1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
17 #include <linux/init.h>
18 #include <linux/moduleparam.h>
19 #include <linux/netfilter.h>
20 #include <linux/rtnetlink.h>
21 #include <net/rtnetlink.h>
22 #include <linux/u64_stats_sync.h>
23 #include <linux/hashtable.h>
24 #include <linux/spinlock_types.h>
26 #include <linux/inetdevice.h>
29 #include <net/ip_fib.h>
30 #include <net/ip6_fib.h>
31 #include <net/ip6_route.h>
32 #include <net/route.h>
33 #include <net/addrconf.h>
34 #include <net/l3mdev.h>
35 #include <net/fib_rules.h>
36 #include <net/netns/generic.h>
38 #define DRV_NAME "vrf"
39 #define DRV_VERSION "1.1"
41 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
44 #define HASH_INITVAL ((u32)0xcafef00d)
47 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 * count how many distinct tables do not comply with the strict mode
53 * shared_tables value must be 0 in order to enable the strict mode.
55 * example of the evolution of shared_tables:
57 * add vrf0 --> table 100 shared_tables = 0 | t0
58 * add vrf1 --> table 101 shared_tables = 0 | t1
59 * add vrf2 --> table 100 shared_tables = 1 | t2
60 * add vrf3 --> table 100 shared_tables = 1 | t3
61 * add vrf4 --> table 101 shared_tables = 2 v t4
63 * shared_tables is a "step function" (or "staircase function")
64 * and it is increased by one when the second vrf is associated to a
67 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 * at t3, another dev (vrf3) is bound to the same table 100 but the
70 * value of shared_tables is still 1.
71 * This means that no matter how many new vrfs will register on the
72 * table 100, the shared_tables will not increase (considering only
75 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 * Looking at the value of shared_tables we can immediately know if
78 * the strict_mode can or cannot be enforced. Indeed, strict_mode
79 * can be enforced iff shared_tables = 0.
81 * Conversely, shared_tables is decreased when a vrf is de-associated
82 * from a table with exactly two associated vrfs.
90 struct hlist_node hnode;
91 struct list_head vrf_list; /* VRFs registered to this table */
98 static unsigned int vrf_net_id;
100 /* per netns vrf data */
102 /* protected by rtnl lock */
106 struct ctl_table_header *ctl_hdr;
110 struct rtable __rcu *rth;
111 struct rt6_info __rcu *rt6;
112 #if IS_ENABLED(CONFIG_IPV6)
113 struct fib6_table *fib6_table;
117 struct list_head me_list; /* entry in vrf_map_elem */
128 struct u64_stats_sync syncp;
131 static void vrf_rx_stats(struct net_device *dev, int len)
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_bytes += len;
138 u64_stats_update_end(&dstats->syncp);
141 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143 vrf_dev->stats.tx_errors++;
147 static void vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
157 dstats = per_cpu_ptr(dev->dstats, i);
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
174 static struct vrf_map *netns_vrf_map(struct net *net)
176 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178 return &nn_vrf->vmap;
181 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183 return netns_vrf_map(dev_net(dev));
186 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188 struct list_head *me_head = &me->vrf_list;
191 if (list_empty(me_head))
194 vrf = list_first_entry(me_head, struct net_vrf, me_list);
199 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201 struct vrf_map_elem *me;
203 me = kmalloc(sizeof(*me), flags);
210 static void vrf_map_elem_free(struct vrf_map_elem *me)
215 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
216 int ifindex, int users)
218 me->table_id = table_id;
219 me->ifindex = ifindex;
221 INIT_LIST_HEAD(&me->vrf_list);
224 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
227 struct vrf_map_elem *me;
230 key = jhash_1word(table_id, HASH_INITVAL);
231 hash_for_each_possible(vmap->ht, me, hnode, key) {
232 if (me->table_id == table_id)
239 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241 u32 table_id = me->table_id;
244 key = jhash_1word(table_id, HASH_INITVAL);
245 hash_add(vmap->ht, &me->hnode, key);
248 static void vrf_map_del_elem(struct vrf_map_elem *me)
250 hash_del(&me->hnode);
253 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255 spin_lock(&vmap->vmap_lock);
258 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260 spin_unlock(&vmap->vmap_lock);
263 /* called with rtnl lock held */
265 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
268 struct net_vrf *vrf = netdev_priv(dev);
269 struct vrf_map_elem *new_me, *me;
270 u32 table_id = vrf->tb_id;
271 bool free_new_me = false;
275 /* we pre-allocate elements used in the spin-locked section (so that we
276 * keep the spinlock as short as possibile).
278 new_me = vrf_map_elem_alloc(GFP_KERNEL);
282 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
286 me = vrf_map_lookup_elem(vmap, table_id);
289 vrf_map_add_elem(vmap, me);
293 /* we already have an entry in the vrf_map, so it means there is (at
294 * least) a vrf registered on the specific table.
297 if (vmap->strict_mode) {
298 /* vrfs cannot share the same table */
299 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
307 ++vmap->shared_tables;
309 list_add(&vrf->me_list, &me->vrf_list);
314 vrf_map_unlock(vmap);
316 /* clean-up, if needed */
318 vrf_map_elem_free(new_me);
323 /* called with rtnl lock held */
324 static void vrf_map_unregister_dev(struct net_device *dev)
326 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
327 struct net_vrf *vrf = netdev_priv(dev);
328 u32 table_id = vrf->tb_id;
329 struct vrf_map_elem *me;
334 me = vrf_map_lookup_elem(vmap, table_id);
338 list_del(&vrf->me_list);
342 --vmap->shared_tables;
343 } else if (users == 0) {
344 vrf_map_del_elem(me);
346 /* no one will refer to this element anymore */
347 vrf_map_elem_free(me);
351 vrf_map_unlock(vmap);
354 /* return the vrf device index associated with the table_id */
355 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357 struct vrf_map *vmap = netns_vrf_map(net);
358 struct vrf_map_elem *me;
363 if (!vmap->strict_mode) {
368 me = vrf_map_lookup_elem(vmap, table_id);
374 ifindex = vrf_map_elem_get_vrf_ifindex(me);
377 vrf_map_unlock(vmap);
382 /* by default VRF devices do not have a qdisc and are expected
383 * to be created with only a single queue.
385 static bool qdisc_tx_is_default(const struct net_device *dev)
387 struct netdev_queue *txq;
390 if (dev->num_tx_queues > 1)
393 txq = netdev_get_tx_queue(dev, 0);
394 qdisc = rcu_access_pointer(txq->qdisc);
396 return !qdisc->enqueue;
399 /* Local traffic destined to local address. Reinsert the packet to rx
400 * path, similar to loopback handling.
402 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
403 struct dst_entry *dst)
409 skb_dst_set(skb, dst);
411 /* set pkt_type to avoid skb hitting packet taps twice -
412 * once on Tx and again in Rx processing
414 skb->pkt_type = PACKET_LOOPBACK;
416 skb->protocol = eth_type_trans(skb, dev);
418 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
419 vrf_rx_stats(dev, len);
421 this_cpu_inc(dev->dstats->rx_drps);
426 #if IS_ENABLED(CONFIG_IPV6)
427 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
432 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
433 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435 if (likely(err == 1))
436 err = dst_output(net, sk, skb);
441 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
442 struct net_device *dev)
444 const struct ipv6hdr *iph;
445 struct net *net = dev_net(skb->dev);
447 int ret = NET_XMIT_DROP;
448 struct dst_entry *dst;
449 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
456 memset(&fl6, 0, sizeof(fl6));
457 /* needed to match OIF rule */
458 fl6.flowi6_oif = dev->ifindex;
459 fl6.flowi6_iif = LOOPBACK_IFINDEX;
460 fl6.daddr = iph->daddr;
461 fl6.saddr = iph->saddr;
462 fl6.flowlabel = ip6_flowinfo(iph);
463 fl6.flowi6_mark = skb->mark;
464 fl6.flowi6_proto = iph->nexthdr;
465 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
468 if (IS_ERR(dst) || dst == dst_null)
473 /* if dst.dev is loopback or the VRF device again this is locally
474 * originated traffic destined to a local address. Short circuit
478 return vrf_local_xmit(skb, dev, dst);
480 skb_dst_set(skb, dst);
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
485 ret = vrf_ip6_local_out(net, skb->sk, skb);
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
489 ret = NET_XMIT_SUCCESS;
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
523 int ret = NET_XMIT_DROP;
525 struct net *net = dev_net(vrf_dev);
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
543 rt = ip_route_output_flow(net, &fl4, NULL);
549 /* if dst.dev is loopback or the VRF device again this is locally
550 * originated traffic destined to a local address. Short circuit
553 if (rt->dst.dev == vrf_dev)
554 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
556 skb_dst_set(skb, &rt->dst);
558 /* strip the ethernet header added for pass through VRF device */
559 __skb_pull(skb, skb_network_offset(skb));
562 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
566 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
567 if (unlikely(net_xmit_eval(ret)))
568 vrf_dev->stats.tx_errors++;
570 ret = NET_XMIT_SUCCESS;
575 vrf_tx_error(vrf_dev, skb);
579 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
581 switch (skb->protocol) {
582 case htons(ETH_P_IP):
583 return vrf_process_v4_outbound(skb, dev);
584 case htons(ETH_P_IPV6):
585 return vrf_process_v6_outbound(skb, dev);
587 vrf_tx_error(dev, skb);
588 return NET_XMIT_DROP;
592 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
595 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
597 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
598 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
600 u64_stats_update_begin(&dstats->syncp);
602 dstats->tx_bytes += len;
603 u64_stats_update_end(&dstats->syncp);
605 this_cpu_inc(dev->dstats->tx_drps);
611 static void vrf_finish_direct(struct sk_buff *skb)
613 struct net_device *vrf_dev = skb->dev;
615 if (!list_empty(&vrf_dev->ptype_all) &&
616 likely(skb_headroom(skb) >= ETH_HLEN)) {
617 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
619 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
620 eth_zero_addr(eth->h_dest);
621 eth->h_proto = skb->protocol;
624 dev_queue_xmit_nit(skb, vrf_dev);
625 rcu_read_unlock_bh();
627 skb_pull(skb, ETH_HLEN);
630 /* reset skb device */
634 #if IS_ENABLED(CONFIG_IPV6)
635 /* modelled after ip6_finish_output2 */
636 static int vrf_finish_output6(struct net *net, struct sock *sk,
639 struct dst_entry *dst = skb_dst(skb);
640 struct net_device *dev = dst->dev;
641 const struct in6_addr *nexthop;
642 struct neighbour *neigh;
647 skb->protocol = htons(ETH_P_IPV6);
651 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
652 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
653 if (unlikely(!neigh))
654 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
655 if (!IS_ERR(neigh)) {
656 sock_confirm_neigh(skb, neigh);
657 ret = neigh_output(neigh, skb, false);
658 rcu_read_unlock_bh();
661 rcu_read_unlock_bh();
663 IP6_INC_STATS(dev_net(dst->dev),
664 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
669 /* modelled after ip6_output */
670 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
672 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
673 net, sk, skb, NULL, skb_dst(skb)->dev,
675 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
678 /* set dst on skb to send packet to us via dev_xmit path. Allows
679 * packet to go through device based features such as qdisc, netfilter
680 * hooks and packet sockets with skb->dev set to vrf device.
682 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
685 struct net_vrf *vrf = netdev_priv(vrf_dev);
686 struct dst_entry *dst = NULL;
687 struct rt6_info *rt6;
691 rt6 = rcu_dereference(vrf->rt6);
699 if (unlikely(!dst)) {
700 vrf_tx_error(vrf_dev, skb);
705 skb_dst_set(skb, dst);
710 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
713 vrf_finish_direct(skb);
715 return vrf_ip6_local_out(net, sk, skb);
718 static int vrf_output6_direct(struct net *net, struct sock *sk,
723 skb->protocol = htons(ETH_P_IPV6);
725 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
726 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
727 NULL, skb->dev, vrf_output6_direct_finish);
729 if (likely(err == 1))
730 vrf_finish_direct(skb);
735 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
740 err = vrf_output6_direct(net, sk, skb);
741 if (likely(err == 1))
742 err = vrf_ip6_local_out(net, sk, skb);
747 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
751 struct net *net = dev_net(vrf_dev);
756 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
757 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
759 if (likely(err == 1))
760 err = vrf_output6_direct(net, sk, skb);
762 if (likely(err == 1))
768 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
772 /* don't divert link scope packets */
773 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
776 if (qdisc_tx_is_default(vrf_dev) ||
777 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
778 return vrf_ip6_out_direct(vrf_dev, sk, skb);
780 return vrf_ip6_out_redirect(vrf_dev, skb);
784 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
786 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
787 struct net *net = dev_net(dev);
788 struct dst_entry *dst;
790 RCU_INIT_POINTER(vrf->rt6, NULL);
793 /* move dev in dst's to loopback so this VRF device can be deleted
794 * - based on dst_ifdown
799 dst->dev = net->loopback_dev;
805 static int vrf_rt6_create(struct net_device *dev)
807 int flags = DST_NOPOLICY | DST_NOXFRM;
808 struct net_vrf *vrf = netdev_priv(dev);
809 struct net *net = dev_net(dev);
810 struct rt6_info *rt6;
813 /* IPv6 can be CONFIG enabled and then disabled runtime */
814 if (!ipv6_mod_enabled())
817 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
818 if (!vrf->fib6_table)
821 /* create a dst for routing packets out a VRF device */
822 rt6 = ip6_dst_alloc(net, dev, flags);
826 rt6->dst.output = vrf_output6;
828 rcu_assign_pointer(vrf->rt6, rt6);
835 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
842 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
846 static int vrf_rt6_create(struct net_device *dev)
852 /* modelled after ip_finish_output2 */
853 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
855 struct dst_entry *dst = skb_dst(skb);
856 struct rtable *rt = (struct rtable *)dst;
857 struct net_device *dev = dst->dev;
858 unsigned int hh_len = LL_RESERVED_SPACE(dev);
859 struct neighbour *neigh;
860 bool is_v6gw = false;
865 /* Be paranoid, rather than too clever. */
866 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
867 struct sk_buff *skb2;
869 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
875 skb_set_owner_w(skb2, skb->sk);
883 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
884 if (!IS_ERR(neigh)) {
885 sock_confirm_neigh(skb, neigh);
886 /* if crossing protocols, can not use the cached header */
887 ret = neigh_output(neigh, skb, is_v6gw);
888 rcu_read_unlock_bh();
892 rcu_read_unlock_bh();
894 vrf_tx_error(skb->dev, skb);
898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
900 struct net_device *dev = skb_dst(skb)->dev;
902 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
905 skb->protocol = htons(ETH_P_IP);
907 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
908 net, sk, skb, NULL, dev,
910 !(IPCB(skb)->flags & IPSKB_REROUTED));
913 /* set dst on skb to send packet to us via dev_xmit path. Allows
914 * packet to go through device based features such as qdisc, netfilter
915 * hooks and packet sockets with skb->dev set to vrf device.
917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
920 struct net_vrf *vrf = netdev_priv(vrf_dev);
921 struct dst_entry *dst = NULL;
926 rth = rcu_dereference(vrf->rth);
934 if (unlikely(!dst)) {
935 vrf_tx_error(vrf_dev, skb);
940 skb_dst_set(skb, dst);
945 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
948 vrf_finish_direct(skb);
950 return vrf_ip_local_out(net, sk, skb);
953 static int vrf_output_direct(struct net *net, struct sock *sk,
958 skb->protocol = htons(ETH_P_IP);
960 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
961 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
962 NULL, skb->dev, vrf_output_direct_finish);
964 if (likely(err == 1))
965 vrf_finish_direct(skb);
970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
975 err = vrf_output_direct(net, sk, skb);
976 if (likely(err == 1))
977 err = vrf_ip_local_out(net, sk, skb);
982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
986 struct net *net = dev_net(vrf_dev);
991 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
992 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
994 if (likely(err == 1))
995 err = vrf_output_direct(net, sk, skb);
997 if (likely(err == 1))
1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1005 struct sk_buff *skb)
1007 /* don't divert multicast or local broadcast */
1008 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1012 if (qdisc_tx_is_default(vrf_dev) ||
1013 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1014 return vrf_ip_out_direct(vrf_dev, sk, skb);
1016 return vrf_ip_out_redirect(vrf_dev, skb);
1019 /* called with rcu lock held */
1020 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1022 struct sk_buff *skb,
1027 return vrf_ip_out(vrf_dev, sk, skb);
1029 return vrf_ip6_out(vrf_dev, sk, skb);
1036 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1038 struct rtable *rth = rtnl_dereference(vrf->rth);
1039 struct net *net = dev_net(dev);
1040 struct dst_entry *dst;
1042 RCU_INIT_POINTER(vrf->rth, NULL);
1045 /* move dev in dst's to loopback so this VRF device can be deleted
1046 * - based on dst_ifdown
1051 dst->dev = net->loopback_dev;
1057 static int vrf_rtable_create(struct net_device *dev)
1059 struct net_vrf *vrf = netdev_priv(dev);
1062 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065 /* create a dst for routing packets out through a VRF device */
1066 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1070 rth->dst.output = vrf_output;
1072 rcu_assign_pointer(vrf->rth, rth);
1077 /**************************** device handling ********************/
1079 /* cycle interface to flush neighbor cache and move routes across tables */
1080 static void cycle_netdev(struct net_device *dev,
1081 struct netlink_ext_ack *extack)
1083 unsigned int flags = dev->flags;
1086 if (!netif_running(dev))
1089 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1091 ret = dev_change_flags(dev, flags, extack);
1095 "Failed to cycle device %s; route tables might be wrong!\n",
1100 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1101 struct netlink_ext_ack *extack)
1105 /* do not allow loopback device to be enslaved to a VRF.
1106 * The vrf device acts as the loopback for the vrf.
1108 if (port_dev == dev_net(dev)->loopback_dev) {
1109 NL_SET_ERR_MSG(extack,
1110 "Can not enslave loopback device to a VRF");
1114 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1115 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1119 cycle_netdev(port_dev, extack);
1124 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1128 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1129 struct netlink_ext_ack *extack)
1131 if (netif_is_l3_master(port_dev)) {
1132 NL_SET_ERR_MSG(extack,
1133 "Can not enslave an L3 master device to a VRF");
1137 if (netif_is_l3_slave(port_dev))
1140 return do_vrf_add_slave(dev, port_dev, extack);
1143 /* inverse of do_vrf_add_slave */
1144 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1146 netdev_upper_dev_unlink(port_dev, dev);
1147 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1149 cycle_netdev(port_dev, NULL);
1154 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1156 return do_vrf_del_slave(dev, port_dev);
1159 static void vrf_dev_uninit(struct net_device *dev)
1161 struct net_vrf *vrf = netdev_priv(dev);
1163 vrf_rtable_release(dev, vrf);
1164 vrf_rt6_release(dev, vrf);
1166 free_percpu(dev->dstats);
1170 static int vrf_dev_init(struct net_device *dev)
1172 struct net_vrf *vrf = netdev_priv(dev);
1174 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1178 /* create the default dst which points back to us */
1179 if (vrf_rtable_create(dev) != 0)
1182 if (vrf_rt6_create(dev) != 0)
1185 dev->flags = IFF_MASTER | IFF_NOARP;
1187 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1188 dev->mtu = 64 * 1024;
1190 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1191 dev->operstate = IF_OPER_UP;
1192 netdev_lockdep_set_classes(dev);
1196 vrf_rtable_release(dev, vrf);
1198 free_percpu(dev->dstats);
1204 static const struct net_device_ops vrf_netdev_ops = {
1205 .ndo_init = vrf_dev_init,
1206 .ndo_uninit = vrf_dev_uninit,
1207 .ndo_start_xmit = vrf_xmit,
1208 .ndo_set_mac_address = eth_mac_addr,
1209 .ndo_get_stats64 = vrf_get_stats64,
1210 .ndo_add_slave = vrf_add_slave,
1211 .ndo_del_slave = vrf_del_slave,
1214 static u32 vrf_fib_table(const struct net_device *dev)
1216 struct net_vrf *vrf = netdev_priv(dev);
1221 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1227 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1228 struct sk_buff *skb,
1229 struct net_device *dev)
1231 struct net *net = dev_net(dev);
1233 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1234 skb = NULL; /* kfree_skb(skb) handled by nf code */
1239 #if IS_ENABLED(CONFIG_IPV6)
1240 /* neighbor handling is done with actual device; do not want
1241 * to flip skb->dev for those ndisc packets. This really fails
1242 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1245 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1247 const struct ipv6hdr *iph = ipv6_hdr(skb);
1250 if (iph->nexthdr == NEXTHDR_ICMP) {
1251 const struct icmp6hdr *icmph;
1252 struct icmp6hdr _icmph;
1254 icmph = skb_header_pointer(skb, sizeof(*iph),
1255 sizeof(_icmph), &_icmph);
1259 switch (icmph->icmp6_type) {
1260 case NDISC_ROUTER_SOLICITATION:
1261 case NDISC_ROUTER_ADVERTISEMENT:
1262 case NDISC_NEIGHBOUR_SOLICITATION:
1263 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1264 case NDISC_REDIRECT:
1274 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1275 const struct net_device *dev,
1278 const struct sk_buff *skb,
1281 struct net_vrf *vrf = netdev_priv(dev);
1283 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1286 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1289 const struct ipv6hdr *iph = ipv6_hdr(skb);
1290 struct flowi6 fl6 = {
1291 .flowi6_iif = ifindex,
1292 .flowi6_mark = skb->mark,
1293 .flowi6_proto = iph->nexthdr,
1294 .daddr = iph->daddr,
1295 .saddr = iph->saddr,
1296 .flowlabel = ip6_flowinfo(iph),
1298 struct net *net = dev_net(vrf_dev);
1299 struct rt6_info *rt6;
1301 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1302 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1306 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1309 skb_dst_set(skb, &rt6->dst);
1312 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1313 struct sk_buff *skb)
1315 int orig_iif = skb->skb_iif;
1316 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1317 bool is_ndisc = ipv6_ndisc_frame(skb);
1319 /* loopback, multicast & non-ND link-local traffic; do not push through
1320 * packet taps again. Reset pkt_type for upper layers to process skb
1322 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1324 skb->skb_iif = vrf_dev->ifindex;
1325 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1326 if (skb->pkt_type == PACKET_LOOPBACK)
1327 skb->pkt_type = PACKET_HOST;
1331 /* if packet is NDISC then keep the ingress interface */
1333 vrf_rx_stats(vrf_dev, skb->len);
1335 skb->skb_iif = vrf_dev->ifindex;
1337 if (!list_empty(&vrf_dev->ptype_all)) {
1338 skb_push(skb, skb->mac_len);
1339 dev_queue_xmit_nit(skb, vrf_dev);
1340 skb_pull(skb, skb->mac_len);
1343 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1347 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1349 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1355 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1356 struct sk_buff *skb)
1362 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1363 struct sk_buff *skb)
1366 skb->skb_iif = vrf_dev->ifindex;
1367 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1369 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1372 /* loopback traffic; do not push through packet taps again.
1373 * Reset pkt_type for upper layers to process skb
1375 if (skb->pkt_type == PACKET_LOOPBACK) {
1376 skb->pkt_type = PACKET_HOST;
1380 vrf_rx_stats(vrf_dev, skb->len);
1382 if (!list_empty(&vrf_dev->ptype_all)) {
1383 skb_push(skb, skb->mac_len);
1384 dev_queue_xmit_nit(skb, vrf_dev);
1385 skb_pull(skb, skb->mac_len);
1388 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1393 /* called with rcu lock held */
1394 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1395 struct sk_buff *skb,
1400 return vrf_ip_rcv(vrf_dev, skb);
1402 return vrf_ip6_rcv(vrf_dev, skb);
1408 #if IS_ENABLED(CONFIG_IPV6)
1409 /* send to link-local or multicast address via interface enslaved to
1410 * VRF device. Force lookup to VRF table without changing flow struct
1411 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1412 * is taken on the dst by this function.
1414 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1417 struct net *net = dev_net(dev);
1418 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1419 struct dst_entry *dst = NULL;
1420 struct rt6_info *rt;
1422 /* VRF device does not have a link-local address and
1423 * sending packets to link-local or mcast addresses over
1424 * a VRF device does not make sense
1426 if (fl6->flowi6_oif == dev->ifindex) {
1427 dst = &net->ipv6.ip6_null_entry->dst;
1431 if (!ipv6_addr_any(&fl6->saddr))
1432 flags |= RT6_LOOKUP_F_HAS_SADDR;
1434 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1442 static const struct l3mdev_ops vrf_l3mdev_ops = {
1443 .l3mdev_fib_table = vrf_fib_table,
1444 .l3mdev_l3_rcv = vrf_l3_rcv,
1445 .l3mdev_l3_out = vrf_l3_out,
1446 #if IS_ENABLED(CONFIG_IPV6)
1447 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1451 static void vrf_get_drvinfo(struct net_device *dev,
1452 struct ethtool_drvinfo *info)
1454 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1455 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1458 static const struct ethtool_ops vrf_ethtool_ops = {
1459 .get_drvinfo = vrf_get_drvinfo,
1462 static inline size_t vrf_fib_rule_nl_size(void)
1466 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1467 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1468 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1469 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1474 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1476 struct fib_rule_hdr *frh;
1477 struct nlmsghdr *nlh;
1478 struct sk_buff *skb;
1481 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1482 !ipv6_mod_enabled())
1485 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1489 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1491 goto nla_put_failure;
1493 /* rule only needs to appear once */
1494 nlh->nlmsg_flags |= NLM_F_EXCL;
1496 frh = nlmsg_data(nlh);
1497 memset(frh, 0, sizeof(*frh));
1498 frh->family = family;
1499 frh->action = FR_ACT_TO_TBL;
1501 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1502 goto nla_put_failure;
1504 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1505 goto nla_put_failure;
1507 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1508 goto nla_put_failure;
1510 nlmsg_end(skb, nlh);
1512 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1513 skb->sk = dev_net(dev)->rtnl;
1515 err = fib_nl_newrule(skb, nlh, NULL);
1519 err = fib_nl_delrule(skb, nlh, NULL);
1533 static int vrf_add_fib_rules(const struct net_device *dev)
1537 err = vrf_fib_rule(dev, AF_INET, true);
1541 err = vrf_fib_rule(dev, AF_INET6, true);
1545 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1546 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1551 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1552 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1559 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1561 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1564 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1566 vrf_fib_rule(dev, AF_INET6, false);
1570 vrf_fib_rule(dev, AF_INET, false);
1573 netdev_err(dev, "Failed to add FIB rules.\n");
1577 static void vrf_setup(struct net_device *dev)
1581 /* Initialize the device structure. */
1582 dev->netdev_ops = &vrf_netdev_ops;
1583 dev->l3mdev_ops = &vrf_l3mdev_ops;
1584 dev->ethtool_ops = &vrf_ethtool_ops;
1585 dev->needs_free_netdev = true;
1587 /* Fill in device structure with ethernet-generic values. */
1588 eth_hw_addr_random(dev);
1590 /* don't acquire vrf device's netif_tx_lock when transmitting */
1591 dev->features |= NETIF_F_LLTX;
1593 /* don't allow vrf devices to change network namespaces. */
1594 dev->features |= NETIF_F_NETNS_LOCAL;
1596 /* does not make sense for a VLAN to be added to a vrf device */
1597 dev->features |= NETIF_F_VLAN_CHALLENGED;
1599 /* enable offload features */
1600 dev->features |= NETIF_F_GSO_SOFTWARE;
1601 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1602 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1604 dev->hw_features = dev->features;
1605 dev->hw_enc_features = dev->features;
1607 /* default to no qdisc; user can add if desired */
1608 dev->priv_flags |= IFF_NO_QUEUE;
1609 dev->priv_flags |= IFF_NO_RX_HANDLER;
1610 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1612 /* VRF devices do not care about MTU, but if the MTU is set
1613 * too low then the ipv4 and ipv6 protocols are disabled
1614 * which breaks networking.
1616 dev->min_mtu = IPV6_MIN_MTU;
1617 dev->max_mtu = ETH_MAX_MTU;
1620 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1621 struct netlink_ext_ack *extack)
1623 if (tb[IFLA_ADDRESS]) {
1624 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1625 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1628 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1629 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1630 return -EADDRNOTAVAIL;
1636 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1638 struct net_device *port_dev;
1639 struct list_head *iter;
1641 netdev_for_each_lower_dev(dev, port_dev, iter)
1642 vrf_del_slave(dev, port_dev);
1644 vrf_map_unregister_dev(dev);
1646 unregister_netdevice_queue(dev, head);
1649 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1650 struct nlattr *tb[], struct nlattr *data[],
1651 struct netlink_ext_ack *extack)
1653 struct net_vrf *vrf = netdev_priv(dev);
1654 struct netns_vrf *nn_vrf;
1655 bool *add_fib_rules;
1659 if (!data || !data[IFLA_VRF_TABLE]) {
1660 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1664 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1665 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1666 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1667 "Invalid VRF table id");
1671 dev->priv_flags |= IFF_L3MDEV_MASTER;
1673 err = register_netdevice(dev);
1677 /* mapping between table_id and vrf;
1678 * note: such binding could not be done in the dev init function
1679 * because dev->ifindex id is not available yet.
1681 vrf->ifindex = dev->ifindex;
1683 err = vrf_map_register_dev(dev, extack);
1685 unregister_netdevice(dev);
1690 nn_vrf = net_generic(net, vrf_net_id);
1692 add_fib_rules = &nn_vrf->add_fib_rules;
1693 if (*add_fib_rules) {
1694 err = vrf_add_fib_rules(dev);
1696 vrf_map_unregister_dev(dev);
1697 unregister_netdevice(dev);
1700 *add_fib_rules = false;
1707 static size_t vrf_nl_getsize(const struct net_device *dev)
1709 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1712 static int vrf_fillinfo(struct sk_buff *skb,
1713 const struct net_device *dev)
1715 struct net_vrf *vrf = netdev_priv(dev);
1717 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1720 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1721 const struct net_device *slave_dev)
1723 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1726 static int vrf_fill_slave_info(struct sk_buff *skb,
1727 const struct net_device *vrf_dev,
1728 const struct net_device *slave_dev)
1730 struct net_vrf *vrf = netdev_priv(vrf_dev);
1732 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1738 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1739 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1742 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1744 .priv_size = sizeof(struct net_vrf),
1746 .get_size = vrf_nl_getsize,
1747 .policy = vrf_nl_policy,
1748 .validate = vrf_validate,
1749 .fill_info = vrf_fillinfo,
1751 .get_slave_size = vrf_get_slave_size,
1752 .fill_slave_info = vrf_fill_slave_info,
1754 .newlink = vrf_newlink,
1755 .dellink = vrf_dellink,
1757 .maxtype = IFLA_VRF_MAX,
1760 static int vrf_device_event(struct notifier_block *unused,
1761 unsigned long event, void *ptr)
1763 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1765 /* only care about unregister events to drop slave references */
1766 if (event == NETDEV_UNREGISTER) {
1767 struct net_device *vrf_dev;
1769 if (!netif_is_l3_slave(dev))
1772 vrf_dev = netdev_master_upper_dev_get(dev);
1773 vrf_del_slave(vrf_dev, dev);
1779 static struct notifier_block vrf_notifier_block __read_mostly = {
1780 .notifier_call = vrf_device_event,
1783 static int vrf_map_init(struct vrf_map *vmap)
1785 spin_lock_init(&vmap->vmap_lock);
1786 hash_init(vmap->ht);
1788 vmap->strict_mode = false;
1793 #ifdef CONFIG_SYSCTL
1794 static bool vrf_strict_mode(struct vrf_map *vmap)
1799 strict_mode = vmap->strict_mode;
1800 vrf_map_unlock(vmap);
1805 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1812 cur_mode = &vmap->strict_mode;
1813 if (*cur_mode == new_mode)
1817 /* disable strict mode */
1820 if (vmap->shared_tables) {
1821 /* we cannot allow strict_mode because there are some
1822 * vrfs that share one or more tables.
1828 /* no tables are shared among vrfs, so we can go back
1829 * to 1:1 association between a vrf with its table.
1835 vrf_map_unlock(vmap);
1840 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1841 void *buffer, size_t *lenp, loff_t *ppos)
1843 struct net *net = (struct net *)table->extra1;
1844 struct vrf_map *vmap = netns_vrf_map(net);
1845 int proc_strict_mode = 0;
1846 struct ctl_table tmp = {
1847 .procname = table->procname,
1848 .data = &proc_strict_mode,
1849 .maxlen = sizeof(int),
1850 .mode = table->mode,
1851 .extra1 = SYSCTL_ZERO,
1852 .extra2 = SYSCTL_ONE,
1857 proc_strict_mode = vrf_strict_mode(vmap);
1859 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1861 if (write && ret == 0)
1862 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1867 static const struct ctl_table vrf_table[] = {
1869 .procname = "strict_mode",
1871 .maxlen = sizeof(int),
1873 .proc_handler = vrf_shared_table_handler,
1874 /* set by the vrf_netns_init */
1880 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1882 struct ctl_table *table;
1884 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1888 /* init the extra1 parameter with the reference to current netns */
1889 table[0].extra1 = net;
1891 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1892 if (!nn_vrf->ctl_hdr) {
1900 static void vrf_netns_exit_sysctl(struct net *net)
1902 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1903 struct ctl_table *table;
1905 table = nn_vrf->ctl_hdr->ctl_table_arg;
1906 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1915 static void vrf_netns_exit_sysctl(struct net *net)
1920 /* Initialize per network namespace state */
1921 static int __net_init vrf_netns_init(struct net *net)
1923 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1925 nn_vrf->add_fib_rules = true;
1926 vrf_map_init(&nn_vrf->vmap);
1928 return vrf_netns_init_sysctl(net, nn_vrf);
1931 static void __net_exit vrf_netns_exit(struct net *net)
1933 vrf_netns_exit_sysctl(net);
1936 static struct pernet_operations vrf_net_ops __net_initdata = {
1937 .init = vrf_netns_init,
1938 .exit = vrf_netns_exit,
1940 .size = sizeof(struct netns_vrf),
1943 static int __init vrf_init_module(void)
1947 register_netdevice_notifier(&vrf_notifier_block);
1949 rc = register_pernet_subsys(&vrf_net_ops);
1953 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1954 vrf_ifindex_lookup_by_table_id);
1958 rc = rtnl_link_register(&vrf_link_ops);
1960 goto table_lookup_unreg;
1965 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1966 vrf_ifindex_lookup_by_table_id);
1969 unregister_pernet_subsys(&vrf_net_ops);
1972 unregister_netdevice_notifier(&vrf_notifier_block);
1976 module_init(vrf_init_module);
1977 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1978 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1979 MODULE_LICENSE("GPL");
1980 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1981 MODULE_VERSION(DRV_VERSION);