10k_for_each_ring(ring, q_vector->rx) {
1447                 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1448
1449                 work_done += work;
1450                 if (work >= per_ring_budget)
1451                         clean_complete = false;
1452         }
1453
1454         /* If all work not completed, return budget and keep polling */
1455         if (!clean_complete)
1456                 return budget;
1457
1458         /* Exit the polling mode, but don't re-enable interrupts if stack might
1459          * poll us due to busy-polling
1460          */
1461         if (likely(napi_complete_done(napi, work_done)))
1462                 fm10k_qv_enable(q_vector);
1463
1464         return min(work_done, budget - 1);
1465 }
1466
1467 /**
1468  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1469  * @interface: board private structure to initialize
1470  *
1471  * When QoS (Quality of Service) is enabled, allocate queues for
1472  * each traffic class.  If multiqueue isn't available,then abort QoS
1473  * initialization.
1474  *
1475  * This function handles all combinations of Qos and RSS.
1476  *
1477  **/
1478 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1479 {
1480         struct net_device *dev = interface->netdev;
1481         struct fm10k_ring_feature *f;
1482         int rss_i, i;
1483         int pcs;
1484
1485         /* Map queue offset and counts onto allocated tx queues */
1486         pcs = netdev_get_num_tc(dev);
1487
1488         if (pcs <= 1)
1489                 return false;
1490
1491         /* set QoS mask and indices */
1492         f = &interface->ring_feature[RING_F_QOS];
1493         f->indices = pcs;
1494         f->mask = BIT(fls(pcs - 1)) - 1;
1495
1496         /* determine the upper limit for our current DCB mode */
1497         rss_i = interface->hw.mac.max_queues / pcs;
1498         rss_i = BIT(fls(rss_i) - 1);
1499
1500         /* set RSS mask and indices */
1501         f = &interface->ring_feature[RING_F_RSS];
1502         rss_i = min_t(u16, rss_i, f->limit);
1503         f->indices = rss_i;
1504         f->mask = BIT(fls(rss_i - 1)) - 1;
1505
1506         /* configure pause class to queue mapping */
1507         for (i = 0; i < pcs; i++)
1508                 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1509
1510         interface->num_rx_queues = rss_i * pcs;
1511         interface->num_tx_queues = rss_i * pcs;
1512
1513         return true;
1514 }
1515
1516 /**
1517  * fm10k_set_rss_queues: Allocate queues for RSS
1518  * @interface: board private structure to initialize
1519  *
1520  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1521  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1522  *
1523  **/
1524 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1525 {
1526         struct fm10k_ring_feature *f;
1527         u16 rss_i;
1528
1529         f = &interface->ring_feature[RING_F_RSS];
1530         rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1531
1532         /* record indices and power of 2 mask for RSS */
1533         f->indices = rss_i;
1534         f->mask = BIT(fls(rss_i - 1)) - 1;
1535
1536         interface->num_rx_queues = rss_i;
1537         interface->num_tx_queues = rss_i;
1538
1539         return true;
1540 }
1541
1542 /**
1543  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1544  * @interface: board private structure to initialize
1545  *
1546  * This is the top level queue allocation routine.  The order here is very
1547  * important, starting with the "most" number of features turned on at once,
1548  * and ending with the smallest set of features.  This way large combinations
1549  * can be allocated if they're turned on, and smaller combinations are the
1550  * fall through conditions.
1551  *
1552  **/
1553 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1554 {
1555         /* Attempt to setup QoS and RSS first */
1556         if (fm10k_set_qos_queues(interface))
1557                 return;
1558
1559         /* If we don't have QoS, just fallback to only RSS. */
1560         fm10k_set_rss_queues(interface);
1561 }
1562
1563 /**
1564  * fm10k_reset_num_queues - Reset the number of queues to zero
1565  * @interface: board private structure
1566  *
1567  * This function should be called whenever we need to reset the number of
1568  * queues after an error condition.
1569  */
1570 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1571 {
1572         interface->num_tx_queues = 0;
1573         interface->num_rx_queues = 0;
1574         interface->num_q_vectors = 0;
1575 }
1576
1577 /**
1578  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1579  * @interface: board private structure to initialize
1580  * @v_count: q_vectors allocated on interface, used for ring interleaving
1581  * @v_idx: index of vector in interface struct
1582  * @txr_count: total number of Tx rings to allocate
1583  * @txr_idx: index of first Tx ring to allocate
1584  * @rxr_count: total number of Rx rings to allocate
1585  * @rxr_idx: index of first Rx ring to allocate
1586  *
1587  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1588  **/
1589 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1590                                 unsigned int v_count, unsigned int v_idx,
1591                                 unsigned int txr_count, unsigned int txr_idx,
1592                                 unsigned int rxr_count, unsigned int rxr_idx)
1593 {
1594         struct fm10k_q_vector *q_vector;
1595         struct fm10k_ring *ring;
1596         int ring_count;
1597
1598         ring_count = txr_count + rxr_count;
1599
1600         /* allocate q_vector and rings */
1601         q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1602         if (!q_vector)
1603                 return -ENOMEM;
1604
1605         /* initialize NAPI */
1606         netif_napi_add(interface->netdev, &q_vector->napi,
1607                        fm10k_poll, NAPI_POLL_WEIGHT);
1608
1609         /* tie q_vector and interface together */
1610         interface->q_vector[v_idx] = q_vector;
1611         q_vector->interface = interface;
1612         q_vector->v_idx = v_idx;
1613
1614         /* initialize pointer to rings */
1615         ring = q_vector->ring;
1616
1617         /* save Tx ring container info */
1618         q_vector->tx.ring = ring;
1619         q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1620         q_vector->tx.itr = interface->tx_itr;
1621         q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1622         q_vector->tx.count = txr_count;
1623
1624         while (txr_count) {
1625                 /* assign generic ring traits */
1626                 ring->dev = &interface->pdev->dev;
1627                 ring->netdev = interface->netdev;
1628
1629                 /* configure backlink on ring */
1630                 ring->q_vector = q_vector;
1631
1632                 /* apply Tx specific ring traits */
1633                 ring->count = interface->tx_ring_count;
1634                 ring->queue_index = txr_idx;
1635
1636                 /* assign ring to interface */
1637                 interface->tx_ring[txr_idx] = ring;
1638
1639                 /* update count and index */
1640                 txr_count--;
1641                 txr_idx += v_count;
1642
1643                 /* push pointer to next ring */
1644                 ring++;
1645         }
1646
1647         /* save Rx ring container info */
1648         q_vector->rx.ring = ring;
1649         q_vector->rx.itr = interface->rx_itr;
1650         q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1651         q_vector->rx.count = rxr_count;
1652
1653         while (rxr_count) {
1654                 /* assign generic ring traits */
1655                 ring->dev = &interface->pdev->dev;
1656                 ring->netdev = interface->netdev;
1657                 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1658
1659                 /* configure backlink on ring */
1660                 ring->q_vector = q_vector;
1661
1662                 /* apply Rx specific ring traits */
1663                 ring->count = interface->rx_ring_count;
1664                 ring->queue_index = rxr_idx;
1665
1666                 /* assign ring to interface */
1667                 interface->rx_ring[rxr_idx] = ring;
1668
1669                 /* update count and index */
1670                 rxr_count--;
1671                 rxr_idx += v_count;
1672
1673                 /* push pointer to next ring */
1674                 ring++;
1675         }
1676
1677         fm10k_dbg_q_vector_init(q_vector);
1678
1679         return 0;
1680 }
1681
1682 /**
1683  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1684  * @interface: board private structure to initialize
1685  * @v_idx: Index of vector to be freed
1686  *
1687  * This function frees the memory allocated to the q_vector.  In addition if
1688  * NAPI is enabled it will delete any references to the NAPI struct prior
1689  * to freeing the q_vector.
1690  **/
1691 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1692 {
1693         struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1694         struct fm10k_ring *ring;
1695
1696         fm10k_dbg_q_vector_exit(q_vector);
1697
1698         fm10k_for_each_ring(ring, q_vector->tx)
1699                 interface->tx_ring[ring->queue_index] = NULL;
1700
1701         fm10k_for_each_ring(ring, q_vector->rx)
1702                 interface->rx_ring[ring->queue_index] = NULL;
1703
1704         interface->q_vector[v_idx] = NULL;
1705         netif_napi_del(&q_vector->napi);
1706         kfree_rcu(q_vector, rcu);
1707 }
1708
1709 /**
1710  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1711  * @interface: board private structure to initialize
1712  *
1713  * We allocate one q_vector per queue interrupt.  If allocation fails we
1714  * return -ENOMEM.
1715  **/
1716 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1717 {
1718         unsigned int q_vectors = interface->num_q_vectors;
1719         unsigned int rxr_remaining = interface->num_rx_queues;
1720         unsigned int txr_remaining = interface->num_tx_queues;
1721         unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1722         int err;
1723
1724         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1725                 for (; rxr_remaining; v_idx++) {
1726                         err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1727                                                    0, 0, 1, rxr_idx);
1728                         if (err)
1729                                 goto err_out;
1730
1731                         /* update counts and index */
1732                         rxr_remaining--;
1733                         rxr_idx++;
1734                 }
1735         }
1736
1737         for (; v_idx < q_vectors; v_idx++) {
1738                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1739                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1740
1741                 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1742                                            tqpv, txr_idx,
1743                                            rqpv, rxr_idx);
1744
1745                 if (err)
1746                         goto err_out;
1747
1748                 /* update counts and index */
1749                 rxr_remaining -= rqpv;
1750                 txr_remaining -= tqpv;
1751                 rxr_idx++;
1752                 txr_idx++;
1753         }
1754
1755         return 0;
1756
1757 err_out:
1758         fm10k_reset_num_queues(interface);
1759
1760         while (v_idx--)
1761                 fm10k_free_q_vector(interface, v_idx);
1762
1763         return -ENOMEM;
1764 }
1765
1766 /**
1767  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1768  * @interface: board private structure to initialize
1769  *
1770  * This function frees the memory allocated to the q_vectors.  In addition if
1771  * NAPI is enabled it will delete any references to the NAPI struct prior
1772  * to freeing the q_vector.
1773  **/
1774 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1775 {
1776         int v_idx = interface->num_q_vectors;
1777
1778         fm10k_reset_num_queues(interface);
1779
1780         while (v_idx--)
1781                 fm10k_free_q_vector(interface, v_idx);
1782 }
1783
1784 /**
1785  * f10k_reset_msix_capability - reset MSI-X capability
1786  * @interface: board private structure to initialize
1787  *
1788  * Reset the MSI-X capability back to its starting state
1789  **/
1790 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1791 {
1792         pci_disable_msix(interface->pdev);
1793         kfree(interface->msix_entries);
1794         interface->msix_entries = NULL;
1795 }
1796
1797 /**
1798  * f10k_init_msix_capability - configure MSI-X capability
1799  * @interface: board private structure to initialize
1800  *
1801  * Attempt to configure the interrupts using the best available
1802  * capabilities of the hardware and the kernel.
1803  **/
1804 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1805 {
1806         struct fm10k_hw *hw = &interface->hw;
1807         int v_budget, vector;
1808
1809         /* It's easy to be greedy for MSI-X vectors, but it really
1810          * doesn't do us much good if we have a lot more vectors
1811          * than CPU's.  So let's be conservative and only ask for
1812          * (roughly) the same number of vectors as there are CPU's.
1813          * the default is to use pairs of vectors
1814          */
1815         v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1816         v_budget = min_t(u16, v_budget, num_online_cpus());
1817
1818         /* account for vectors not related to queues */
1819         v_budget += NON_Q_VECTORS;
1820
1821         /* At the same time, hardware can only support a maximum of
1822          * hw.mac->max_msix_vectors vectors.  With features
1823          * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1824          * descriptor queues supported by our device.  Thus, we cap it off in
1825          * those rare cases where the cpu count also exceeds our vector limit.
1826          */
1827         v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1828
1829         /* A failure in MSI-X entry allocation is fatal. */
1830         interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1831                                           GFP_KERNEL);
1832         if (!interface->msix_entries)
1833                 return -ENOMEM;
1834
1835         /* populate entry values */
1836         for (vector = 0; vector < v_budget; vector++)
1837                 interface->msix_entries[vector].entry = vector;
1838
1839         /* Attempt to enable MSI-X with requested value */
1840         v_budget = pci_enable_msix_range(interface->pdev,
1841                                          interface->msix_entries,
1842                                          MIN_MSIX_COUNT(hw),
1843                                          v_budget);
1844         if (v_budget < 0) {
1845                 kfree(interface->msix_entries);
1846                 interface->msix_entries = NULL;
1847                 return v_budget;
1848         }
1849
1850         /* record the number of queues available for q_vectors */
1851         interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1852
1853         return 0;
1854 }
1855
1856 /**
1857  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1858  * @interface: Interface structure continaining rings and devices
1859  *
1860  * Cache the descriptor ring offsets for Qos
1861  **/
1862 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1863 {
1864         struct net_device *dev = interface->netdev;
1865         int pc, offset, rss_i, i;
1866         u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1867         u8 num_pcs = netdev_get_num_tc(dev);
1868
1869         if (num_pcs <= 1)
1870                 return false;
1871
1872         rss_i = interface->ring_feature[RING_F_RSS].indices;
1873
1874         for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1875                 int q_idx = pc;
1876
1877                 for (i = 0; i < rss_i; i++) {
1878                         interface->tx_ring[offset + i]->reg_idx = q_idx;
1879                         interface->tx_ring[offset + i]->qos_pc = pc;
1880                         interface->rx_ring[offset + i]->reg_idx = q_idx;
1881                         interface->rx_ring[offset + i]->qos_pc = pc;
1882                         q_idx += pc_stride;
1883                 }
1884         }
1885
1886         return true;
1887 }
1888
1889 /**
1890  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1891  * @interface: Interface structure continaining rings and devices
1892  *
1893  * Cache the descriptor ring offsets for RSS
1894  **/
1895 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1896 {
1897         int i;
1898
1899         for (i = 0; i < interface->num_rx_queues; i++)
1900                 interface->rx_ring[i]->reg_idx = i;
1901
1902         for (i = 0; i < interface->num_tx_queues; i++)
1903                 interface->tx_ring[i]->reg_idx = i;
1904 }
1905
1906 /**
1907  * fm10k_assign_rings - Map rings to network devices
1908  * @interface: Interface structure containing rings and devices
1909  *
1910  * This function is meant to go though and configure both the network
1911  * devices so that they contain rings, and configure the rings so that
1912  * they function with their network devices.
1913  **/
1914 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1915 {
1916         if (fm10k_cache_ring_qos(interface))
1917                 return;
1918
1919         fm10k_cache_ring_rss(interface);
1920 }
1921
1922 static void fm10k_init_reta(struct fm10k_intfc *interface)
1923 {
1924         u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1925         u32 reta;
1926
1927         /* If the Rx flow indirection table has been configured manually, we
1928          * need to maintain it when possible.
1929          */
1930         if (netif_is_rxfh_configured(interface->netdev)) {
1931                 for (i = FM10K_RETA_SIZE; i--;) {
1932                         reta = interface->reta[i];
1933                         if ((((reta << 24) >> 24) < rss_i) &&
1934                             (((reta << 16) >> 24) < rss_i) &&
1935                             (((reta <<  8) >> 24) < rss_i) &&
1936                             (((reta)       >> 24) < rss_i))
1937                                 continue;
1938
1939                         /* this should never happen */
1940                         dev_err(&interface->pdev->dev,
1941                                 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1942                         goto repopulate_reta;
1943                 }
1944
1945                 /* do nothing if all of the elements are in bounds */
1946                 return;
1947         }
1948
1949 repopulate_reta:
1950         fm10k_write_reta(interface, NULL);
1951 }
1952
1953 /**
1954  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1955  * @interface: board private structure to initialize
1956  *
1957  * We determine which queueing scheme to use based on...
1958  * - Hardware queue count (num_*_queues)
1959  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1960  **/
1961 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1962 {
1963         int err;
1964
1965         /* Number of supported queues */
1966         fm10k_set_num_queues(interface);
1967
1968         /* Configure MSI-X capability */
1969         err = fm10k_init_msix_capability(interface);
1970         if (err) {
1971                 dev_err(&interface->pdev->dev,
1972                         "Unable to initialize MSI-X capability\n");
1973                 goto err_init_msix;
1974         }
1975
1976         /* Allocate memory for queues */
1977         err = fm10k_alloc_q_vectors(interface);
1978         if (err) {
1979                 dev_err(&interface->pdev->dev,
1980                         "Unable to allocate queue vectors\n");
1981                 goto err_alloc_q_vectors;
1982         }
1983
1984         /* Map rings to devices, and map devices to physical queues */
1985         fm10k_assign_rings(interface);
1986
1987         /* Initialize RSS redirection table */
1988         fm10k_init_reta(interface);
1989
1990         return 0;
1991
1992 err_alloc_q_vectors:
1993         fm10k_reset_msix_capability(interface);
1994 err_init_msix:
1995         fm10k_reset_num_queues(interface);
1996         return err;
1997 }
1998
1999 /**
2000  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2001  * @interface: board private structure to clear queueing scheme on
2002  *
2003  * We go through and clear queueing specific resources and reset the structure
2004  * to pre-load conditions
2005  **/
2006 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2007 {
2008         fm10k_free_q_vectors(interface);
2009         fm10k_reset_msix_capability(interface);
2010 }
This page took 0.15118 seconds and 4 git commands to generate.