1 // SPDX-License-Identifier: GPL-2.0
3 * This file is the ADC part of the STM32 DFSDM driver
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
27 #include "stm32-dfsdm.h"
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING 100
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
45 * Data are output as two's complement data in a 24 bit field.
46 * Data from filters are in the range +/-2^(n-1)
47 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49 * So, the resolution of samples from filter is actually limited to 23 bits
51 #define DFSDM_DATA_RES 24
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
58 enum sd_converter_type {
63 struct stm32_dfsdm_dev_data {
65 int (*init)(struct device *dev, struct iio_dev *indio_dev);
66 unsigned int num_channels;
67 const struct regmap_config *regmap_cfg;
70 struct stm32_dfsdm_adc {
71 struct stm32_dfsdm *dfsdm;
72 const struct stm32_dfsdm_dev_data *dev_data;
78 unsigned int oversamp;
79 struct iio_hw_consumer *hwc;
80 struct completion completion;
84 unsigned int spi_freq; /* SPI bus clock frequency */
85 unsigned int sample_freq; /* Sample frequency after filter decimation */
86 int (*cb)(const void *data, size_t size, void *cb_priv);
91 unsigned int bufi; /* Buffer current position */
92 unsigned int buf_sz; /* Buffer size */
93 struct dma_chan *dma_chan;
97 struct stm32_dfsdm_str2field {
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104 { "SPI_R", 0 }, /* SPI with data on rising edge */
105 { "SPI_F", 1 }, /* SPI with data on falling edge */
106 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113 /* External SPI clock (CLKIN x) */
114 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115 /* Internal SPI clock (CLKOUT) */
116 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117 /* Internal SPI clock divided by 2 (falling edge) */
118 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119 /* Internal SPI clock divided by 2 (falling edge) */
120 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
124 static int stm32_dfsdm_str2val(const char *str,
125 const struct stm32_dfsdm_str2field *list)
127 const struct stm32_dfsdm_str2field *p = list;
129 for (p = list; p && p->name; p++)
130 if (!strcmp(p->name, str))
137 * struct stm32_dfsdm_trig_info - DFSDM trigger info
138 * @name: name of the trigger, corresponding to its source
139 * @jextsel: trigger signal selection
141 struct stm32_dfsdm_trig_info {
143 unsigned int jextsel;
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148 STM32_DFSDM_JEXTEN_DISABLED,
149 STM32_DFSDM_JEXTEN_RISING_EDGE,
150 STM32_DFSDM_JEXTEN_FALLING_EDGE,
151 STM32_DFSDM_EXTEN_BOTH_EDGES,
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171 struct iio_trigger *trig)
175 /* lookup triggers registered by stm32 timer trigger driver */
176 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
178 * Checking both stm32 timer trigger type and trig name
179 * should be safe against arbitrary trigger names.
181 if ((is_stm32_timer_trigger(trig) ||
182 is_stm32_lptim_trigger(trig)) &&
183 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184 return stm32_dfsdm_trigs[i].jextsel;
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192 unsigned int fast, unsigned int oversamp)
194 unsigned int i, d, fosr, iosr;
197 unsigned int m = 1; /* multiplication factor */
198 unsigned int p = fl->ford; /* filter order (ford) */
199 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
201 pr_debug("%s: Requested oversampling: %d\n", __func__, oversamp);
203 * This function tries to compute filter oversampling and integrator
204 * oversampling, base on oversampling ratio requested by user.
206 * Decimation d depends on the filter order and the oversampling ratios.
208 * fosr: filter over sampling ratio
209 * iosr: integrator over sampling ratio
211 if (fl->ford == DFSDM_FASTSINC_ORDER) {
217 * Look for filter and integrator oversampling ratios which allows
218 * to maximize data output resolution.
220 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
224 else if (fl->ford == DFSDM_FASTSINC_ORDER)
225 d = fosr * (iosr + 3) + 2;
227 d = fosr * (iosr - 1 + p) + p;
231 else if (d != oversamp)
234 * Check resolution (limited to signed 32 bits)
237 * res = m * fosr^p x iosr (with m=1, p=ford)
239 * res = m * fosr^p x iosr (with m=2, p=2)
242 for (i = p - 1; i > 0; i--) {
243 res = res * (u64)fosr;
244 if (res > DFSDM_DATA_MAX)
247 if (res > DFSDM_DATA_MAX)
250 res = res * (u64)m * (u64)iosr;
251 if (res > DFSDM_DATA_MAX)
254 if (res >= flo->res) {
259 bits = fls(flo->res);
260 /* 8 LBSs in data register contain chan info */
263 /* if resolution is not a power of two */
264 if (flo->res > BIT(bits - 1))
269 shift = DFSDM_DATA_RES - bits;
271 * Compute right/left shift
272 * Right shift is performed by hardware
273 * when transferring samples to data register.
274 * Left shift is done by software on buffer
277 /* Resolution is lower than 24 bits */
282 * If resolution is 24 bits or more,
283 * max positive value may be ambiguous
284 * (equal to max negative value as sign
286 * Reduce resolution to 23 bits (rshift)
287 * to keep the sign on bit 23 and treat
288 * saturation before rescaling on 24
291 flo->rshift = 1 - shift;
297 pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
298 __func__, fast, flo->fosr, flo->iosr,
299 flo->res, bits, flo->rshift,
311 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
312 unsigned int oversamp)
314 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
315 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
318 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
319 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
321 ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
322 ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
323 if (ret0 < 0 && ret1 < 0) {
324 dev_err(&indio_dev->dev,
325 "Filter parameters not found: errors %d/%d\n",
333 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
335 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
336 struct regmap *regmap = adc->dfsdm->regmap;
337 const struct iio_chan_spec *chan;
341 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
342 chan = indio_dev->channels + bit;
343 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
344 DFSDM_CHCFGR1_CHEN_MASK,
345 DFSDM_CHCFGR1_CHEN(1));
353 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
355 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
356 struct regmap *regmap = adc->dfsdm->regmap;
357 const struct iio_chan_spec *chan;
360 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
361 chan = indio_dev->channels + bit;
362 regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
363 DFSDM_CHCFGR1_CHEN_MASK,
364 DFSDM_CHCFGR1_CHEN(0));
368 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
369 struct stm32_dfsdm_channel *ch)
371 unsigned int id = ch->id;
372 struct regmap *regmap = dfsdm->regmap;
375 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
376 DFSDM_CHCFGR1_SITP_MASK,
377 DFSDM_CHCFGR1_SITP(ch->type));
380 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 DFSDM_CHCFGR1_SPICKSEL_MASK,
382 DFSDM_CHCFGR1_SPICKSEL(ch->src));
385 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 DFSDM_CHCFGR1_CHINSEL_MASK,
387 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
390 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
392 struct iio_trigger *trig)
394 struct stm32_dfsdm *dfsdm = adc->dfsdm;
398 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
399 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
403 /* Nothing more to do for injected (scan mode/triggered) conversions */
404 if (adc->nconv > 1 || trig)
407 /* Software start (single or continuous) regular conversion */
408 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
409 DFSDM_CR1_RSWSTART_MASK,
410 DFSDM_CR1_RSWSTART(1));
413 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
416 /* Disable conversion */
417 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
418 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
421 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
423 struct iio_trigger *trig)
425 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
426 struct regmap *regmap = adc->dfsdm->regmap;
427 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
431 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
435 /* set trigger source and polarity (default to rising edge) */
437 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
440 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
441 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
442 DFSDM_CR1_JEXTSEL(jextsel) |
443 DFSDM_CR1_JEXTEN(jexten));
450 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
452 struct iio_trigger *trig)
454 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
455 struct regmap *regmap = adc->dfsdm->regmap;
456 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
457 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
458 const struct iio_chan_spec *chan;
465 * In continuous mode, use fast mode configuration,
466 * if it provides a better resolution.
468 if (adc->nconv == 1 && !trig &&
469 (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
470 if (fl->flo[1].res >= fl->flo[0].res) {
479 for_each_set_bit(bit, &adc->smask,
480 sizeof(adc->smask) * BITS_PER_BYTE) {
481 chan = indio_dev->channels + bit;
483 ret = regmap_update_bits(regmap,
484 DFSDM_CHCFGR2(chan->channel),
485 DFSDM_CHCFGR2_DTRBS_MASK,
486 DFSDM_CHCFGR2_DTRBS(flo->rshift));
494 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
496 struct iio_trigger *trig)
498 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
499 struct regmap *regmap = adc->dfsdm->regmap;
500 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
501 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
503 const struct iio_chan_spec *chan;
504 unsigned int bit, jchg = 0;
507 /* Average integrator oversampling */
508 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
509 DFSDM_FCR_IOSR(flo->iosr - 1));
513 /* Filter order and Oversampling */
514 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
515 DFSDM_FCR_FOSR(flo->fosr - 1));
519 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
520 DFSDM_FCR_FORD(fl->ford));
524 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
528 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
530 DFSDM_CR1_FAST(fl->fast));
535 * DFSDM modes configuration W.R.T audio/iio type modes
536 * ----------------------------------------------------------------
537 * Modes | regular | regular | injected | injected |
538 * | | continuous | | + scan |
539 * --------------|---------|--------------|----------|------------|
540 * single conv | x | | | |
542 * --------------|---------|--------------|----------|------------|
543 * 1 Audio chan | | sample freq | | |
544 * | | or sync_mode | | |
545 * --------------|---------|--------------|----------|------------|
546 * 1 IIO chan | | sample freq | trigger | |
547 * | | or sync_mode | | |
548 * --------------|---------|--------------|----------|------------|
549 * 2+ IIO chans | | | | trigger or |
550 * | | | | sync_mode |
551 * ----------------------------------------------------------------
553 if (adc->nconv == 1 && !trig) {
554 bit = __ffs(adc->smask);
555 chan = indio_dev->channels + bit;
557 /* Use regular conversion for single channel without trigger */
558 cr1 = DFSDM_CR1_RCH(chan->channel);
560 /* Continuous conversions triggered by SPI clk in buffer mode */
561 if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
562 cr1 |= DFSDM_CR1_RCONT(1);
564 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
566 /* Use injected conversion for multiple channels */
567 for_each_set_bit(bit, &adc->smask,
568 sizeof(adc->smask) * BITS_PER_BYTE) {
569 chan = indio_dev->channels + bit;
570 jchg |= BIT(chan->channel);
572 ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
576 /* Use scan mode for multiple channels */
577 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
580 * Continuous conversions not supported in injected mode,
582 * - conversions in sync with filter 0
583 * - triggered conversions
585 if (!fl->sync_mode && !trig)
587 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
590 return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
594 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
595 struct iio_dev *indio_dev,
596 struct iio_chan_spec *ch)
598 struct stm32_dfsdm_channel *df_ch;
600 int chan_idx = ch->scan_index;
603 ret = of_property_read_u32_index(indio_dev->dev.of_node,
604 "st,adc-channels", chan_idx,
607 dev_err(&indio_dev->dev,
608 " Error parsing 'st,adc-channels' for idx %d\n",
612 if (ch->channel >= dfsdm->num_chs) {
613 dev_err(&indio_dev->dev,
614 " Error bad channel number %d (max = %d)\n",
615 ch->channel, dfsdm->num_chs);
619 ret = of_property_read_string_index(indio_dev->dev.of_node,
620 "st,adc-channel-names", chan_idx,
621 &ch->datasheet_name);
623 dev_err(&indio_dev->dev,
624 " Error parsing 'st,adc-channel-names' for idx %d\n",
629 df_ch = &dfsdm->ch_list[ch->channel];
630 df_ch->id = ch->channel;
632 ret = of_property_read_string_index(indio_dev->dev.of_node,
633 "st,adc-channel-types", chan_idx,
636 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
644 ret = of_property_read_string_index(indio_dev->dev.of_node,
645 "st,adc-channel-clk-src", chan_idx,
648 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
656 ret = of_property_read_u32_index(indio_dev->dev.of_node,
657 "st,adc-alt-channel", chan_idx,
665 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
667 const struct iio_chan_spec *chan,
670 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
672 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
675 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
676 unsigned int sample_freq,
677 unsigned int spi_freq)
679 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
680 unsigned int oversamp;
683 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
684 if (spi_freq % sample_freq)
685 dev_dbg(&indio_dev->dev,
686 "Rate not accurate. requested (%u), actual (%u)\n",
687 sample_freq, spi_freq / oversamp);
689 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
693 adc->sample_freq = spi_freq / oversamp;
694 adc->oversamp = oversamp;
699 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
701 const struct iio_chan_spec *chan,
702 const char *buf, size_t len)
704 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
705 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
706 unsigned int sample_freq = adc->sample_freq;
707 unsigned int spi_freq;
710 dev_err(&indio_dev->dev, "enter %s\n", __func__);
711 /* If DFSDM is master on SPI, SPI freq can not be updated */
712 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
715 ret = kstrtoint(buf, 0, &spi_freq);
723 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
727 adc->spi_freq = spi_freq;
732 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
733 struct iio_trigger *trig)
735 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
736 struct regmap *regmap = adc->dfsdm->regmap;
739 ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
743 ret = stm32_dfsdm_start_channel(indio_dev);
747 ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
751 ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
753 goto filter_unconfigure;
758 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
759 DFSDM_CR1_CFG_MASK, 0);
761 stm32_dfsdm_stop_channel(indio_dev);
766 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
768 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
769 struct regmap *regmap = adc->dfsdm->regmap;
771 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
773 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
774 DFSDM_CR1_CFG_MASK, 0);
776 stm32_dfsdm_stop_channel(indio_dev);
779 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
782 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
783 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
784 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
787 * DMA cyclic transfers are used, buffer is split into two periods.
789 * - always one buffer (period) DMA is working on
790 * - one buffer (period) driver pushed to ASoC side.
792 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
793 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
798 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
800 struct dma_tx_state state;
801 enum dma_status status;
803 status = dmaengine_tx_status(adc->dma_chan,
804 adc->dma_chan->cookie,
806 if (status == DMA_IN_PROGRESS) {
807 /* Residue is size in bytes from end of buffer */
808 unsigned int i = adc->buf_sz - state.residue;
811 /* Return available bytes */
813 size = i - adc->bufi;
815 size = adc->buf_sz + i - adc->bufi;
823 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
826 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
827 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
828 unsigned int i = adc->nconv;
832 /* Mask 8 LSB that contains the channel ID */
834 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
838 * Samples from filter are retrieved with 23 bits resolution
839 * or less. Shift left to align MSB on 24 bits.
841 *ptr <<= flo->lshift;
847 static void stm32_dfsdm_dma_buffer_done(void *data)
849 struct iio_dev *indio_dev = data;
850 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
851 int available = stm32_dfsdm_adc_dma_residue(adc);
855 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
856 * offers only an interface to push data samples per samples.
857 * For this reason IIO buffer interface is not used and interface is
858 * bypassed using a private callback registered by ASoC.
859 * This should be a temporary solution waiting a cyclic DMA engine
863 dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
864 adc->bufi, available);
867 while (available >= indio_dev->scan_bytes) {
868 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
870 stm32_dfsdm_process_data(adc, buffer);
872 available -= indio_dev->scan_bytes;
873 adc->bufi += indio_dev->scan_bytes;
874 if (adc->bufi >= adc->buf_sz) {
876 adc->cb(&adc->rx_buf[old_pos],
877 adc->buf_sz - old_pos, adc->cb_priv);
882 * In DMA mode the trigger services of IIO are not used
883 * (e.g. no call to iio_trigger_poll).
884 * Calling irq handler associated to the hardware trigger is not
885 * relevant as the conversions have already been done. Data
886 * transfers are performed directly in DMA callback instead.
887 * This implementation avoids to call trigger irq handler that
888 * may sleep, in an atomic context (DMA irq handler context).
890 if (adc->dev_data->type == DFSDM_IIO)
891 iio_push_to_buffers(indio_dev, buffer);
894 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
898 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
900 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
902 * The DFSDM supports half-word transfers. However, for 16 bits record,
903 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
906 struct dma_slave_config config = {
907 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
908 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
910 struct dma_async_tx_descriptor *desc;
917 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
918 adc->buf_sz, adc->buf_sz / 2);
920 if (adc->nconv == 1 && !indio_dev->trig)
921 config.src_addr += DFSDM_RDATAR(adc->fl_id);
923 config.src_addr += DFSDM_JDATAR(adc->fl_id);
924 ret = dmaengine_slave_config(adc->dma_chan, &config);
928 /* Prepare a DMA cyclic transaction */
929 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
931 adc->buf_sz, adc->buf_sz / 2,
937 desc->callback = stm32_dfsdm_dma_buffer_done;
938 desc->callback_param = indio_dev;
940 cookie = dmaengine_submit(desc);
941 ret = dma_submit_error(cookie);
945 /* Issue pending DMA requests */
946 dma_async_issue_pending(adc->dma_chan);
948 if (adc->nconv == 1 && !indio_dev->trig) {
949 /* Enable regular DMA transfer*/
950 ret = regmap_update_bits(adc->dfsdm->regmap,
951 DFSDM_CR1(adc->fl_id),
952 DFSDM_CR1_RDMAEN_MASK,
953 DFSDM_CR1_RDMAEN_MASK);
955 /* Enable injected DMA transfer*/
956 ret = regmap_update_bits(adc->dfsdm->regmap,
957 DFSDM_CR1(adc->fl_id),
958 DFSDM_CR1_JDMAEN_MASK,
959 DFSDM_CR1_JDMAEN_MASK);
968 dmaengine_terminate_all(adc->dma_chan);
973 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
975 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
980 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
981 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
982 dmaengine_terminate_all(adc->dma_chan);
985 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
986 const unsigned long *scan_mask)
988 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
990 adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
991 adc->smask = *scan_mask;
993 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
998 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1000 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1003 /* Reset adc buffer index */
1007 ret = iio_hw_consumer_enable(adc->hwc);
1012 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1016 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1018 dev_err(&indio_dev->dev, "Can't start DMA\n");
1022 ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1024 dev_err(&indio_dev->dev, "Can't start conversion\n");
1031 stm32_dfsdm_adc_dma_stop(indio_dev);
1033 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1036 iio_hw_consumer_disable(adc->hwc);
1041 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1043 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1045 stm32_dfsdm_stop_conv(indio_dev);
1047 stm32_dfsdm_adc_dma_stop(indio_dev);
1049 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1052 iio_hw_consumer_disable(adc->hwc);
1057 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1058 .postenable = &stm32_dfsdm_postenable,
1059 .predisable = &stm32_dfsdm_predisable,
1063 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1064 * DMA transfer period is achieved.
1066 * @iio_dev: Handle to IIO device.
1067 * @cb: Pointer to callback function:
1068 * - data: pointer to data buffer
1069 * - size: size in byte of the data buffer
1070 * - private: pointer to consumer private structure.
1071 * @private: Pointer to consumer private structure.
1073 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1074 int (*cb)(const void *data, size_t size,
1078 struct stm32_dfsdm_adc *adc;
1082 adc = iio_priv(iio_dev);
1085 adc->cb_priv = private;
1089 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1092 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1094 * @iio_dev: Handle to IIO device.
1096 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1098 struct stm32_dfsdm_adc *adc;
1102 adc = iio_priv(iio_dev);
1105 adc->cb_priv = NULL;
1109 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1111 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1112 const struct iio_chan_spec *chan, int *res)
1114 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1118 reinit_completion(&adc->completion);
1122 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1126 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1127 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1132 adc->smask = BIT(chan->scan_index);
1133 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1135 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1136 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1140 timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1143 /* Mask IRQ for regular conversion achievement*/
1144 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1145 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1149 else if (timeout < 0)
1154 stm32_dfsdm_stop_conv(indio_dev);
1156 stm32_dfsdm_process_data(adc, res);
1159 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1164 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1165 struct iio_chan_spec const *chan,
1166 int val, int val2, long mask)
1168 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1169 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1170 unsigned int spi_freq;
1174 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1175 spi_freq = adc->dfsdm->spi_master_freq;
1177 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1178 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1179 spi_freq = adc->dfsdm->spi_master_freq / 2;
1182 spi_freq = adc->spi_freq;
1186 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1187 ret = iio_device_claim_direct_mode(indio_dev);
1191 ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1193 dev_dbg(&indio_dev->dev,
1194 "Sampling rate changed from (%u) to (%u)\n",
1195 adc->sample_freq, spi_freq / val);
1196 adc->oversamp = val;
1197 adc->sample_freq = spi_freq / val;
1199 iio_device_release_direct_mode(indio_dev);
1202 case IIO_CHAN_INFO_SAMP_FREQ:
1206 ret = iio_device_claim_direct_mode(indio_dev);
1210 ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1211 iio_device_release_direct_mode(indio_dev);
1218 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1219 struct iio_chan_spec const *chan, int *val,
1220 int *val2, long mask)
1222 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1226 case IIO_CHAN_INFO_RAW:
1227 ret = iio_device_claim_direct_mode(indio_dev);
1230 ret = iio_hw_consumer_enable(adc->hwc);
1232 dev_err(&indio_dev->dev,
1233 "%s: IIO enable failed (channel %d)\n",
1234 __func__, chan->channel);
1235 iio_device_release_direct_mode(indio_dev);
1238 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1239 iio_hw_consumer_disable(adc->hwc);
1241 dev_err(&indio_dev->dev,
1242 "%s: Conversion failed (channel %d)\n",
1243 __func__, chan->channel);
1244 iio_device_release_direct_mode(indio_dev);
1247 iio_device_release_direct_mode(indio_dev);
1250 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1251 *val = adc->oversamp;
1255 case IIO_CHAN_INFO_SAMP_FREQ:
1256 *val = adc->sample_freq;
1264 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1265 struct iio_trigger *trig)
1267 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1270 static const struct iio_info stm32_dfsdm_info_audio = {
1271 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1272 .read_raw = stm32_dfsdm_read_raw,
1273 .write_raw = stm32_dfsdm_write_raw,
1274 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1277 static const struct iio_info stm32_dfsdm_info_adc = {
1278 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1279 .read_raw = stm32_dfsdm_read_raw,
1280 .write_raw = stm32_dfsdm_write_raw,
1281 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1282 .validate_trigger = stm32_dfsdm_validate_trigger,
1285 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1287 struct iio_dev *indio_dev = arg;
1288 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1289 struct regmap *regmap = adc->dfsdm->regmap;
1290 unsigned int status, int_en;
1292 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1293 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1295 if (status & DFSDM_ISR_REOCF_MASK) {
1296 /* Read the data register clean the IRQ status */
1297 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1298 complete(&adc->completion);
1301 if (status & DFSDM_ISR_ROVRF_MASK) {
1302 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1303 dev_warn(&indio_dev->dev, "Overrun detected\n");
1304 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1305 DFSDM_ICR_CLRROVRF_MASK,
1306 DFSDM_ICR_CLRROVRF_MASK);
1313 * Define external info for SPI Frequency and audio sampling rate that can be
1314 * configured by ASoC driver through consumer.h API
1316 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1317 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1319 .name = "spi_clk_freq",
1320 .shared = IIO_SHARED_BY_TYPE,
1321 .read = dfsdm_adc_audio_get_spiclk,
1322 .write = dfsdm_adc_audio_set_spiclk,
1327 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1329 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1331 if (adc->dma_chan) {
1332 dma_free_coherent(adc->dma_chan->device->dev,
1333 DFSDM_DMA_BUFFER_SIZE,
1334 adc->rx_buf, adc->dma_buf);
1335 dma_release_channel(adc->dma_chan);
1339 static int stm32_dfsdm_dma_request(struct device *dev,
1340 struct iio_dev *indio_dev)
1342 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1344 adc->dma_chan = dma_request_chan(dev, "rx");
1345 if (IS_ERR(adc->dma_chan)) {
1346 int ret = PTR_ERR(adc->dma_chan);
1348 adc->dma_chan = NULL;
1352 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1353 DFSDM_DMA_BUFFER_SIZE,
1354 &adc->dma_buf, GFP_KERNEL);
1356 dma_release_channel(adc->dma_chan);
1360 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1361 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1366 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1367 struct iio_chan_spec *ch)
1369 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1372 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1376 ch->type = IIO_VOLTAGE;
1380 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1381 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1383 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1384 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1385 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1387 if (adc->dev_data->type == DFSDM_AUDIO) {
1388 ch->ext_info = dfsdm_adc_audio_ext_info;
1390 ch->scan_type.shift = 8;
1392 ch->scan_type.sign = 's';
1393 ch->scan_type.realbits = 24;
1394 ch->scan_type.storagebits = 32;
1396 return stm32_dfsdm_chan_configure(adc->dfsdm,
1397 &adc->dfsdm->ch_list[ch->channel]);
1400 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1402 struct iio_chan_spec *ch;
1403 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1404 struct stm32_dfsdm_channel *d_ch;
1407 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1413 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1415 dev_err(&indio_dev->dev, "Channels init failed\n");
1418 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1420 d_ch = &adc->dfsdm->ch_list[ch->channel];
1421 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1422 adc->spi_freq = adc->dfsdm->spi_master_freq;
1424 indio_dev->num_channels = 1;
1425 indio_dev->channels = ch;
1427 return stm32_dfsdm_dma_request(dev, indio_dev);
1430 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1432 struct iio_chan_spec *ch;
1433 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1437 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1438 ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1442 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1444 if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1445 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1446 return num_ch < 0 ? num_ch : -EINVAL;
1449 /* Bind to SD modulator IIO device */
1450 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1451 if (IS_ERR(adc->hwc))
1452 return -EPROBE_DEFER;
1454 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1459 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1460 ch[chan_idx].scan_index = chan_idx;
1461 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1463 dev_err(&indio_dev->dev, "Channels init failed\n");
1468 indio_dev->num_channels = num_ch;
1469 indio_dev->channels = ch;
1471 init_completion(&adc->completion);
1473 /* Optionally request DMA */
1474 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1476 if (ret != -ENODEV) {
1477 if (ret != -EPROBE_DEFER)
1479 "DMA channel request failed with %d\n",
1484 dev_dbg(dev, "No DMA support\n");
1488 ret = iio_triggered_buffer_setup(indio_dev,
1489 &iio_pollfunc_store_time, NULL,
1490 &stm32_dfsdm_buffer_setup_ops);
1492 stm32_dfsdm_dma_release(indio_dev);
1493 dev_err(&indio_dev->dev, "buffer setup failed\n");
1497 /* lptimer/timer hardware triggers */
1498 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1503 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1505 .init = stm32_dfsdm_adc_init,
1508 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509 .type = DFSDM_AUDIO,
1510 .init = stm32_dfsdm_audio_init,
1513 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1515 .compatible = "st,stm32-dfsdm-adc",
1516 .data = &stm32h7_dfsdm_adc_data,
1519 .compatible = "st,stm32-dfsdm-dmic",
1520 .data = &stm32h7_dfsdm_audio_data,
1525 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1527 struct device *dev = &pdev->dev;
1528 struct stm32_dfsdm_adc *adc;
1529 struct device_node *np = dev->of_node;
1530 const struct stm32_dfsdm_dev_data *dev_data;
1531 struct iio_dev *iio;
1535 dev_data = of_device_get_match_data(dev);
1536 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1538 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1542 adc = iio_priv(iio);
1543 adc->dfsdm = dev_get_drvdata(dev->parent);
1545 iio->dev.of_node = np;
1546 iio->modes = INDIO_DIRECT_MODE;
1548 platform_set_drvdata(pdev, iio);
1550 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552 dev_err(dev, "Missing or bad reg property\n");
1556 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1559 if (dev_data->type == DFSDM_AUDIO) {
1560 iio->info = &stm32_dfsdm_info_audio;
1561 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1563 iio->info = &stm32_dfsdm_info_adc;
1564 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1569 * In a first step IRQs generated for channels are not treated.
1570 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1572 irq = platform_get_irq(pdev, 0);
1576 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577 0, pdev->name, iio);
1579 dev_err(dev, "Failed to request IRQ\n");
1583 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1585 dev_err(dev, "Failed to set filter order\n");
1589 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1591 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1593 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1595 adc->dev_data = dev_data;
1596 ret = dev_data->init(dev, iio);
1600 ret = iio_device_register(iio);
1604 if (dev_data->type == DFSDM_AUDIO) {
1605 ret = of_platform_populate(np, NULL, NULL, dev);
1607 dev_err(dev, "Failed to find an audio DAI\n");
1608 goto err_unregister;
1615 iio_device_unregister(iio);
1617 stm32_dfsdm_dma_release(iio);
1622 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1624 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1627 if (adc->dev_data->type == DFSDM_AUDIO)
1628 of_platform_depopulate(&pdev->dev);
1629 iio_device_unregister(indio_dev);
1630 stm32_dfsdm_dma_release(indio_dev);
1635 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1637 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1639 if (iio_buffer_enabled(indio_dev))
1640 stm32_dfsdm_predisable(indio_dev);
1645 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1647 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649 const struct iio_chan_spec *chan;
1650 struct stm32_dfsdm_channel *ch;
1653 /* restore channels configuration */
1654 for (i = 0; i < indio_dev->num_channels; i++) {
1655 chan = indio_dev->channels + i;
1656 ch = &adc->dfsdm->ch_list[chan->channel];
1657 ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1662 if (iio_buffer_enabled(indio_dev))
1663 stm32_dfsdm_postenable(indio_dev);
1668 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1673 .name = "stm32-dfsdm-adc",
1674 .of_match_table = stm32_dfsdm_adc_match,
1675 .pm = &stm32_dfsdm_adc_pm_ops,
1677 .probe = stm32_dfsdm_adc_probe,
1678 .remove = stm32_dfsdm_adc_remove,
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1684 MODULE_LICENSE("GPL v2");