]> Git Repo - linux.git/blob - drivers/crypto/qce/sha.c
drm/nouveau/kms: Don't change EDID when it hasn't actually changed
[linux.git] / drivers / crypto / qce / sha.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5
6 #include <linux/device.h>
7 #include <linux/interrupt.h>
8 #include <crypto/internal/hash.h>
9
10 #include "common.h"
11 #include "core.h"
12 #include "sha.h"
13
14 /* crypto hw padding constant for first operation */
15 #define SHA_PADDING             64
16 #define SHA_PADDING_MASK        (SHA_PADDING - 1)
17
18 static LIST_HEAD(ahash_algs);
19
20 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
21         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
22 };
23
24 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
25         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
26         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
27 };
28
29 static void qce_ahash_done(void *data)
30 {
31         struct crypto_async_request *async_req = data;
32         struct ahash_request *req = ahash_request_cast(async_req);
33         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
34         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
35         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
36         struct qce_device *qce = tmpl->qce;
37         struct qce_result_dump *result = qce->dma.result_buf;
38         unsigned int digestsize = crypto_ahash_digestsize(ahash);
39         int error;
40         u32 status;
41
42         error = qce_dma_terminate_all(&qce->dma);
43         if (error)
44                 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
45
46         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
47         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
48
49         memcpy(rctx->digest, result->auth_iv, digestsize);
50         if (req->result)
51                 memcpy(req->result, result->auth_iv, digestsize);
52
53         rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
54         rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
55
56         error = qce_check_status(qce, &status);
57         if (error < 0)
58                 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
59
60         req->src = rctx->src_orig;
61         req->nbytes = rctx->nbytes_orig;
62         rctx->last_blk = false;
63         rctx->first_blk = false;
64
65         qce->async_req_done(tmpl->qce, error);
66 }
67
68 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
69 {
70         struct ahash_request *req = ahash_request_cast(async_req);
71         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
72         struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
73         struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
74         struct qce_device *qce = tmpl->qce;
75         unsigned long flags = rctx->flags;
76         int ret;
77
78         if (IS_SHA_HMAC(flags)) {
79                 rctx->authkey = ctx->authkey;
80                 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
81         } else if (IS_CMAC(flags)) {
82                 rctx->authkey = ctx->authkey;
83                 rctx->authklen = AES_KEYSIZE_128;
84         }
85
86         rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
87         if (rctx->src_nents < 0) {
88                 dev_err(qce->dev, "Invalid numbers of src SG.\n");
89                 return rctx->src_nents;
90         }
91
92         ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
93         if (ret < 0)
94                 return ret;
95
96         sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
97
98         ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
99         if (ret < 0)
100                 goto error_unmap_src;
101
102         ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
103                                &rctx->result_sg, 1, qce_ahash_done, async_req);
104         if (ret)
105                 goto error_unmap_dst;
106
107         qce_dma_issue_pending(&qce->dma);
108
109         ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
110         if (ret)
111                 goto error_terminate;
112
113         return 0;
114
115 error_terminate:
116         qce_dma_terminate_all(&qce->dma);
117 error_unmap_dst:
118         dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
119 error_unmap_src:
120         dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
121         return ret;
122 }
123
124 static int qce_ahash_init(struct ahash_request *req)
125 {
126         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
127         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
128         const u32 *std_iv = tmpl->std_iv;
129
130         memset(rctx, 0, sizeof(*rctx));
131         rctx->first_blk = true;
132         rctx->last_blk = false;
133         rctx->flags = tmpl->alg_flags;
134         memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
135
136         return 0;
137 }
138
139 static int qce_ahash_export(struct ahash_request *req, void *out)
140 {
141         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
142         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
143         unsigned long flags = rctx->flags;
144         unsigned int digestsize = crypto_ahash_digestsize(ahash);
145         unsigned int blocksize =
146                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
147
148         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
149                 struct sha1_state *out_state = out;
150
151                 out_state->count = rctx->count;
152                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
153                                        rctx->digest, digestsize);
154                 memcpy(out_state->buffer, rctx->buf, blocksize);
155         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
156                 struct sha256_state *out_state = out;
157
158                 out_state->count = rctx->count;
159                 qce_cpu_to_be32p_array((__be32 *)out_state->state,
160                                        rctx->digest, digestsize);
161                 memcpy(out_state->buf, rctx->buf, blocksize);
162         } else {
163                 return -EINVAL;
164         }
165
166         return 0;
167 }
168
169 static int qce_import_common(struct ahash_request *req, u64 in_count,
170                              const u32 *state, const u8 *buffer, bool hmac)
171 {
172         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
173         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
174         unsigned int digestsize = crypto_ahash_digestsize(ahash);
175         unsigned int blocksize;
176         u64 count = in_count;
177
178         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
179         rctx->count = in_count;
180         memcpy(rctx->buf, buffer, blocksize);
181
182         if (in_count <= blocksize) {
183                 rctx->first_blk = 1;
184         } else {
185                 rctx->first_blk = 0;
186                 /*
187                  * For HMAC, there is a hardware padding done when first block
188                  * is set. Therefore the byte_count must be incremened by 64
189                  * after the first block operation.
190                  */
191                 if (hmac)
192                         count += SHA_PADDING;
193         }
194
195         rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
196         rctx->byte_count[1] = (__force __be32)(count >> 32);
197         qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
198                                digestsize);
199         rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
200
201         return 0;
202 }
203
204 static int qce_ahash_import(struct ahash_request *req, const void *in)
205 {
206         struct qce_sha_reqctx *rctx;
207         unsigned long flags;
208         bool hmac;
209         int ret;
210
211         ret = qce_ahash_init(req);
212         if (ret)
213                 return ret;
214
215         rctx = ahash_request_ctx(req);
216         flags = rctx->flags;
217         hmac = IS_SHA_HMAC(flags);
218
219         if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220                 const struct sha1_state *state = in;
221
222                 ret = qce_import_common(req, state->count, state->state,
223                                         state->buffer, hmac);
224         } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225                 const struct sha256_state *state = in;
226
227                 ret = qce_import_common(req, state->count, state->state,
228                                         state->buf, hmac);
229         }
230
231         return ret;
232 }
233
234 static int qce_ahash_update(struct ahash_request *req)
235 {
236         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239         struct qce_device *qce = tmpl->qce;
240         struct scatterlist *sg_last, *sg;
241         unsigned int total, len;
242         unsigned int hash_later;
243         unsigned int nbytes;
244         unsigned int blocksize;
245
246         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247         rctx->count += req->nbytes;
248
249         /* check for buffer from previous updates and append it */
250         total = req->nbytes + rctx->buflen;
251
252         if (total <= blocksize) {
253                 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254                                          0, req->nbytes, 0);
255                 rctx->buflen += req->nbytes;
256                 return 0;
257         }
258
259         /* save the original req structure fields */
260         rctx->src_orig = req->src;
261         rctx->nbytes_orig = req->nbytes;
262
263         /*
264          * if we have data from previous update copy them on buffer. The old
265          * data will be combined with current request bytes.
266          */
267         if (rctx->buflen)
268                 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269
270         /* calculate how many bytes will be hashed later */
271         hash_later = total % blocksize;
272         if (hash_later) {
273                 unsigned int src_offset = req->nbytes - hash_later;
274                 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275                                          hash_later, 0);
276         }
277
278         /* here nbytes is multiple of blocksize */
279         nbytes = total - hash_later;
280
281         len = rctx->buflen;
282         sg = sg_last = req->src;
283
284         while (len < nbytes && sg) {
285                 if (len + sg_dma_len(sg) > nbytes)
286                         break;
287                 len += sg_dma_len(sg);
288                 sg_last = sg;
289                 sg = sg_next(sg);
290         }
291
292         if (!sg_last)
293                 return -EINVAL;
294
295         if (rctx->buflen) {
296                 sg_init_table(rctx->sg, 2);
297                 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
298                 sg_chain(rctx->sg, 2, req->src);
299                 req->src = rctx->sg;
300         }
301
302         req->nbytes = nbytes;
303         rctx->buflen = hash_later;
304
305         return qce->async_req_enqueue(tmpl->qce, &req->base);
306 }
307
308 static int qce_ahash_final(struct ahash_request *req)
309 {
310         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
311         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
312         struct qce_device *qce = tmpl->qce;
313
314         if (!rctx->buflen) {
315                 if (tmpl->hash_zero)
316                         memcpy(req->result, tmpl->hash_zero,
317                                         tmpl->alg.ahash.halg.digestsize);
318                 return 0;
319         }
320
321         rctx->last_blk = true;
322
323         rctx->src_orig = req->src;
324         rctx->nbytes_orig = req->nbytes;
325
326         memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
327         sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
328
329         req->src = rctx->sg;
330         req->nbytes = rctx->buflen;
331
332         return qce->async_req_enqueue(tmpl->qce, &req->base);
333 }
334
335 static int qce_ahash_digest(struct ahash_request *req)
336 {
337         struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
338         struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
339         struct qce_device *qce = tmpl->qce;
340         int ret;
341
342         ret = qce_ahash_init(req);
343         if (ret)
344                 return ret;
345
346         rctx->src_orig = req->src;
347         rctx->nbytes_orig = req->nbytes;
348         rctx->first_blk = true;
349         rctx->last_blk = true;
350
351         if (!rctx->nbytes_orig) {
352                 if (tmpl->hash_zero)
353                         memcpy(req->result, tmpl->hash_zero,
354                                         tmpl->alg.ahash.halg.digestsize);
355                 return 0;
356         }
357
358         return qce->async_req_enqueue(tmpl->qce, &req->base);
359 }
360
361 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
362                                  unsigned int keylen)
363 {
364         unsigned int digestsize = crypto_ahash_digestsize(tfm);
365         struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
366         struct crypto_wait wait;
367         struct ahash_request *req;
368         struct scatterlist sg;
369         unsigned int blocksize;
370         struct crypto_ahash *ahash_tfm;
371         u8 *buf;
372         int ret;
373         const char *alg_name;
374
375         blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
376         memset(ctx->authkey, 0, sizeof(ctx->authkey));
377
378         if (keylen <= blocksize) {
379                 memcpy(ctx->authkey, key, keylen);
380                 return 0;
381         }
382
383         if (digestsize == SHA1_DIGEST_SIZE)
384                 alg_name = "sha1-qce";
385         else if (digestsize == SHA256_DIGEST_SIZE)
386                 alg_name = "sha256-qce";
387         else
388                 return -EINVAL;
389
390         ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
391         if (IS_ERR(ahash_tfm))
392                 return PTR_ERR(ahash_tfm);
393
394         req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
395         if (!req) {
396                 ret = -ENOMEM;
397                 goto err_free_ahash;
398         }
399
400         crypto_init_wait(&wait);
401         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
402                                    crypto_req_done, &wait);
403         crypto_ahash_clear_flags(ahash_tfm, ~0);
404
405         buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
406         if (!buf) {
407                 ret = -ENOMEM;
408                 goto err_free_req;
409         }
410
411         memcpy(buf, key, keylen);
412         sg_init_one(&sg, buf, keylen);
413         ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
414
415         ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
416
417         kfree(buf);
418 err_free_req:
419         ahash_request_free(req);
420 err_free_ahash:
421         crypto_free_ahash(ahash_tfm);
422         return ret;
423 }
424
425 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
426 {
427         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
428         struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
429
430         crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
431         memset(ctx, 0, sizeof(*ctx));
432         return 0;
433 }
434
435 struct qce_ahash_def {
436         unsigned long flags;
437         const char *name;
438         const char *drv_name;
439         unsigned int digestsize;
440         unsigned int blocksize;
441         unsigned int statesize;
442         const u32 *std_iv;
443 };
444
445 static const struct qce_ahash_def ahash_def[] = {
446         {
447                 .flags          = QCE_HASH_SHA1,
448                 .name           = "sha1",
449                 .drv_name       = "sha1-qce",
450                 .digestsize     = SHA1_DIGEST_SIZE,
451                 .blocksize      = SHA1_BLOCK_SIZE,
452                 .statesize      = sizeof(struct sha1_state),
453                 .std_iv         = std_iv_sha1,
454         },
455         {
456                 .flags          = QCE_HASH_SHA256,
457                 .name           = "sha256",
458                 .drv_name       = "sha256-qce",
459                 .digestsize     = SHA256_DIGEST_SIZE,
460                 .blocksize      = SHA256_BLOCK_SIZE,
461                 .statesize      = sizeof(struct sha256_state),
462                 .std_iv         = std_iv_sha256,
463         },
464         {
465                 .flags          = QCE_HASH_SHA1_HMAC,
466                 .name           = "hmac(sha1)",
467                 .drv_name       = "hmac-sha1-qce",
468                 .digestsize     = SHA1_DIGEST_SIZE,
469                 .blocksize      = SHA1_BLOCK_SIZE,
470                 .statesize      = sizeof(struct sha1_state),
471                 .std_iv         = std_iv_sha1,
472         },
473         {
474                 .flags          = QCE_HASH_SHA256_HMAC,
475                 .name           = "hmac(sha256)",
476                 .drv_name       = "hmac-sha256-qce",
477                 .digestsize     = SHA256_DIGEST_SIZE,
478                 .blocksize      = SHA256_BLOCK_SIZE,
479                 .statesize      = sizeof(struct sha256_state),
480                 .std_iv         = std_iv_sha256,
481         },
482 };
483
484 static int qce_ahash_register_one(const struct qce_ahash_def *def,
485                                   struct qce_device *qce)
486 {
487         struct qce_alg_template *tmpl;
488         struct ahash_alg *alg;
489         struct crypto_alg *base;
490         int ret;
491
492         tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
493         if (!tmpl)
494                 return -ENOMEM;
495
496         tmpl->std_iv = def->std_iv;
497
498         alg = &tmpl->alg.ahash;
499         alg->init = qce_ahash_init;
500         alg->update = qce_ahash_update;
501         alg->final = qce_ahash_final;
502         alg->digest = qce_ahash_digest;
503         alg->export = qce_ahash_export;
504         alg->import = qce_ahash_import;
505         if (IS_SHA_HMAC(def->flags))
506                 alg->setkey = qce_ahash_hmac_setkey;
507         alg->halg.digestsize = def->digestsize;
508         alg->halg.statesize = def->statesize;
509
510         if (IS_SHA1(def->flags))
511                 tmpl->hash_zero = sha1_zero_message_hash;
512         else if (IS_SHA256(def->flags))
513                 tmpl->hash_zero = sha256_zero_message_hash;
514
515         base = &alg->halg.base;
516         base->cra_blocksize = def->blocksize;
517         base->cra_priority = 300;
518         base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
519         base->cra_ctxsize = sizeof(struct qce_sha_ctx);
520         base->cra_alignmask = 0;
521         base->cra_module = THIS_MODULE;
522         base->cra_init = qce_ahash_cra_init;
523
524         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
525         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
526                  def->drv_name);
527
528         INIT_LIST_HEAD(&tmpl->entry);
529         tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
530         tmpl->alg_flags = def->flags;
531         tmpl->qce = qce;
532
533         ret = crypto_register_ahash(alg);
534         if (ret) {
535                 kfree(tmpl);
536                 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537                 return ret;
538         }
539
540         list_add_tail(&tmpl->entry, &ahash_algs);
541         dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
542         return 0;
543 }
544
545 static void qce_ahash_unregister(struct qce_device *qce)
546 {
547         struct qce_alg_template *tmpl, *n;
548
549         list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
550                 crypto_unregister_ahash(&tmpl->alg.ahash);
551                 list_del(&tmpl->entry);
552                 kfree(tmpl);
553         }
554 }
555
556 static int qce_ahash_register(struct qce_device *qce)
557 {
558         int ret, i;
559
560         for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
561                 ret = qce_ahash_register_one(&ahash_def[i], qce);
562                 if (ret)
563                         goto err;
564         }
565
566         return 0;
567 err:
568         qce_ahash_unregister(qce);
569         return ret;
570 }
571
572 const struct qce_algo_ops ahash_ops = {
573         .type = CRYPTO_ALG_TYPE_AHASH,
574         .register_algs = qce_ahash_register,
575         .unregister_algs = qce_ahash_unregister,
576         .async_req_handle = qce_ahash_async_req_handle,
577 };
This page took 0.066153 seconds and 4 git commands to generate.