1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
78 #include "page_reporting.h"
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION (8)
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
102 /* work_structs for global per-cpu drains */
105 struct work_struct work;
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
116 * Array of node states.
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
130 EXPORT_SYMBOL(node_states);
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144 EXPORT_SYMBOL(init_on_alloc);
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
151 EXPORT_SYMBOL(init_on_free);
153 static int __init early_init_on_alloc(char *buf)
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 static_branch_enable(&init_on_alloc);
166 static_branch_disable(&init_on_alloc);
169 early_param("init_on_alloc", early_init_on_alloc);
171 static int __init early_init_on_free(char *buf)
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 static_branch_enable(&init_on_free);
184 static_branch_disable(&init_on_free);
187 early_param("init_on_free", early_init_on_free);
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
197 static inline int get_pcppage_migratetype(struct page *page)
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204 page->index = migratetype;
207 #ifdef CONFIG_PM_SLEEP
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
218 static gfp_t saved_gfp_mask;
220 void pm_restore_gfp_mask(void)
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
229 void pm_restrict_gfp_mask(void)
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
237 bool pm_suspended_storage(void)
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
243 #endif /* CONFIG_PM_SLEEP */
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
249 static void __free_pages_ok(struct page *page, unsigned int order);
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
266 #ifdef CONFIG_ZONE_DMA32
270 #ifdef CONFIG_HIGHMEM
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
280 #ifdef CONFIG_ZONE_DMA32
284 #ifdef CONFIG_HIGHMEM
288 #ifdef CONFIG_ZONE_DEVICE
293 const char * const migratetype_names[MIGRATE_TYPES] = {
301 #ifdef CONFIG_MEMORY_ISOLATION
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 [HUGETLB_PAGE_DTOR] = free_huge_page,
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
329 int watermark_boost_factor __read_mostly;
331 int watermark_boost_factor __read_mostly = 15000;
333 int watermark_scale_factor = 10;
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone);
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
359 int page_group_by_mobility_disabled __read_mostly;
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 int nid = early_pfn_to_nid(pfn);
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 static unsigned long prev_end_pfn, nr_initialised;
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436 static inline bool early_page_uninitialised(unsigned long pfn)
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn));
454 return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 #ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 #endif /* CONFIG_SPARSEMEM */
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
473 * @end_bitidx: The last bit of interest to retrieve
474 * @mask: mask of bits that the caller is interested in
476 * Return: pageblock_bits flags
478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long end_bitidx,
483 unsigned long *bitmap;
484 unsigned long bitidx, word_bitidx;
487 bitmap = get_pageblock_bitmap(page, pfn);
488 bitidx = pfn_to_bitidx(page, pfn);
489 word_bitidx = bitidx / BITS_PER_LONG;
490 bitidx &= (BITS_PER_LONG-1);
492 word = bitmap[word_bitidx];
493 bitidx += end_bitidx;
494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
498 unsigned long end_bitidx,
501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
514 * @end_bitidx: The last bit of interest
515 * @mask: mask of bits that the caller is interested in
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long end_bitidx,
522 unsigned long *bitmap;
523 unsigned long bitidx, word_bitidx;
524 unsigned long old_word, word;
526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 bitmap = get_pageblock_bitmap(page, pfn);
530 bitidx = pfn_to_bitidx(page, pfn);
531 word_bitidx = bitidx / BITS_PER_LONG;
532 bitidx &= (BITS_PER_LONG-1);
534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 bitidx += end_bitidx;
537 mask <<= (BITS_PER_LONG - bitidx - 1);
538 flags <<= (BITS_PER_LONG - bitidx - 1);
540 word = READ_ONCE(bitmap[word_bitidx]);
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
549 void set_pageblock_migratetype(struct page *page, int migratetype)
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
555 set_pageblock_flags_group(page, (unsigned long)migratetype,
556 PB_migrate, PB_migrate_end);
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
573 } while (zone_span_seqretry(zone, seq));
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
583 static int page_is_consistent(struct zone *zone, struct page *page)
585 if (!pfn_valid_within(page_to_pfn(page)))
587 if (zone != page_zone(page))
593 * Temporary debugging check for pages not lying within a given zone.
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 if (page_outside_zone_boundaries(zone, page))
599 if (!page_is_consistent(zone, page))
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
611 static void bad_page(struct page *page, const char *reason)
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
628 "BUG: Bad page state: %lu messages suppressed\n",
635 resume = jiffies + 60 * HZ;
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 __dump_page(page, reason);
640 dump_page_owner(page);
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
651 * Higher-order pages are called "compound pages". They are structured thusly:
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
665 void free_compound_page(struct page *page)
667 mem_cgroup_uncharge(page);
668 __free_pages_ok(page, compound_order(page));
671 void prep_compound_page(struct page *page, unsigned int order)
674 int nr_pages = 1 << order;
676 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
677 set_compound_order(page, order);
679 for (i = 1; i < nr_pages; i++) {
680 struct page *p = page + i;
681 set_page_count(p, 0);
682 p->mapping = TAIL_MAPPING;
683 set_compound_head(p, page);
685 atomic_set(compound_mapcount_ptr(page), -1);
686 if (hpage_pincount_available(page))
687 atomic_set(compound_pincount_ptr(page), 0);
690 #ifdef CONFIG_DEBUG_PAGEALLOC
691 unsigned int _debug_guardpage_minorder;
693 bool _debug_pagealloc_enabled_early __read_mostly
694 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
695 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
696 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
697 EXPORT_SYMBOL(_debug_pagealloc_enabled);
699 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701 static int __init early_debug_pagealloc(char *buf)
703 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705 early_param("debug_pagealloc", early_debug_pagealloc);
707 void init_debug_pagealloc(void)
709 if (!debug_pagealloc_enabled())
712 static_branch_enable(&_debug_pagealloc_enabled);
714 if (!debug_guardpage_minorder())
717 static_branch_enable(&_debug_guardpage_enabled);
720 static int __init debug_guardpage_minorder_setup(char *buf)
724 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
725 pr_err("Bad debug_guardpage_minorder value\n");
728 _debug_guardpage_minorder = res;
729 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
732 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
734 static inline bool set_page_guard(struct zone *zone, struct page *page,
735 unsigned int order, int migratetype)
737 if (!debug_guardpage_enabled())
740 if (order >= debug_guardpage_minorder())
743 __SetPageGuard(page);
744 INIT_LIST_HEAD(&page->lru);
745 set_page_private(page, order);
746 /* Guard pages are not available for any usage */
747 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
752 static inline void clear_page_guard(struct zone *zone, struct page *page,
753 unsigned int order, int migratetype)
755 if (!debug_guardpage_enabled())
758 __ClearPageGuard(page);
760 set_page_private(page, 0);
761 if (!is_migrate_isolate(migratetype))
762 __mod_zone_freepage_state(zone, (1 << order), migratetype);
765 static inline bool set_page_guard(struct zone *zone, struct page *page,
766 unsigned int order, int migratetype) { return false; }
767 static inline void clear_page_guard(struct zone *zone, struct page *page,
768 unsigned int order, int migratetype) {}
771 static inline void set_page_order(struct page *page, unsigned int order)
773 set_page_private(page, order);
774 __SetPageBuddy(page);
778 * This function checks whether a page is free && is the buddy
779 * we can coalesce a page and its buddy if
780 * (a) the buddy is not in a hole (check before calling!) &&
781 * (b) the buddy is in the buddy system &&
782 * (c) a page and its buddy have the same order &&
783 * (d) a page and its buddy are in the same zone.
785 * For recording whether a page is in the buddy system, we set PageBuddy.
786 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
788 * For recording page's order, we use page_private(page).
790 static inline bool page_is_buddy(struct page *page, struct page *buddy,
793 if (!page_is_guard(buddy) && !PageBuddy(buddy))
796 if (page_order(buddy) != order)
800 * zone check is done late to avoid uselessly calculating
801 * zone/node ids for pages that could never merge.
803 if (page_zone_id(page) != page_zone_id(buddy))
806 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
811 #ifdef CONFIG_COMPACTION
812 static inline struct capture_control *task_capc(struct zone *zone)
814 struct capture_control *capc = current->capture_control;
816 return unlikely(capc) &&
817 !(current->flags & PF_KTHREAD) &&
819 capc->cc->zone == zone ? capc : NULL;
823 compaction_capture(struct capture_control *capc, struct page *page,
824 int order, int migratetype)
826 if (!capc || order != capc->cc->order)
829 /* Do not accidentally pollute CMA or isolated regions*/
830 if (is_migrate_cma(migratetype) ||
831 is_migrate_isolate(migratetype))
835 * Do not let lower order allocations polluate a movable pageblock.
836 * This might let an unmovable request use a reclaimable pageblock
837 * and vice-versa but no more than normal fallback logic which can
838 * have trouble finding a high-order free page.
840 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 static inline struct capture_control *task_capc(struct zone *zone)
854 compaction_capture(struct capture_control *capc, struct page *page,
855 int order, int migratetype)
859 #endif /* CONFIG_COMPACTION */
861 /* Used for pages not on another list */
862 static inline void add_to_free_list(struct page *page, struct zone *zone,
863 unsigned int order, int migratetype)
865 struct free_area *area = &zone->free_area[order];
867 list_add(&page->lru, &area->free_list[migratetype]);
871 /* Used for pages not on another list */
872 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
873 unsigned int order, int migratetype)
875 struct free_area *area = &zone->free_area[order];
877 list_add_tail(&page->lru, &area->free_list[migratetype]);
881 /* Used for pages which are on another list */
882 static inline void move_to_free_list(struct page *page, struct zone *zone,
883 unsigned int order, int migratetype)
885 struct free_area *area = &zone->free_area[order];
887 list_move(&page->lru, &area->free_list[migratetype]);
890 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
893 /* clear reported state and update reported page count */
894 if (page_reported(page))
895 __ClearPageReported(page);
897 list_del(&page->lru);
898 __ClearPageBuddy(page);
899 set_page_private(page, 0);
900 zone->free_area[order].nr_free--;
904 * If this is not the largest possible page, check if the buddy
905 * of the next-highest order is free. If it is, it's possible
906 * that pages are being freed that will coalesce soon. In case,
907 * that is happening, add the free page to the tail of the list
908 * so it's less likely to be used soon and more likely to be merged
909 * as a higher order page
912 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
913 struct page *page, unsigned int order)
915 struct page *higher_page, *higher_buddy;
916 unsigned long combined_pfn;
918 if (order >= MAX_ORDER - 2)
921 if (!pfn_valid_within(buddy_pfn))
924 combined_pfn = buddy_pfn & pfn;
925 higher_page = page + (combined_pfn - pfn);
926 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
927 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
929 return pfn_valid_within(buddy_pfn) &&
930 page_is_buddy(higher_page, higher_buddy, order + 1);
934 * Freeing function for a buddy system allocator.
936 * The concept of a buddy system is to maintain direct-mapped table
937 * (containing bit values) for memory blocks of various "orders".
938 * The bottom level table contains the map for the smallest allocatable
939 * units of memory (here, pages), and each level above it describes
940 * pairs of units from the levels below, hence, "buddies".
941 * At a high level, all that happens here is marking the table entry
942 * at the bottom level available, and propagating the changes upward
943 * as necessary, plus some accounting needed to play nicely with other
944 * parts of the VM system.
945 * At each level, we keep a list of pages, which are heads of continuous
946 * free pages of length of (1 << order) and marked with PageBuddy.
947 * Page's order is recorded in page_private(page) field.
948 * So when we are allocating or freeing one, we can derive the state of the
949 * other. That is, if we allocate a small block, and both were
950 * free, the remainder of the region must be split into blocks.
951 * If a block is freed, and its buddy is also free, then this
952 * triggers coalescing into a block of larger size.
957 static inline void __free_one_page(struct page *page,
959 struct zone *zone, unsigned int order,
960 int migratetype, bool report)
962 struct capture_control *capc = task_capc(zone);
963 unsigned long buddy_pfn;
964 unsigned long combined_pfn;
965 unsigned int max_order;
969 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
971 VM_BUG_ON(!zone_is_initialized(zone));
972 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
974 VM_BUG_ON(migratetype == -1);
975 if (likely(!is_migrate_isolate(migratetype)))
976 __mod_zone_freepage_state(zone, 1 << order, migratetype);
978 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
979 VM_BUG_ON_PAGE(bad_range(zone, page), page);
982 while (order < max_order - 1) {
983 if (compaction_capture(capc, page, order, migratetype)) {
984 __mod_zone_freepage_state(zone, -(1 << order),
988 buddy_pfn = __find_buddy_pfn(pfn, order);
989 buddy = page + (buddy_pfn - pfn);
991 if (!pfn_valid_within(buddy_pfn))
993 if (!page_is_buddy(page, buddy, order))
996 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
997 * merge with it and move up one order.
999 if (page_is_guard(buddy))
1000 clear_page_guard(zone, buddy, order, migratetype);
1002 del_page_from_free_list(buddy, zone, order);
1003 combined_pfn = buddy_pfn & pfn;
1004 page = page + (combined_pfn - pfn);
1008 if (max_order < MAX_ORDER) {
1009 /* If we are here, it means order is >= pageblock_order.
1010 * We want to prevent merge between freepages on isolate
1011 * pageblock and normal pageblock. Without this, pageblock
1012 * isolation could cause incorrect freepage or CMA accounting.
1014 * We don't want to hit this code for the more frequent
1015 * low-order merging.
1017 if (unlikely(has_isolate_pageblock(zone))) {
1020 buddy_pfn = __find_buddy_pfn(pfn, order);
1021 buddy = page + (buddy_pfn - pfn);
1022 buddy_mt = get_pageblock_migratetype(buddy);
1024 if (migratetype != buddy_mt
1025 && (is_migrate_isolate(migratetype) ||
1026 is_migrate_isolate(buddy_mt)))
1030 goto continue_merging;
1034 set_page_order(page, order);
1036 if (is_shuffle_order(order))
1037 to_tail = shuffle_pick_tail();
1039 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1042 add_to_free_list_tail(page, zone, order, migratetype);
1044 add_to_free_list(page, zone, order, migratetype);
1046 /* Notify page reporting subsystem of freed page */
1048 page_reporting_notify_free(order);
1052 * A bad page could be due to a number of fields. Instead of multiple branches,
1053 * try and check multiple fields with one check. The caller must do a detailed
1054 * check if necessary.
1056 static inline bool page_expected_state(struct page *page,
1057 unsigned long check_flags)
1059 if (unlikely(atomic_read(&page->_mapcount) != -1))
1062 if (unlikely((unsigned long)page->mapping |
1063 page_ref_count(page) |
1065 (unsigned long)page->mem_cgroup |
1067 (page->flags & check_flags)))
1073 static const char *page_bad_reason(struct page *page, unsigned long flags)
1075 const char *bad_reason = NULL;
1077 if (unlikely(atomic_read(&page->_mapcount) != -1))
1078 bad_reason = "nonzero mapcount";
1079 if (unlikely(page->mapping != NULL))
1080 bad_reason = "non-NULL mapping";
1081 if (unlikely(page_ref_count(page) != 0))
1082 bad_reason = "nonzero _refcount";
1083 if (unlikely(page->flags & flags)) {
1084 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1085 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1087 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1090 if (unlikely(page->mem_cgroup))
1091 bad_reason = "page still charged to cgroup";
1096 static void check_free_page_bad(struct page *page)
1099 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1102 static inline int check_free_page(struct page *page)
1104 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1107 /* Something has gone sideways, find it */
1108 check_free_page_bad(page);
1112 static int free_tail_pages_check(struct page *head_page, struct page *page)
1117 * We rely page->lru.next never has bit 0 set, unless the page
1118 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1120 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1122 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 switch (page - head_page) {
1128 /* the first tail page: ->mapping may be compound_mapcount() */
1129 if (unlikely(compound_mapcount(page))) {
1130 bad_page(page, "nonzero compound_mapcount");
1136 * the second tail page: ->mapping is
1137 * deferred_list.next -- ignore value.
1141 if (page->mapping != TAIL_MAPPING) {
1142 bad_page(page, "corrupted mapping in tail page");
1147 if (unlikely(!PageTail(page))) {
1148 bad_page(page, "PageTail not set");
1151 if (unlikely(compound_head(page) != head_page)) {
1152 bad_page(page, "compound_head not consistent");
1157 page->mapping = NULL;
1158 clear_compound_head(page);
1162 static void kernel_init_free_pages(struct page *page, int numpages)
1166 for (i = 0; i < numpages; i++)
1167 clear_highpage(page + i);
1170 static __always_inline bool free_pages_prepare(struct page *page,
1171 unsigned int order, bool check_free)
1175 VM_BUG_ON_PAGE(PageTail(page), page);
1177 trace_mm_page_free(page, order);
1180 * Check tail pages before head page information is cleared to
1181 * avoid checking PageCompound for order-0 pages.
1183 if (unlikely(order)) {
1184 bool compound = PageCompound(page);
1187 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1190 ClearPageDoubleMap(page);
1191 for (i = 1; i < (1 << order); i++) {
1193 bad += free_tail_pages_check(page, page + i);
1194 if (unlikely(check_free_page(page + i))) {
1198 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1201 if (PageMappingFlags(page))
1202 page->mapping = NULL;
1203 if (memcg_kmem_enabled() && PageKmemcg(page))
1204 __memcg_kmem_uncharge_page(page, order);
1206 bad += check_free_page(page);
1210 page_cpupid_reset_last(page);
1211 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1212 reset_page_owner(page, order);
1214 if (!PageHighMem(page)) {
1215 debug_check_no_locks_freed(page_address(page),
1216 PAGE_SIZE << order);
1217 debug_check_no_obj_freed(page_address(page),
1218 PAGE_SIZE << order);
1220 if (want_init_on_free())
1221 kernel_init_free_pages(page, 1 << order);
1223 kernel_poison_pages(page, 1 << order, 0);
1225 * arch_free_page() can make the page's contents inaccessible. s390
1226 * does this. So nothing which can access the page's contents should
1227 * happen after this.
1229 arch_free_page(page, order);
1231 if (debug_pagealloc_enabled_static())
1232 kernel_map_pages(page, 1 << order, 0);
1234 kasan_free_nondeferred_pages(page, order);
1239 #ifdef CONFIG_DEBUG_VM
1241 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1242 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1243 * moved from pcp lists to free lists.
1245 static bool free_pcp_prepare(struct page *page)
1247 return free_pages_prepare(page, 0, true);
1250 static bool bulkfree_pcp_prepare(struct page *page)
1252 if (debug_pagealloc_enabled_static())
1253 return check_free_page(page);
1259 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1260 * moving from pcp lists to free list in order to reduce overhead. With
1261 * debug_pagealloc enabled, they are checked also immediately when being freed
1264 static bool free_pcp_prepare(struct page *page)
1266 if (debug_pagealloc_enabled_static())
1267 return free_pages_prepare(page, 0, true);
1269 return free_pages_prepare(page, 0, false);
1272 static bool bulkfree_pcp_prepare(struct page *page)
1274 return check_free_page(page);
1276 #endif /* CONFIG_DEBUG_VM */
1278 static inline void prefetch_buddy(struct page *page)
1280 unsigned long pfn = page_to_pfn(page);
1281 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1282 struct page *buddy = page + (buddy_pfn - pfn);
1288 * Frees a number of pages from the PCP lists
1289 * Assumes all pages on list are in same zone, and of same order.
1290 * count is the number of pages to free.
1292 * If the zone was previously in an "all pages pinned" state then look to
1293 * see if this freeing clears that state.
1295 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1296 * pinned" detection logic.
1298 static void free_pcppages_bulk(struct zone *zone, int count,
1299 struct per_cpu_pages *pcp)
1301 int migratetype = 0;
1303 int prefetch_nr = 0;
1304 bool isolated_pageblocks;
1305 struct page *page, *tmp;
1309 struct list_head *list;
1312 * Remove pages from lists in a round-robin fashion. A
1313 * batch_free count is maintained that is incremented when an
1314 * empty list is encountered. This is so more pages are freed
1315 * off fuller lists instead of spinning excessively around empty
1320 if (++migratetype == MIGRATE_PCPTYPES)
1322 list = &pcp->lists[migratetype];
1323 } while (list_empty(list));
1325 /* This is the only non-empty list. Free them all. */
1326 if (batch_free == MIGRATE_PCPTYPES)
1330 page = list_last_entry(list, struct page, lru);
1331 /* must delete to avoid corrupting pcp list */
1332 list_del(&page->lru);
1335 if (bulkfree_pcp_prepare(page))
1338 list_add_tail(&page->lru, &head);
1341 * We are going to put the page back to the global
1342 * pool, prefetch its buddy to speed up later access
1343 * under zone->lock. It is believed the overhead of
1344 * an additional test and calculating buddy_pfn here
1345 * can be offset by reduced memory latency later. To
1346 * avoid excessive prefetching due to large count, only
1347 * prefetch buddy for the first pcp->batch nr of pages.
1349 if (prefetch_nr++ < pcp->batch)
1350 prefetch_buddy(page);
1351 } while (--count && --batch_free && !list_empty(list));
1354 spin_lock(&zone->lock);
1355 isolated_pageblocks = has_isolate_pageblock(zone);
1358 * Use safe version since after __free_one_page(),
1359 * page->lru.next will not point to original list.
1361 list_for_each_entry_safe(page, tmp, &head, lru) {
1362 int mt = get_pcppage_migratetype(page);
1363 /* MIGRATE_ISOLATE page should not go to pcplists */
1364 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1365 /* Pageblock could have been isolated meanwhile */
1366 if (unlikely(isolated_pageblocks))
1367 mt = get_pageblock_migratetype(page);
1369 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1370 trace_mm_page_pcpu_drain(page, 0, mt);
1372 spin_unlock(&zone->lock);
1375 static void free_one_page(struct zone *zone,
1376 struct page *page, unsigned long pfn,
1380 spin_lock(&zone->lock);
1381 if (unlikely(has_isolate_pageblock(zone) ||
1382 is_migrate_isolate(migratetype))) {
1383 migratetype = get_pfnblock_migratetype(page, pfn);
1385 __free_one_page(page, pfn, zone, order, migratetype, true);
1386 spin_unlock(&zone->lock);
1389 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1390 unsigned long zone, int nid)
1392 mm_zero_struct_page(page);
1393 set_page_links(page, zone, nid, pfn);
1394 init_page_count(page);
1395 page_mapcount_reset(page);
1396 page_cpupid_reset_last(page);
1397 page_kasan_tag_reset(page);
1399 INIT_LIST_HEAD(&page->lru);
1400 #ifdef WANT_PAGE_VIRTUAL
1401 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1402 if (!is_highmem_idx(zone))
1403 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1408 static void __meminit init_reserved_page(unsigned long pfn)
1413 if (!early_page_uninitialised(pfn))
1416 nid = early_pfn_to_nid(pfn);
1417 pgdat = NODE_DATA(nid);
1419 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1420 struct zone *zone = &pgdat->node_zones[zid];
1422 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1425 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1428 static inline void init_reserved_page(unsigned long pfn)
1431 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1434 * Initialised pages do not have PageReserved set. This function is
1435 * called for each range allocated by the bootmem allocator and
1436 * marks the pages PageReserved. The remaining valid pages are later
1437 * sent to the buddy page allocator.
1439 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1441 unsigned long start_pfn = PFN_DOWN(start);
1442 unsigned long end_pfn = PFN_UP(end);
1444 for (; start_pfn < end_pfn; start_pfn++) {
1445 if (pfn_valid(start_pfn)) {
1446 struct page *page = pfn_to_page(start_pfn);
1448 init_reserved_page(start_pfn);
1450 /* Avoid false-positive PageTail() */
1451 INIT_LIST_HEAD(&page->lru);
1454 * no need for atomic set_bit because the struct
1455 * page is not visible yet so nobody should
1458 __SetPageReserved(page);
1463 static void __free_pages_ok(struct page *page, unsigned int order)
1465 unsigned long flags;
1467 unsigned long pfn = page_to_pfn(page);
1469 if (!free_pages_prepare(page, order, true))
1472 migratetype = get_pfnblock_migratetype(page, pfn);
1473 local_irq_save(flags);
1474 __count_vm_events(PGFREE, 1 << order);
1475 free_one_page(page_zone(page), page, pfn, order, migratetype);
1476 local_irq_restore(flags);
1479 void __free_pages_core(struct page *page, unsigned int order)
1481 unsigned int nr_pages = 1 << order;
1482 struct page *p = page;
1486 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1488 __ClearPageReserved(p);
1489 set_page_count(p, 0);
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
1494 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1495 set_page_refcounted(page);
1496 __free_pages(page, order);
1499 #ifdef CONFIG_NEED_MULTIPLE_NODES
1501 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1503 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1506 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1508 int __meminit __early_pfn_to_nid(unsigned long pfn,
1509 struct mminit_pfnnid_cache *state)
1511 unsigned long start_pfn, end_pfn;
1514 if (state->last_start <= pfn && pfn < state->last_end)
1515 return state->last_nid;
1517 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1518 if (nid != NUMA_NO_NODE) {
1519 state->last_start = start_pfn;
1520 state->last_end = end_pfn;
1521 state->last_nid = nid;
1526 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1528 int __meminit early_pfn_to_nid(unsigned long pfn)
1530 static DEFINE_SPINLOCK(early_pfn_lock);
1533 spin_lock(&early_pfn_lock);
1534 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1536 nid = first_online_node;
1537 spin_unlock(&early_pfn_lock);
1541 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1543 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1546 if (early_page_uninitialised(pfn))
1548 __free_pages_core(page, order);
1552 * Check that the whole (or subset of) a pageblock given by the interval of
1553 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1554 * with the migration of free compaction scanner. The scanners then need to
1555 * use only pfn_valid_within() check for arches that allow holes within
1558 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1560 * It's possible on some configurations to have a setup like node0 node1 node0
1561 * i.e. it's possible that all pages within a zones range of pages do not
1562 * belong to a single zone. We assume that a border between node0 and node1
1563 * can occur within a single pageblock, but not a node0 node1 node0
1564 * interleaving within a single pageblock. It is therefore sufficient to check
1565 * the first and last page of a pageblock and avoid checking each individual
1566 * page in a pageblock.
1568 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1569 unsigned long end_pfn, struct zone *zone)
1571 struct page *start_page;
1572 struct page *end_page;
1574 /* end_pfn is one past the range we are checking */
1577 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1580 start_page = pfn_to_online_page(start_pfn);
1584 if (page_zone(start_page) != zone)
1587 end_page = pfn_to_page(end_pfn);
1589 /* This gives a shorter code than deriving page_zone(end_page) */
1590 if (page_zone_id(start_page) != page_zone_id(end_page))
1596 void set_zone_contiguous(struct zone *zone)
1598 unsigned long block_start_pfn = zone->zone_start_pfn;
1599 unsigned long block_end_pfn;
1601 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1602 for (; block_start_pfn < zone_end_pfn(zone);
1603 block_start_pfn = block_end_pfn,
1604 block_end_pfn += pageblock_nr_pages) {
1606 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1608 if (!__pageblock_pfn_to_page(block_start_pfn,
1609 block_end_pfn, zone))
1614 /* We confirm that there is no hole */
1615 zone->contiguous = true;
1618 void clear_zone_contiguous(struct zone *zone)
1620 zone->contiguous = false;
1623 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1624 static void __init deferred_free_range(unsigned long pfn,
1625 unsigned long nr_pages)
1633 page = pfn_to_page(pfn);
1635 /* Free a large naturally-aligned chunk if possible */
1636 if (nr_pages == pageblock_nr_pages &&
1637 (pfn & (pageblock_nr_pages - 1)) == 0) {
1638 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1639 __free_pages_core(page, pageblock_order);
1643 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1644 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1645 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1646 __free_pages_core(page, 0);
1650 /* Completion tracking for deferred_init_memmap() threads */
1651 static atomic_t pgdat_init_n_undone __initdata;
1652 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1654 static inline void __init pgdat_init_report_one_done(void)
1656 if (atomic_dec_and_test(&pgdat_init_n_undone))
1657 complete(&pgdat_init_all_done_comp);
1661 * Returns true if page needs to be initialized or freed to buddy allocator.
1663 * First we check if pfn is valid on architectures where it is possible to have
1664 * holes within pageblock_nr_pages. On systems where it is not possible, this
1665 * function is optimized out.
1667 * Then, we check if a current large page is valid by only checking the validity
1670 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1672 if (!pfn_valid_within(pfn))
1674 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1680 * Free pages to buddy allocator. Try to free aligned pages in
1681 * pageblock_nr_pages sizes.
1683 static void __init deferred_free_pages(unsigned long pfn,
1684 unsigned long end_pfn)
1686 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1687 unsigned long nr_free = 0;
1689 for (; pfn < end_pfn; pfn++) {
1690 if (!deferred_pfn_valid(pfn)) {
1691 deferred_free_range(pfn - nr_free, nr_free);
1693 } else if (!(pfn & nr_pgmask)) {
1694 deferred_free_range(pfn - nr_free, nr_free);
1700 /* Free the last block of pages to allocator */
1701 deferred_free_range(pfn - nr_free, nr_free);
1705 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1706 * by performing it only once every pageblock_nr_pages.
1707 * Return number of pages initialized.
1709 static unsigned long __init deferred_init_pages(struct zone *zone,
1711 unsigned long end_pfn)
1713 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1714 int nid = zone_to_nid(zone);
1715 unsigned long nr_pages = 0;
1716 int zid = zone_idx(zone);
1717 struct page *page = NULL;
1719 for (; pfn < end_pfn; pfn++) {
1720 if (!deferred_pfn_valid(pfn)) {
1723 } else if (!page || !(pfn & nr_pgmask)) {
1724 page = pfn_to_page(pfn);
1728 __init_single_page(page, pfn, zid, nid);
1735 * This function is meant to pre-load the iterator for the zone init.
1736 * Specifically it walks through the ranges until we are caught up to the
1737 * first_init_pfn value and exits there. If we never encounter the value we
1738 * return false indicating there are no valid ranges left.
1741 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1742 unsigned long *spfn, unsigned long *epfn,
1743 unsigned long first_init_pfn)
1748 * Start out by walking through the ranges in this zone that have
1749 * already been initialized. We don't need to do anything with them
1750 * so we just need to flush them out of the system.
1752 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1753 if (*epfn <= first_init_pfn)
1755 if (*spfn < first_init_pfn)
1756 *spfn = first_init_pfn;
1765 * Initialize and free pages. We do it in two loops: first we initialize
1766 * struct page, then free to buddy allocator, because while we are
1767 * freeing pages we can access pages that are ahead (computing buddy
1768 * page in __free_one_page()).
1770 * In order to try and keep some memory in the cache we have the loop
1771 * broken along max page order boundaries. This way we will not cause
1772 * any issues with the buddy page computation.
1774 static unsigned long __init
1775 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1776 unsigned long *end_pfn)
1778 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1779 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1780 unsigned long nr_pages = 0;
1783 /* First we loop through and initialize the page values */
1784 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 if (mo_pfn <= *start_pfn)
1790 t = min(mo_pfn, *end_pfn);
1791 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793 if (mo_pfn < *end_pfn) {
1794 *start_pfn = mo_pfn;
1799 /* Reset values and now loop through freeing pages as needed */
1802 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1808 t = min(mo_pfn, epfn);
1809 deferred_free_pages(spfn, t);
1819 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1822 unsigned long spfn, epfn;
1823 struct zone *zone = arg;
1826 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1829 * Initialize and free pages in MAX_ORDER sized increments so that we
1830 * can avoid introducing any issues with the buddy allocator.
1832 while (spfn < end_pfn) {
1833 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1838 /* An arch may override for more concurrency. */
1840 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1845 /* Initialise remaining memory on a node */
1846 static int __init deferred_init_memmap(void *data)
1848 pg_data_t *pgdat = data;
1849 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1850 unsigned long spfn = 0, epfn = 0;
1851 unsigned long first_init_pfn, flags;
1852 unsigned long start = jiffies;
1854 int zid, max_threads;
1857 /* Bind memory initialisation thread to a local node if possible */
1858 if (!cpumask_empty(cpumask))
1859 set_cpus_allowed_ptr(current, cpumask);
1861 pgdat_resize_lock(pgdat, &flags);
1862 first_init_pfn = pgdat->first_deferred_pfn;
1863 if (first_init_pfn == ULONG_MAX) {
1864 pgdat_resize_unlock(pgdat, &flags);
1865 pgdat_init_report_one_done();
1869 /* Sanity check boundaries */
1870 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1871 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1872 pgdat->first_deferred_pfn = ULONG_MAX;
1875 * Once we unlock here, the zone cannot be grown anymore, thus if an
1876 * interrupt thread must allocate this early in boot, zone must be
1877 * pre-grown prior to start of deferred page initialization.
1879 pgdat_resize_unlock(pgdat, &flags);
1881 /* Only the highest zone is deferred so find it */
1882 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1883 zone = pgdat->node_zones + zid;
1884 if (first_init_pfn < zone_end_pfn(zone))
1888 /* If the zone is empty somebody else may have cleared out the zone */
1889 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 max_threads = deferred_page_init_max_threads(cpumask);
1895 while (spfn < epfn) {
1896 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1897 struct padata_mt_job job = {
1898 .thread_fn = deferred_init_memmap_chunk,
1901 .size = epfn_align - spfn,
1902 .align = PAGES_PER_SECTION,
1903 .min_chunk = PAGES_PER_SECTION,
1904 .max_threads = max_threads,
1907 padata_do_multithreaded(&job);
1908 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912 /* Sanity check that the next zone really is unpopulated */
1913 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1915 pr_info("node %d deferred pages initialised in %ums\n",
1916 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1918 pgdat_init_report_one_done();
1923 * If this zone has deferred pages, try to grow it by initializing enough
1924 * deferred pages to satisfy the allocation specified by order, rounded up to
1925 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1926 * of SECTION_SIZE bytes by initializing struct pages in increments of
1927 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1929 * Return true when zone was grown, otherwise return false. We return true even
1930 * when we grow less than requested, to let the caller decide if there are
1931 * enough pages to satisfy the allocation.
1933 * Note: We use noinline because this function is needed only during boot, and
1934 * it is called from a __ref function _deferred_grow_zone. This way we are
1935 * making sure that it is not inlined into permanent text section.
1937 static noinline bool __init
1938 deferred_grow_zone(struct zone *zone, unsigned int order)
1940 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1941 pg_data_t *pgdat = zone->zone_pgdat;
1942 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1943 unsigned long spfn, epfn, flags;
1944 unsigned long nr_pages = 0;
1947 /* Only the last zone may have deferred pages */
1948 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1951 pgdat_resize_lock(pgdat, &flags);
1954 * If someone grew this zone while we were waiting for spinlock, return
1955 * true, as there might be enough pages already.
1957 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1958 pgdat_resize_unlock(pgdat, &flags);
1962 /* If the zone is empty somebody else may have cleared out the zone */
1963 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1964 first_deferred_pfn)) {
1965 pgdat->first_deferred_pfn = ULONG_MAX;
1966 pgdat_resize_unlock(pgdat, &flags);
1967 /* Retry only once. */
1968 return first_deferred_pfn != ULONG_MAX;
1972 * Initialize and free pages in MAX_ORDER sized increments so
1973 * that we can avoid introducing any issues with the buddy
1976 while (spfn < epfn) {
1977 /* update our first deferred PFN for this section */
1978 first_deferred_pfn = spfn;
1980 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1981 touch_nmi_watchdog();
1983 /* We should only stop along section boundaries */
1984 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1987 /* If our quota has been met we can stop here */
1988 if (nr_pages >= nr_pages_needed)
1992 pgdat->first_deferred_pfn = spfn;
1993 pgdat_resize_unlock(pgdat, &flags);
1995 return nr_pages > 0;
1999 * deferred_grow_zone() is __init, but it is called from
2000 * get_page_from_freelist() during early boot until deferred_pages permanently
2001 * disables this call. This is why we have refdata wrapper to avoid warning,
2002 * and to ensure that the function body gets unloaded.
2005 _deferred_grow_zone(struct zone *zone, unsigned int order)
2007 return deferred_grow_zone(zone, order);
2010 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2012 void __init page_alloc_init_late(void)
2017 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2019 /* There will be num_node_state(N_MEMORY) threads */
2020 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2021 for_each_node_state(nid, N_MEMORY) {
2022 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2025 /* Block until all are initialised */
2026 wait_for_completion(&pgdat_init_all_done_comp);
2029 * The number of managed pages has changed due to the initialisation
2030 * so the pcpu batch and high limits needs to be updated or the limits
2031 * will be artificially small.
2033 for_each_populated_zone(zone)
2034 zone_pcp_update(zone);
2037 * We initialized the rest of the deferred pages. Permanently disable
2038 * on-demand struct page initialization.
2040 static_branch_disable(&deferred_pages);
2042 /* Reinit limits that are based on free pages after the kernel is up */
2043 files_maxfiles_init();
2046 /* Discard memblock private memory */
2049 for_each_node_state(nid, N_MEMORY)
2050 shuffle_free_memory(NODE_DATA(nid));
2052 for_each_populated_zone(zone)
2053 set_zone_contiguous(zone);
2057 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2058 void __init init_cma_reserved_pageblock(struct page *page)
2060 unsigned i = pageblock_nr_pages;
2061 struct page *p = page;
2064 __ClearPageReserved(p);
2065 set_page_count(p, 0);
2068 set_pageblock_migratetype(page, MIGRATE_CMA);
2070 if (pageblock_order >= MAX_ORDER) {
2071 i = pageblock_nr_pages;
2074 set_page_refcounted(p);
2075 __free_pages(p, MAX_ORDER - 1);
2076 p += MAX_ORDER_NR_PAGES;
2077 } while (i -= MAX_ORDER_NR_PAGES);
2079 set_page_refcounted(page);
2080 __free_pages(page, pageblock_order);
2083 adjust_managed_page_count(page, pageblock_nr_pages);
2088 * The order of subdivision here is critical for the IO subsystem.
2089 * Please do not alter this order without good reasons and regression
2090 * testing. Specifically, as large blocks of memory are subdivided,
2091 * the order in which smaller blocks are delivered depends on the order
2092 * they're subdivided in this function. This is the primary factor
2093 * influencing the order in which pages are delivered to the IO
2094 * subsystem according to empirical testing, and this is also justified
2095 * by considering the behavior of a buddy system containing a single
2096 * large block of memory acted on by a series of small allocations.
2097 * This behavior is a critical factor in sglist merging's success.
2101 static inline void expand(struct zone *zone, struct page *page,
2102 int low, int high, int migratetype)
2104 unsigned long size = 1 << high;
2106 while (high > low) {
2109 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2112 * Mark as guard pages (or page), that will allow to
2113 * merge back to allocator when buddy will be freed.
2114 * Corresponding page table entries will not be touched,
2115 * pages will stay not present in virtual address space
2117 if (set_page_guard(zone, &page[size], high, migratetype))
2120 add_to_free_list(&page[size], zone, high, migratetype);
2121 set_page_order(&page[size], high);
2125 static void check_new_page_bad(struct page *page)
2127 if (unlikely(page->flags & __PG_HWPOISON)) {
2128 /* Don't complain about hwpoisoned pages */
2129 page_mapcount_reset(page); /* remove PageBuddy */
2134 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2138 * This page is about to be returned from the page allocator
2140 static inline int check_new_page(struct page *page)
2142 if (likely(page_expected_state(page,
2143 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2146 check_new_page_bad(page);
2150 static inline bool free_pages_prezeroed(void)
2152 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2153 page_poisoning_enabled()) || want_init_on_free();
2156 #ifdef CONFIG_DEBUG_VM
2158 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2159 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2160 * also checked when pcp lists are refilled from the free lists.
2162 static inline bool check_pcp_refill(struct page *page)
2164 if (debug_pagealloc_enabled_static())
2165 return check_new_page(page);
2170 static inline bool check_new_pcp(struct page *page)
2172 return check_new_page(page);
2176 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2177 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2178 * enabled, they are also checked when being allocated from the pcp lists.
2180 static inline bool check_pcp_refill(struct page *page)
2182 return check_new_page(page);
2184 static inline bool check_new_pcp(struct page *page)
2186 if (debug_pagealloc_enabled_static())
2187 return check_new_page(page);
2191 #endif /* CONFIG_DEBUG_VM */
2193 static bool check_new_pages(struct page *page, unsigned int order)
2196 for (i = 0; i < (1 << order); i++) {
2197 struct page *p = page + i;
2199 if (unlikely(check_new_page(p)))
2206 inline void post_alloc_hook(struct page *page, unsigned int order,
2209 set_page_private(page, 0);
2210 set_page_refcounted(page);
2212 arch_alloc_page(page, order);
2213 if (debug_pagealloc_enabled_static())
2214 kernel_map_pages(page, 1 << order, 1);
2215 kasan_alloc_pages(page, order);
2216 kernel_poison_pages(page, 1 << order, 1);
2217 set_page_owner(page, order, gfp_flags);
2220 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2221 unsigned int alloc_flags)
2223 post_alloc_hook(page, order, gfp_flags);
2225 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2226 kernel_init_free_pages(page, 1 << order);
2228 if (order && (gfp_flags & __GFP_COMP))
2229 prep_compound_page(page, order);
2232 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2233 * allocate the page. The expectation is that the caller is taking
2234 * steps that will free more memory. The caller should avoid the page
2235 * being used for !PFMEMALLOC purposes.
2237 if (alloc_flags & ALLOC_NO_WATERMARKS)
2238 set_page_pfmemalloc(page);
2240 clear_page_pfmemalloc(page);
2244 * Go through the free lists for the given migratetype and remove
2245 * the smallest available page from the freelists
2247 static __always_inline
2248 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2251 unsigned int current_order;
2252 struct free_area *area;
2255 /* Find a page of the appropriate size in the preferred list */
2256 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2257 area = &(zone->free_area[current_order]);
2258 page = get_page_from_free_area(area, migratetype);
2261 del_page_from_free_list(page, zone, current_order);
2262 expand(zone, page, order, current_order, migratetype);
2263 set_pcppage_migratetype(page, migratetype);
2272 * This array describes the order lists are fallen back to when
2273 * the free lists for the desirable migrate type are depleted
2275 static int fallbacks[MIGRATE_TYPES][4] = {
2276 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2277 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2278 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2280 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2282 #ifdef CONFIG_MEMORY_ISOLATION
2283 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2288 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2294 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2295 unsigned int order) { return NULL; }
2299 * Move the free pages in a range to the free lists of the requested type.
2300 * Note that start_page and end_pages are not aligned on a pageblock
2301 * boundary. If alignment is required, use move_freepages_block()
2303 static int move_freepages(struct zone *zone,
2304 struct page *start_page, struct page *end_page,
2305 int migratetype, int *num_movable)
2309 int pages_moved = 0;
2311 for (page = start_page; page <= end_page;) {
2312 if (!pfn_valid_within(page_to_pfn(page))) {
2317 if (!PageBuddy(page)) {
2319 * We assume that pages that could be isolated for
2320 * migration are movable. But we don't actually try
2321 * isolating, as that would be expensive.
2324 (PageLRU(page) || __PageMovable(page)))
2331 /* Make sure we are not inadvertently changing nodes */
2332 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2333 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2335 order = page_order(page);
2336 move_to_free_list(page, zone, order, migratetype);
2338 pages_moved += 1 << order;
2344 int move_freepages_block(struct zone *zone, struct page *page,
2345 int migratetype, int *num_movable)
2347 unsigned long start_pfn, end_pfn;
2348 struct page *start_page, *end_page;
2353 start_pfn = page_to_pfn(page);
2354 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2355 start_page = pfn_to_page(start_pfn);
2356 end_page = start_page + pageblock_nr_pages - 1;
2357 end_pfn = start_pfn + pageblock_nr_pages - 1;
2359 /* Do not cross zone boundaries */
2360 if (!zone_spans_pfn(zone, start_pfn))
2362 if (!zone_spans_pfn(zone, end_pfn))
2365 return move_freepages(zone, start_page, end_page, migratetype,
2369 static void change_pageblock_range(struct page *pageblock_page,
2370 int start_order, int migratetype)
2372 int nr_pageblocks = 1 << (start_order - pageblock_order);
2374 while (nr_pageblocks--) {
2375 set_pageblock_migratetype(pageblock_page, migratetype);
2376 pageblock_page += pageblock_nr_pages;
2381 * When we are falling back to another migratetype during allocation, try to
2382 * steal extra free pages from the same pageblocks to satisfy further
2383 * allocations, instead of polluting multiple pageblocks.
2385 * If we are stealing a relatively large buddy page, it is likely there will
2386 * be more free pages in the pageblock, so try to steal them all. For
2387 * reclaimable and unmovable allocations, we steal regardless of page size,
2388 * as fragmentation caused by those allocations polluting movable pageblocks
2389 * is worse than movable allocations stealing from unmovable and reclaimable
2392 static bool can_steal_fallback(unsigned int order, int start_mt)
2395 * Leaving this order check is intended, although there is
2396 * relaxed order check in next check. The reason is that
2397 * we can actually steal whole pageblock if this condition met,
2398 * but, below check doesn't guarantee it and that is just heuristic
2399 * so could be changed anytime.
2401 if (order >= pageblock_order)
2404 if (order >= pageblock_order / 2 ||
2405 start_mt == MIGRATE_RECLAIMABLE ||
2406 start_mt == MIGRATE_UNMOVABLE ||
2407 page_group_by_mobility_disabled)
2413 static inline void boost_watermark(struct zone *zone)
2415 unsigned long max_boost;
2417 if (!watermark_boost_factor)
2420 * Don't bother in zones that are unlikely to produce results.
2421 * On small machines, including kdump capture kernels running
2422 * in a small area, boosting the watermark can cause an out of
2423 * memory situation immediately.
2425 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2428 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2429 watermark_boost_factor, 10000);
2432 * high watermark may be uninitialised if fragmentation occurs
2433 * very early in boot so do not boost. We do not fall
2434 * through and boost by pageblock_nr_pages as failing
2435 * allocations that early means that reclaim is not going
2436 * to help and it may even be impossible to reclaim the
2437 * boosted watermark resulting in a hang.
2442 max_boost = max(pageblock_nr_pages, max_boost);
2444 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2449 * This function implements actual steal behaviour. If order is large enough,
2450 * we can steal whole pageblock. If not, we first move freepages in this
2451 * pageblock to our migratetype and determine how many already-allocated pages
2452 * are there in the pageblock with a compatible migratetype. If at least half
2453 * of pages are free or compatible, we can change migratetype of the pageblock
2454 * itself, so pages freed in the future will be put on the correct free list.
2456 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2457 unsigned int alloc_flags, int start_type, bool whole_block)
2459 unsigned int current_order = page_order(page);
2460 int free_pages, movable_pages, alike_pages;
2463 old_block_type = get_pageblock_migratetype(page);
2466 * This can happen due to races and we want to prevent broken
2467 * highatomic accounting.
2469 if (is_migrate_highatomic(old_block_type))
2472 /* Take ownership for orders >= pageblock_order */
2473 if (current_order >= pageblock_order) {
2474 change_pageblock_range(page, current_order, start_type);
2479 * Boost watermarks to increase reclaim pressure to reduce the
2480 * likelihood of future fallbacks. Wake kswapd now as the node
2481 * may be balanced overall and kswapd will not wake naturally.
2483 boost_watermark(zone);
2484 if (alloc_flags & ALLOC_KSWAPD)
2485 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2487 /* We are not allowed to try stealing from the whole block */
2491 free_pages = move_freepages_block(zone, page, start_type,
2494 * Determine how many pages are compatible with our allocation.
2495 * For movable allocation, it's the number of movable pages which
2496 * we just obtained. For other types it's a bit more tricky.
2498 if (start_type == MIGRATE_MOVABLE) {
2499 alike_pages = movable_pages;
2502 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2503 * to MOVABLE pageblock, consider all non-movable pages as
2504 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2505 * vice versa, be conservative since we can't distinguish the
2506 * exact migratetype of non-movable pages.
2508 if (old_block_type == MIGRATE_MOVABLE)
2509 alike_pages = pageblock_nr_pages
2510 - (free_pages + movable_pages);
2515 /* moving whole block can fail due to zone boundary conditions */
2520 * If a sufficient number of pages in the block are either free or of
2521 * comparable migratability as our allocation, claim the whole block.
2523 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2524 page_group_by_mobility_disabled)
2525 set_pageblock_migratetype(page, start_type);
2530 move_to_free_list(page, zone, current_order, start_type);
2534 * Check whether there is a suitable fallback freepage with requested order.
2535 * If only_stealable is true, this function returns fallback_mt only if
2536 * we can steal other freepages all together. This would help to reduce
2537 * fragmentation due to mixed migratetype pages in one pageblock.
2539 int find_suitable_fallback(struct free_area *area, unsigned int order,
2540 int migratetype, bool only_stealable, bool *can_steal)
2545 if (area->nr_free == 0)
2550 fallback_mt = fallbacks[migratetype][i];
2551 if (fallback_mt == MIGRATE_TYPES)
2554 if (free_area_empty(area, fallback_mt))
2557 if (can_steal_fallback(order, migratetype))
2560 if (!only_stealable)
2571 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2572 * there are no empty page blocks that contain a page with a suitable order
2574 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2575 unsigned int alloc_order)
2578 unsigned long max_managed, flags;
2581 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2582 * Check is race-prone but harmless.
2584 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2585 if (zone->nr_reserved_highatomic >= max_managed)
2588 spin_lock_irqsave(&zone->lock, flags);
2590 /* Recheck the nr_reserved_highatomic limit under the lock */
2591 if (zone->nr_reserved_highatomic >= max_managed)
2595 mt = get_pageblock_migratetype(page);
2596 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2597 && !is_migrate_cma(mt)) {
2598 zone->nr_reserved_highatomic += pageblock_nr_pages;
2599 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2600 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604 spin_unlock_irqrestore(&zone->lock, flags);
2608 * Used when an allocation is about to fail under memory pressure. This
2609 * potentially hurts the reliability of high-order allocations when under
2610 * intense memory pressure but failed atomic allocations should be easier
2611 * to recover from than an OOM.
2613 * If @force is true, try to unreserve a pageblock even though highatomic
2614 * pageblock is exhausted.
2616 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2619 struct zonelist *zonelist = ac->zonelist;
2620 unsigned long flags;
2627 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2630 * Preserve at least one pageblock unless memory pressure
2633 if (!force && zone->nr_reserved_highatomic <=
2637 spin_lock_irqsave(&zone->lock, flags);
2638 for (order = 0; order < MAX_ORDER; order++) {
2639 struct free_area *area = &(zone->free_area[order]);
2641 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2646 * In page freeing path, migratetype change is racy so
2647 * we can counter several free pages in a pageblock
2648 * in this loop althoug we changed the pageblock type
2649 * from highatomic to ac->migratetype. So we should
2650 * adjust the count once.
2652 if (is_migrate_highatomic_page(page)) {
2654 * It should never happen but changes to
2655 * locking could inadvertently allow a per-cpu
2656 * drain to add pages to MIGRATE_HIGHATOMIC
2657 * while unreserving so be safe and watch for
2660 zone->nr_reserved_highatomic -= min(
2662 zone->nr_reserved_highatomic);
2666 * Convert to ac->migratetype and avoid the normal
2667 * pageblock stealing heuristics. Minimally, the caller
2668 * is doing the work and needs the pages. More
2669 * importantly, if the block was always converted to
2670 * MIGRATE_UNMOVABLE or another type then the number
2671 * of pageblocks that cannot be completely freed
2674 set_pageblock_migratetype(page, ac->migratetype);
2675 ret = move_freepages_block(zone, page, ac->migratetype,
2678 spin_unlock_irqrestore(&zone->lock, flags);
2682 spin_unlock_irqrestore(&zone->lock, flags);
2689 * Try finding a free buddy page on the fallback list and put it on the free
2690 * list of requested migratetype, possibly along with other pages from the same
2691 * block, depending on fragmentation avoidance heuristics. Returns true if
2692 * fallback was found so that __rmqueue_smallest() can grab it.
2694 * The use of signed ints for order and current_order is a deliberate
2695 * deviation from the rest of this file, to make the for loop
2696 * condition simpler.
2698 static __always_inline bool
2699 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2700 unsigned int alloc_flags)
2702 struct free_area *area;
2704 int min_order = order;
2710 * Do not steal pages from freelists belonging to other pageblocks
2711 * i.e. orders < pageblock_order. If there are no local zones free,
2712 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2714 if (alloc_flags & ALLOC_NOFRAGMENT)
2715 min_order = pageblock_order;
2718 * Find the largest available free page in the other list. This roughly
2719 * approximates finding the pageblock with the most free pages, which
2720 * would be too costly to do exactly.
2722 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2724 area = &(zone->free_area[current_order]);
2725 fallback_mt = find_suitable_fallback(area, current_order,
2726 start_migratetype, false, &can_steal);
2727 if (fallback_mt == -1)
2731 * We cannot steal all free pages from the pageblock and the
2732 * requested migratetype is movable. In that case it's better to
2733 * steal and split the smallest available page instead of the
2734 * largest available page, because even if the next movable
2735 * allocation falls back into a different pageblock than this
2736 * one, it won't cause permanent fragmentation.
2738 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2739 && current_order > order)
2748 for (current_order = order; current_order < MAX_ORDER;
2750 area = &(zone->free_area[current_order]);
2751 fallback_mt = find_suitable_fallback(area, current_order,
2752 start_migratetype, false, &can_steal);
2753 if (fallback_mt != -1)
2758 * This should not happen - we already found a suitable fallback
2759 * when looking for the largest page.
2761 VM_BUG_ON(current_order == MAX_ORDER);
2764 page = get_page_from_free_area(area, fallback_mt);
2766 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2769 trace_mm_page_alloc_extfrag(page, order, current_order,
2770 start_migratetype, fallback_mt);
2777 * Do the hard work of removing an element from the buddy allocator.
2778 * Call me with the zone->lock already held.
2780 static __always_inline struct page *
2781 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2782 unsigned int alloc_flags)
2788 * Balance movable allocations between regular and CMA areas by
2789 * allocating from CMA when over half of the zone's free memory
2790 * is in the CMA area.
2792 if (migratetype == MIGRATE_MOVABLE &&
2793 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2794 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2795 page = __rmqueue_cma_fallback(zone, order);
2801 page = __rmqueue_smallest(zone, order, migratetype);
2802 if (unlikely(!page)) {
2803 if (migratetype == MIGRATE_MOVABLE)
2804 page = __rmqueue_cma_fallback(zone, order);
2806 if (!page && __rmqueue_fallback(zone, order, migratetype,
2811 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2816 * Obtain a specified number of elements from the buddy allocator, all under
2817 * a single hold of the lock, for efficiency. Add them to the supplied list.
2818 * Returns the number of new pages which were placed at *list.
2820 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2821 unsigned long count, struct list_head *list,
2822 int migratetype, unsigned int alloc_flags)
2826 spin_lock(&zone->lock);
2827 for (i = 0; i < count; ++i) {
2828 struct page *page = __rmqueue(zone, order, migratetype,
2830 if (unlikely(page == NULL))
2833 if (unlikely(check_pcp_refill(page)))
2837 * Split buddy pages returned by expand() are received here in
2838 * physical page order. The page is added to the tail of
2839 * caller's list. From the callers perspective, the linked list
2840 * is ordered by page number under some conditions. This is
2841 * useful for IO devices that can forward direction from the
2842 * head, thus also in the physical page order. This is useful
2843 * for IO devices that can merge IO requests if the physical
2844 * pages are ordered properly.
2846 list_add_tail(&page->lru, list);
2848 if (is_migrate_cma(get_pcppage_migratetype(page)))
2849 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2854 * i pages were removed from the buddy list even if some leak due
2855 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2856 * on i. Do not confuse with 'alloced' which is the number of
2857 * pages added to the pcp list.
2859 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2860 spin_unlock(&zone->lock);
2866 * Called from the vmstat counter updater to drain pagesets of this
2867 * currently executing processor on remote nodes after they have
2870 * Note that this function must be called with the thread pinned to
2871 * a single processor.
2873 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2875 unsigned long flags;
2876 int to_drain, batch;
2878 local_irq_save(flags);
2879 batch = READ_ONCE(pcp->batch);
2880 to_drain = min(pcp->count, batch);
2882 free_pcppages_bulk(zone, to_drain, pcp);
2883 local_irq_restore(flags);
2888 * Drain pcplists of the indicated processor and zone.
2890 * The processor must either be the current processor and the
2891 * thread pinned to the current processor or a processor that
2894 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2896 unsigned long flags;
2897 struct per_cpu_pageset *pset;
2898 struct per_cpu_pages *pcp;
2900 local_irq_save(flags);
2901 pset = per_cpu_ptr(zone->pageset, cpu);
2905 free_pcppages_bulk(zone, pcp->count, pcp);
2906 local_irq_restore(flags);
2910 * Drain pcplists of all zones on the indicated processor.
2912 * The processor must either be the current processor and the
2913 * thread pinned to the current processor or a processor that
2916 static void drain_pages(unsigned int cpu)
2920 for_each_populated_zone(zone) {
2921 drain_pages_zone(cpu, zone);
2926 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2928 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2929 * the single zone's pages.
2931 void drain_local_pages(struct zone *zone)
2933 int cpu = smp_processor_id();
2936 drain_pages_zone(cpu, zone);
2941 static void drain_local_pages_wq(struct work_struct *work)
2943 struct pcpu_drain *drain;
2945 drain = container_of(work, struct pcpu_drain, work);
2948 * drain_all_pages doesn't use proper cpu hotplug protection so
2949 * we can race with cpu offline when the WQ can move this from
2950 * a cpu pinned worker to an unbound one. We can operate on a different
2951 * cpu which is allright but we also have to make sure to not move to
2955 drain_local_pages(drain->zone);
2960 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2962 * When zone parameter is non-NULL, spill just the single zone's pages.
2964 * Note that this can be extremely slow as the draining happens in a workqueue.
2966 void drain_all_pages(struct zone *zone)
2971 * Allocate in the BSS so we wont require allocation in
2972 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2974 static cpumask_t cpus_with_pcps;
2977 * Make sure nobody triggers this path before mm_percpu_wq is fully
2980 if (WARN_ON_ONCE(!mm_percpu_wq))
2984 * Do not drain if one is already in progress unless it's specific to
2985 * a zone. Such callers are primarily CMA and memory hotplug and need
2986 * the drain to be complete when the call returns.
2988 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2991 mutex_lock(&pcpu_drain_mutex);
2995 * We don't care about racing with CPU hotplug event
2996 * as offline notification will cause the notified
2997 * cpu to drain that CPU pcps and on_each_cpu_mask
2998 * disables preemption as part of its processing
3000 for_each_online_cpu(cpu) {
3001 struct per_cpu_pageset *pcp;
3003 bool has_pcps = false;
3006 pcp = per_cpu_ptr(zone->pageset, cpu);
3010 for_each_populated_zone(z) {
3011 pcp = per_cpu_ptr(z->pageset, cpu);
3012 if (pcp->pcp.count) {
3020 cpumask_set_cpu(cpu, &cpus_with_pcps);
3022 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3025 for_each_cpu(cpu, &cpus_with_pcps) {
3026 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3029 INIT_WORK(&drain->work, drain_local_pages_wq);
3030 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3032 for_each_cpu(cpu, &cpus_with_pcps)
3033 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3035 mutex_unlock(&pcpu_drain_mutex);
3038 #ifdef CONFIG_HIBERNATION
3041 * Touch the watchdog for every WD_PAGE_COUNT pages.
3043 #define WD_PAGE_COUNT (128*1024)
3045 void mark_free_pages(struct zone *zone)
3047 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3048 unsigned long flags;
3049 unsigned int order, t;
3052 if (zone_is_empty(zone))
3055 spin_lock_irqsave(&zone->lock, flags);
3057 max_zone_pfn = zone_end_pfn(zone);
3058 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3059 if (pfn_valid(pfn)) {
3060 page = pfn_to_page(pfn);
3062 if (!--page_count) {
3063 touch_nmi_watchdog();
3064 page_count = WD_PAGE_COUNT;
3067 if (page_zone(page) != zone)
3070 if (!swsusp_page_is_forbidden(page))
3071 swsusp_unset_page_free(page);
3074 for_each_migratetype_order(order, t) {
3075 list_for_each_entry(page,
3076 &zone->free_area[order].free_list[t], lru) {
3079 pfn = page_to_pfn(page);
3080 for (i = 0; i < (1UL << order); i++) {
3081 if (!--page_count) {
3082 touch_nmi_watchdog();
3083 page_count = WD_PAGE_COUNT;
3085 swsusp_set_page_free(pfn_to_page(pfn + i));
3089 spin_unlock_irqrestore(&zone->lock, flags);
3091 #endif /* CONFIG_PM */
3093 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3097 if (!free_pcp_prepare(page))
3100 migratetype = get_pfnblock_migratetype(page, pfn);
3101 set_pcppage_migratetype(page, migratetype);
3105 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3107 struct zone *zone = page_zone(page);
3108 struct per_cpu_pages *pcp;
3111 migratetype = get_pcppage_migratetype(page);
3112 __count_vm_event(PGFREE);
3115 * We only track unmovable, reclaimable and movable on pcp lists.
3116 * Free ISOLATE pages back to the allocator because they are being
3117 * offlined but treat HIGHATOMIC as movable pages so we can get those
3118 * areas back if necessary. Otherwise, we may have to free
3119 * excessively into the page allocator
3121 if (migratetype >= MIGRATE_PCPTYPES) {
3122 if (unlikely(is_migrate_isolate(migratetype))) {
3123 free_one_page(zone, page, pfn, 0, migratetype);
3126 migratetype = MIGRATE_MOVABLE;
3129 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3130 list_add(&page->lru, &pcp->lists[migratetype]);
3132 if (pcp->count >= pcp->high) {
3133 unsigned long batch = READ_ONCE(pcp->batch);
3134 free_pcppages_bulk(zone, batch, pcp);
3139 * Free a 0-order page
3141 void free_unref_page(struct page *page)
3143 unsigned long flags;
3144 unsigned long pfn = page_to_pfn(page);
3146 if (!free_unref_page_prepare(page, pfn))
3149 local_irq_save(flags);
3150 free_unref_page_commit(page, pfn);
3151 local_irq_restore(flags);
3155 * Free a list of 0-order pages
3157 void free_unref_page_list(struct list_head *list)
3159 struct page *page, *next;
3160 unsigned long flags, pfn;
3161 int batch_count = 0;
3163 /* Prepare pages for freeing */
3164 list_for_each_entry_safe(page, next, list, lru) {
3165 pfn = page_to_pfn(page);
3166 if (!free_unref_page_prepare(page, pfn))
3167 list_del(&page->lru);
3168 set_page_private(page, pfn);
3171 local_irq_save(flags);
3172 list_for_each_entry_safe(page, next, list, lru) {
3173 unsigned long pfn = page_private(page);
3175 set_page_private(page, 0);
3176 trace_mm_page_free_batched(page);
3177 free_unref_page_commit(page, pfn);
3180 * Guard against excessive IRQ disabled times when we get
3181 * a large list of pages to free.
3183 if (++batch_count == SWAP_CLUSTER_MAX) {
3184 local_irq_restore(flags);
3186 local_irq_save(flags);
3189 local_irq_restore(flags);
3193 * split_page takes a non-compound higher-order page, and splits it into
3194 * n (1<<order) sub-pages: page[0..n]
3195 * Each sub-page must be freed individually.
3197 * Note: this is probably too low level an operation for use in drivers.
3198 * Please consult with lkml before using this in your driver.
3200 void split_page(struct page *page, unsigned int order)
3204 VM_BUG_ON_PAGE(PageCompound(page), page);
3205 VM_BUG_ON_PAGE(!page_count(page), page);
3207 for (i = 1; i < (1 << order); i++)
3208 set_page_refcounted(page + i);
3209 split_page_owner(page, order);
3211 EXPORT_SYMBOL_GPL(split_page);
3213 int __isolate_free_page(struct page *page, unsigned int order)
3215 unsigned long watermark;
3219 BUG_ON(!PageBuddy(page));
3221 zone = page_zone(page);
3222 mt = get_pageblock_migratetype(page);
3224 if (!is_migrate_isolate(mt)) {
3226 * Obey watermarks as if the page was being allocated. We can
3227 * emulate a high-order watermark check with a raised order-0
3228 * watermark, because we already know our high-order page
3231 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3232 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3235 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3238 /* Remove page from free list */
3240 del_page_from_free_list(page, zone, order);
3243 * Set the pageblock if the isolated page is at least half of a
3246 if (order >= pageblock_order - 1) {
3247 struct page *endpage = page + (1 << order) - 1;
3248 for (; page < endpage; page += pageblock_nr_pages) {
3249 int mt = get_pageblock_migratetype(page);
3250 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3251 && !is_migrate_highatomic(mt))
3252 set_pageblock_migratetype(page,
3258 return 1UL << order;
3262 * __putback_isolated_page - Return a now-isolated page back where we got it
3263 * @page: Page that was isolated
3264 * @order: Order of the isolated page
3265 * @mt: The page's pageblock's migratetype
3267 * This function is meant to return a page pulled from the free lists via
3268 * __isolate_free_page back to the free lists they were pulled from.
3270 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3272 struct zone *zone = page_zone(page);
3274 /* zone lock should be held when this function is called */
3275 lockdep_assert_held(&zone->lock);
3277 /* Return isolated page to tail of freelist. */
3278 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282 * Update NUMA hit/miss statistics
3284 * Must be called with interrupts disabled.
3286 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3289 enum numa_stat_item local_stat = NUMA_LOCAL;
3291 /* skip numa counters update if numa stats is disabled */
3292 if (!static_branch_likely(&vm_numa_stat_key))
3295 if (zone_to_nid(z) != numa_node_id())
3296 local_stat = NUMA_OTHER;
3298 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3299 __inc_numa_state(z, NUMA_HIT);
3301 __inc_numa_state(z, NUMA_MISS);
3302 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3304 __inc_numa_state(z, local_stat);
3308 /* Remove page from the per-cpu list, caller must protect the list */
3309 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3310 unsigned int alloc_flags,
3311 struct per_cpu_pages *pcp,
3312 struct list_head *list)
3317 if (list_empty(list)) {
3318 pcp->count += rmqueue_bulk(zone, 0,
3320 migratetype, alloc_flags);
3321 if (unlikely(list_empty(list)))
3325 page = list_first_entry(list, struct page, lru);
3326 list_del(&page->lru);
3328 } while (check_new_pcp(page));
3333 /* Lock and remove page from the per-cpu list */
3334 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3335 struct zone *zone, gfp_t gfp_flags,
3336 int migratetype, unsigned int alloc_flags)
3338 struct per_cpu_pages *pcp;
3339 struct list_head *list;
3341 unsigned long flags;
3343 local_irq_save(flags);
3344 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3345 list = &pcp->lists[migratetype];
3346 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3348 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3349 zone_statistics(preferred_zone, zone);
3351 local_irq_restore(flags);
3356 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3359 struct page *rmqueue(struct zone *preferred_zone,
3360 struct zone *zone, unsigned int order,
3361 gfp_t gfp_flags, unsigned int alloc_flags,
3364 unsigned long flags;
3367 if (likely(order == 0)) {
3368 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3369 migratetype, alloc_flags);
3374 * We most definitely don't want callers attempting to
3375 * allocate greater than order-1 page units with __GFP_NOFAIL.
3377 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3378 spin_lock_irqsave(&zone->lock, flags);
3382 if (alloc_flags & ALLOC_HARDER) {
3383 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3385 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3388 page = __rmqueue(zone, order, migratetype, alloc_flags);
3389 } while (page && check_new_pages(page, order));
3390 spin_unlock(&zone->lock);
3393 __mod_zone_freepage_state(zone, -(1 << order),
3394 get_pcppage_migratetype(page));
3396 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3397 zone_statistics(preferred_zone, zone);
3398 local_irq_restore(flags);
3401 /* Separate test+clear to avoid unnecessary atomics */
3402 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3403 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3404 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3407 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3411 local_irq_restore(flags);
3415 #ifdef CONFIG_FAIL_PAGE_ALLOC
3418 struct fault_attr attr;
3420 bool ignore_gfp_highmem;
3421 bool ignore_gfp_reclaim;
3423 } fail_page_alloc = {
3424 .attr = FAULT_ATTR_INITIALIZER,
3425 .ignore_gfp_reclaim = true,
3426 .ignore_gfp_highmem = true,
3430 static int __init setup_fail_page_alloc(char *str)
3432 return setup_fault_attr(&fail_page_alloc.attr, str);
3434 __setup("fail_page_alloc=", setup_fail_page_alloc);
3436 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3438 if (order < fail_page_alloc.min_order)
3440 if (gfp_mask & __GFP_NOFAIL)
3442 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3444 if (fail_page_alloc.ignore_gfp_reclaim &&
3445 (gfp_mask & __GFP_DIRECT_RECLAIM))
3448 return should_fail(&fail_page_alloc.attr, 1 << order);
3451 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3453 static int __init fail_page_alloc_debugfs(void)
3455 umode_t mode = S_IFREG | 0600;
3458 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3459 &fail_page_alloc.attr);
3461 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3462 &fail_page_alloc.ignore_gfp_reclaim);
3463 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3464 &fail_page_alloc.ignore_gfp_highmem);
3465 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3470 late_initcall(fail_page_alloc_debugfs);
3472 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3474 #else /* CONFIG_FAIL_PAGE_ALLOC */
3476 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3481 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3483 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3485 return __should_fail_alloc_page(gfp_mask, order);
3487 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3489 static inline long __zone_watermark_unusable_free(struct zone *z,
3490 unsigned int order, unsigned int alloc_flags)
3492 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3493 long unusable_free = (1 << order) - 1;
3496 * If the caller does not have rights to ALLOC_HARDER then subtract
3497 * the high-atomic reserves. This will over-estimate the size of the
3498 * atomic reserve but it avoids a search.
3500 if (likely(!alloc_harder))
3501 unusable_free += z->nr_reserved_highatomic;
3504 /* If allocation can't use CMA areas don't use free CMA pages */
3505 if (!(alloc_flags & ALLOC_CMA))
3506 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3509 return unusable_free;
3513 * Return true if free base pages are above 'mark'. For high-order checks it
3514 * will return true of the order-0 watermark is reached and there is at least
3515 * one free page of a suitable size. Checking now avoids taking the zone lock
3516 * to check in the allocation paths if no pages are free.
3518 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3519 int highest_zoneidx, unsigned int alloc_flags,
3524 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3526 /* free_pages may go negative - that's OK */
3527 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3529 if (alloc_flags & ALLOC_HIGH)
3532 if (unlikely(alloc_harder)) {
3534 * OOM victims can try even harder than normal ALLOC_HARDER
3535 * users on the grounds that it's definitely going to be in
3536 * the exit path shortly and free memory. Any allocation it
3537 * makes during the free path will be small and short-lived.
3539 if (alloc_flags & ALLOC_OOM)
3546 * Check watermarks for an order-0 allocation request. If these
3547 * are not met, then a high-order request also cannot go ahead
3548 * even if a suitable page happened to be free.
3550 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3553 /* If this is an order-0 request then the watermark is fine */
3557 /* For a high-order request, check at least one suitable page is free */
3558 for (o = order; o < MAX_ORDER; o++) {
3559 struct free_area *area = &z->free_area[o];
3565 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3566 if (!free_area_empty(area, mt))
3571 if ((alloc_flags & ALLOC_CMA) &&
3572 !free_area_empty(area, MIGRATE_CMA)) {
3576 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3582 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3583 int highest_zoneidx, unsigned int alloc_flags)
3585 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3586 zone_page_state(z, NR_FREE_PAGES));
3589 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3590 unsigned long mark, int highest_zoneidx,
3591 unsigned int alloc_flags)
3595 free_pages = zone_page_state(z, NR_FREE_PAGES);
3598 * Fast check for order-0 only. If this fails then the reserves
3599 * need to be calculated.
3604 fast_free = free_pages;
3605 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3606 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3610 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3614 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3615 unsigned long mark, int highest_zoneidx)
3617 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3619 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3620 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3622 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3627 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3629 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3630 node_reclaim_distance;
3632 #else /* CONFIG_NUMA */
3633 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3637 #endif /* CONFIG_NUMA */
3640 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3641 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3642 * premature use of a lower zone may cause lowmem pressure problems that
3643 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3644 * probably too small. It only makes sense to spread allocations to avoid
3645 * fragmentation between the Normal and DMA32 zones.
3647 static inline unsigned int
3648 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3650 unsigned int alloc_flags;
3653 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3656 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3658 #ifdef CONFIG_ZONE_DMA32
3662 if (zone_idx(zone) != ZONE_NORMAL)
3666 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3667 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3668 * on UMA that if Normal is populated then so is DMA32.
3670 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3671 if (nr_online_nodes > 1 && !populated_zone(--zone))
3674 alloc_flags |= ALLOC_NOFRAGMENT;
3675 #endif /* CONFIG_ZONE_DMA32 */
3680 * get_page_from_freelist goes through the zonelist trying to allocate
3683 static struct page *
3684 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3685 const struct alloc_context *ac)
3689 struct pglist_data *last_pgdat_dirty_limit = NULL;
3694 * Scan zonelist, looking for a zone with enough free.
3695 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3697 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3698 z = ac->preferred_zoneref;
3699 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3700 ac->highest_zoneidx, ac->nodemask) {
3704 if (cpusets_enabled() &&
3705 (alloc_flags & ALLOC_CPUSET) &&
3706 !__cpuset_zone_allowed(zone, gfp_mask))
3709 * When allocating a page cache page for writing, we
3710 * want to get it from a node that is within its dirty
3711 * limit, such that no single node holds more than its
3712 * proportional share of globally allowed dirty pages.
3713 * The dirty limits take into account the node's
3714 * lowmem reserves and high watermark so that kswapd
3715 * should be able to balance it without having to
3716 * write pages from its LRU list.
3718 * XXX: For now, allow allocations to potentially
3719 * exceed the per-node dirty limit in the slowpath
3720 * (spread_dirty_pages unset) before going into reclaim,
3721 * which is important when on a NUMA setup the allowed
3722 * nodes are together not big enough to reach the
3723 * global limit. The proper fix for these situations
3724 * will require awareness of nodes in the
3725 * dirty-throttling and the flusher threads.
3727 if (ac->spread_dirty_pages) {
3728 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3731 if (!node_dirty_ok(zone->zone_pgdat)) {
3732 last_pgdat_dirty_limit = zone->zone_pgdat;
3737 if (no_fallback && nr_online_nodes > 1 &&
3738 zone != ac->preferred_zoneref->zone) {
3742 * If moving to a remote node, retry but allow
3743 * fragmenting fallbacks. Locality is more important
3744 * than fragmentation avoidance.
3746 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3747 if (zone_to_nid(zone) != local_nid) {
3748 alloc_flags &= ~ALLOC_NOFRAGMENT;
3753 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3754 if (!zone_watermark_fast(zone, order, mark,
3755 ac->highest_zoneidx, alloc_flags)) {
3758 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3760 * Watermark failed for this zone, but see if we can
3761 * grow this zone if it contains deferred pages.
3763 if (static_branch_unlikely(&deferred_pages)) {
3764 if (_deferred_grow_zone(zone, order))
3768 /* Checked here to keep the fast path fast */
3769 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3770 if (alloc_flags & ALLOC_NO_WATERMARKS)
3773 if (node_reclaim_mode == 0 ||
3774 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3777 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3779 case NODE_RECLAIM_NOSCAN:
3782 case NODE_RECLAIM_FULL:
3783 /* scanned but unreclaimable */
3786 /* did we reclaim enough */
3787 if (zone_watermark_ok(zone, order, mark,
3788 ac->highest_zoneidx, alloc_flags))
3796 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3797 gfp_mask, alloc_flags, ac->migratetype);
3799 prep_new_page(page, order, gfp_mask, alloc_flags);
3802 * If this is a high-order atomic allocation then check
3803 * if the pageblock should be reserved for the future
3805 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3806 reserve_highatomic_pageblock(page, zone, order);
3810 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3811 /* Try again if zone has deferred pages */
3812 if (static_branch_unlikely(&deferred_pages)) {
3813 if (_deferred_grow_zone(zone, order))
3821 * It's possible on a UMA machine to get through all zones that are
3822 * fragmented. If avoiding fragmentation, reset and try again.
3825 alloc_flags &= ~ALLOC_NOFRAGMENT;
3832 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3834 unsigned int filter = SHOW_MEM_FILTER_NODES;
3837 * This documents exceptions given to allocations in certain
3838 * contexts that are allowed to allocate outside current's set
3841 if (!(gfp_mask & __GFP_NOMEMALLOC))
3842 if (tsk_is_oom_victim(current) ||
3843 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3844 filter &= ~SHOW_MEM_FILTER_NODES;
3845 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3846 filter &= ~SHOW_MEM_FILTER_NODES;
3848 show_mem(filter, nodemask);
3851 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3853 struct va_format vaf;
3855 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3857 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3860 va_start(args, fmt);
3863 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3864 current->comm, &vaf, gfp_mask, &gfp_mask,
3865 nodemask_pr_args(nodemask));
3868 cpuset_print_current_mems_allowed();
3871 warn_alloc_show_mem(gfp_mask, nodemask);
3874 static inline struct page *
3875 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3876 unsigned int alloc_flags,
3877 const struct alloc_context *ac)
3881 page = get_page_from_freelist(gfp_mask, order,
3882 alloc_flags|ALLOC_CPUSET, ac);
3884 * fallback to ignore cpuset restriction if our nodes
3888 page = get_page_from_freelist(gfp_mask, order,
3894 static inline struct page *
3895 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3896 const struct alloc_context *ac, unsigned long *did_some_progress)
3898 struct oom_control oc = {
3899 .zonelist = ac->zonelist,
3900 .nodemask = ac->nodemask,
3902 .gfp_mask = gfp_mask,
3907 *did_some_progress = 0;
3910 * Acquire the oom lock. If that fails, somebody else is
3911 * making progress for us.
3913 if (!mutex_trylock(&oom_lock)) {
3914 *did_some_progress = 1;
3915 schedule_timeout_uninterruptible(1);
3920 * Go through the zonelist yet one more time, keep very high watermark
3921 * here, this is only to catch a parallel oom killing, we must fail if
3922 * we're still under heavy pressure. But make sure that this reclaim
3923 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3924 * allocation which will never fail due to oom_lock already held.
3926 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3927 ~__GFP_DIRECT_RECLAIM, order,
3928 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3932 /* Coredumps can quickly deplete all memory reserves */
3933 if (current->flags & PF_DUMPCORE)
3935 /* The OOM killer will not help higher order allocs */
3936 if (order > PAGE_ALLOC_COSTLY_ORDER)
3939 * We have already exhausted all our reclaim opportunities without any
3940 * success so it is time to admit defeat. We will skip the OOM killer
3941 * because it is very likely that the caller has a more reasonable
3942 * fallback than shooting a random task.
3944 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3946 /* The OOM killer does not needlessly kill tasks for lowmem */
3947 if (ac->highest_zoneidx < ZONE_NORMAL)
3949 if (pm_suspended_storage())
3952 * XXX: GFP_NOFS allocations should rather fail than rely on
3953 * other request to make a forward progress.
3954 * We are in an unfortunate situation where out_of_memory cannot
3955 * do much for this context but let's try it to at least get
3956 * access to memory reserved if the current task is killed (see
3957 * out_of_memory). Once filesystems are ready to handle allocation
3958 * failures more gracefully we should just bail out here.
3961 /* The OOM killer may not free memory on a specific node */
3962 if (gfp_mask & __GFP_THISNODE)
3965 /* Exhausted what can be done so it's blame time */
3966 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3967 *did_some_progress = 1;
3970 * Help non-failing allocations by giving them access to memory
3973 if (gfp_mask & __GFP_NOFAIL)
3974 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3975 ALLOC_NO_WATERMARKS, ac);
3978 mutex_unlock(&oom_lock);
3983 * Maximum number of compaction retries wit a progress before OOM
3984 * killer is consider as the only way to move forward.
3986 #define MAX_COMPACT_RETRIES 16
3988 #ifdef CONFIG_COMPACTION
3989 /* Try memory compaction for high-order allocations before reclaim */
3990 static struct page *
3991 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3992 unsigned int alloc_flags, const struct alloc_context *ac,
3993 enum compact_priority prio, enum compact_result *compact_result)
3995 struct page *page = NULL;
3996 unsigned long pflags;
3997 unsigned int noreclaim_flag;
4002 psi_memstall_enter(&pflags);
4003 noreclaim_flag = memalloc_noreclaim_save();
4005 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4008 memalloc_noreclaim_restore(noreclaim_flag);
4009 psi_memstall_leave(&pflags);
4012 * At least in one zone compaction wasn't deferred or skipped, so let's
4013 * count a compaction stall
4015 count_vm_event(COMPACTSTALL);
4017 /* Prep a captured page if available */
4019 prep_new_page(page, order, gfp_mask, alloc_flags);
4021 /* Try get a page from the freelist if available */
4023 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4026 struct zone *zone = page_zone(page);
4028 zone->compact_blockskip_flush = false;
4029 compaction_defer_reset(zone, order, true);
4030 count_vm_event(COMPACTSUCCESS);
4035 * It's bad if compaction run occurs and fails. The most likely reason
4036 * is that pages exist, but not enough to satisfy watermarks.
4038 count_vm_event(COMPACTFAIL);
4046 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4047 enum compact_result compact_result,
4048 enum compact_priority *compact_priority,
4049 int *compaction_retries)
4051 int max_retries = MAX_COMPACT_RETRIES;
4054 int retries = *compaction_retries;
4055 enum compact_priority priority = *compact_priority;
4060 if (compaction_made_progress(compact_result))
4061 (*compaction_retries)++;
4064 * compaction considers all the zone as desperately out of memory
4065 * so it doesn't really make much sense to retry except when the
4066 * failure could be caused by insufficient priority
4068 if (compaction_failed(compact_result))
4069 goto check_priority;
4072 * compaction was skipped because there are not enough order-0 pages
4073 * to work with, so we retry only if it looks like reclaim can help.
4075 if (compaction_needs_reclaim(compact_result)) {
4076 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4081 * make sure the compaction wasn't deferred or didn't bail out early
4082 * due to locks contention before we declare that we should give up.
4083 * But the next retry should use a higher priority if allowed, so
4084 * we don't just keep bailing out endlessly.
4086 if (compaction_withdrawn(compact_result)) {
4087 goto check_priority;
4091 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4092 * costly ones because they are de facto nofail and invoke OOM
4093 * killer to move on while costly can fail and users are ready
4094 * to cope with that. 1/4 retries is rather arbitrary but we
4095 * would need much more detailed feedback from compaction to
4096 * make a better decision.
4098 if (order > PAGE_ALLOC_COSTLY_ORDER)
4100 if (*compaction_retries <= max_retries) {
4106 * Make sure there are attempts at the highest priority if we exhausted
4107 * all retries or failed at the lower priorities.
4110 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4111 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4113 if (*compact_priority > min_priority) {
4114 (*compact_priority)--;
4115 *compaction_retries = 0;
4119 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4123 static inline struct page *
4124 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4125 unsigned int alloc_flags, const struct alloc_context *ac,
4126 enum compact_priority prio, enum compact_result *compact_result)
4128 *compact_result = COMPACT_SKIPPED;
4133 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4134 enum compact_result compact_result,
4135 enum compact_priority *compact_priority,
4136 int *compaction_retries)
4141 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4145 * There are setups with compaction disabled which would prefer to loop
4146 * inside the allocator rather than hit the oom killer prematurely.
4147 * Let's give them a good hope and keep retrying while the order-0
4148 * watermarks are OK.
4150 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4151 ac->highest_zoneidx, ac->nodemask) {
4152 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4153 ac->highest_zoneidx, alloc_flags))
4158 #endif /* CONFIG_COMPACTION */
4160 #ifdef CONFIG_LOCKDEP
4161 static struct lockdep_map __fs_reclaim_map =
4162 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4164 static bool __need_fs_reclaim(gfp_t gfp_mask)
4166 gfp_mask = current_gfp_context(gfp_mask);
4168 /* no reclaim without waiting on it */
4169 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4172 /* this guy won't enter reclaim */
4173 if (current->flags & PF_MEMALLOC)
4176 /* We're only interested __GFP_FS allocations for now */
4177 if (!(gfp_mask & __GFP_FS))
4180 if (gfp_mask & __GFP_NOLOCKDEP)
4186 void __fs_reclaim_acquire(void)
4188 lock_map_acquire(&__fs_reclaim_map);
4191 void __fs_reclaim_release(void)
4193 lock_map_release(&__fs_reclaim_map);
4196 void fs_reclaim_acquire(gfp_t gfp_mask)
4198 if (__need_fs_reclaim(gfp_mask))
4199 __fs_reclaim_acquire();
4201 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4203 void fs_reclaim_release(gfp_t gfp_mask)
4205 if (__need_fs_reclaim(gfp_mask))
4206 __fs_reclaim_release();
4208 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4211 /* Perform direct synchronous page reclaim */
4213 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4214 const struct alloc_context *ac)
4217 unsigned int noreclaim_flag;
4218 unsigned long pflags;
4222 /* We now go into synchronous reclaim */
4223 cpuset_memory_pressure_bump();
4224 psi_memstall_enter(&pflags);
4225 fs_reclaim_acquire(gfp_mask);
4226 noreclaim_flag = memalloc_noreclaim_save();
4228 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4231 memalloc_noreclaim_restore(noreclaim_flag);
4232 fs_reclaim_release(gfp_mask);
4233 psi_memstall_leave(&pflags);
4240 /* The really slow allocator path where we enter direct reclaim */
4241 static inline struct page *
4242 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4243 unsigned int alloc_flags, const struct alloc_context *ac,
4244 unsigned long *did_some_progress)
4246 struct page *page = NULL;
4247 bool drained = false;
4249 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4250 if (unlikely(!(*did_some_progress)))
4254 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4257 * If an allocation failed after direct reclaim, it could be because
4258 * pages are pinned on the per-cpu lists or in high alloc reserves.
4259 * Shrink them them and try again
4261 if (!page && !drained) {
4262 unreserve_highatomic_pageblock(ac, false);
4263 drain_all_pages(NULL);
4271 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4272 const struct alloc_context *ac)
4276 pg_data_t *last_pgdat = NULL;
4277 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4279 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4281 if (last_pgdat != zone->zone_pgdat)
4282 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4283 last_pgdat = zone->zone_pgdat;
4287 static inline unsigned int
4288 gfp_to_alloc_flags(gfp_t gfp_mask)
4290 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4293 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4294 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4295 * to save two branches.
4297 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4298 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4301 * The caller may dip into page reserves a bit more if the caller
4302 * cannot run direct reclaim, or if the caller has realtime scheduling
4303 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4304 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4306 alloc_flags |= (__force int)
4307 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4309 if (gfp_mask & __GFP_ATOMIC) {
4311 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4312 * if it can't schedule.
4314 if (!(gfp_mask & __GFP_NOMEMALLOC))
4315 alloc_flags |= ALLOC_HARDER;
4317 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4318 * comment for __cpuset_node_allowed().
4320 alloc_flags &= ~ALLOC_CPUSET;
4321 } else if (unlikely(rt_task(current)) && !in_interrupt())
4322 alloc_flags |= ALLOC_HARDER;
4325 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4326 alloc_flags |= ALLOC_CMA;
4331 static bool oom_reserves_allowed(struct task_struct *tsk)
4333 if (!tsk_is_oom_victim(tsk))
4337 * !MMU doesn't have oom reaper so give access to memory reserves
4338 * only to the thread with TIF_MEMDIE set
4340 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4347 * Distinguish requests which really need access to full memory
4348 * reserves from oom victims which can live with a portion of it
4350 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4352 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4354 if (gfp_mask & __GFP_MEMALLOC)
4355 return ALLOC_NO_WATERMARKS;
4356 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4357 return ALLOC_NO_WATERMARKS;
4358 if (!in_interrupt()) {
4359 if (current->flags & PF_MEMALLOC)
4360 return ALLOC_NO_WATERMARKS;
4361 else if (oom_reserves_allowed(current))
4368 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4370 return !!__gfp_pfmemalloc_flags(gfp_mask);
4374 * Checks whether it makes sense to retry the reclaim to make a forward progress
4375 * for the given allocation request.
4377 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4378 * without success, or when we couldn't even meet the watermark if we
4379 * reclaimed all remaining pages on the LRU lists.
4381 * Returns true if a retry is viable or false to enter the oom path.
4384 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4385 struct alloc_context *ac, int alloc_flags,
4386 bool did_some_progress, int *no_progress_loops)
4393 * Costly allocations might have made a progress but this doesn't mean
4394 * their order will become available due to high fragmentation so
4395 * always increment the no progress counter for them
4397 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4398 *no_progress_loops = 0;
4400 (*no_progress_loops)++;
4403 * Make sure we converge to OOM if we cannot make any progress
4404 * several times in the row.
4406 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4407 /* Before OOM, exhaust highatomic_reserve */
4408 return unreserve_highatomic_pageblock(ac, true);
4412 * Keep reclaiming pages while there is a chance this will lead
4413 * somewhere. If none of the target zones can satisfy our allocation
4414 * request even if all reclaimable pages are considered then we are
4415 * screwed and have to go OOM.
4417 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4418 ac->highest_zoneidx, ac->nodemask) {
4419 unsigned long available;
4420 unsigned long reclaimable;
4421 unsigned long min_wmark = min_wmark_pages(zone);
4424 available = reclaimable = zone_reclaimable_pages(zone);
4425 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4428 * Would the allocation succeed if we reclaimed all
4429 * reclaimable pages?
4431 wmark = __zone_watermark_ok(zone, order, min_wmark,
4432 ac->highest_zoneidx, alloc_flags, available);
4433 trace_reclaim_retry_zone(z, order, reclaimable,
4434 available, min_wmark, *no_progress_loops, wmark);
4437 * If we didn't make any progress and have a lot of
4438 * dirty + writeback pages then we should wait for
4439 * an IO to complete to slow down the reclaim and
4440 * prevent from pre mature OOM
4442 if (!did_some_progress) {
4443 unsigned long write_pending;
4445 write_pending = zone_page_state_snapshot(zone,
4446 NR_ZONE_WRITE_PENDING);
4448 if (2 * write_pending > reclaimable) {
4449 congestion_wait(BLK_RW_ASYNC, HZ/10);
4461 * Memory allocation/reclaim might be called from a WQ context and the
4462 * current implementation of the WQ concurrency control doesn't
4463 * recognize that a particular WQ is congested if the worker thread is
4464 * looping without ever sleeping. Therefore we have to do a short sleep
4465 * here rather than calling cond_resched().
4467 if (current->flags & PF_WQ_WORKER)
4468 schedule_timeout_uninterruptible(1);
4475 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4478 * It's possible that cpuset's mems_allowed and the nodemask from
4479 * mempolicy don't intersect. This should be normally dealt with by
4480 * policy_nodemask(), but it's possible to race with cpuset update in
4481 * such a way the check therein was true, and then it became false
4482 * before we got our cpuset_mems_cookie here.
4483 * This assumes that for all allocations, ac->nodemask can come only
4484 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4485 * when it does not intersect with the cpuset restrictions) or the
4486 * caller can deal with a violated nodemask.
4488 if (cpusets_enabled() && ac->nodemask &&
4489 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4490 ac->nodemask = NULL;
4495 * When updating a task's mems_allowed or mempolicy nodemask, it is
4496 * possible to race with parallel threads in such a way that our
4497 * allocation can fail while the mask is being updated. If we are about
4498 * to fail, check if the cpuset changed during allocation and if so,
4501 if (read_mems_allowed_retry(cpuset_mems_cookie))
4507 static inline struct page *
4508 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4509 struct alloc_context *ac)
4511 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4512 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4513 struct page *page = NULL;
4514 unsigned int alloc_flags;
4515 unsigned long did_some_progress;
4516 enum compact_priority compact_priority;
4517 enum compact_result compact_result;
4518 int compaction_retries;
4519 int no_progress_loops;
4520 unsigned int cpuset_mems_cookie;
4524 * We also sanity check to catch abuse of atomic reserves being used by
4525 * callers that are not in atomic context.
4527 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4528 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4529 gfp_mask &= ~__GFP_ATOMIC;
4532 compaction_retries = 0;
4533 no_progress_loops = 0;
4534 compact_priority = DEF_COMPACT_PRIORITY;
4535 cpuset_mems_cookie = read_mems_allowed_begin();
4538 * The fast path uses conservative alloc_flags to succeed only until
4539 * kswapd needs to be woken up, and to avoid the cost of setting up
4540 * alloc_flags precisely. So we do that now.
4542 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4545 * We need to recalculate the starting point for the zonelist iterator
4546 * because we might have used different nodemask in the fast path, or
4547 * there was a cpuset modification and we are retrying - otherwise we
4548 * could end up iterating over non-eligible zones endlessly.
4550 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4551 ac->highest_zoneidx, ac->nodemask);
4552 if (!ac->preferred_zoneref->zone)
4555 if (alloc_flags & ALLOC_KSWAPD)
4556 wake_all_kswapds(order, gfp_mask, ac);
4559 * The adjusted alloc_flags might result in immediate success, so try
4562 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4567 * For costly allocations, try direct compaction first, as it's likely
4568 * that we have enough base pages and don't need to reclaim. For non-
4569 * movable high-order allocations, do that as well, as compaction will
4570 * try prevent permanent fragmentation by migrating from blocks of the
4572 * Don't try this for allocations that are allowed to ignore
4573 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4575 if (can_direct_reclaim &&
4577 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4578 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4579 page = __alloc_pages_direct_compact(gfp_mask, order,
4581 INIT_COMPACT_PRIORITY,
4587 * Checks for costly allocations with __GFP_NORETRY, which
4588 * includes some THP page fault allocations
4590 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4592 * If allocating entire pageblock(s) and compaction
4593 * failed because all zones are below low watermarks
4594 * or is prohibited because it recently failed at this
4595 * order, fail immediately unless the allocator has
4596 * requested compaction and reclaim retry.
4599 * - potentially very expensive because zones are far
4600 * below their low watermarks or this is part of very
4601 * bursty high order allocations,
4602 * - not guaranteed to help because isolate_freepages()
4603 * may not iterate over freed pages as part of its
4605 * - unlikely to make entire pageblocks free on its
4608 if (compact_result == COMPACT_SKIPPED ||
4609 compact_result == COMPACT_DEFERRED)
4613 * Looks like reclaim/compaction is worth trying, but
4614 * sync compaction could be very expensive, so keep
4615 * using async compaction.
4617 compact_priority = INIT_COMPACT_PRIORITY;
4622 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4623 if (alloc_flags & ALLOC_KSWAPD)
4624 wake_all_kswapds(order, gfp_mask, ac);
4626 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4628 alloc_flags = reserve_flags;
4631 * Reset the nodemask and zonelist iterators if memory policies can be
4632 * ignored. These allocations are high priority and system rather than
4635 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4636 ac->nodemask = NULL;
4637 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4638 ac->highest_zoneidx, ac->nodemask);
4641 /* Attempt with potentially adjusted zonelist and alloc_flags */
4642 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4646 /* Caller is not willing to reclaim, we can't balance anything */
4647 if (!can_direct_reclaim)
4650 /* Avoid recursion of direct reclaim */
4651 if (current->flags & PF_MEMALLOC)
4654 /* Try direct reclaim and then allocating */
4655 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4656 &did_some_progress);
4660 /* Try direct compaction and then allocating */
4661 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4662 compact_priority, &compact_result);
4666 /* Do not loop if specifically requested */
4667 if (gfp_mask & __GFP_NORETRY)
4671 * Do not retry costly high order allocations unless they are
4672 * __GFP_RETRY_MAYFAIL
4674 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4677 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4678 did_some_progress > 0, &no_progress_loops))
4682 * It doesn't make any sense to retry for the compaction if the order-0
4683 * reclaim is not able to make any progress because the current
4684 * implementation of the compaction depends on the sufficient amount
4685 * of free memory (see __compaction_suitable)
4687 if (did_some_progress > 0 &&
4688 should_compact_retry(ac, order, alloc_flags,
4689 compact_result, &compact_priority,
4690 &compaction_retries))
4694 /* Deal with possible cpuset update races before we start OOM killing */
4695 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4698 /* Reclaim has failed us, start killing things */
4699 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4703 /* Avoid allocations with no watermarks from looping endlessly */
4704 if (tsk_is_oom_victim(current) &&
4705 (alloc_flags == ALLOC_OOM ||
4706 (gfp_mask & __GFP_NOMEMALLOC)))
4709 /* Retry as long as the OOM killer is making progress */
4710 if (did_some_progress) {
4711 no_progress_loops = 0;
4716 /* Deal with possible cpuset update races before we fail */
4717 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4721 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4724 if (gfp_mask & __GFP_NOFAIL) {
4726 * All existing users of the __GFP_NOFAIL are blockable, so warn
4727 * of any new users that actually require GFP_NOWAIT
4729 if (WARN_ON_ONCE(!can_direct_reclaim))
4733 * PF_MEMALLOC request from this context is rather bizarre
4734 * because we cannot reclaim anything and only can loop waiting
4735 * for somebody to do a work for us
4737 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4740 * non failing costly orders are a hard requirement which we
4741 * are not prepared for much so let's warn about these users
4742 * so that we can identify them and convert them to something
4745 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4748 * Help non-failing allocations by giving them access to memory
4749 * reserves but do not use ALLOC_NO_WATERMARKS because this
4750 * could deplete whole memory reserves which would just make
4751 * the situation worse
4753 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4761 warn_alloc(gfp_mask, ac->nodemask,
4762 "page allocation failure: order:%u", order);
4767 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4768 int preferred_nid, nodemask_t *nodemask,
4769 struct alloc_context *ac, gfp_t *alloc_mask,
4770 unsigned int *alloc_flags)
4772 ac->highest_zoneidx = gfp_zone(gfp_mask);
4773 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4774 ac->nodemask = nodemask;
4775 ac->migratetype = gfp_migratetype(gfp_mask);
4777 if (cpusets_enabled()) {
4778 *alloc_mask |= __GFP_HARDWALL;
4780 ac->nodemask = &cpuset_current_mems_allowed;
4782 *alloc_flags |= ALLOC_CPUSET;
4785 fs_reclaim_acquire(gfp_mask);
4786 fs_reclaim_release(gfp_mask);
4788 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4790 if (should_fail_alloc_page(gfp_mask, order))
4793 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4794 *alloc_flags |= ALLOC_CMA;
4799 /* Determine whether to spread dirty pages and what the first usable zone */
4800 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4802 /* Dirty zone balancing only done in the fast path */
4803 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4806 * The preferred zone is used for statistics but crucially it is
4807 * also used as the starting point for the zonelist iterator. It
4808 * may get reset for allocations that ignore memory policies.
4810 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4811 ac->highest_zoneidx, ac->nodemask);
4815 * This is the 'heart' of the zoned buddy allocator.
4818 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4819 nodemask_t *nodemask)
4822 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4823 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4824 struct alloc_context ac = { };
4827 * There are several places where we assume that the order value is sane
4828 * so bail out early if the request is out of bound.
4830 if (unlikely(order >= MAX_ORDER)) {
4831 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4835 gfp_mask &= gfp_allowed_mask;
4836 alloc_mask = gfp_mask;
4837 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4840 finalise_ac(gfp_mask, &ac);
4843 * Forbid the first pass from falling back to types that fragment
4844 * memory until all local zones are considered.
4846 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4848 /* First allocation attempt */
4849 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4854 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4855 * resp. GFP_NOIO which has to be inherited for all allocation requests
4856 * from a particular context which has been marked by
4857 * memalloc_no{fs,io}_{save,restore}.
4859 alloc_mask = current_gfp_context(gfp_mask);
4860 ac.spread_dirty_pages = false;
4863 * Restore the original nodemask if it was potentially replaced with
4864 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4866 ac.nodemask = nodemask;
4868 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4871 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4872 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4873 __free_pages(page, order);
4877 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4881 EXPORT_SYMBOL(__alloc_pages_nodemask);
4884 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4885 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4886 * you need to access high mem.
4888 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4892 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4895 return (unsigned long) page_address(page);
4897 EXPORT_SYMBOL(__get_free_pages);
4899 unsigned long get_zeroed_page(gfp_t gfp_mask)
4901 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4903 EXPORT_SYMBOL(get_zeroed_page);
4905 static inline void free_the_page(struct page *page, unsigned int order)
4907 if (order == 0) /* Via pcp? */
4908 free_unref_page(page);
4910 __free_pages_ok(page, order);
4913 void __free_pages(struct page *page, unsigned int order)
4915 if (put_page_testzero(page))
4916 free_the_page(page, order);
4918 EXPORT_SYMBOL(__free_pages);
4920 void free_pages(unsigned long addr, unsigned int order)
4923 VM_BUG_ON(!virt_addr_valid((void *)addr));
4924 __free_pages(virt_to_page((void *)addr), order);
4928 EXPORT_SYMBOL(free_pages);
4932 * An arbitrary-length arbitrary-offset area of memory which resides
4933 * within a 0 or higher order page. Multiple fragments within that page
4934 * are individually refcounted, in the page's reference counter.
4936 * The page_frag functions below provide a simple allocation framework for
4937 * page fragments. This is used by the network stack and network device
4938 * drivers to provide a backing region of memory for use as either an
4939 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4941 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4944 struct page *page = NULL;
4945 gfp_t gfp = gfp_mask;
4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4950 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4951 PAGE_FRAG_CACHE_MAX_ORDER);
4952 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4954 if (unlikely(!page))
4955 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4957 nc->va = page ? page_address(page) : NULL;
4962 void __page_frag_cache_drain(struct page *page, unsigned int count)
4964 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4966 if (page_ref_sub_and_test(page, count))
4967 free_the_page(page, compound_order(page));
4969 EXPORT_SYMBOL(__page_frag_cache_drain);
4971 void *page_frag_alloc(struct page_frag_cache *nc,
4972 unsigned int fragsz, gfp_t gfp_mask)
4974 unsigned int size = PAGE_SIZE;
4978 if (unlikely(!nc->va)) {
4980 page = __page_frag_cache_refill(nc, gfp_mask);
4984 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4985 /* if size can vary use size else just use PAGE_SIZE */
4988 /* Even if we own the page, we do not use atomic_set().
4989 * This would break get_page_unless_zero() users.
4991 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4993 /* reset page count bias and offset to start of new frag */
4994 nc->pfmemalloc = page_is_pfmemalloc(page);
4995 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4999 offset = nc->offset - fragsz;
5000 if (unlikely(offset < 0)) {
5001 page = virt_to_page(nc->va);
5003 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5006 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5007 /* if size can vary use size else just use PAGE_SIZE */
5010 /* OK, page count is 0, we can safely set it */
5011 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5013 /* reset page count bias and offset to start of new frag */
5014 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5015 offset = size - fragsz;
5019 nc->offset = offset;
5021 return nc->va + offset;
5023 EXPORT_SYMBOL(page_frag_alloc);
5026 * Frees a page fragment allocated out of either a compound or order 0 page.
5028 void page_frag_free(void *addr)
5030 struct page *page = virt_to_head_page(addr);
5032 if (unlikely(put_page_testzero(page)))
5033 free_the_page(page, compound_order(page));
5035 EXPORT_SYMBOL(page_frag_free);
5037 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5041 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5042 unsigned long used = addr + PAGE_ALIGN(size);
5044 split_page(virt_to_page((void *)addr), order);
5045 while (used < alloc_end) {
5050 return (void *)addr;
5054 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5055 * @size: the number of bytes to allocate
5056 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5058 * This function is similar to alloc_pages(), except that it allocates the
5059 * minimum number of pages to satisfy the request. alloc_pages() can only
5060 * allocate memory in power-of-two pages.
5062 * This function is also limited by MAX_ORDER.
5064 * Memory allocated by this function must be released by free_pages_exact().
5066 * Return: pointer to the allocated area or %NULL in case of error.
5068 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5070 unsigned int order = get_order(size);
5073 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5074 gfp_mask &= ~__GFP_COMP;
5076 addr = __get_free_pages(gfp_mask, order);
5077 return make_alloc_exact(addr, order, size);
5079 EXPORT_SYMBOL(alloc_pages_exact);
5082 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5084 * @nid: the preferred node ID where memory should be allocated
5085 * @size: the number of bytes to allocate
5086 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5088 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5091 * Return: pointer to the allocated area or %NULL in case of error.
5093 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5095 unsigned int order = get_order(size);
5098 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5099 gfp_mask &= ~__GFP_COMP;
5101 p = alloc_pages_node(nid, gfp_mask, order);
5104 return make_alloc_exact((unsigned long)page_address(p), order, size);
5108 * free_pages_exact - release memory allocated via alloc_pages_exact()
5109 * @virt: the value returned by alloc_pages_exact.
5110 * @size: size of allocation, same value as passed to alloc_pages_exact().
5112 * Release the memory allocated by a previous call to alloc_pages_exact.
5114 void free_pages_exact(void *virt, size_t size)
5116 unsigned long addr = (unsigned long)virt;
5117 unsigned long end = addr + PAGE_ALIGN(size);
5119 while (addr < end) {
5124 EXPORT_SYMBOL(free_pages_exact);
5127 * nr_free_zone_pages - count number of pages beyond high watermark
5128 * @offset: The zone index of the highest zone
5130 * nr_free_zone_pages() counts the number of pages which are beyond the
5131 * high watermark within all zones at or below a given zone index. For each
5132 * zone, the number of pages is calculated as:
5134 * nr_free_zone_pages = managed_pages - high_pages
5136 * Return: number of pages beyond high watermark.
5138 static unsigned long nr_free_zone_pages(int offset)
5143 /* Just pick one node, since fallback list is circular */
5144 unsigned long sum = 0;
5146 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5148 for_each_zone_zonelist(zone, z, zonelist, offset) {
5149 unsigned long size = zone_managed_pages(zone);
5150 unsigned long high = high_wmark_pages(zone);
5159 * nr_free_buffer_pages - count number of pages beyond high watermark
5161 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5162 * watermark within ZONE_DMA and ZONE_NORMAL.
5164 * Return: number of pages beyond high watermark within ZONE_DMA and
5167 unsigned long nr_free_buffer_pages(void)
5169 return nr_free_zone_pages(gfp_zone(GFP_USER));
5171 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5174 * nr_free_pagecache_pages - count number of pages beyond high watermark
5176 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5177 * high watermark within all zones.
5179 * Return: number of pages beyond high watermark within all zones.
5181 unsigned long nr_free_pagecache_pages(void)
5183 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5186 static inline void show_node(struct zone *zone)
5188 if (IS_ENABLED(CONFIG_NUMA))
5189 printk("Node %d ", zone_to_nid(zone));
5192 long si_mem_available(void)
5195 unsigned long pagecache;
5196 unsigned long wmark_low = 0;
5197 unsigned long pages[NR_LRU_LISTS];
5198 unsigned long reclaimable;
5202 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5203 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5206 wmark_low += low_wmark_pages(zone);
5209 * Estimate the amount of memory available for userspace allocations,
5210 * without causing swapping.
5212 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5215 * Not all the page cache can be freed, otherwise the system will
5216 * start swapping. Assume at least half of the page cache, or the
5217 * low watermark worth of cache, needs to stay.
5219 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5220 pagecache -= min(pagecache / 2, wmark_low);
5221 available += pagecache;
5224 * Part of the reclaimable slab and other kernel memory consists of
5225 * items that are in use, and cannot be freed. Cap this estimate at the
5228 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5229 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5230 available += reclaimable - min(reclaimable / 2, wmark_low);
5236 EXPORT_SYMBOL_GPL(si_mem_available);
5238 void si_meminfo(struct sysinfo *val)
5240 val->totalram = totalram_pages();
5241 val->sharedram = global_node_page_state(NR_SHMEM);
5242 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5243 val->bufferram = nr_blockdev_pages();
5244 val->totalhigh = totalhigh_pages();
5245 val->freehigh = nr_free_highpages();
5246 val->mem_unit = PAGE_SIZE;
5249 EXPORT_SYMBOL(si_meminfo);
5252 void si_meminfo_node(struct sysinfo *val, int nid)
5254 int zone_type; /* needs to be signed */
5255 unsigned long managed_pages = 0;
5256 unsigned long managed_highpages = 0;
5257 unsigned long free_highpages = 0;
5258 pg_data_t *pgdat = NODE_DATA(nid);
5260 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5261 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5262 val->totalram = managed_pages;
5263 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5264 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5265 #ifdef CONFIG_HIGHMEM
5266 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5267 struct zone *zone = &pgdat->node_zones[zone_type];
5269 if (is_highmem(zone)) {
5270 managed_highpages += zone_managed_pages(zone);
5271 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5274 val->totalhigh = managed_highpages;
5275 val->freehigh = free_highpages;
5277 val->totalhigh = managed_highpages;
5278 val->freehigh = free_highpages;
5280 val->mem_unit = PAGE_SIZE;
5285 * Determine whether the node should be displayed or not, depending on whether
5286 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5288 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5290 if (!(flags & SHOW_MEM_FILTER_NODES))
5294 * no node mask - aka implicit memory numa policy. Do not bother with
5295 * the synchronization - read_mems_allowed_begin - because we do not
5296 * have to be precise here.
5299 nodemask = &cpuset_current_mems_allowed;
5301 return !node_isset(nid, *nodemask);
5304 #define K(x) ((x) << (PAGE_SHIFT-10))
5306 static void show_migration_types(unsigned char type)
5308 static const char types[MIGRATE_TYPES] = {
5309 [MIGRATE_UNMOVABLE] = 'U',
5310 [MIGRATE_MOVABLE] = 'M',
5311 [MIGRATE_RECLAIMABLE] = 'E',
5312 [MIGRATE_HIGHATOMIC] = 'H',
5314 [MIGRATE_CMA] = 'C',
5316 #ifdef CONFIG_MEMORY_ISOLATION
5317 [MIGRATE_ISOLATE] = 'I',
5320 char tmp[MIGRATE_TYPES + 1];
5324 for (i = 0; i < MIGRATE_TYPES; i++) {
5325 if (type & (1 << i))
5330 printk(KERN_CONT "(%s) ", tmp);
5334 * Show free area list (used inside shift_scroll-lock stuff)
5335 * We also calculate the percentage fragmentation. We do this by counting the
5336 * memory on each free list with the exception of the first item on the list.
5339 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5342 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5344 unsigned long free_pcp = 0;
5349 for_each_populated_zone(zone) {
5350 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5353 for_each_online_cpu(cpu)
5354 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5357 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5358 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5359 " unevictable:%lu dirty:%lu writeback:%lu\n"
5360 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5361 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5362 " free:%lu free_pcp:%lu free_cma:%lu\n",
5363 global_node_page_state(NR_ACTIVE_ANON),
5364 global_node_page_state(NR_INACTIVE_ANON),
5365 global_node_page_state(NR_ISOLATED_ANON),
5366 global_node_page_state(NR_ACTIVE_FILE),
5367 global_node_page_state(NR_INACTIVE_FILE),
5368 global_node_page_state(NR_ISOLATED_FILE),
5369 global_node_page_state(NR_UNEVICTABLE),
5370 global_node_page_state(NR_FILE_DIRTY),
5371 global_node_page_state(NR_WRITEBACK),
5372 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5373 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5374 global_node_page_state(NR_FILE_MAPPED),
5375 global_node_page_state(NR_SHMEM),
5376 global_zone_page_state(NR_PAGETABLE),
5377 global_zone_page_state(NR_BOUNCE),
5378 global_zone_page_state(NR_FREE_PAGES),
5380 global_zone_page_state(NR_FREE_CMA_PAGES));
5382 for_each_online_pgdat(pgdat) {
5383 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5387 " active_anon:%lukB"
5388 " inactive_anon:%lukB"
5389 " active_file:%lukB"
5390 " inactive_file:%lukB"
5391 " unevictable:%lukB"
5392 " isolated(anon):%lukB"
5393 " isolated(file):%lukB"
5398 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5400 " shmem_pmdmapped: %lukB"
5403 " writeback_tmp:%lukB"
5404 " kernel_stack:%lukB"
5405 #ifdef CONFIG_SHADOW_CALL_STACK
5406 " shadow_call_stack:%lukB"
5408 " all_unreclaimable? %s"
5411 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5412 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5413 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5414 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5415 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5416 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5417 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5418 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5419 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5420 K(node_page_state(pgdat, NR_WRITEBACK)),
5421 K(node_page_state(pgdat, NR_SHMEM)),
5422 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5423 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5424 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5426 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5428 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5429 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5430 #ifdef CONFIG_SHADOW_CALL_STACK
5431 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5433 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5437 for_each_populated_zone(zone) {
5440 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5444 for_each_online_cpu(cpu)
5445 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5454 " reserved_highatomic:%luKB"
5455 " active_anon:%lukB"
5456 " inactive_anon:%lukB"
5457 " active_file:%lukB"
5458 " inactive_file:%lukB"
5459 " unevictable:%lukB"
5460 " writepending:%lukB"
5471 K(zone_page_state(zone, NR_FREE_PAGES)),
5472 K(min_wmark_pages(zone)),
5473 K(low_wmark_pages(zone)),
5474 K(high_wmark_pages(zone)),
5475 K(zone->nr_reserved_highatomic),
5476 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5477 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5478 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5479 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5480 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5481 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5482 K(zone->present_pages),
5483 K(zone_managed_pages(zone)),
5484 K(zone_page_state(zone, NR_MLOCK)),
5485 K(zone_page_state(zone, NR_PAGETABLE)),
5486 K(zone_page_state(zone, NR_BOUNCE)),
5488 K(this_cpu_read(zone->pageset->pcp.count)),
5489 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5490 printk("lowmem_reserve[]:");
5491 for (i = 0; i < MAX_NR_ZONES; i++)
5492 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5493 printk(KERN_CONT "\n");
5496 for_each_populated_zone(zone) {
5498 unsigned long nr[MAX_ORDER], flags, total = 0;
5499 unsigned char types[MAX_ORDER];
5501 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5504 printk(KERN_CONT "%s: ", zone->name);
5506 spin_lock_irqsave(&zone->lock, flags);
5507 for (order = 0; order < MAX_ORDER; order++) {
5508 struct free_area *area = &zone->free_area[order];
5511 nr[order] = area->nr_free;
5512 total += nr[order] << order;
5515 for (type = 0; type < MIGRATE_TYPES; type++) {
5516 if (!free_area_empty(area, type))
5517 types[order] |= 1 << type;
5520 spin_unlock_irqrestore(&zone->lock, flags);
5521 for (order = 0; order < MAX_ORDER; order++) {
5522 printk(KERN_CONT "%lu*%lukB ",
5523 nr[order], K(1UL) << order);
5525 show_migration_types(types[order]);
5527 printk(KERN_CONT "= %lukB\n", K(total));
5530 hugetlb_show_meminfo();
5532 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5534 show_swap_cache_info();
5537 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5539 zoneref->zone = zone;
5540 zoneref->zone_idx = zone_idx(zone);
5544 * Builds allocation fallback zone lists.
5546 * Add all populated zones of a node to the zonelist.
5548 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5551 enum zone_type zone_type = MAX_NR_ZONES;
5556 zone = pgdat->node_zones + zone_type;
5557 if (managed_zone(zone)) {
5558 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5559 check_highest_zone(zone_type);
5561 } while (zone_type);
5568 static int __parse_numa_zonelist_order(char *s)
5571 * We used to support different zonlists modes but they turned
5572 * out to be just not useful. Let's keep the warning in place
5573 * if somebody still use the cmd line parameter so that we do
5574 * not fail it silently
5576 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5577 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5583 char numa_zonelist_order[] = "Node";
5586 * sysctl handler for numa_zonelist_order
5588 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5589 void *buffer, size_t *length, loff_t *ppos)
5592 return __parse_numa_zonelist_order(buffer);
5593 return proc_dostring(table, write, buffer, length, ppos);
5597 #define MAX_NODE_LOAD (nr_online_nodes)
5598 static int node_load[MAX_NUMNODES];
5601 * find_next_best_node - find the next node that should appear in a given node's fallback list
5602 * @node: node whose fallback list we're appending
5603 * @used_node_mask: nodemask_t of already used nodes
5605 * We use a number of factors to determine which is the next node that should
5606 * appear on a given node's fallback list. The node should not have appeared
5607 * already in @node's fallback list, and it should be the next closest node
5608 * according to the distance array (which contains arbitrary distance values
5609 * from each node to each node in the system), and should also prefer nodes
5610 * with no CPUs, since presumably they'll have very little allocation pressure
5611 * on them otherwise.
5613 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5615 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5618 int min_val = INT_MAX;
5619 int best_node = NUMA_NO_NODE;
5620 const struct cpumask *tmp = cpumask_of_node(0);
5622 /* Use the local node if we haven't already */
5623 if (!node_isset(node, *used_node_mask)) {
5624 node_set(node, *used_node_mask);
5628 for_each_node_state(n, N_MEMORY) {
5630 /* Don't want a node to appear more than once */
5631 if (node_isset(n, *used_node_mask))
5634 /* Use the distance array to find the distance */
5635 val = node_distance(node, n);
5637 /* Penalize nodes under us ("prefer the next node") */
5640 /* Give preference to headless and unused nodes */
5641 tmp = cpumask_of_node(n);
5642 if (!cpumask_empty(tmp))
5643 val += PENALTY_FOR_NODE_WITH_CPUS;
5645 /* Slight preference for less loaded node */
5646 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5647 val += node_load[n];
5649 if (val < min_val) {
5656 node_set(best_node, *used_node_mask);
5663 * Build zonelists ordered by node and zones within node.
5664 * This results in maximum locality--normal zone overflows into local
5665 * DMA zone, if any--but risks exhausting DMA zone.
5667 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5670 struct zoneref *zonerefs;
5673 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5675 for (i = 0; i < nr_nodes; i++) {
5678 pg_data_t *node = NODE_DATA(node_order[i]);
5680 nr_zones = build_zonerefs_node(node, zonerefs);
5681 zonerefs += nr_zones;
5683 zonerefs->zone = NULL;
5684 zonerefs->zone_idx = 0;
5688 * Build gfp_thisnode zonelists
5690 static void build_thisnode_zonelists(pg_data_t *pgdat)
5692 struct zoneref *zonerefs;
5695 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5696 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5697 zonerefs += nr_zones;
5698 zonerefs->zone = NULL;
5699 zonerefs->zone_idx = 0;
5703 * Build zonelists ordered by zone and nodes within zones.
5704 * This results in conserving DMA zone[s] until all Normal memory is
5705 * exhausted, but results in overflowing to remote node while memory
5706 * may still exist in local DMA zone.
5709 static void build_zonelists(pg_data_t *pgdat)
5711 static int node_order[MAX_NUMNODES];
5712 int node, load, nr_nodes = 0;
5713 nodemask_t used_mask = NODE_MASK_NONE;
5714 int local_node, prev_node;
5716 /* NUMA-aware ordering of nodes */
5717 local_node = pgdat->node_id;
5718 load = nr_online_nodes;
5719 prev_node = local_node;
5721 memset(node_order, 0, sizeof(node_order));
5722 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5724 * We don't want to pressure a particular node.
5725 * So adding penalty to the first node in same
5726 * distance group to make it round-robin.
5728 if (node_distance(local_node, node) !=
5729 node_distance(local_node, prev_node))
5730 node_load[node] = load;
5732 node_order[nr_nodes++] = node;
5737 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5738 build_thisnode_zonelists(pgdat);
5741 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5743 * Return node id of node used for "local" allocations.
5744 * I.e., first node id of first zone in arg node's generic zonelist.
5745 * Used for initializing percpu 'numa_mem', which is used primarily
5746 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5748 int local_memory_node(int node)
5752 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5753 gfp_zone(GFP_KERNEL),
5755 return zone_to_nid(z->zone);
5759 static void setup_min_unmapped_ratio(void);
5760 static void setup_min_slab_ratio(void);
5761 #else /* CONFIG_NUMA */
5763 static void build_zonelists(pg_data_t *pgdat)
5765 int node, local_node;
5766 struct zoneref *zonerefs;
5769 local_node = pgdat->node_id;
5771 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5772 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5773 zonerefs += nr_zones;
5776 * Now we build the zonelist so that it contains the zones
5777 * of all the other nodes.
5778 * We don't want to pressure a particular node, so when
5779 * building the zones for node N, we make sure that the
5780 * zones coming right after the local ones are those from
5781 * node N+1 (modulo N)
5783 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5784 if (!node_online(node))
5786 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5787 zonerefs += nr_zones;
5789 for (node = 0; node < local_node; node++) {
5790 if (!node_online(node))
5792 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5793 zonerefs += nr_zones;
5796 zonerefs->zone = NULL;
5797 zonerefs->zone_idx = 0;
5800 #endif /* CONFIG_NUMA */
5803 * Boot pageset table. One per cpu which is going to be used for all
5804 * zones and all nodes. The parameters will be set in such a way
5805 * that an item put on a list will immediately be handed over to
5806 * the buddy list. This is safe since pageset manipulation is done
5807 * with interrupts disabled.
5809 * The boot_pagesets must be kept even after bootup is complete for
5810 * unused processors and/or zones. They do play a role for bootstrapping
5811 * hotplugged processors.
5813 * zoneinfo_show() and maybe other functions do
5814 * not check if the processor is online before following the pageset pointer.
5815 * Other parts of the kernel may not check if the zone is available.
5817 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5818 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5819 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5821 static void __build_all_zonelists(void *data)
5824 int __maybe_unused cpu;
5825 pg_data_t *self = data;
5826 static DEFINE_SPINLOCK(lock);
5831 memset(node_load, 0, sizeof(node_load));
5835 * This node is hotadded and no memory is yet present. So just
5836 * building zonelists is fine - no need to touch other nodes.
5838 if (self && !node_online(self->node_id)) {
5839 build_zonelists(self);
5841 for_each_online_node(nid) {
5842 pg_data_t *pgdat = NODE_DATA(nid);
5844 build_zonelists(pgdat);
5847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5849 * We now know the "local memory node" for each node--
5850 * i.e., the node of the first zone in the generic zonelist.
5851 * Set up numa_mem percpu variable for on-line cpus. During
5852 * boot, only the boot cpu should be on-line; we'll init the
5853 * secondary cpus' numa_mem as they come on-line. During
5854 * node/memory hotplug, we'll fixup all on-line cpus.
5856 for_each_online_cpu(cpu)
5857 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5864 static noinline void __init
5865 build_all_zonelists_init(void)
5869 __build_all_zonelists(NULL);
5872 * Initialize the boot_pagesets that are going to be used
5873 * for bootstrapping processors. The real pagesets for
5874 * each zone will be allocated later when the per cpu
5875 * allocator is available.
5877 * boot_pagesets are used also for bootstrapping offline
5878 * cpus if the system is already booted because the pagesets
5879 * are needed to initialize allocators on a specific cpu too.
5880 * F.e. the percpu allocator needs the page allocator which
5881 * needs the percpu allocator in order to allocate its pagesets
5882 * (a chicken-egg dilemma).
5884 for_each_possible_cpu(cpu)
5885 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5887 mminit_verify_zonelist();
5888 cpuset_init_current_mems_allowed();
5892 * unless system_state == SYSTEM_BOOTING.
5894 * __ref due to call of __init annotated helper build_all_zonelists_init
5895 * [protected by SYSTEM_BOOTING].
5897 void __ref build_all_zonelists(pg_data_t *pgdat)
5899 if (system_state == SYSTEM_BOOTING) {
5900 build_all_zonelists_init();
5902 __build_all_zonelists(pgdat);
5903 /* cpuset refresh routine should be here */
5905 vm_total_pages = nr_free_pagecache_pages();
5907 * Disable grouping by mobility if the number of pages in the
5908 * system is too low to allow the mechanism to work. It would be
5909 * more accurate, but expensive to check per-zone. This check is
5910 * made on memory-hotadd so a system can start with mobility
5911 * disabled and enable it later
5913 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5914 page_group_by_mobility_disabled = 1;
5916 page_group_by_mobility_disabled = 0;
5918 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5920 page_group_by_mobility_disabled ? "off" : "on",
5923 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5927 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5928 static bool __meminit
5929 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5931 static struct memblock_region *r;
5933 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5934 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5935 for_each_memblock(memory, r) {
5936 if (*pfn < memblock_region_memory_end_pfn(r))
5940 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5941 memblock_is_mirror(r)) {
5942 *pfn = memblock_region_memory_end_pfn(r);
5950 * Initially all pages are reserved - free ones are freed
5951 * up by memblock_free_all() once the early boot process is
5952 * done. Non-atomic initialization, single-pass.
5954 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5955 unsigned long start_pfn, enum memmap_context context,
5956 struct vmem_altmap *altmap)
5958 unsigned long pfn, end_pfn = start_pfn + size;
5961 if (highest_memmap_pfn < end_pfn - 1)
5962 highest_memmap_pfn = end_pfn - 1;
5964 #ifdef CONFIG_ZONE_DEVICE
5966 * Honor reservation requested by the driver for this ZONE_DEVICE
5967 * memory. We limit the total number of pages to initialize to just
5968 * those that might contain the memory mapping. We will defer the
5969 * ZONE_DEVICE page initialization until after we have released
5972 if (zone == ZONE_DEVICE) {
5976 if (start_pfn == altmap->base_pfn)
5977 start_pfn += altmap->reserve;
5978 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5982 for (pfn = start_pfn; pfn < end_pfn; ) {
5984 * There can be holes in boot-time mem_map[]s handed to this
5985 * function. They do not exist on hotplugged memory.
5987 if (context == MEMMAP_EARLY) {
5988 if (overlap_memmap_init(zone, &pfn))
5990 if (defer_init(nid, pfn, end_pfn))
5994 page = pfn_to_page(pfn);
5995 __init_single_page(page, pfn, zone, nid);
5996 if (context == MEMMAP_HOTPLUG)
5997 __SetPageReserved(page);
6000 * Mark the block movable so that blocks are reserved for
6001 * movable at startup. This will force kernel allocations
6002 * to reserve their blocks rather than leaking throughout
6003 * the address space during boot when many long-lived
6004 * kernel allocations are made.
6006 * bitmap is created for zone's valid pfn range. but memmap
6007 * can be created for invalid pages (for alignment)
6008 * check here not to call set_pageblock_migratetype() against
6011 if (!(pfn & (pageblock_nr_pages - 1))) {
6012 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6019 #ifdef CONFIG_ZONE_DEVICE
6020 void __ref memmap_init_zone_device(struct zone *zone,
6021 unsigned long start_pfn,
6022 unsigned long nr_pages,
6023 struct dev_pagemap *pgmap)
6025 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6026 struct pglist_data *pgdat = zone->zone_pgdat;
6027 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6028 unsigned long zone_idx = zone_idx(zone);
6029 unsigned long start = jiffies;
6030 int nid = pgdat->node_id;
6032 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6036 * The call to memmap_init_zone should have already taken care
6037 * of the pages reserved for the memmap, so we can just jump to
6038 * the end of that region and start processing the device pages.
6041 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6042 nr_pages = end_pfn - start_pfn;
6045 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6046 struct page *page = pfn_to_page(pfn);
6048 __init_single_page(page, pfn, zone_idx, nid);
6051 * Mark page reserved as it will need to wait for onlining
6052 * phase for it to be fully associated with a zone.
6054 * We can use the non-atomic __set_bit operation for setting
6055 * the flag as we are still initializing the pages.
6057 __SetPageReserved(page);
6060 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6061 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6062 * ever freed or placed on a driver-private list.
6064 page->pgmap = pgmap;
6065 page->zone_device_data = NULL;
6068 * Mark the block movable so that blocks are reserved for
6069 * movable at startup. This will force kernel allocations
6070 * to reserve their blocks rather than leaking throughout
6071 * the address space during boot when many long-lived
6072 * kernel allocations are made.
6074 * bitmap is created for zone's valid pfn range. but memmap
6075 * can be created for invalid pages (for alignment)
6076 * check here not to call set_pageblock_migratetype() against
6079 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6080 * because this is done early in section_activate()
6082 if (!(pfn & (pageblock_nr_pages - 1))) {
6083 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6088 pr_info("%s initialised %lu pages in %ums\n", __func__,
6089 nr_pages, jiffies_to_msecs(jiffies - start));
6093 static void __meminit zone_init_free_lists(struct zone *zone)
6095 unsigned int order, t;
6096 for_each_migratetype_order(order, t) {
6097 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6098 zone->free_area[order].nr_free = 0;
6102 void __meminit __weak memmap_init(unsigned long size, int nid,
6104 unsigned long range_start_pfn)
6106 unsigned long start_pfn, end_pfn;
6107 unsigned long range_end_pfn = range_start_pfn + size;
6110 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6111 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6112 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6114 if (end_pfn > start_pfn) {
6115 size = end_pfn - start_pfn;
6116 memmap_init_zone(size, nid, zone, start_pfn,
6117 MEMMAP_EARLY, NULL);
6122 static int zone_batchsize(struct zone *zone)
6128 * The per-cpu-pages pools are set to around 1000th of the
6131 batch = zone_managed_pages(zone) / 1024;
6132 /* But no more than a meg. */
6133 if (batch * PAGE_SIZE > 1024 * 1024)
6134 batch = (1024 * 1024) / PAGE_SIZE;
6135 batch /= 4; /* We effectively *= 4 below */
6140 * Clamp the batch to a 2^n - 1 value. Having a power
6141 * of 2 value was found to be more likely to have
6142 * suboptimal cache aliasing properties in some cases.
6144 * For example if 2 tasks are alternately allocating
6145 * batches of pages, one task can end up with a lot
6146 * of pages of one half of the possible page colors
6147 * and the other with pages of the other colors.
6149 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6154 /* The deferral and batching of frees should be suppressed under NOMMU
6157 * The problem is that NOMMU needs to be able to allocate large chunks
6158 * of contiguous memory as there's no hardware page translation to
6159 * assemble apparent contiguous memory from discontiguous pages.
6161 * Queueing large contiguous runs of pages for batching, however,
6162 * causes the pages to actually be freed in smaller chunks. As there
6163 * can be a significant delay between the individual batches being
6164 * recycled, this leads to the once large chunks of space being
6165 * fragmented and becoming unavailable for high-order allocations.
6172 * pcp->high and pcp->batch values are related and dependent on one another:
6173 * ->batch must never be higher then ->high.
6174 * The following function updates them in a safe manner without read side
6177 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6178 * those fields changing asynchronously (acording the the above rule).
6180 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6181 * outside of boot time (or some other assurance that no concurrent updaters
6184 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6185 unsigned long batch)
6187 /* start with a fail safe value for batch */
6191 /* Update high, then batch, in order */
6198 /* a companion to pageset_set_high() */
6199 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6201 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6204 static void pageset_init(struct per_cpu_pageset *p)
6206 struct per_cpu_pages *pcp;
6209 memset(p, 0, sizeof(*p));
6212 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6213 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6216 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6219 pageset_set_batch(p, batch);
6223 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6224 * to the value high for the pageset p.
6226 static void pageset_set_high(struct per_cpu_pageset *p,
6229 unsigned long batch = max(1UL, high / 4);
6230 if ((high / 4) > (PAGE_SHIFT * 8))
6231 batch = PAGE_SHIFT * 8;
6233 pageset_update(&p->pcp, high, batch);
6236 static void pageset_set_high_and_batch(struct zone *zone,
6237 struct per_cpu_pageset *pcp)
6239 if (percpu_pagelist_fraction)
6240 pageset_set_high(pcp,
6241 (zone_managed_pages(zone) /
6242 percpu_pagelist_fraction));
6244 pageset_set_batch(pcp, zone_batchsize(zone));
6247 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6249 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6252 pageset_set_high_and_batch(zone, pcp);
6255 void __meminit setup_zone_pageset(struct zone *zone)
6258 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6259 for_each_possible_cpu(cpu)
6260 zone_pageset_init(zone, cpu);
6264 * Allocate per cpu pagesets and initialize them.
6265 * Before this call only boot pagesets were available.
6267 void __init setup_per_cpu_pageset(void)
6269 struct pglist_data *pgdat;
6271 int __maybe_unused cpu;
6273 for_each_populated_zone(zone)
6274 setup_zone_pageset(zone);
6278 * Unpopulated zones continue using the boot pagesets.
6279 * The numa stats for these pagesets need to be reset.
6280 * Otherwise, they will end up skewing the stats of
6281 * the nodes these zones are associated with.
6283 for_each_possible_cpu(cpu) {
6284 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6285 memset(pcp->vm_numa_stat_diff, 0,
6286 sizeof(pcp->vm_numa_stat_diff));
6290 for_each_online_pgdat(pgdat)
6291 pgdat->per_cpu_nodestats =
6292 alloc_percpu(struct per_cpu_nodestat);
6295 static __meminit void zone_pcp_init(struct zone *zone)
6298 * per cpu subsystem is not up at this point. The following code
6299 * relies on the ability of the linker to provide the
6300 * offset of a (static) per cpu variable into the per cpu area.
6302 zone->pageset = &boot_pageset;
6304 if (populated_zone(zone))
6305 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6306 zone->name, zone->present_pages,
6307 zone_batchsize(zone));
6310 void __meminit init_currently_empty_zone(struct zone *zone,
6311 unsigned long zone_start_pfn,
6314 struct pglist_data *pgdat = zone->zone_pgdat;
6315 int zone_idx = zone_idx(zone) + 1;
6317 if (zone_idx > pgdat->nr_zones)
6318 pgdat->nr_zones = zone_idx;
6320 zone->zone_start_pfn = zone_start_pfn;
6322 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6323 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6325 (unsigned long)zone_idx(zone),
6326 zone_start_pfn, (zone_start_pfn + size));
6328 zone_init_free_lists(zone);
6329 zone->initialized = 1;
6333 * get_pfn_range_for_nid - Return the start and end page frames for a node
6334 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6335 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6336 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6338 * It returns the start and end page frame of a node based on information
6339 * provided by memblock_set_node(). If called for a node
6340 * with no available memory, a warning is printed and the start and end
6343 void __init get_pfn_range_for_nid(unsigned int nid,
6344 unsigned long *start_pfn, unsigned long *end_pfn)
6346 unsigned long this_start_pfn, this_end_pfn;
6352 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6353 *start_pfn = min(*start_pfn, this_start_pfn);
6354 *end_pfn = max(*end_pfn, this_end_pfn);
6357 if (*start_pfn == -1UL)
6362 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6363 * assumption is made that zones within a node are ordered in monotonic
6364 * increasing memory addresses so that the "highest" populated zone is used
6366 static void __init find_usable_zone_for_movable(void)
6369 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6370 if (zone_index == ZONE_MOVABLE)
6373 if (arch_zone_highest_possible_pfn[zone_index] >
6374 arch_zone_lowest_possible_pfn[zone_index])
6378 VM_BUG_ON(zone_index == -1);
6379 movable_zone = zone_index;
6383 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6384 * because it is sized independent of architecture. Unlike the other zones,
6385 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6386 * in each node depending on the size of each node and how evenly kernelcore
6387 * is distributed. This helper function adjusts the zone ranges
6388 * provided by the architecture for a given node by using the end of the
6389 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6390 * zones within a node are in order of monotonic increases memory addresses
6392 static void __init adjust_zone_range_for_zone_movable(int nid,
6393 unsigned long zone_type,
6394 unsigned long node_start_pfn,
6395 unsigned long node_end_pfn,
6396 unsigned long *zone_start_pfn,
6397 unsigned long *zone_end_pfn)
6399 /* Only adjust if ZONE_MOVABLE is on this node */
6400 if (zone_movable_pfn[nid]) {
6401 /* Size ZONE_MOVABLE */
6402 if (zone_type == ZONE_MOVABLE) {
6403 *zone_start_pfn = zone_movable_pfn[nid];
6404 *zone_end_pfn = min(node_end_pfn,
6405 arch_zone_highest_possible_pfn[movable_zone]);
6407 /* Adjust for ZONE_MOVABLE starting within this range */
6408 } else if (!mirrored_kernelcore &&
6409 *zone_start_pfn < zone_movable_pfn[nid] &&
6410 *zone_end_pfn > zone_movable_pfn[nid]) {
6411 *zone_end_pfn = zone_movable_pfn[nid];
6413 /* Check if this whole range is within ZONE_MOVABLE */
6414 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6415 *zone_start_pfn = *zone_end_pfn;
6420 * Return the number of pages a zone spans in a node, including holes
6421 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6423 static unsigned long __init zone_spanned_pages_in_node(int nid,
6424 unsigned long zone_type,
6425 unsigned long node_start_pfn,
6426 unsigned long node_end_pfn,
6427 unsigned long *zone_start_pfn,
6428 unsigned long *zone_end_pfn)
6430 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6431 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6432 /* When hotadd a new node from cpu_up(), the node should be empty */
6433 if (!node_start_pfn && !node_end_pfn)
6436 /* Get the start and end of the zone */
6437 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6438 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6439 adjust_zone_range_for_zone_movable(nid, zone_type,
6440 node_start_pfn, node_end_pfn,
6441 zone_start_pfn, zone_end_pfn);
6443 /* Check that this node has pages within the zone's required range */
6444 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6447 /* Move the zone boundaries inside the node if necessary */
6448 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6449 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6451 /* Return the spanned pages */
6452 return *zone_end_pfn - *zone_start_pfn;
6456 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6457 * then all holes in the requested range will be accounted for.
6459 unsigned long __init __absent_pages_in_range(int nid,
6460 unsigned long range_start_pfn,
6461 unsigned long range_end_pfn)
6463 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6464 unsigned long start_pfn, end_pfn;
6467 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6468 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6469 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6470 nr_absent -= end_pfn - start_pfn;
6476 * absent_pages_in_range - Return number of page frames in holes within a range
6477 * @start_pfn: The start PFN to start searching for holes
6478 * @end_pfn: The end PFN to stop searching for holes
6480 * Return: the number of pages frames in memory holes within a range.
6482 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6483 unsigned long end_pfn)
6485 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6488 /* Return the number of page frames in holes in a zone on a node */
6489 static unsigned long __init zone_absent_pages_in_node(int nid,
6490 unsigned long zone_type,
6491 unsigned long node_start_pfn,
6492 unsigned long node_end_pfn)
6494 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6495 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6496 unsigned long zone_start_pfn, zone_end_pfn;
6497 unsigned long nr_absent;
6499 /* When hotadd a new node from cpu_up(), the node should be empty */
6500 if (!node_start_pfn && !node_end_pfn)
6503 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6504 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6506 adjust_zone_range_for_zone_movable(nid, zone_type,
6507 node_start_pfn, node_end_pfn,
6508 &zone_start_pfn, &zone_end_pfn);
6509 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6512 * ZONE_MOVABLE handling.
6513 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6516 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6517 unsigned long start_pfn, end_pfn;
6518 struct memblock_region *r;
6520 for_each_memblock(memory, r) {
6521 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6522 zone_start_pfn, zone_end_pfn);
6523 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6524 zone_start_pfn, zone_end_pfn);
6526 if (zone_type == ZONE_MOVABLE &&
6527 memblock_is_mirror(r))
6528 nr_absent += end_pfn - start_pfn;
6530 if (zone_type == ZONE_NORMAL &&
6531 !memblock_is_mirror(r))
6532 nr_absent += end_pfn - start_pfn;
6539 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6540 unsigned long node_start_pfn,
6541 unsigned long node_end_pfn)
6543 unsigned long realtotalpages = 0, totalpages = 0;
6546 for (i = 0; i < MAX_NR_ZONES; i++) {
6547 struct zone *zone = pgdat->node_zones + i;
6548 unsigned long zone_start_pfn, zone_end_pfn;
6549 unsigned long spanned, absent;
6550 unsigned long size, real_size;
6552 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6557 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6562 real_size = size - absent;
6565 zone->zone_start_pfn = zone_start_pfn;
6567 zone->zone_start_pfn = 0;
6568 zone->spanned_pages = size;
6569 zone->present_pages = real_size;
6572 realtotalpages += real_size;
6575 pgdat->node_spanned_pages = totalpages;
6576 pgdat->node_present_pages = realtotalpages;
6577 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6581 #ifndef CONFIG_SPARSEMEM
6583 * Calculate the size of the zone->blockflags rounded to an unsigned long
6584 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6585 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6586 * round what is now in bits to nearest long in bits, then return it in
6589 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6591 unsigned long usemapsize;
6593 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6594 usemapsize = roundup(zonesize, pageblock_nr_pages);
6595 usemapsize = usemapsize >> pageblock_order;
6596 usemapsize *= NR_PAGEBLOCK_BITS;
6597 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6599 return usemapsize / 8;
6602 static void __ref setup_usemap(struct pglist_data *pgdat,
6604 unsigned long zone_start_pfn,
6605 unsigned long zonesize)
6607 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6608 zone->pageblock_flags = NULL;
6610 zone->pageblock_flags =
6611 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6613 if (!zone->pageblock_flags)
6614 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6615 usemapsize, zone->name, pgdat->node_id);
6619 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6620 unsigned long zone_start_pfn, unsigned long zonesize) {}
6621 #endif /* CONFIG_SPARSEMEM */
6623 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6625 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6626 void __init set_pageblock_order(void)
6630 /* Check that pageblock_nr_pages has not already been setup */
6631 if (pageblock_order)
6634 if (HPAGE_SHIFT > PAGE_SHIFT)
6635 order = HUGETLB_PAGE_ORDER;
6637 order = MAX_ORDER - 1;
6640 * Assume the largest contiguous order of interest is a huge page.
6641 * This value may be variable depending on boot parameters on IA64 and
6644 pageblock_order = order;
6646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6650 * is unused as pageblock_order is set at compile-time. See
6651 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6654 void __init set_pageblock_order(void)
6658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6661 unsigned long present_pages)
6663 unsigned long pages = spanned_pages;
6666 * Provide a more accurate estimation if there are holes within
6667 * the zone and SPARSEMEM is in use. If there are holes within the
6668 * zone, each populated memory region may cost us one or two extra
6669 * memmap pages due to alignment because memmap pages for each
6670 * populated regions may not be naturally aligned on page boundary.
6671 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6673 if (spanned_pages > present_pages + (present_pages >> 4) &&
6674 IS_ENABLED(CONFIG_SPARSEMEM))
6675 pages = present_pages;
6677 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6681 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6683 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6685 spin_lock_init(&ds_queue->split_queue_lock);
6686 INIT_LIST_HEAD(&ds_queue->split_queue);
6687 ds_queue->split_queue_len = 0;
6690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6693 #ifdef CONFIG_COMPACTION
6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6696 init_waitqueue_head(&pgdat->kcompactd_wait);
6699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6704 pgdat_resize_init(pgdat);
6706 pgdat_init_split_queue(pgdat);
6707 pgdat_init_kcompactd(pgdat);
6709 init_waitqueue_head(&pgdat->kswapd_wait);
6710 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6712 pgdat_page_ext_init(pgdat);
6713 spin_lock_init(&pgdat->lru_lock);
6714 lruvec_init(&pgdat->__lruvec);
6717 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6718 unsigned long remaining_pages)
6720 atomic_long_set(&zone->managed_pages, remaining_pages);
6721 zone_set_nid(zone, nid);
6722 zone->name = zone_names[idx];
6723 zone->zone_pgdat = NODE_DATA(nid);
6724 spin_lock_init(&zone->lock);
6725 zone_seqlock_init(zone);
6726 zone_pcp_init(zone);
6730 * Set up the zone data structures
6731 * - init pgdat internals
6732 * - init all zones belonging to this node
6734 * NOTE: this function is only called during memory hotplug
6736 #ifdef CONFIG_MEMORY_HOTPLUG
6737 void __ref free_area_init_core_hotplug(int nid)
6740 pg_data_t *pgdat = NODE_DATA(nid);
6742 pgdat_init_internals(pgdat);
6743 for (z = 0; z < MAX_NR_ZONES; z++)
6744 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6749 * Set up the zone data structures:
6750 * - mark all pages reserved
6751 * - mark all memory queues empty
6752 * - clear the memory bitmaps
6754 * NOTE: pgdat should get zeroed by caller.
6755 * NOTE: this function is only called during early init.
6757 static void __init free_area_init_core(struct pglist_data *pgdat)
6760 int nid = pgdat->node_id;
6762 pgdat_init_internals(pgdat);
6763 pgdat->per_cpu_nodestats = &boot_nodestats;
6765 for (j = 0; j < MAX_NR_ZONES; j++) {
6766 struct zone *zone = pgdat->node_zones + j;
6767 unsigned long size, freesize, memmap_pages;
6768 unsigned long zone_start_pfn = zone->zone_start_pfn;
6770 size = zone->spanned_pages;
6771 freesize = zone->present_pages;
6774 * Adjust freesize so that it accounts for how much memory
6775 * is used by this zone for memmap. This affects the watermark
6776 * and per-cpu initialisations
6778 memmap_pages = calc_memmap_size(size, freesize);
6779 if (!is_highmem_idx(j)) {
6780 if (freesize >= memmap_pages) {
6781 freesize -= memmap_pages;
6784 " %s zone: %lu pages used for memmap\n",
6785 zone_names[j], memmap_pages);
6787 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6788 zone_names[j], memmap_pages, freesize);
6791 /* Account for reserved pages */
6792 if (j == 0 && freesize > dma_reserve) {
6793 freesize -= dma_reserve;
6794 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6795 zone_names[0], dma_reserve);
6798 if (!is_highmem_idx(j))
6799 nr_kernel_pages += freesize;
6800 /* Charge for highmem memmap if there are enough kernel pages */
6801 else if (nr_kernel_pages > memmap_pages * 2)
6802 nr_kernel_pages -= memmap_pages;
6803 nr_all_pages += freesize;
6806 * Set an approximate value for lowmem here, it will be adjusted
6807 * when the bootmem allocator frees pages into the buddy system.
6808 * And all highmem pages will be managed by the buddy system.
6810 zone_init_internals(zone, j, nid, freesize);
6815 set_pageblock_order();
6816 setup_usemap(pgdat, zone, zone_start_pfn, size);
6817 init_currently_empty_zone(zone, zone_start_pfn, size);
6818 memmap_init(size, nid, j, zone_start_pfn);
6822 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6823 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6825 unsigned long __maybe_unused start = 0;
6826 unsigned long __maybe_unused offset = 0;
6828 /* Skip empty nodes */
6829 if (!pgdat->node_spanned_pages)
6832 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6833 offset = pgdat->node_start_pfn - start;
6834 /* ia64 gets its own node_mem_map, before this, without bootmem */
6835 if (!pgdat->node_mem_map) {
6836 unsigned long size, end;
6840 * The zone's endpoints aren't required to be MAX_ORDER
6841 * aligned but the node_mem_map endpoints must be in order
6842 * for the buddy allocator to function correctly.
6844 end = pgdat_end_pfn(pgdat);
6845 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6846 size = (end - start) * sizeof(struct page);
6847 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6850 panic("Failed to allocate %ld bytes for node %d memory map\n",
6851 size, pgdat->node_id);
6852 pgdat->node_mem_map = map + offset;
6854 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6855 __func__, pgdat->node_id, (unsigned long)pgdat,
6856 (unsigned long)pgdat->node_mem_map);
6857 #ifndef CONFIG_NEED_MULTIPLE_NODES
6859 * With no DISCONTIG, the global mem_map is just set as node 0's
6861 if (pgdat == NODE_DATA(0)) {
6862 mem_map = NODE_DATA(0)->node_mem_map;
6863 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6869 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6870 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6872 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6873 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6875 pgdat->first_deferred_pfn = ULONG_MAX;
6878 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6881 static void __init free_area_init_node(int nid)
6883 pg_data_t *pgdat = NODE_DATA(nid);
6884 unsigned long start_pfn = 0;
6885 unsigned long end_pfn = 0;
6887 /* pg_data_t should be reset to zero when it's allocated */
6888 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6890 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6892 pgdat->node_id = nid;
6893 pgdat->node_start_pfn = start_pfn;
6894 pgdat->per_cpu_nodestats = NULL;
6896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6897 (u64)start_pfn << PAGE_SHIFT,
6898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6899 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6901 alloc_node_mem_map(pgdat);
6902 pgdat_set_deferred_range(pgdat);
6904 free_area_init_core(pgdat);
6907 void __init free_area_init_memoryless_node(int nid)
6909 free_area_init_node(nid);
6912 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6914 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6915 * PageReserved(). Return the number of struct pages that were initialized.
6917 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6922 for (pfn = spfn; pfn < epfn; pfn++) {
6923 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6924 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6925 + pageblock_nr_pages - 1;
6929 * Use a fake node/zone (0) for now. Some of these pages
6930 * (in memblock.reserved but not in memblock.memory) will
6931 * get re-initialized via reserve_bootmem_region() later.
6933 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6934 __SetPageReserved(pfn_to_page(pfn));
6942 * Only struct pages that are backed by physical memory are zeroed and
6943 * initialized by going through __init_single_page(). But, there are some
6944 * struct pages which are reserved in memblock allocator and their fields
6945 * may be accessed (for example page_to_pfn() on some configuration accesses
6946 * flags). We must explicitly initialize those struct pages.
6948 * This function also addresses a similar issue where struct pages are left
6949 * uninitialized because the physical address range is not covered by
6950 * memblock.memory or memblock.reserved. That could happen when memblock
6951 * layout is manually configured via memmap=, or when the highest physical
6952 * address (max_pfn) does not end on a section boundary.
6954 static void __init init_unavailable_mem(void)
6956 phys_addr_t start, end;
6958 phys_addr_t next = 0;
6961 * Loop through unavailable ranges not covered by memblock.memory.
6964 for_each_mem_range(i, &memblock.memory, NULL,
6965 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6967 pgcnt += init_unavailable_range(PFN_DOWN(next),
6973 * Early sections always have a fully populated memmap for the whole
6974 * section - see pfn_valid(). If the last section has holes at the
6975 * end and that section is marked "online", the memmap will be
6976 * considered initialized. Make sure that memmap has a well defined
6979 pgcnt += init_unavailable_range(PFN_DOWN(next),
6980 round_up(max_pfn, PAGES_PER_SECTION));
6983 * Struct pages that do not have backing memory. This could be because
6984 * firmware is using some of this memory, or for some other reasons.
6987 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6990 static inline void __init init_unavailable_mem(void)
6993 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6995 #if MAX_NUMNODES > 1
6997 * Figure out the number of possible node ids.
6999 void __init setup_nr_node_ids(void)
7001 unsigned int highest;
7003 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7004 nr_node_ids = highest + 1;
7009 * node_map_pfn_alignment - determine the maximum internode alignment
7011 * This function should be called after node map is populated and sorted.
7012 * It calculates the maximum power of two alignment which can distinguish
7015 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7016 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7017 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7018 * shifted, 1GiB is enough and this function will indicate so.
7020 * This is used to test whether pfn -> nid mapping of the chosen memory
7021 * model has fine enough granularity to avoid incorrect mapping for the
7022 * populated node map.
7024 * Return: the determined alignment in pfn's. 0 if there is no alignment
7025 * requirement (single node).
7027 unsigned long __init node_map_pfn_alignment(void)
7029 unsigned long accl_mask = 0, last_end = 0;
7030 unsigned long start, end, mask;
7031 int last_nid = NUMA_NO_NODE;
7034 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7035 if (!start || last_nid < 0 || last_nid == nid) {
7042 * Start with a mask granular enough to pin-point to the
7043 * start pfn and tick off bits one-by-one until it becomes
7044 * too coarse to separate the current node from the last.
7046 mask = ~((1 << __ffs(start)) - 1);
7047 while (mask && last_end <= (start & (mask << 1)))
7050 /* accumulate all internode masks */
7054 /* convert mask to number of pages */
7055 return ~accl_mask + 1;
7059 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7061 * Return: the minimum PFN based on information provided via
7062 * memblock_set_node().
7064 unsigned long __init find_min_pfn_with_active_regions(void)
7066 return PHYS_PFN(memblock_start_of_DRAM());
7070 * early_calculate_totalpages()
7071 * Sum pages in active regions for movable zone.
7072 * Populate N_MEMORY for calculating usable_nodes.
7074 static unsigned long __init early_calculate_totalpages(void)
7076 unsigned long totalpages = 0;
7077 unsigned long start_pfn, end_pfn;
7080 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7081 unsigned long pages = end_pfn - start_pfn;
7083 totalpages += pages;
7085 node_set_state(nid, N_MEMORY);
7091 * Find the PFN the Movable zone begins in each node. Kernel memory
7092 * is spread evenly between nodes as long as the nodes have enough
7093 * memory. When they don't, some nodes will have more kernelcore than
7096 static void __init find_zone_movable_pfns_for_nodes(void)
7099 unsigned long usable_startpfn;
7100 unsigned long kernelcore_node, kernelcore_remaining;
7101 /* save the state before borrow the nodemask */
7102 nodemask_t saved_node_state = node_states[N_MEMORY];
7103 unsigned long totalpages = early_calculate_totalpages();
7104 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7105 struct memblock_region *r;
7107 /* Need to find movable_zone earlier when movable_node is specified. */
7108 find_usable_zone_for_movable();
7111 * If movable_node is specified, ignore kernelcore and movablecore
7114 if (movable_node_is_enabled()) {
7115 for_each_memblock(memory, r) {
7116 if (!memblock_is_hotpluggable(r))
7119 nid = memblock_get_region_node(r);
7121 usable_startpfn = PFN_DOWN(r->base);
7122 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7123 min(usable_startpfn, zone_movable_pfn[nid]) :
7131 * If kernelcore=mirror is specified, ignore movablecore option
7133 if (mirrored_kernelcore) {
7134 bool mem_below_4gb_not_mirrored = false;
7136 for_each_memblock(memory, r) {
7137 if (memblock_is_mirror(r))
7140 nid = memblock_get_region_node(r);
7142 usable_startpfn = memblock_region_memory_base_pfn(r);
7144 if (usable_startpfn < 0x100000) {
7145 mem_below_4gb_not_mirrored = true;
7149 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7150 min(usable_startpfn, zone_movable_pfn[nid]) :
7154 if (mem_below_4gb_not_mirrored)
7155 pr_warn("This configuration results in unmirrored kernel memory.\n");
7161 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7162 * amount of necessary memory.
7164 if (required_kernelcore_percent)
7165 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7167 if (required_movablecore_percent)
7168 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7172 * If movablecore= was specified, calculate what size of
7173 * kernelcore that corresponds so that memory usable for
7174 * any allocation type is evenly spread. If both kernelcore
7175 * and movablecore are specified, then the value of kernelcore
7176 * will be used for required_kernelcore if it's greater than
7177 * what movablecore would have allowed.
7179 if (required_movablecore) {
7180 unsigned long corepages;
7183 * Round-up so that ZONE_MOVABLE is at least as large as what
7184 * was requested by the user
7186 required_movablecore =
7187 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7188 required_movablecore = min(totalpages, required_movablecore);
7189 corepages = totalpages - required_movablecore;
7191 required_kernelcore = max(required_kernelcore, corepages);
7195 * If kernelcore was not specified or kernelcore size is larger
7196 * than totalpages, there is no ZONE_MOVABLE.
7198 if (!required_kernelcore || required_kernelcore >= totalpages)
7201 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7202 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7205 /* Spread kernelcore memory as evenly as possible throughout nodes */
7206 kernelcore_node = required_kernelcore / usable_nodes;
7207 for_each_node_state(nid, N_MEMORY) {
7208 unsigned long start_pfn, end_pfn;
7211 * Recalculate kernelcore_node if the division per node
7212 * now exceeds what is necessary to satisfy the requested
7213 * amount of memory for the kernel
7215 if (required_kernelcore < kernelcore_node)
7216 kernelcore_node = required_kernelcore / usable_nodes;
7219 * As the map is walked, we track how much memory is usable
7220 * by the kernel using kernelcore_remaining. When it is
7221 * 0, the rest of the node is usable by ZONE_MOVABLE
7223 kernelcore_remaining = kernelcore_node;
7225 /* Go through each range of PFNs within this node */
7226 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7227 unsigned long size_pages;
7229 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7230 if (start_pfn >= end_pfn)
7233 /* Account for what is only usable for kernelcore */
7234 if (start_pfn < usable_startpfn) {
7235 unsigned long kernel_pages;
7236 kernel_pages = min(end_pfn, usable_startpfn)
7239 kernelcore_remaining -= min(kernel_pages,
7240 kernelcore_remaining);
7241 required_kernelcore -= min(kernel_pages,
7242 required_kernelcore);
7244 /* Continue if range is now fully accounted */
7245 if (end_pfn <= usable_startpfn) {
7248 * Push zone_movable_pfn to the end so
7249 * that if we have to rebalance
7250 * kernelcore across nodes, we will
7251 * not double account here
7253 zone_movable_pfn[nid] = end_pfn;
7256 start_pfn = usable_startpfn;
7260 * The usable PFN range for ZONE_MOVABLE is from
7261 * start_pfn->end_pfn. Calculate size_pages as the
7262 * number of pages used as kernelcore
7264 size_pages = end_pfn - start_pfn;
7265 if (size_pages > kernelcore_remaining)
7266 size_pages = kernelcore_remaining;
7267 zone_movable_pfn[nid] = start_pfn + size_pages;
7270 * Some kernelcore has been met, update counts and
7271 * break if the kernelcore for this node has been
7274 required_kernelcore -= min(required_kernelcore,
7276 kernelcore_remaining -= size_pages;
7277 if (!kernelcore_remaining)
7283 * If there is still required_kernelcore, we do another pass with one
7284 * less node in the count. This will push zone_movable_pfn[nid] further
7285 * along on the nodes that still have memory until kernelcore is
7289 if (usable_nodes && required_kernelcore > usable_nodes)
7293 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7294 for (nid = 0; nid < MAX_NUMNODES; nid++)
7295 zone_movable_pfn[nid] =
7296 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7299 /* restore the node_state */
7300 node_states[N_MEMORY] = saved_node_state;
7303 /* Any regular or high memory on that node ? */
7304 static void check_for_memory(pg_data_t *pgdat, int nid)
7306 enum zone_type zone_type;
7308 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7309 struct zone *zone = &pgdat->node_zones[zone_type];
7310 if (populated_zone(zone)) {
7311 if (IS_ENABLED(CONFIG_HIGHMEM))
7312 node_set_state(nid, N_HIGH_MEMORY);
7313 if (zone_type <= ZONE_NORMAL)
7314 node_set_state(nid, N_NORMAL_MEMORY);
7321 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7322 * such cases we allow max_zone_pfn sorted in the descending order
7324 bool __weak arch_has_descending_max_zone_pfns(void)
7330 * free_area_init - Initialise all pg_data_t and zone data
7331 * @max_zone_pfn: an array of max PFNs for each zone
7333 * This will call free_area_init_node() for each active node in the system.
7334 * Using the page ranges provided by memblock_set_node(), the size of each
7335 * zone in each node and their holes is calculated. If the maximum PFN
7336 * between two adjacent zones match, it is assumed that the zone is empty.
7337 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7338 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7339 * starts where the previous one ended. For example, ZONE_DMA32 starts
7340 * at arch_max_dma_pfn.
7342 void __init free_area_init(unsigned long *max_zone_pfn)
7344 unsigned long start_pfn, end_pfn;
7348 /* Record where the zone boundaries are */
7349 memset(arch_zone_lowest_possible_pfn, 0,
7350 sizeof(arch_zone_lowest_possible_pfn));
7351 memset(arch_zone_highest_possible_pfn, 0,
7352 sizeof(arch_zone_highest_possible_pfn));
7354 start_pfn = find_min_pfn_with_active_regions();
7355 descending = arch_has_descending_max_zone_pfns();
7357 for (i = 0; i < MAX_NR_ZONES; i++) {
7359 zone = MAX_NR_ZONES - i - 1;
7363 if (zone == ZONE_MOVABLE)
7366 end_pfn = max(max_zone_pfn[zone], start_pfn);
7367 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7368 arch_zone_highest_possible_pfn[zone] = end_pfn;
7370 start_pfn = end_pfn;
7373 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7374 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7375 find_zone_movable_pfns_for_nodes();
7377 /* Print out the zone ranges */
7378 pr_info("Zone ranges:\n");
7379 for (i = 0; i < MAX_NR_ZONES; i++) {
7380 if (i == ZONE_MOVABLE)
7382 pr_info(" %-8s ", zone_names[i]);
7383 if (arch_zone_lowest_possible_pfn[i] ==
7384 arch_zone_highest_possible_pfn[i])
7387 pr_cont("[mem %#018Lx-%#018Lx]\n",
7388 (u64)arch_zone_lowest_possible_pfn[i]
7390 ((u64)arch_zone_highest_possible_pfn[i]
7391 << PAGE_SHIFT) - 1);
7394 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7395 pr_info("Movable zone start for each node\n");
7396 for (i = 0; i < MAX_NUMNODES; i++) {
7397 if (zone_movable_pfn[i])
7398 pr_info(" Node %d: %#018Lx\n", i,
7399 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7403 * Print out the early node map, and initialize the
7404 * subsection-map relative to active online memory ranges to
7405 * enable future "sub-section" extensions of the memory map.
7407 pr_info("Early memory node ranges\n");
7408 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7409 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7410 (u64)start_pfn << PAGE_SHIFT,
7411 ((u64)end_pfn << PAGE_SHIFT) - 1);
7412 subsection_map_init(start_pfn, end_pfn - start_pfn);
7415 /* Initialise every node */
7416 mminit_verify_pageflags_layout();
7417 setup_nr_node_ids();
7418 init_unavailable_mem();
7419 for_each_online_node(nid) {
7420 pg_data_t *pgdat = NODE_DATA(nid);
7421 free_area_init_node(nid);
7423 /* Any memory on that node */
7424 if (pgdat->node_present_pages)
7425 node_set_state(nid, N_MEMORY);
7426 check_for_memory(pgdat, nid);
7430 static int __init cmdline_parse_core(char *p, unsigned long *core,
7431 unsigned long *percent)
7433 unsigned long long coremem;
7439 /* Value may be a percentage of total memory, otherwise bytes */
7440 coremem = simple_strtoull(p, &endptr, 0);
7441 if (*endptr == '%') {
7442 /* Paranoid check for percent values greater than 100 */
7443 WARN_ON(coremem > 100);
7447 coremem = memparse(p, &p);
7448 /* Paranoid check that UL is enough for the coremem value */
7449 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7451 *core = coremem >> PAGE_SHIFT;
7458 * kernelcore=size sets the amount of memory for use for allocations that
7459 * cannot be reclaimed or migrated.
7461 static int __init cmdline_parse_kernelcore(char *p)
7463 /* parse kernelcore=mirror */
7464 if (parse_option_str(p, "mirror")) {
7465 mirrored_kernelcore = true;
7469 return cmdline_parse_core(p, &required_kernelcore,
7470 &required_kernelcore_percent);
7474 * movablecore=size sets the amount of memory for use for allocations that
7475 * can be reclaimed or migrated.
7477 static int __init cmdline_parse_movablecore(char *p)
7479 return cmdline_parse_core(p, &required_movablecore,
7480 &required_movablecore_percent);
7483 early_param("kernelcore", cmdline_parse_kernelcore);
7484 early_param("movablecore", cmdline_parse_movablecore);
7486 void adjust_managed_page_count(struct page *page, long count)
7488 atomic_long_add(count, &page_zone(page)->managed_pages);
7489 totalram_pages_add(count);
7490 #ifdef CONFIG_HIGHMEM
7491 if (PageHighMem(page))
7492 totalhigh_pages_add(count);
7495 EXPORT_SYMBOL(adjust_managed_page_count);
7497 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7500 unsigned long pages = 0;
7502 start = (void *)PAGE_ALIGN((unsigned long)start);
7503 end = (void *)((unsigned long)end & PAGE_MASK);
7504 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7505 struct page *page = virt_to_page(pos);
7506 void *direct_map_addr;
7509 * 'direct_map_addr' might be different from 'pos'
7510 * because some architectures' virt_to_page()
7511 * work with aliases. Getting the direct map
7512 * address ensures that we get a _writeable_
7513 * alias for the memset().
7515 direct_map_addr = page_address(page);
7516 if ((unsigned int)poison <= 0xFF)
7517 memset(direct_map_addr, poison, PAGE_SIZE);
7519 free_reserved_page(page);
7523 pr_info("Freeing %s memory: %ldK\n",
7524 s, pages << (PAGE_SHIFT - 10));
7529 #ifdef CONFIG_HIGHMEM
7530 void free_highmem_page(struct page *page)
7532 __free_reserved_page(page);
7533 totalram_pages_inc();
7534 atomic_long_inc(&page_zone(page)->managed_pages);
7535 totalhigh_pages_inc();
7540 void __init mem_init_print_info(const char *str)
7542 unsigned long physpages, codesize, datasize, rosize, bss_size;
7543 unsigned long init_code_size, init_data_size;
7545 physpages = get_num_physpages();
7546 codesize = _etext - _stext;
7547 datasize = _edata - _sdata;
7548 rosize = __end_rodata - __start_rodata;
7549 bss_size = __bss_stop - __bss_start;
7550 init_data_size = __init_end - __init_begin;
7551 init_code_size = _einittext - _sinittext;
7554 * Detect special cases and adjust section sizes accordingly:
7555 * 1) .init.* may be embedded into .data sections
7556 * 2) .init.text.* may be out of [__init_begin, __init_end],
7557 * please refer to arch/tile/kernel/vmlinux.lds.S.
7558 * 3) .rodata.* may be embedded into .text or .data sections.
7560 #define adj_init_size(start, end, size, pos, adj) \
7562 if (start <= pos && pos < end && size > adj) \
7566 adj_init_size(__init_begin, __init_end, init_data_size,
7567 _sinittext, init_code_size);
7568 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7569 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7570 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7571 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7573 #undef adj_init_size
7575 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7576 #ifdef CONFIG_HIGHMEM
7580 nr_free_pages() << (PAGE_SHIFT - 10),
7581 physpages << (PAGE_SHIFT - 10),
7582 codesize >> 10, datasize >> 10, rosize >> 10,
7583 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7584 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7585 totalcma_pages << (PAGE_SHIFT - 10),
7586 #ifdef CONFIG_HIGHMEM
7587 totalhigh_pages() << (PAGE_SHIFT - 10),
7589 str ? ", " : "", str ? str : "");
7593 * set_dma_reserve - set the specified number of pages reserved in the first zone
7594 * @new_dma_reserve: The number of pages to mark reserved
7596 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7597 * In the DMA zone, a significant percentage may be consumed by kernel image
7598 * and other unfreeable allocations which can skew the watermarks badly. This
7599 * function may optionally be used to account for unfreeable pages in the
7600 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7601 * smaller per-cpu batchsize.
7603 void __init set_dma_reserve(unsigned long new_dma_reserve)
7605 dma_reserve = new_dma_reserve;
7608 static int page_alloc_cpu_dead(unsigned int cpu)
7611 lru_add_drain_cpu(cpu);
7615 * Spill the event counters of the dead processor
7616 * into the current processors event counters.
7617 * This artificially elevates the count of the current
7620 vm_events_fold_cpu(cpu);
7623 * Zero the differential counters of the dead processor
7624 * so that the vm statistics are consistent.
7626 * This is only okay since the processor is dead and cannot
7627 * race with what we are doing.
7629 cpu_vm_stats_fold(cpu);
7634 int hashdist = HASHDIST_DEFAULT;
7636 static int __init set_hashdist(char *str)
7640 hashdist = simple_strtoul(str, &str, 0);
7643 __setup("hashdist=", set_hashdist);
7646 void __init page_alloc_init(void)
7651 if (num_node_state(N_MEMORY) == 1)
7655 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7656 "mm/page_alloc:dead", NULL,
7657 page_alloc_cpu_dead);
7662 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7663 * or min_free_kbytes changes.
7665 static void calculate_totalreserve_pages(void)
7667 struct pglist_data *pgdat;
7668 unsigned long reserve_pages = 0;
7669 enum zone_type i, j;
7671 for_each_online_pgdat(pgdat) {
7673 pgdat->totalreserve_pages = 0;
7675 for (i = 0; i < MAX_NR_ZONES; i++) {
7676 struct zone *zone = pgdat->node_zones + i;
7678 unsigned long managed_pages = zone_managed_pages(zone);
7680 /* Find valid and maximum lowmem_reserve in the zone */
7681 for (j = i; j < MAX_NR_ZONES; j++) {
7682 if (zone->lowmem_reserve[j] > max)
7683 max = zone->lowmem_reserve[j];
7686 /* we treat the high watermark as reserved pages. */
7687 max += high_wmark_pages(zone);
7689 if (max > managed_pages)
7690 max = managed_pages;
7692 pgdat->totalreserve_pages += max;
7694 reserve_pages += max;
7697 totalreserve_pages = reserve_pages;
7701 * setup_per_zone_lowmem_reserve - called whenever
7702 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7703 * has a correct pages reserved value, so an adequate number of
7704 * pages are left in the zone after a successful __alloc_pages().
7706 static void setup_per_zone_lowmem_reserve(void)
7708 struct pglist_data *pgdat;
7709 enum zone_type j, idx;
7711 for_each_online_pgdat(pgdat) {
7712 for (j = 0; j < MAX_NR_ZONES; j++) {
7713 struct zone *zone = pgdat->node_zones + j;
7714 unsigned long managed_pages = zone_managed_pages(zone);
7716 zone->lowmem_reserve[j] = 0;
7720 struct zone *lower_zone;
7723 lower_zone = pgdat->node_zones + idx;
7725 if (!sysctl_lowmem_reserve_ratio[idx] ||
7726 !zone_managed_pages(lower_zone)) {
7727 lower_zone->lowmem_reserve[j] = 0;
7730 lower_zone->lowmem_reserve[j] =
7731 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7733 managed_pages += zone_managed_pages(lower_zone);
7738 /* update totalreserve_pages */
7739 calculate_totalreserve_pages();
7742 static void __setup_per_zone_wmarks(void)
7744 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7745 unsigned long lowmem_pages = 0;
7747 unsigned long flags;
7749 /* Calculate total number of !ZONE_HIGHMEM pages */
7750 for_each_zone(zone) {
7751 if (!is_highmem(zone))
7752 lowmem_pages += zone_managed_pages(zone);
7755 for_each_zone(zone) {
7758 spin_lock_irqsave(&zone->lock, flags);
7759 tmp = (u64)pages_min * zone_managed_pages(zone);
7760 do_div(tmp, lowmem_pages);
7761 if (is_highmem(zone)) {
7763 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7764 * need highmem pages, so cap pages_min to a small
7767 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7768 * deltas control async page reclaim, and so should
7769 * not be capped for highmem.
7771 unsigned long min_pages;
7773 min_pages = zone_managed_pages(zone) / 1024;
7774 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7775 zone->_watermark[WMARK_MIN] = min_pages;
7778 * If it's a lowmem zone, reserve a number of pages
7779 * proportionate to the zone's size.
7781 zone->_watermark[WMARK_MIN] = tmp;
7785 * Set the kswapd watermarks distance according to the
7786 * scale factor in proportion to available memory, but
7787 * ensure a minimum size on small systems.
7789 tmp = max_t(u64, tmp >> 2,
7790 mult_frac(zone_managed_pages(zone),
7791 watermark_scale_factor, 10000));
7793 zone->watermark_boost = 0;
7794 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7795 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7797 spin_unlock_irqrestore(&zone->lock, flags);
7800 /* update totalreserve_pages */
7801 calculate_totalreserve_pages();
7805 * setup_per_zone_wmarks - called when min_free_kbytes changes
7806 * or when memory is hot-{added|removed}
7808 * Ensures that the watermark[min,low,high] values for each zone are set
7809 * correctly with respect to min_free_kbytes.
7811 void setup_per_zone_wmarks(void)
7813 static DEFINE_SPINLOCK(lock);
7816 __setup_per_zone_wmarks();
7821 * Initialise min_free_kbytes.
7823 * For small machines we want it small (128k min). For large machines
7824 * we want it large (256MB max). But it is not linear, because network
7825 * bandwidth does not increase linearly with machine size. We use
7827 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7828 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7844 int __meminit init_per_zone_wmark_min(void)
7846 unsigned long lowmem_kbytes;
7847 int new_min_free_kbytes;
7849 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7850 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7852 if (new_min_free_kbytes > user_min_free_kbytes) {
7853 min_free_kbytes = new_min_free_kbytes;
7854 if (min_free_kbytes < 128)
7855 min_free_kbytes = 128;
7856 if (min_free_kbytes > 262144)
7857 min_free_kbytes = 262144;
7859 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7860 new_min_free_kbytes, user_min_free_kbytes);
7862 setup_per_zone_wmarks();
7863 refresh_zone_stat_thresholds();
7864 setup_per_zone_lowmem_reserve();
7867 setup_min_unmapped_ratio();
7868 setup_min_slab_ratio();
7873 core_initcall(init_per_zone_wmark_min)
7876 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7877 * that we can call two helper functions whenever min_free_kbytes
7880 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7881 void *buffer, size_t *length, loff_t *ppos)
7885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7890 user_min_free_kbytes = min_free_kbytes;
7891 setup_per_zone_wmarks();
7896 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7897 void *buffer, size_t *length, loff_t *ppos)
7901 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7906 setup_per_zone_wmarks();
7912 static void setup_min_unmapped_ratio(void)
7917 for_each_online_pgdat(pgdat)
7918 pgdat->min_unmapped_pages = 0;
7921 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7922 sysctl_min_unmapped_ratio) / 100;
7926 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7927 void *buffer, size_t *length, loff_t *ppos)
7931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7935 setup_min_unmapped_ratio();
7940 static void setup_min_slab_ratio(void)
7945 for_each_online_pgdat(pgdat)
7946 pgdat->min_slab_pages = 0;
7949 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7950 sysctl_min_slab_ratio) / 100;
7953 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7954 void *buffer, size_t *length, loff_t *ppos)
7958 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7962 setup_min_slab_ratio();
7969 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7970 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7971 * whenever sysctl_lowmem_reserve_ratio changes.
7973 * The reserve ratio obviously has absolutely no relation with the
7974 * minimum watermarks. The lowmem reserve ratio can only make sense
7975 * if in function of the boot time zone sizes.
7977 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7978 void *buffer, size_t *length, loff_t *ppos)
7982 proc_dointvec_minmax(table, write, buffer, length, ppos);
7984 for (i = 0; i < MAX_NR_ZONES; i++) {
7985 if (sysctl_lowmem_reserve_ratio[i] < 1)
7986 sysctl_lowmem_reserve_ratio[i] = 0;
7989 setup_per_zone_lowmem_reserve();
7993 static void __zone_pcp_update(struct zone *zone)
7997 for_each_possible_cpu(cpu)
7998 pageset_set_high_and_batch(zone,
7999 per_cpu_ptr(zone->pageset, cpu));
8003 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8004 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8005 * pagelist can have before it gets flushed back to buddy allocator.
8007 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8008 void *buffer, size_t *length, loff_t *ppos)
8011 int old_percpu_pagelist_fraction;
8014 mutex_lock(&pcp_batch_high_lock);
8015 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8017 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8018 if (!write || ret < 0)
8021 /* Sanity checking to avoid pcp imbalance */
8022 if (percpu_pagelist_fraction &&
8023 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8024 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8030 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8033 for_each_populated_zone(zone)
8034 __zone_pcp_update(zone);
8036 mutex_unlock(&pcp_batch_high_lock);
8040 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8042 * Returns the number of pages that arch has reserved but
8043 * is not known to alloc_large_system_hash().
8045 static unsigned long __init arch_reserved_kernel_pages(void)
8052 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8053 * machines. As memory size is increased the scale is also increased but at
8054 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8055 * quadruples the scale is increased by one, which means the size of hash table
8056 * only doubles, instead of quadrupling as well.
8057 * Because 32-bit systems cannot have large physical memory, where this scaling
8058 * makes sense, it is disabled on such platforms.
8060 #if __BITS_PER_LONG > 32
8061 #define ADAPT_SCALE_BASE (64ul << 30)
8062 #define ADAPT_SCALE_SHIFT 2
8063 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8067 * allocate a large system hash table from bootmem
8068 * - it is assumed that the hash table must contain an exact power-of-2
8069 * quantity of entries
8070 * - limit is the number of hash buckets, not the total allocation size
8072 void *__init alloc_large_system_hash(const char *tablename,
8073 unsigned long bucketsize,
8074 unsigned long numentries,
8077 unsigned int *_hash_shift,
8078 unsigned int *_hash_mask,
8079 unsigned long low_limit,
8080 unsigned long high_limit)
8082 unsigned long long max = high_limit;
8083 unsigned long log2qty, size;
8088 /* allow the kernel cmdline to have a say */
8090 /* round applicable memory size up to nearest megabyte */
8091 numentries = nr_kernel_pages;
8092 numentries -= arch_reserved_kernel_pages();
8094 /* It isn't necessary when PAGE_SIZE >= 1MB */
8095 if (PAGE_SHIFT < 20)
8096 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8098 #if __BITS_PER_LONG > 32
8100 unsigned long adapt;
8102 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8103 adapt <<= ADAPT_SCALE_SHIFT)
8108 /* limit to 1 bucket per 2^scale bytes of low memory */
8109 if (scale > PAGE_SHIFT)
8110 numentries >>= (scale - PAGE_SHIFT);
8112 numentries <<= (PAGE_SHIFT - scale);
8114 /* Make sure we've got at least a 0-order allocation.. */
8115 if (unlikely(flags & HASH_SMALL)) {
8116 /* Makes no sense without HASH_EARLY */
8117 WARN_ON(!(flags & HASH_EARLY));
8118 if (!(numentries >> *_hash_shift)) {
8119 numentries = 1UL << *_hash_shift;
8120 BUG_ON(!numentries);
8122 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8123 numentries = PAGE_SIZE / bucketsize;
8125 numentries = roundup_pow_of_two(numentries);
8127 /* limit allocation size to 1/16 total memory by default */
8129 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8130 do_div(max, bucketsize);
8132 max = min(max, 0x80000000ULL);
8134 if (numentries < low_limit)
8135 numentries = low_limit;
8136 if (numentries > max)
8139 log2qty = ilog2(numentries);
8141 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8144 size = bucketsize << log2qty;
8145 if (flags & HASH_EARLY) {
8146 if (flags & HASH_ZERO)
8147 table = memblock_alloc(size, SMP_CACHE_BYTES);
8149 table = memblock_alloc_raw(size,
8151 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8152 table = __vmalloc(size, gfp_flags);
8156 * If bucketsize is not a power-of-two, we may free
8157 * some pages at the end of hash table which
8158 * alloc_pages_exact() automatically does
8160 table = alloc_pages_exact(size, gfp_flags);
8161 kmemleak_alloc(table, size, 1, gfp_flags);
8163 } while (!table && size > PAGE_SIZE && --log2qty);
8166 panic("Failed to allocate %s hash table\n", tablename);
8168 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8169 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8170 virt ? "vmalloc" : "linear");
8173 *_hash_shift = log2qty;
8175 *_hash_mask = (1 << log2qty) - 1;
8181 * This function checks whether pageblock includes unmovable pages or not.
8183 * PageLRU check without isolation or lru_lock could race so that
8184 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8185 * check without lock_page also may miss some movable non-lru pages at
8186 * race condition. So you can't expect this function should be exact.
8188 * Returns a page without holding a reference. If the caller wants to
8189 * dereference that page (e.g., dumping), it has to make sure that that it
8190 * cannot get removed (e.g., via memory unplug) concurrently.
8193 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8194 int migratetype, int flags)
8196 unsigned long iter = 0;
8197 unsigned long pfn = page_to_pfn(page);
8200 * TODO we could make this much more efficient by not checking every
8201 * page in the range if we know all of them are in MOVABLE_ZONE and
8202 * that the movable zone guarantees that pages are migratable but
8203 * the later is not the case right now unfortunatelly. E.g. movablecore
8204 * can still lead to having bootmem allocations in zone_movable.
8207 if (is_migrate_cma_page(page)) {
8209 * CMA allocations (alloc_contig_range) really need to mark
8210 * isolate CMA pageblocks even when they are not movable in fact
8211 * so consider them movable here.
8213 if (is_migrate_cma(migratetype))
8219 for (; iter < pageblock_nr_pages; iter++) {
8220 if (!pfn_valid_within(pfn + iter))
8223 page = pfn_to_page(pfn + iter);
8225 if (PageReserved(page))
8229 * If the zone is movable and we have ruled out all reserved
8230 * pages then it should be reasonably safe to assume the rest
8233 if (zone_idx(zone) == ZONE_MOVABLE)
8237 * Hugepages are not in LRU lists, but they're movable.
8238 * THPs are on the LRU, but need to be counted as #small pages.
8239 * We need not scan over tail pages because we don't
8240 * handle each tail page individually in migration.
8242 if (PageHuge(page) || PageTransCompound(page)) {
8243 struct page *head = compound_head(page);
8244 unsigned int skip_pages;
8246 if (PageHuge(page)) {
8247 if (!hugepage_migration_supported(page_hstate(head)))
8249 } else if (!PageLRU(head) && !__PageMovable(head)) {
8253 skip_pages = compound_nr(head) - (page - head);
8254 iter += skip_pages - 1;
8259 * We can't use page_count without pin a page
8260 * because another CPU can free compound page.
8261 * This check already skips compound tails of THP
8262 * because their page->_refcount is zero at all time.
8264 if (!page_ref_count(page)) {
8265 if (PageBuddy(page))
8266 iter += (1 << page_order(page)) - 1;
8271 * The HWPoisoned page may be not in buddy system, and
8272 * page_count() is not 0.
8274 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8278 * We treat all PageOffline() pages as movable when offlining
8279 * to give drivers a chance to decrement their reference count
8280 * in MEM_GOING_OFFLINE in order to indicate that these pages
8281 * can be offlined as there are no direct references anymore.
8282 * For actually unmovable PageOffline() where the driver does
8283 * not support this, we will fail later when trying to actually
8284 * move these pages that still have a reference count > 0.
8285 * (false negatives in this function only)
8287 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8290 if (__PageMovable(page) || PageLRU(page))
8294 * If there are RECLAIMABLE pages, we need to check
8295 * it. But now, memory offline itself doesn't call
8296 * shrink_node_slabs() and it still to be fixed.
8299 * If the page is not RAM, page_count()should be 0.
8300 * we don't need more check. This is an _used_ not-movable page.
8302 * The problematic thing here is PG_reserved pages. PG_reserved
8303 * is set to both of a memory hole page and a _used_ kernel
8311 #ifdef CONFIG_CONTIG_ALLOC
8312 static unsigned long pfn_max_align_down(unsigned long pfn)
8314 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8315 pageblock_nr_pages) - 1);
8318 static unsigned long pfn_max_align_up(unsigned long pfn)
8320 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8321 pageblock_nr_pages));
8324 /* [start, end) must belong to a single zone. */
8325 static int __alloc_contig_migrate_range(struct compact_control *cc,
8326 unsigned long start, unsigned long end)
8328 /* This function is based on compact_zone() from compaction.c. */
8329 unsigned int nr_reclaimed;
8330 unsigned long pfn = start;
8331 unsigned int tries = 0;
8336 while (pfn < end || !list_empty(&cc->migratepages)) {
8337 if (fatal_signal_pending(current)) {
8342 if (list_empty(&cc->migratepages)) {
8343 cc->nr_migratepages = 0;
8344 pfn = isolate_migratepages_range(cc, pfn, end);
8350 } else if (++tries == 5) {
8351 ret = ret < 0 ? ret : -EBUSY;
8355 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8357 cc->nr_migratepages -= nr_reclaimed;
8359 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8360 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8363 putback_movable_pages(&cc->migratepages);
8370 * alloc_contig_range() -- tries to allocate given range of pages
8371 * @start: start PFN to allocate
8372 * @end: one-past-the-last PFN to allocate
8373 * @migratetype: migratetype of the underlaying pageblocks (either
8374 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8375 * in range must have the same migratetype and it must
8376 * be either of the two.
8377 * @gfp_mask: GFP mask to use during compaction
8379 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8380 * aligned. The PFN range must belong to a single zone.
8382 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8383 * pageblocks in the range. Once isolated, the pageblocks should not
8384 * be modified by others.
8386 * Return: zero on success or negative error code. On success all
8387 * pages which PFN is in [start, end) are allocated for the caller and
8388 * need to be freed with free_contig_range().
8390 int alloc_contig_range(unsigned long start, unsigned long end,
8391 unsigned migratetype, gfp_t gfp_mask)
8393 unsigned long outer_start, outer_end;
8397 struct compact_control cc = {
8398 .nr_migratepages = 0,
8400 .zone = page_zone(pfn_to_page(start)),
8401 .mode = MIGRATE_SYNC,
8402 .ignore_skip_hint = true,
8403 .no_set_skip_hint = true,
8404 .gfp_mask = current_gfp_context(gfp_mask),
8405 .alloc_contig = true,
8407 INIT_LIST_HEAD(&cc.migratepages);
8410 * What we do here is we mark all pageblocks in range as
8411 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8412 * have different sizes, and due to the way page allocator
8413 * work, we align the range to biggest of the two pages so
8414 * that page allocator won't try to merge buddies from
8415 * different pageblocks and change MIGRATE_ISOLATE to some
8416 * other migration type.
8418 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8419 * migrate the pages from an unaligned range (ie. pages that
8420 * we are interested in). This will put all the pages in
8421 * range back to page allocator as MIGRATE_ISOLATE.
8423 * When this is done, we take the pages in range from page
8424 * allocator removing them from the buddy system. This way
8425 * page allocator will never consider using them.
8427 * This lets us mark the pageblocks back as
8428 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8429 * aligned range but not in the unaligned, original range are
8430 * put back to page allocator so that buddy can use them.
8433 ret = start_isolate_page_range(pfn_max_align_down(start),
8434 pfn_max_align_up(end), migratetype, 0);
8439 * In case of -EBUSY, we'd like to know which page causes problem.
8440 * So, just fall through. test_pages_isolated() has a tracepoint
8441 * which will report the busy page.
8443 * It is possible that busy pages could become available before
8444 * the call to test_pages_isolated, and the range will actually be
8445 * allocated. So, if we fall through be sure to clear ret so that
8446 * -EBUSY is not accidentally used or returned to caller.
8448 ret = __alloc_contig_migrate_range(&cc, start, end);
8449 if (ret && ret != -EBUSY)
8454 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8455 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8456 * more, all pages in [start, end) are free in page allocator.
8457 * What we are going to do is to allocate all pages from
8458 * [start, end) (that is remove them from page allocator).
8460 * The only problem is that pages at the beginning and at the
8461 * end of interesting range may be not aligned with pages that
8462 * page allocator holds, ie. they can be part of higher order
8463 * pages. Because of this, we reserve the bigger range and
8464 * once this is done free the pages we are not interested in.
8466 * We don't have to hold zone->lock here because the pages are
8467 * isolated thus they won't get removed from buddy.
8470 lru_add_drain_all();
8473 outer_start = start;
8474 while (!PageBuddy(pfn_to_page(outer_start))) {
8475 if (++order >= MAX_ORDER) {
8476 outer_start = start;
8479 outer_start &= ~0UL << order;
8482 if (outer_start != start) {
8483 order = page_order(pfn_to_page(outer_start));
8486 * outer_start page could be small order buddy page and
8487 * it doesn't include start page. Adjust outer_start
8488 * in this case to report failed page properly
8489 * on tracepoint in test_pages_isolated()
8491 if (outer_start + (1UL << order) <= start)
8492 outer_start = start;
8495 /* Make sure the range is really isolated. */
8496 if (test_pages_isolated(outer_start, end, 0)) {
8497 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8498 __func__, outer_start, end);
8503 /* Grab isolated pages from freelists. */
8504 outer_end = isolate_freepages_range(&cc, outer_start, end);
8510 /* Free head and tail (if any) */
8511 if (start != outer_start)
8512 free_contig_range(outer_start, start - outer_start);
8513 if (end != outer_end)
8514 free_contig_range(end, outer_end - end);
8517 undo_isolate_page_range(pfn_max_align_down(start),
8518 pfn_max_align_up(end), migratetype);
8521 EXPORT_SYMBOL(alloc_contig_range);
8523 static int __alloc_contig_pages(unsigned long start_pfn,
8524 unsigned long nr_pages, gfp_t gfp_mask)
8526 unsigned long end_pfn = start_pfn + nr_pages;
8528 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8532 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8533 unsigned long nr_pages)
8535 unsigned long i, end_pfn = start_pfn + nr_pages;
8538 for (i = start_pfn; i < end_pfn; i++) {
8539 page = pfn_to_online_page(i);
8543 if (page_zone(page) != z)
8546 if (PageReserved(page))
8549 if (page_count(page) > 0)
8558 static bool zone_spans_last_pfn(const struct zone *zone,
8559 unsigned long start_pfn, unsigned long nr_pages)
8561 unsigned long last_pfn = start_pfn + nr_pages - 1;
8563 return zone_spans_pfn(zone, last_pfn);
8567 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8568 * @nr_pages: Number of contiguous pages to allocate
8569 * @gfp_mask: GFP mask to limit search and used during compaction
8571 * @nodemask: Mask for other possible nodes
8573 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8574 * on an applicable zonelist to find a contiguous pfn range which can then be
8575 * tried for allocation with alloc_contig_range(). This routine is intended
8576 * for allocation requests which can not be fulfilled with the buddy allocator.
8578 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8579 * power of two then the alignment is guaranteed to be to the given nr_pages
8580 * (e.g. 1GB request would be aligned to 1GB).
8582 * Allocated pages can be freed with free_contig_range() or by manually calling
8583 * __free_page() on each allocated page.
8585 * Return: pointer to contiguous pages on success, or NULL if not successful.
8587 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8588 int nid, nodemask_t *nodemask)
8590 unsigned long ret, pfn, flags;
8591 struct zonelist *zonelist;
8595 zonelist = node_zonelist(nid, gfp_mask);
8596 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8597 gfp_zone(gfp_mask), nodemask) {
8598 spin_lock_irqsave(&zone->lock, flags);
8600 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8601 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8602 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8604 * We release the zone lock here because
8605 * alloc_contig_range() will also lock the zone
8606 * at some point. If there's an allocation
8607 * spinning on this lock, it may win the race
8608 * and cause alloc_contig_range() to fail...
8610 spin_unlock_irqrestore(&zone->lock, flags);
8611 ret = __alloc_contig_pages(pfn, nr_pages,
8614 return pfn_to_page(pfn);
8615 spin_lock_irqsave(&zone->lock, flags);
8619 spin_unlock_irqrestore(&zone->lock, flags);
8623 #endif /* CONFIG_CONTIG_ALLOC */
8625 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8627 unsigned int count = 0;
8629 for (; nr_pages--; pfn++) {
8630 struct page *page = pfn_to_page(pfn);
8632 count += page_count(page) != 1;
8635 WARN(count != 0, "%d pages are still in use!\n", count);
8637 EXPORT_SYMBOL(free_contig_range);
8640 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8641 * page high values need to be recalulated.
8643 void __meminit zone_pcp_update(struct zone *zone)
8645 mutex_lock(&pcp_batch_high_lock);
8646 __zone_pcp_update(zone);
8647 mutex_unlock(&pcp_batch_high_lock);
8650 void zone_pcp_reset(struct zone *zone)
8652 unsigned long flags;
8654 struct per_cpu_pageset *pset;
8656 /* avoid races with drain_pages() */
8657 local_irq_save(flags);
8658 if (zone->pageset != &boot_pageset) {
8659 for_each_online_cpu(cpu) {
8660 pset = per_cpu_ptr(zone->pageset, cpu);
8661 drain_zonestat(zone, pset);
8663 free_percpu(zone->pageset);
8664 zone->pageset = &boot_pageset;
8666 local_irq_restore(flags);
8669 #ifdef CONFIG_MEMORY_HOTREMOVE
8671 * All pages in the range must be in a single zone and isolated
8672 * before calling this.
8675 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8681 unsigned long flags;
8682 unsigned long offlined_pages = 0;
8684 /* find the first valid pfn */
8685 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8689 return offlined_pages;
8691 offline_mem_sections(pfn, end_pfn);
8692 zone = page_zone(pfn_to_page(pfn));
8693 spin_lock_irqsave(&zone->lock, flags);
8695 while (pfn < end_pfn) {
8696 if (!pfn_valid(pfn)) {
8700 page = pfn_to_page(pfn);
8702 * The HWPoisoned page may be not in buddy system, and
8703 * page_count() is not 0.
8705 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8711 * At this point all remaining PageOffline() pages have a
8712 * reference count of 0 and can simply be skipped.
8714 if (PageOffline(page)) {
8715 BUG_ON(page_count(page));
8716 BUG_ON(PageBuddy(page));
8722 BUG_ON(page_count(page));
8723 BUG_ON(!PageBuddy(page));
8724 order = page_order(page);
8725 offlined_pages += 1 << order;
8726 del_page_from_free_list(page, zone, order);
8727 pfn += (1 << order);
8729 spin_unlock_irqrestore(&zone->lock, flags);
8731 return offlined_pages;
8735 bool is_free_buddy_page(struct page *page)
8737 struct zone *zone = page_zone(page);
8738 unsigned long pfn = page_to_pfn(page);
8739 unsigned long flags;
8742 spin_lock_irqsave(&zone->lock, flags);
8743 for (order = 0; order < MAX_ORDER; order++) {
8744 struct page *page_head = page - (pfn & ((1 << order) - 1));
8746 if (PageBuddy(page_head) && page_order(page_head) >= order)
8749 spin_unlock_irqrestore(&zone->lock, flags);
8751 return order < MAX_ORDER;
8754 #ifdef CONFIG_MEMORY_FAILURE
8756 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8757 * test is performed under the zone lock to prevent a race against page
8760 bool set_hwpoison_free_buddy_page(struct page *page)
8762 struct zone *zone = page_zone(page);
8763 unsigned long pfn = page_to_pfn(page);
8764 unsigned long flags;
8766 bool hwpoisoned = false;
8768 spin_lock_irqsave(&zone->lock, flags);
8769 for (order = 0; order < MAX_ORDER; order++) {
8770 struct page *page_head = page - (pfn & ((1 << order) - 1));
8772 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8773 if (!TestSetPageHWPoison(page))
8778 spin_unlock_irqrestore(&zone->lock, flags);