1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/signal.h>
54 #include <asm/param.h>
55 #include <linux/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/siginfo.h>
58 #include <asm/cacheflush.h>
59 #include <asm/syscall.h> /* for syscall_get_* */
62 * SLAB caches for signal bits.
65 static struct kmem_cache *sigqueue_cachep;
67 int print_fatal_signals __read_mostly;
69 static void __user *sig_handler(struct task_struct *t, int sig)
71 return t->sighand->action[sig - 1].sa.sa_handler;
74 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 /* Is it explicitly or implicitly ignored? */
77 return handler == SIG_IGN ||
78 (handler == SIG_DFL && sig_kernel_ignore(sig));
81 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85 handler = sig_handler(t, sig);
87 /* SIGKILL and SIGSTOP may not be sent to the global init */
88 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
95 /* Only allow kernel generated signals to this kthread */
96 if (unlikely((t->flags & PF_KTHREAD) &&
97 (handler == SIG_KTHREAD_KERNEL) && !force))
100 return sig_handler_ignored(handler, sig);
103 static bool sig_ignored(struct task_struct *t, int sig, bool force)
106 * Blocked signals are never ignored, since the
107 * signal handler may change by the time it is
110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 * Tracers may want to know about even ignored signal unless it
115 * is SIGKILL which can't be reported anyway but can be ignored
116 * by SIGNAL_UNKILLABLE task.
118 if (t->ptrace && sig != SIGKILL)
121 return sig_task_ignored(t, sig, force);
125 * Re-calculate pending state from the set of locally pending
126 * signals, globally pending signals, and blocked signals.
128 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
133 switch (_NSIG_WORDS) {
135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 ready |= signal->sig[i] &~ blocked->sig[i];
139 case 4: ready = signal->sig[3] &~ blocked->sig[3];
140 ready |= signal->sig[2] &~ blocked->sig[2];
141 ready |= signal->sig[1] &~ blocked->sig[1];
142 ready |= signal->sig[0] &~ blocked->sig[0];
145 case 2: ready = signal->sig[1] &~ blocked->sig[1];
146 ready |= signal->sig[0] &~ blocked->sig[0];
149 case 1: ready = signal->sig[0] &~ blocked->sig[0];
154 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156 static bool recalc_sigpending_tsk(struct task_struct *t)
158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 PENDING(&t->pending, &t->blocked) ||
160 PENDING(&t->signal->shared_pending, &t->blocked) ||
161 cgroup_task_frozen(t)) {
162 set_tsk_thread_flag(t, TIF_SIGPENDING);
167 * We must never clear the flag in another thread, or in current
168 * when it's possible the current syscall is returning -ERESTART*.
169 * So we don't clear it here, and only callers who know they should do.
175 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
176 * This is superfluous when called on current, the wakeup is a harmless no-op.
178 void recalc_sigpending_and_wake(struct task_struct *t)
180 if (recalc_sigpending_tsk(t))
181 signal_wake_up(t, 0);
184 void recalc_sigpending(void)
186 if (!recalc_sigpending_tsk(current) && !freezing(current))
187 clear_thread_flag(TIF_SIGPENDING);
190 EXPORT_SYMBOL(recalc_sigpending);
192 void calculate_sigpending(void)
194 /* Have any signals or users of TIF_SIGPENDING been delayed
197 spin_lock_irq(¤t->sighand->siglock);
198 set_tsk_thread_flag(current, TIF_SIGPENDING);
200 spin_unlock_irq(¤t->sighand->siglock);
203 /* Given the mask, find the first available signal that should be serviced. */
205 #define SYNCHRONOUS_MASK \
206 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
207 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
209 int next_signal(struct sigpending *pending, sigset_t *mask)
211 unsigned long i, *s, *m, x;
214 s = pending->signal.sig;
218 * Handle the first word specially: it contains the
219 * synchronous signals that need to be dequeued first.
223 if (x & SYNCHRONOUS_MASK)
224 x &= SYNCHRONOUS_MASK;
229 switch (_NSIG_WORDS) {
231 for (i = 1; i < _NSIG_WORDS; ++i) {
235 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 sig = ffz(~x) + _NSIG_BPW + 1;
255 static inline void print_dropped_signal(int sig)
257 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
259 if (!print_fatal_signals)
262 if (!__ratelimit(&ratelimit_state))
265 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
266 current->comm, current->pid, sig);
270 * task_set_jobctl_pending - set jobctl pending bits
272 * @mask: pending bits to set
274 * Clear @mask from @task->jobctl. @mask must be subset of
275 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
276 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
277 * cleared. If @task is already being killed or exiting, this function
281 * Must be called with @task->sighand->siglock held.
284 * %true if @mask is set, %false if made noop because @task was dying.
286 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
288 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
289 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
290 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
292 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
295 if (mask & JOBCTL_STOP_SIGMASK)
296 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
298 task->jobctl |= mask;
303 * task_clear_jobctl_trapping - clear jobctl trapping bit
306 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
307 * Clear it and wake up the ptracer. Note that we don't need any further
308 * locking. @task->siglock guarantees that @task->parent points to the
312 * Must be called with @task->sighand->siglock held.
314 void task_clear_jobctl_trapping(struct task_struct *task)
316 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
317 task->jobctl &= ~JOBCTL_TRAPPING;
318 smp_mb(); /* advised by wake_up_bit() */
319 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
324 * task_clear_jobctl_pending - clear jobctl pending bits
326 * @mask: pending bits to clear
328 * Clear @mask from @task->jobctl. @mask must be subset of
329 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
330 * STOP bits are cleared together.
332 * If clearing of @mask leaves no stop or trap pending, this function calls
333 * task_clear_jobctl_trapping().
336 * Must be called with @task->sighand->siglock held.
338 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
340 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
342 if (mask & JOBCTL_STOP_PENDING)
343 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
345 task->jobctl &= ~mask;
347 if (!(task->jobctl & JOBCTL_PENDING_MASK))
348 task_clear_jobctl_trapping(task);
352 * task_participate_group_stop - participate in a group stop
353 * @task: task participating in a group stop
355 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
356 * Group stop states are cleared and the group stop count is consumed if
357 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
358 * stop, the appropriate `SIGNAL_*` flags are set.
361 * Must be called with @task->sighand->siglock held.
364 * %true if group stop completion should be notified to the parent, %false
367 static bool task_participate_group_stop(struct task_struct *task)
369 struct signal_struct *sig = task->signal;
370 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
372 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
374 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
379 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
380 sig->group_stop_count--;
383 * Tell the caller to notify completion iff we are entering into a
384 * fresh group stop. Read comment in do_signal_stop() for details.
386 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
387 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
393 void task_join_group_stop(struct task_struct *task)
395 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
396 struct signal_struct *sig = current->signal;
398 if (sig->group_stop_count) {
399 sig->group_stop_count++;
400 mask |= JOBCTL_STOP_CONSUME;
401 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
404 /* Have the new thread join an on-going signal group stop */
405 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
409 * allocate a new signal queue record
410 * - this may be called without locks if and only if t == current, otherwise an
411 * appropriate lock must be held to stop the target task from exiting
413 static struct sigqueue *
414 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
415 int override_rlimit, const unsigned int sigqueue_flags)
417 struct sigqueue *q = NULL;
418 struct ucounts *ucounts;
422 * Protect access to @t credentials. This can go away when all
423 * callers hold rcu read lock.
425 * NOTE! A pending signal will hold on to the user refcount,
426 * and we get/put the refcount only when the sigpending count
427 * changes from/to zero.
430 ucounts = task_ucounts(t);
431 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
437 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
439 print_dropped_signal(sig);
442 if (unlikely(q == NULL)) {
443 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
445 INIT_LIST_HEAD(&q->list);
446 q->flags = sigqueue_flags;
447 q->ucounts = ucounts;
452 static void __sigqueue_free(struct sigqueue *q)
454 if (q->flags & SIGQUEUE_PREALLOC)
457 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
460 kmem_cache_free(sigqueue_cachep, q);
463 void flush_sigqueue(struct sigpending *queue)
467 sigemptyset(&queue->signal);
468 while (!list_empty(&queue->list)) {
469 q = list_entry(queue->list.next, struct sigqueue , list);
470 list_del_init(&q->list);
476 * Flush all pending signals for this kthread.
478 void flush_signals(struct task_struct *t)
482 spin_lock_irqsave(&t->sighand->siglock, flags);
483 clear_tsk_thread_flag(t, TIF_SIGPENDING);
484 flush_sigqueue(&t->pending);
485 flush_sigqueue(&t->signal->shared_pending);
486 spin_unlock_irqrestore(&t->sighand->siglock, flags);
488 EXPORT_SYMBOL(flush_signals);
490 #ifdef CONFIG_POSIX_TIMERS
491 static void __flush_itimer_signals(struct sigpending *pending)
493 sigset_t signal, retain;
494 struct sigqueue *q, *n;
496 signal = pending->signal;
497 sigemptyset(&retain);
499 list_for_each_entry_safe(q, n, &pending->list, list) {
500 int sig = q->info.si_signo;
502 if (likely(q->info.si_code != SI_TIMER)) {
503 sigaddset(&retain, sig);
505 sigdelset(&signal, sig);
506 list_del_init(&q->list);
511 sigorsets(&pending->signal, &signal, &retain);
514 void flush_itimer_signals(void)
516 struct task_struct *tsk = current;
519 spin_lock_irqsave(&tsk->sighand->siglock, flags);
520 __flush_itimer_signals(&tsk->pending);
521 __flush_itimer_signals(&tsk->signal->shared_pending);
522 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
526 void ignore_signals(struct task_struct *t)
530 for (i = 0; i < _NSIG; ++i)
531 t->sighand->action[i].sa.sa_handler = SIG_IGN;
537 * Flush all handlers for a task.
541 flush_signal_handlers(struct task_struct *t, int force_default)
544 struct k_sigaction *ka = &t->sighand->action[0];
545 for (i = _NSIG ; i != 0 ; i--) {
546 if (force_default || ka->sa.sa_handler != SIG_IGN)
547 ka->sa.sa_handler = SIG_DFL;
549 #ifdef __ARCH_HAS_SA_RESTORER
550 ka->sa.sa_restorer = NULL;
552 sigemptyset(&ka->sa.sa_mask);
557 bool unhandled_signal(struct task_struct *tsk, int sig)
559 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
560 if (is_global_init(tsk))
563 if (handler != SIG_IGN && handler != SIG_DFL)
566 /* If dying, we handle all new signals by ignoring them */
567 if (fatal_signal_pending(tsk))
570 /* if ptraced, let the tracer determine */
574 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
577 struct sigqueue *q, *first = NULL;
580 * Collect the siginfo appropriate to this signal. Check if
581 * there is another siginfo for the same signal.
583 list_for_each_entry(q, &list->list, list) {
584 if (q->info.si_signo == sig) {
591 sigdelset(&list->signal, sig);
595 list_del_init(&first->list);
596 copy_siginfo(info, &first->info);
599 (first->flags & SIGQUEUE_PREALLOC) &&
600 (info->si_code == SI_TIMER) &&
601 (info->si_sys_private);
603 __sigqueue_free(first);
606 * Ok, it wasn't in the queue. This must be
607 * a fast-pathed signal or we must have been
608 * out of queue space. So zero out the info.
611 info->si_signo = sig;
613 info->si_code = SI_USER;
619 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
620 kernel_siginfo_t *info, bool *resched_timer)
622 int sig = next_signal(pending, mask);
625 collect_signal(sig, pending, info, resched_timer);
630 * Dequeue a signal and return the element to the caller, which is
631 * expected to free it.
633 * All callers have to hold the siglock.
635 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
636 kernel_siginfo_t *info, enum pid_type *type)
638 bool resched_timer = false;
641 /* We only dequeue private signals from ourselves, we don't let
642 * signalfd steal them
645 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
647 *type = PIDTYPE_TGID;
648 signr = __dequeue_signal(&tsk->signal->shared_pending,
649 mask, info, &resched_timer);
650 #ifdef CONFIG_POSIX_TIMERS
654 * itimers are process shared and we restart periodic
655 * itimers in the signal delivery path to prevent DoS
656 * attacks in the high resolution timer case. This is
657 * compliant with the old way of self-restarting
658 * itimers, as the SIGALRM is a legacy signal and only
659 * queued once. Changing the restart behaviour to
660 * restart the timer in the signal dequeue path is
661 * reducing the timer noise on heavy loaded !highres
664 if (unlikely(signr == SIGALRM)) {
665 struct hrtimer *tmr = &tsk->signal->real_timer;
667 if (!hrtimer_is_queued(tmr) &&
668 tsk->signal->it_real_incr != 0) {
669 hrtimer_forward(tmr, tmr->base->get_time(),
670 tsk->signal->it_real_incr);
671 hrtimer_restart(tmr);
681 if (unlikely(sig_kernel_stop(signr))) {
683 * Set a marker that we have dequeued a stop signal. Our
684 * caller might release the siglock and then the pending
685 * stop signal it is about to process is no longer in the
686 * pending bitmasks, but must still be cleared by a SIGCONT
687 * (and overruled by a SIGKILL). So those cases clear this
688 * shared flag after we've set it. Note that this flag may
689 * remain set after the signal we return is ignored or
690 * handled. That doesn't matter because its only purpose
691 * is to alert stop-signal processing code when another
692 * processor has come along and cleared the flag.
694 current->jobctl |= JOBCTL_STOP_DEQUEUED;
696 #ifdef CONFIG_POSIX_TIMERS
699 * Release the siglock to ensure proper locking order
700 * of timer locks outside of siglocks. Note, we leave
701 * irqs disabled here, since the posix-timers code is
702 * about to disable them again anyway.
704 spin_unlock(&tsk->sighand->siglock);
705 posixtimer_rearm(info);
706 spin_lock(&tsk->sighand->siglock);
708 /* Don't expose the si_sys_private value to userspace */
709 info->si_sys_private = 0;
714 EXPORT_SYMBOL_GPL(dequeue_signal);
716 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
718 struct task_struct *tsk = current;
719 struct sigpending *pending = &tsk->pending;
720 struct sigqueue *q, *sync = NULL;
723 * Might a synchronous signal be in the queue?
725 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
729 * Return the first synchronous signal in the queue.
731 list_for_each_entry(q, &pending->list, list) {
732 /* Synchronous signals have a positive si_code */
733 if ((q->info.si_code > SI_USER) &&
734 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
742 * Check if there is another siginfo for the same signal.
744 list_for_each_entry_continue(q, &pending->list, list) {
745 if (q->info.si_signo == sync->info.si_signo)
749 sigdelset(&pending->signal, sync->info.si_signo);
752 list_del_init(&sync->list);
753 copy_siginfo(info, &sync->info);
754 __sigqueue_free(sync);
755 return info->si_signo;
759 * Tell a process that it has a new active signal..
761 * NOTE! we rely on the previous spin_lock to
762 * lock interrupts for us! We can only be called with
763 * "siglock" held, and the local interrupt must
764 * have been disabled when that got acquired!
766 * No need to set need_resched since signal event passing
767 * goes through ->blocked
769 void signal_wake_up_state(struct task_struct *t, unsigned int state)
771 lockdep_assert_held(&t->sighand->siglock);
773 set_tsk_thread_flag(t, TIF_SIGPENDING);
776 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
777 * case. We don't check t->state here because there is a race with it
778 * executing another processor and just now entering stopped state.
779 * By using wake_up_state, we ensure the process will wake up and
780 * handle its death signal.
782 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
787 * Remove signals in mask from the pending set and queue.
788 * Returns 1 if any signals were found.
790 * All callers must be holding the siglock.
792 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
794 struct sigqueue *q, *n;
797 sigandsets(&m, mask, &s->signal);
798 if (sigisemptyset(&m))
801 sigandnsets(&s->signal, &s->signal, mask);
802 list_for_each_entry_safe(q, n, &s->list, list) {
803 if (sigismember(mask, q->info.si_signo)) {
804 list_del_init(&q->list);
810 static inline int is_si_special(const struct kernel_siginfo *info)
812 return info <= SEND_SIG_PRIV;
815 static inline bool si_fromuser(const struct kernel_siginfo *info)
817 return info == SEND_SIG_NOINFO ||
818 (!is_si_special(info) && SI_FROMUSER(info));
822 * called with RCU read lock from check_kill_permission()
824 static bool kill_ok_by_cred(struct task_struct *t)
826 const struct cred *cred = current_cred();
827 const struct cred *tcred = __task_cred(t);
829 return uid_eq(cred->euid, tcred->suid) ||
830 uid_eq(cred->euid, tcred->uid) ||
831 uid_eq(cred->uid, tcred->suid) ||
832 uid_eq(cred->uid, tcred->uid) ||
833 ns_capable(tcred->user_ns, CAP_KILL);
837 * Bad permissions for sending the signal
838 * - the caller must hold the RCU read lock
840 static int check_kill_permission(int sig, struct kernel_siginfo *info,
841 struct task_struct *t)
846 if (!valid_signal(sig))
849 if (!si_fromuser(info))
852 error = audit_signal_info(sig, t); /* Let audit system see the signal */
856 if (!same_thread_group(current, t) &&
857 !kill_ok_by_cred(t)) {
860 sid = task_session(t);
862 * We don't return the error if sid == NULL. The
863 * task was unhashed, the caller must notice this.
865 if (!sid || sid == task_session(current))
873 return security_task_kill(t, info, sig, NULL);
877 * ptrace_trap_notify - schedule trap to notify ptracer
878 * @t: tracee wanting to notify tracer
880 * This function schedules sticky ptrace trap which is cleared on the next
881 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
884 * If @t is running, STOP trap will be taken. If trapped for STOP and
885 * ptracer is listening for events, tracee is woken up so that it can
886 * re-trap for the new event. If trapped otherwise, STOP trap will be
887 * eventually taken without returning to userland after the existing traps
888 * are finished by PTRACE_CONT.
891 * Must be called with @task->sighand->siglock held.
893 static void ptrace_trap_notify(struct task_struct *t)
895 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
896 lockdep_assert_held(&t->sighand->siglock);
898 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
899 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
903 * Handle magic process-wide effects of stop/continue signals. Unlike
904 * the signal actions, these happen immediately at signal-generation
905 * time regardless of blocking, ignoring, or handling. This does the
906 * actual continuing for SIGCONT, but not the actual stopping for stop
907 * signals. The process stop is done as a signal action for SIG_DFL.
909 * Returns true if the signal should be actually delivered, otherwise
910 * it should be dropped.
912 static bool prepare_signal(int sig, struct task_struct *p, bool force)
914 struct signal_struct *signal = p->signal;
915 struct task_struct *t;
918 if (signal->flags & SIGNAL_GROUP_EXIT) {
919 if (signal->core_state)
920 return sig == SIGKILL;
922 * The process is in the middle of dying, drop the signal.
925 } else if (sig_kernel_stop(sig)) {
927 * This is a stop signal. Remove SIGCONT from all queues.
929 siginitset(&flush, sigmask(SIGCONT));
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t)
932 flush_sigqueue_mask(&flush, &t->pending);
933 } else if (sig == SIGCONT) {
936 * Remove all stop signals from all queues, wake all threads.
938 siginitset(&flush, SIG_KERNEL_STOP_MASK);
939 flush_sigqueue_mask(&flush, &signal->shared_pending);
940 for_each_thread(p, t) {
941 flush_sigqueue_mask(&flush, &t->pending);
942 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
943 if (likely(!(t->ptrace & PT_SEIZED))) {
944 t->jobctl &= ~JOBCTL_STOPPED;
945 wake_up_state(t, __TASK_STOPPED);
947 ptrace_trap_notify(t);
951 * Notify the parent with CLD_CONTINUED if we were stopped.
953 * If we were in the middle of a group stop, we pretend it
954 * was already finished, and then continued. Since SIGCHLD
955 * doesn't queue we report only CLD_STOPPED, as if the next
956 * CLD_CONTINUED was dropped.
959 if (signal->flags & SIGNAL_STOP_STOPPED)
960 why |= SIGNAL_CLD_CONTINUED;
961 else if (signal->group_stop_count)
962 why |= SIGNAL_CLD_STOPPED;
966 * The first thread which returns from do_signal_stop()
967 * will take ->siglock, notice SIGNAL_CLD_MASK, and
968 * notify its parent. See get_signal().
970 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
971 signal->group_stop_count = 0;
972 signal->group_exit_code = 0;
976 return !sig_ignored(p, sig, force);
980 * Test if P wants to take SIG. After we've checked all threads with this,
981 * it's equivalent to finding no threads not blocking SIG. Any threads not
982 * blocking SIG were ruled out because they are not running and already
983 * have pending signals. Such threads will dequeue from the shared queue
984 * as soon as they're available, so putting the signal on the shared queue
985 * will be equivalent to sending it to one such thread.
987 static inline bool wants_signal(int sig, struct task_struct *p)
989 if (sigismember(&p->blocked, sig))
992 if (p->flags & PF_EXITING)
998 if (task_is_stopped_or_traced(p))
1001 return task_curr(p) || !task_sigpending(p);
1004 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
1006 struct signal_struct *signal = p->signal;
1007 struct task_struct *t;
1010 * Now find a thread we can wake up to take the signal off the queue.
1012 * Try the suggested task first (may or may not be the main thread).
1014 if (wants_signal(sig, p))
1016 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1018 * There is just one thread and it does not need to be woken.
1019 * It will dequeue unblocked signals before it runs again.
1024 * Otherwise try to find a suitable thread.
1026 t = signal->curr_target;
1027 while (!wants_signal(sig, t)) {
1029 if (t == signal->curr_target)
1031 * No thread needs to be woken.
1032 * Any eligible threads will see
1033 * the signal in the queue soon.
1037 signal->curr_target = t;
1041 * Found a killable thread. If the signal will be fatal,
1042 * then start taking the whole group down immediately.
1044 if (sig_fatal(p, sig) &&
1045 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1046 !sigismember(&t->real_blocked, sig) &&
1047 (sig == SIGKILL || !p->ptrace)) {
1049 * This signal will be fatal to the whole group.
1051 if (!sig_kernel_coredump(sig)) {
1053 * Start a group exit and wake everybody up.
1054 * This way we don't have other threads
1055 * running and doing things after a slower
1056 * thread has the fatal signal pending.
1058 signal->flags = SIGNAL_GROUP_EXIT;
1059 signal->group_exit_code = sig;
1060 signal->group_stop_count = 0;
1061 __for_each_thread(signal, t) {
1062 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1063 sigaddset(&t->pending.signal, SIGKILL);
1064 signal_wake_up(t, 1);
1071 * The signal is already in the shared-pending queue.
1072 * Tell the chosen thread to wake up and dequeue it.
1074 signal_wake_up(t, sig == SIGKILL);
1078 static inline bool legacy_queue(struct sigpending *signals, int sig)
1080 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1083 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1084 struct task_struct *t, enum pid_type type, bool force)
1086 struct sigpending *pending;
1088 int override_rlimit;
1089 int ret = 0, result;
1091 lockdep_assert_held(&t->sighand->siglock);
1093 result = TRACE_SIGNAL_IGNORED;
1094 if (!prepare_signal(sig, t, force))
1097 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1099 * Short-circuit ignored signals and support queuing
1100 * exactly one non-rt signal, so that we can get more
1101 * detailed information about the cause of the signal.
1103 result = TRACE_SIGNAL_ALREADY_PENDING;
1104 if (legacy_queue(pending, sig))
1107 result = TRACE_SIGNAL_DELIVERED;
1109 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1111 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1115 * Real-time signals must be queued if sent by sigqueue, or
1116 * some other real-time mechanism. It is implementation
1117 * defined whether kill() does so. We attempt to do so, on
1118 * the principle of least surprise, but since kill is not
1119 * allowed to fail with EAGAIN when low on memory we just
1120 * make sure at least one signal gets delivered and don't
1121 * pass on the info struct.
1124 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1126 override_rlimit = 0;
1128 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1131 list_add_tail(&q->list, &pending->list);
1132 switch ((unsigned long) info) {
1133 case (unsigned long) SEND_SIG_NOINFO:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_USER;
1138 q->info.si_pid = task_tgid_nr_ns(current,
1139 task_active_pid_ns(t));
1142 from_kuid_munged(task_cred_xxx(t, user_ns),
1146 case (unsigned long) SEND_SIG_PRIV:
1147 clear_siginfo(&q->info);
1148 q->info.si_signo = sig;
1149 q->info.si_errno = 0;
1150 q->info.si_code = SI_KERNEL;
1155 copy_siginfo(&q->info, info);
1158 } else if (!is_si_special(info) &&
1159 sig >= SIGRTMIN && info->si_code != SI_USER) {
1161 * Queue overflow, abort. We may abort if the
1162 * signal was rt and sent by user using something
1163 * other than kill().
1165 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1170 * This is a silent loss of information. We still
1171 * send the signal, but the *info bits are lost.
1173 result = TRACE_SIGNAL_LOSE_INFO;
1177 signalfd_notify(t, sig);
1178 sigaddset(&pending->signal, sig);
1180 /* Let multiprocess signals appear after on-going forks */
1181 if (type > PIDTYPE_TGID) {
1182 struct multiprocess_signals *delayed;
1183 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1184 sigset_t *signal = &delayed->signal;
1185 /* Can't queue both a stop and a continue signal */
1187 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1188 else if (sig_kernel_stop(sig))
1189 sigdelset(signal, SIGCONT);
1190 sigaddset(signal, sig);
1194 complete_signal(sig, t, type);
1196 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1200 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1203 switch (siginfo_layout(info->si_signo, info->si_code)) {
1212 case SIL_FAULT_TRAPNO:
1213 case SIL_FAULT_MCEERR:
1214 case SIL_FAULT_BNDERR:
1215 case SIL_FAULT_PKUERR:
1216 case SIL_FAULT_PERF_EVENT:
1224 int send_signal_locked(int sig, struct kernel_siginfo *info,
1225 struct task_struct *t, enum pid_type type)
1227 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1230 if (info == SEND_SIG_NOINFO) {
1231 /* Force if sent from an ancestor pid namespace */
1232 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1233 } else if (info == SEND_SIG_PRIV) {
1234 /* Don't ignore kernel generated signals */
1236 } else if (has_si_pid_and_uid(info)) {
1237 /* SIGKILL and SIGSTOP is special or has ids */
1238 struct user_namespace *t_user_ns;
1241 t_user_ns = task_cred_xxx(t, user_ns);
1242 if (current_user_ns() != t_user_ns) {
1243 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1244 info->si_uid = from_kuid_munged(t_user_ns, uid);
1248 /* A kernel generated signal? */
1249 force = (info->si_code == SI_KERNEL);
1251 /* From an ancestor pid namespace? */
1252 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1257 return __send_signal_locked(sig, info, t, type, force);
1260 static void print_fatal_signal(int signr)
1262 struct pt_regs *regs = task_pt_regs(current);
1263 struct file *exe_file;
1265 exe_file = get_task_exe_file(current);
1267 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1268 exe_file, current->comm, signr);
1271 pr_info("%s: potentially unexpected fatal signal %d.\n",
1272 current->comm, signr);
1275 #if defined(__i386__) && !defined(__arch_um__)
1276 pr_info("code at %08lx: ", regs->ip);
1279 for (i = 0; i < 16; i++) {
1282 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1284 pr_cont("%02x ", insn);
1294 static int __init setup_print_fatal_signals(char *str)
1296 get_option (&str, &print_fatal_signals);
1301 __setup("print-fatal-signals=", setup_print_fatal_signals);
1303 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1306 unsigned long flags;
1309 if (lock_task_sighand(p, &flags)) {
1310 ret = send_signal_locked(sig, info, p, type);
1311 unlock_task_sighand(p, &flags);
1318 HANDLER_CURRENT, /* If reachable use the current handler */
1319 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1320 HANDLER_EXIT, /* Only visible as the process exit code */
1324 * Force a signal that the process can't ignore: if necessary
1325 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1327 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1328 * since we do not want to have a signal handler that was blocked
1329 * be invoked when user space had explicitly blocked it.
1331 * We don't want to have recursive SIGSEGV's etc, for example,
1332 * that is why we also clear SIGNAL_UNKILLABLE.
1335 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1336 enum sig_handler handler)
1338 unsigned long int flags;
1339 int ret, blocked, ignored;
1340 struct k_sigaction *action;
1341 int sig = info->si_signo;
1343 spin_lock_irqsave(&t->sighand->siglock, flags);
1344 action = &t->sighand->action[sig-1];
1345 ignored = action->sa.sa_handler == SIG_IGN;
1346 blocked = sigismember(&t->blocked, sig);
1347 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1348 action->sa.sa_handler = SIG_DFL;
1349 if (handler == HANDLER_EXIT)
1350 action->sa.sa_flags |= SA_IMMUTABLE;
1352 sigdelset(&t->blocked, sig);
1353 recalc_sigpending_and_wake(t);
1357 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1358 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1360 if (action->sa.sa_handler == SIG_DFL &&
1361 (!t->ptrace || (handler == HANDLER_EXIT)))
1362 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1363 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1364 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1369 int force_sig_info(struct kernel_siginfo *info)
1371 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1375 * Nuke all other threads in the group.
1377 int zap_other_threads(struct task_struct *p)
1379 struct task_struct *t = p;
1382 p->signal->group_stop_count = 0;
1384 while_each_thread(p, t) {
1385 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1386 /* Don't require de_thread to wait for the vhost_worker */
1387 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1390 /* Don't bother with already dead threads */
1393 sigaddset(&t->pending.signal, SIGKILL);
1394 signal_wake_up(t, 1);
1400 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1401 unsigned long *flags)
1403 struct sighand_struct *sighand;
1407 sighand = rcu_dereference(tsk->sighand);
1408 if (unlikely(sighand == NULL))
1412 * This sighand can be already freed and even reused, but
1413 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1414 * initializes ->siglock: this slab can't go away, it has
1415 * the same object type, ->siglock can't be reinitialized.
1417 * We need to ensure that tsk->sighand is still the same
1418 * after we take the lock, we can race with de_thread() or
1419 * __exit_signal(). In the latter case the next iteration
1420 * must see ->sighand == NULL.
1422 spin_lock_irqsave(&sighand->siglock, *flags);
1423 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1425 spin_unlock_irqrestore(&sighand->siglock, *flags);
1432 #ifdef CONFIG_LOCKDEP
1433 void lockdep_assert_task_sighand_held(struct task_struct *task)
1435 struct sighand_struct *sighand;
1438 sighand = rcu_dereference(task->sighand);
1440 lockdep_assert_held(&sighand->siglock);
1448 * send signal info to all the members of a group
1450 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1451 struct task_struct *p, enum pid_type type)
1456 ret = check_kill_permission(sig, info, p);
1460 ret = do_send_sig_info(sig, info, p, type);
1466 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1467 * control characters do (^C, ^Z etc)
1468 * - the caller must hold at least a readlock on tasklist_lock
1470 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1472 struct task_struct *p = NULL;
1475 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1476 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1478 * If group_send_sig_info() succeeds at least once ret
1479 * becomes 0 and after that the code below has no effect.
1480 * Otherwise we return the last err or -ESRCH if this
1481 * process group is empty.
1485 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1490 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1493 struct task_struct *p;
1497 p = pid_task(pid, PIDTYPE_PID);
1499 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1501 if (likely(!p || error != -ESRCH))
1505 * The task was unhashed in between, try again. If it
1506 * is dead, pid_task() will return NULL, if we race with
1507 * de_thread() it will find the new leader.
1512 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1516 error = kill_pid_info(sig, info, find_vpid(pid));
1521 static inline bool kill_as_cred_perm(const struct cred *cred,
1522 struct task_struct *target)
1524 const struct cred *pcred = __task_cred(target);
1526 return uid_eq(cred->euid, pcred->suid) ||
1527 uid_eq(cred->euid, pcred->uid) ||
1528 uid_eq(cred->uid, pcred->suid) ||
1529 uid_eq(cred->uid, pcred->uid);
1533 * The usb asyncio usage of siginfo is wrong. The glibc support
1534 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1535 * AKA after the generic fields:
1536 * kernel_pid_t si_pid;
1537 * kernel_uid32_t si_uid;
1538 * sigval_t si_value;
1540 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1541 * after the generic fields is:
1542 * void __user *si_addr;
1544 * This is a practical problem when there is a 64bit big endian kernel
1545 * and a 32bit userspace. As the 32bit address will encoded in the low
1546 * 32bits of the pointer. Those low 32bits will be stored at higher
1547 * address than appear in a 32 bit pointer. So userspace will not
1548 * see the address it was expecting for it's completions.
1550 * There is nothing in the encoding that can allow
1551 * copy_siginfo_to_user32 to detect this confusion of formats, so
1552 * handle this by requiring the caller of kill_pid_usb_asyncio to
1553 * notice when this situration takes place and to store the 32bit
1554 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1557 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1558 struct pid *pid, const struct cred *cred)
1560 struct kernel_siginfo info;
1561 struct task_struct *p;
1562 unsigned long flags;
1565 if (!valid_signal(sig))
1568 clear_siginfo(&info);
1569 info.si_signo = sig;
1570 info.si_errno = errno;
1571 info.si_code = SI_ASYNCIO;
1572 *((sigval_t *)&info.si_pid) = addr;
1575 p = pid_task(pid, PIDTYPE_PID);
1580 if (!kill_as_cred_perm(cred, p)) {
1584 ret = security_task_kill(p, &info, sig, cred);
1589 if (lock_task_sighand(p, &flags)) {
1590 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1591 unlock_task_sighand(p, &flags);
1599 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1602 * kill_something_info() interprets pid in interesting ways just like kill(2).
1604 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1605 * is probably wrong. Should make it like BSD or SYSV.
1608 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1613 return kill_proc_info(sig, info, pid);
1615 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1619 read_lock(&tasklist_lock);
1621 ret = __kill_pgrp_info(sig, info,
1622 pid ? find_vpid(-pid) : task_pgrp(current));
1624 int retval = 0, count = 0;
1625 struct task_struct * p;
1627 for_each_process(p) {
1628 if (task_pid_vnr(p) > 1 &&
1629 !same_thread_group(p, current)) {
1630 int err = group_send_sig_info(sig, info, p,
1637 ret = count ? retval : -ESRCH;
1639 read_unlock(&tasklist_lock);
1645 * These are for backward compatibility with the rest of the kernel source.
1648 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1651 * Make sure legacy kernel users don't send in bad values
1652 * (normal paths check this in check_kill_permission).
1654 if (!valid_signal(sig))
1657 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1659 EXPORT_SYMBOL(send_sig_info);
1661 #define __si_special(priv) \
1662 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1665 send_sig(int sig, struct task_struct *p, int priv)
1667 return send_sig_info(sig, __si_special(priv), p);
1669 EXPORT_SYMBOL(send_sig);
1671 void force_sig(int sig)
1673 struct kernel_siginfo info;
1675 clear_siginfo(&info);
1676 info.si_signo = sig;
1678 info.si_code = SI_KERNEL;
1681 force_sig_info(&info);
1683 EXPORT_SYMBOL(force_sig);
1685 void force_fatal_sig(int sig)
1687 struct kernel_siginfo info;
1689 clear_siginfo(&info);
1690 info.si_signo = sig;
1692 info.si_code = SI_KERNEL;
1695 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1698 void force_exit_sig(int sig)
1700 struct kernel_siginfo info;
1702 clear_siginfo(&info);
1703 info.si_signo = sig;
1705 info.si_code = SI_KERNEL;
1708 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1712 * When things go south during signal handling, we
1713 * will force a SIGSEGV. And if the signal that caused
1714 * the problem was already a SIGSEGV, we'll want to
1715 * make sure we don't even try to deliver the signal..
1717 void force_sigsegv(int sig)
1720 force_fatal_sig(SIGSEGV);
1725 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1726 struct task_struct *t)
1728 struct kernel_siginfo info;
1730 clear_siginfo(&info);
1731 info.si_signo = sig;
1733 info.si_code = code;
1734 info.si_addr = addr;
1735 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1738 int force_sig_fault(int sig, int code, void __user *addr)
1740 return force_sig_fault_to_task(sig, code, addr, current);
1743 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1745 struct kernel_siginfo info;
1747 clear_siginfo(&info);
1748 info.si_signo = sig;
1750 info.si_code = code;
1751 info.si_addr = addr;
1752 return send_sig_info(info.si_signo, &info, t);
1755 int force_sig_mceerr(int code, void __user *addr, short lsb)
1757 struct kernel_siginfo info;
1759 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1760 clear_siginfo(&info);
1761 info.si_signo = SIGBUS;
1763 info.si_code = code;
1764 info.si_addr = addr;
1765 info.si_addr_lsb = lsb;
1766 return force_sig_info(&info);
1769 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1771 struct kernel_siginfo info;
1773 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1774 clear_siginfo(&info);
1775 info.si_signo = SIGBUS;
1777 info.si_code = code;
1778 info.si_addr = addr;
1779 info.si_addr_lsb = lsb;
1780 return send_sig_info(info.si_signo, &info, t);
1782 EXPORT_SYMBOL(send_sig_mceerr);
1784 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1786 struct kernel_siginfo info;
1788 clear_siginfo(&info);
1789 info.si_signo = SIGSEGV;
1791 info.si_code = SEGV_BNDERR;
1792 info.si_addr = addr;
1793 info.si_lower = lower;
1794 info.si_upper = upper;
1795 return force_sig_info(&info);
1799 int force_sig_pkuerr(void __user *addr, u32 pkey)
1801 struct kernel_siginfo info;
1803 clear_siginfo(&info);
1804 info.si_signo = SIGSEGV;
1806 info.si_code = SEGV_PKUERR;
1807 info.si_addr = addr;
1808 info.si_pkey = pkey;
1809 return force_sig_info(&info);
1813 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1815 struct kernel_siginfo info;
1817 clear_siginfo(&info);
1818 info.si_signo = SIGTRAP;
1820 info.si_code = TRAP_PERF;
1821 info.si_addr = addr;
1822 info.si_perf_data = sig_data;
1823 info.si_perf_type = type;
1826 * Signals generated by perf events should not terminate the whole
1827 * process if SIGTRAP is blocked, however, delivering the signal
1828 * asynchronously is better than not delivering at all. But tell user
1829 * space if the signal was asynchronous, so it can clearly be
1830 * distinguished from normal synchronous ones.
1832 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1833 TRAP_PERF_FLAG_ASYNC :
1836 return send_sig_info(info.si_signo, &info, current);
1840 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1841 * @syscall: syscall number to send to userland
1842 * @reason: filter-supplied reason code to send to userland (via si_errno)
1843 * @force_coredump: true to trigger a coredump
1845 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1847 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1849 struct kernel_siginfo info;
1851 clear_siginfo(&info);
1852 info.si_signo = SIGSYS;
1853 info.si_code = SYS_SECCOMP;
1854 info.si_call_addr = (void __user *)KSTK_EIP(current);
1855 info.si_errno = reason;
1856 info.si_arch = syscall_get_arch(current);
1857 info.si_syscall = syscall;
1858 return force_sig_info_to_task(&info, current,
1859 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1862 /* For the crazy architectures that include trap information in
1863 * the errno field, instead of an actual errno value.
1865 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1867 struct kernel_siginfo info;
1869 clear_siginfo(&info);
1870 info.si_signo = SIGTRAP;
1871 info.si_errno = errno;
1872 info.si_code = TRAP_HWBKPT;
1873 info.si_addr = addr;
1874 return force_sig_info(&info);
1877 /* For the rare architectures that include trap information using
1880 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1882 struct kernel_siginfo info;
1884 clear_siginfo(&info);
1885 info.si_signo = sig;
1887 info.si_code = code;
1888 info.si_addr = addr;
1889 info.si_trapno = trapno;
1890 return force_sig_info(&info);
1893 /* For the rare architectures that include trap information using
1896 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1897 struct task_struct *t)
1899 struct kernel_siginfo info;
1901 clear_siginfo(&info);
1902 info.si_signo = sig;
1904 info.si_code = code;
1905 info.si_addr = addr;
1906 info.si_trapno = trapno;
1907 return send_sig_info(info.si_signo, &info, t);
1910 int kill_pgrp(struct pid *pid, int sig, int priv)
1914 read_lock(&tasklist_lock);
1915 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1916 read_unlock(&tasklist_lock);
1920 EXPORT_SYMBOL(kill_pgrp);
1922 int kill_pid(struct pid *pid, int sig, int priv)
1924 return kill_pid_info(sig, __si_special(priv), pid);
1926 EXPORT_SYMBOL(kill_pid);
1929 * These functions support sending signals using preallocated sigqueue
1930 * structures. This is needed "because realtime applications cannot
1931 * afford to lose notifications of asynchronous events, like timer
1932 * expirations or I/O completions". In the case of POSIX Timers
1933 * we allocate the sigqueue structure from the timer_create. If this
1934 * allocation fails we are able to report the failure to the application
1935 * with an EAGAIN error.
1937 struct sigqueue *sigqueue_alloc(void)
1939 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1942 void sigqueue_free(struct sigqueue *q)
1944 unsigned long flags;
1945 spinlock_t *lock = ¤t->sighand->siglock;
1947 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 * We must hold ->siglock while testing q->list
1950 * to serialize with collect_signal() or with
1951 * __exit_signal()->flush_sigqueue().
1953 spin_lock_irqsave(lock, flags);
1954 q->flags &= ~SIGQUEUE_PREALLOC;
1956 * If it is queued it will be freed when dequeued,
1957 * like the "regular" sigqueue.
1959 if (!list_empty(&q->list))
1961 spin_unlock_irqrestore(lock, flags);
1967 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969 int sig = q->info.si_signo;
1970 struct sigpending *pending;
1971 struct task_struct *t;
1972 unsigned long flags;
1975 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1981 * This function is used by POSIX timers to deliver a timer signal.
1982 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1983 * set), the signal must be delivered to the specific thread (queues
1986 * Where type is not PIDTYPE_PID, signals must be delivered to the
1987 * process. In this case, prefer to deliver to current if it is in
1988 * the same thread group as the target process, which avoids
1989 * unnecessarily waking up a potentially idle task.
1991 t = pid_task(pid, type);
1994 if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 if (!likely(lock_task_sighand(t, &flags)))
1999 ret = 1; /* the signal is ignored */
2000 result = TRACE_SIGNAL_IGNORED;
2001 if (!prepare_signal(sig, t, false))
2005 if (unlikely(!list_empty(&q->list))) {
2007 * If an SI_TIMER entry is already queue just increment
2008 * the overrun count.
2010 BUG_ON(q->info.si_code != SI_TIMER);
2011 q->info.si_overrun++;
2012 result = TRACE_SIGNAL_ALREADY_PENDING;
2015 q->info.si_overrun = 0;
2017 signalfd_notify(t, sig);
2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2019 list_add_tail(&q->list, &pending->list);
2020 sigaddset(&pending->signal, sig);
2021 complete_signal(sig, t, type);
2022 result = TRACE_SIGNAL_DELIVERED;
2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2025 unlock_task_sighand(t, &flags);
2031 static void do_notify_pidfd(struct task_struct *task)
2035 WARN_ON(task->exit_state == 0);
2036 pid = task_pid(task);
2037 wake_up_all(&pid->wait_pidfd);
2041 * Let a parent know about the death of a child.
2042 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2044 * Returns true if our parent ignored us and so we've switched to
2047 bool do_notify_parent(struct task_struct *tsk, int sig)
2049 struct kernel_siginfo info;
2050 unsigned long flags;
2051 struct sighand_struct *psig;
2052 bool autoreap = false;
2055 WARN_ON_ONCE(sig == -1);
2057 /* do_notify_parent_cldstop should have been called instead. */
2058 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2060 WARN_ON_ONCE(!tsk->ptrace &&
2061 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2063 /* Wake up all pidfd waiters */
2064 do_notify_pidfd(tsk);
2066 if (sig != SIGCHLD) {
2068 * This is only possible if parent == real_parent.
2069 * Check if it has changed security domain.
2071 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2075 clear_siginfo(&info);
2076 info.si_signo = sig;
2079 * We are under tasklist_lock here so our parent is tied to
2080 * us and cannot change.
2082 * task_active_pid_ns will always return the same pid namespace
2083 * until a task passes through release_task.
2085 * write_lock() currently calls preempt_disable() which is the
2086 * same as rcu_read_lock(), but according to Oleg, this is not
2087 * correct to rely on this
2090 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2091 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2095 task_cputime(tsk, &utime, &stime);
2096 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2097 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2099 info.si_status = tsk->exit_code & 0x7f;
2100 if (tsk->exit_code & 0x80)
2101 info.si_code = CLD_DUMPED;
2102 else if (tsk->exit_code & 0x7f)
2103 info.si_code = CLD_KILLED;
2105 info.si_code = CLD_EXITED;
2106 info.si_status = tsk->exit_code >> 8;
2109 psig = tsk->parent->sighand;
2110 spin_lock_irqsave(&psig->siglock, flags);
2111 if (!tsk->ptrace && sig == SIGCHLD &&
2112 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2113 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2115 * We are exiting and our parent doesn't care. POSIX.1
2116 * defines special semantics for setting SIGCHLD to SIG_IGN
2117 * or setting the SA_NOCLDWAIT flag: we should be reaped
2118 * automatically and not left for our parent's wait4 call.
2119 * Rather than having the parent do it as a magic kind of
2120 * signal handler, we just set this to tell do_exit that we
2121 * can be cleaned up without becoming a zombie. Note that
2122 * we still call __wake_up_parent in this case, because a
2123 * blocked sys_wait4 might now return -ECHILD.
2125 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2126 * is implementation-defined: we do (if you don't want
2127 * it, just use SIG_IGN instead).
2130 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2134 * Send with __send_signal as si_pid and si_uid are in the
2135 * parent's namespaces.
2137 if (valid_signal(sig) && sig)
2138 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2139 __wake_up_parent(tsk, tsk->parent);
2140 spin_unlock_irqrestore(&psig->siglock, flags);
2146 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2147 * @tsk: task reporting the state change
2148 * @for_ptracer: the notification is for ptracer
2149 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2151 * Notify @tsk's parent that the stopped/continued state has changed. If
2152 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2153 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2156 * Must be called with tasklist_lock at least read locked.
2158 static void do_notify_parent_cldstop(struct task_struct *tsk,
2159 bool for_ptracer, int why)
2161 struct kernel_siginfo info;
2162 unsigned long flags;
2163 struct task_struct *parent;
2164 struct sighand_struct *sighand;
2168 parent = tsk->parent;
2170 tsk = tsk->group_leader;
2171 parent = tsk->real_parent;
2174 clear_siginfo(&info);
2175 info.si_signo = SIGCHLD;
2178 * see comment in do_notify_parent() about the following 4 lines
2181 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2182 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2185 task_cputime(tsk, &utime, &stime);
2186 info.si_utime = nsec_to_clock_t(utime);
2187 info.si_stime = nsec_to_clock_t(stime);
2192 info.si_status = SIGCONT;
2195 info.si_status = tsk->signal->group_exit_code & 0x7f;
2198 info.si_status = tsk->exit_code & 0x7f;
2204 sighand = parent->sighand;
2205 spin_lock_irqsave(&sighand->siglock, flags);
2206 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2207 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2208 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2210 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2212 __wake_up_parent(tsk, parent);
2213 spin_unlock_irqrestore(&sighand->siglock, flags);
2217 * This must be called with current->sighand->siglock held.
2219 * This should be the path for all ptrace stops.
2220 * We always set current->last_siginfo while stopped here.
2221 * That makes it a way to test a stopped process for
2222 * being ptrace-stopped vs being job-control-stopped.
2224 * Returns the signal the ptracer requested the code resume
2225 * with. If the code did not stop because the tracer is gone,
2226 * the stop signal remains unchanged unless clear_code.
2228 static int ptrace_stop(int exit_code, int why, unsigned long message,
2229 kernel_siginfo_t *info)
2230 __releases(¤t->sighand->siglock)
2231 __acquires(¤t->sighand->siglock)
2233 bool gstop_done = false;
2235 if (arch_ptrace_stop_needed()) {
2237 * The arch code has something special to do before a
2238 * ptrace stop. This is allowed to block, e.g. for faults
2239 * on user stack pages. We can't keep the siglock while
2240 * calling arch_ptrace_stop, so we must release it now.
2241 * To preserve proper semantics, we must do this before
2242 * any signal bookkeeping like checking group_stop_count.
2244 spin_unlock_irq(¤t->sighand->siglock);
2246 spin_lock_irq(¤t->sighand->siglock);
2250 * After this point ptrace_signal_wake_up or signal_wake_up
2251 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2252 * signal comes in. Handle previous ptrace_unlinks and fatal
2253 * signals here to prevent ptrace_stop sleeping in schedule.
2255 if (!current->ptrace || __fatal_signal_pending(current))
2258 set_special_state(TASK_TRACED);
2259 current->jobctl |= JOBCTL_TRACED;
2262 * We're committing to trapping. TRACED should be visible before
2263 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2264 * Also, transition to TRACED and updates to ->jobctl should be
2265 * atomic with respect to siglock and should be done after the arch
2266 * hook as siglock is released and regrabbed across it.
2271 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2273 * set_current_state() smp_wmb();
2275 * wait_task_stopped()
2276 * task_stopped_code()
2277 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2281 current->ptrace_message = message;
2282 current->last_siginfo = info;
2283 current->exit_code = exit_code;
2286 * If @why is CLD_STOPPED, we're trapping to participate in a group
2287 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2288 * across siglock relocks since INTERRUPT was scheduled, PENDING
2289 * could be clear now. We act as if SIGCONT is received after
2290 * TASK_TRACED is entered - ignore it.
2292 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2293 gstop_done = task_participate_group_stop(current);
2295 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2296 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2297 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2298 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2300 /* entering a trap, clear TRAPPING */
2301 task_clear_jobctl_trapping(current);
2303 spin_unlock_irq(¤t->sighand->siglock);
2304 read_lock(&tasklist_lock);
2306 * Notify parents of the stop.
2308 * While ptraced, there are two parents - the ptracer and
2309 * the real_parent of the group_leader. The ptracer should
2310 * know about every stop while the real parent is only
2311 * interested in the completion of group stop. The states
2312 * for the two don't interact with each other. Notify
2313 * separately unless they're gonna be duplicates.
2315 if (current->ptrace)
2316 do_notify_parent_cldstop(current, true, why);
2317 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2318 do_notify_parent_cldstop(current, false, why);
2321 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2322 * One a PREEMPTION kernel this can result in preemption requirement
2323 * which will be fulfilled after read_unlock() and the ptracer will be
2325 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2326 * this task wait in schedule(). If this task gets preempted then it
2327 * remains enqueued on the runqueue. The ptracer will observe this and
2328 * then sleep for a delay of one HZ tick. In the meantime this task
2329 * gets scheduled, enters schedule() and will wait for the ptracer.
2331 * This preemption point is not bad from a correctness point of
2332 * view but extends the runtime by one HZ tick time due to the
2333 * ptracer's sleep. The preempt-disable section ensures that there
2334 * will be no preemption between unlock and schedule() and so
2335 * improving the performance since the ptracer will observe that
2336 * the tracee is scheduled out once it gets on the CPU.
2338 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2339 * Therefore the task can be preempted after do_notify_parent_cldstop()
2340 * before unlocking tasklist_lock so there is no benefit in doing this.
2342 * In fact disabling preemption is harmful on PREEMPT_RT because
2343 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2344 * with preemption disabled due to the 'sleeping' spinlock
2345 * substitution of RT.
2347 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2349 read_unlock(&tasklist_lock);
2350 cgroup_enter_frozen();
2351 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2352 preempt_enable_no_resched();
2354 cgroup_leave_frozen(true);
2357 * We are back. Now reacquire the siglock before touching
2358 * last_siginfo, so that we are sure to have synchronized with
2359 * any signal-sending on another CPU that wants to examine it.
2361 spin_lock_irq(¤t->sighand->siglock);
2362 exit_code = current->exit_code;
2363 current->last_siginfo = NULL;
2364 current->ptrace_message = 0;
2365 current->exit_code = 0;
2367 /* LISTENING can be set only during STOP traps, clear it */
2368 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2371 * Queued signals ignored us while we were stopped for tracing.
2372 * So check for any that we should take before resuming user mode.
2373 * This sets TIF_SIGPENDING, but never clears it.
2375 recalc_sigpending_tsk(current);
2379 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2381 kernel_siginfo_t info;
2383 clear_siginfo(&info);
2384 info.si_signo = signr;
2385 info.si_code = exit_code;
2386 info.si_pid = task_pid_vnr(current);
2387 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2389 /* Let the debugger run. */
2390 return ptrace_stop(exit_code, why, message, &info);
2393 int ptrace_notify(int exit_code, unsigned long message)
2397 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2398 if (unlikely(task_work_pending(current)))
2401 spin_lock_irq(¤t->sighand->siglock);
2402 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2403 spin_unlock_irq(¤t->sighand->siglock);
2408 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2409 * @signr: signr causing group stop if initiating
2411 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2412 * and participate in it. If already set, participate in the existing
2413 * group stop. If participated in a group stop (and thus slept), %true is
2414 * returned with siglock released.
2416 * If ptraced, this function doesn't handle stop itself. Instead,
2417 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2418 * untouched. The caller must ensure that INTERRUPT trap handling takes
2419 * places afterwards.
2422 * Must be called with @current->sighand->siglock held, which is released
2426 * %false if group stop is already cancelled or ptrace trap is scheduled.
2427 * %true if participated in group stop.
2429 static bool do_signal_stop(int signr)
2430 __releases(¤t->sighand->siglock)
2432 struct signal_struct *sig = current->signal;
2434 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2435 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2436 struct task_struct *t;
2438 /* signr will be recorded in task->jobctl for retries */
2439 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2441 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2442 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2443 unlikely(sig->group_exec_task))
2446 * There is no group stop already in progress. We must
2449 * While ptraced, a task may be resumed while group stop is
2450 * still in effect and then receive a stop signal and
2451 * initiate another group stop. This deviates from the
2452 * usual behavior as two consecutive stop signals can't
2453 * cause two group stops when !ptraced. That is why we
2454 * also check !task_is_stopped(t) below.
2456 * The condition can be distinguished by testing whether
2457 * SIGNAL_STOP_STOPPED is already set. Don't generate
2458 * group_exit_code in such case.
2460 * This is not necessary for SIGNAL_STOP_CONTINUED because
2461 * an intervening stop signal is required to cause two
2462 * continued events regardless of ptrace.
2464 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2465 sig->group_exit_code = signr;
2467 sig->group_stop_count = 0;
2469 if (task_set_jobctl_pending(current, signr | gstop))
2470 sig->group_stop_count++;
2473 while_each_thread(current, t) {
2475 * Setting state to TASK_STOPPED for a group
2476 * stop is always done with the siglock held,
2477 * so this check has no races.
2479 if (!task_is_stopped(t) &&
2480 task_set_jobctl_pending(t, signr | gstop)) {
2481 sig->group_stop_count++;
2482 if (likely(!(t->ptrace & PT_SEIZED)))
2483 signal_wake_up(t, 0);
2485 ptrace_trap_notify(t);
2490 if (likely(!current->ptrace)) {
2494 * If there are no other threads in the group, or if there
2495 * is a group stop in progress and we are the last to stop,
2496 * report to the parent.
2498 if (task_participate_group_stop(current))
2499 notify = CLD_STOPPED;
2501 current->jobctl |= JOBCTL_STOPPED;
2502 set_special_state(TASK_STOPPED);
2503 spin_unlock_irq(¤t->sighand->siglock);
2506 * Notify the parent of the group stop completion. Because
2507 * we're not holding either the siglock or tasklist_lock
2508 * here, ptracer may attach inbetween; however, this is for
2509 * group stop and should always be delivered to the real
2510 * parent of the group leader. The new ptracer will get
2511 * its notification when this task transitions into
2515 read_lock(&tasklist_lock);
2516 do_notify_parent_cldstop(current, false, notify);
2517 read_unlock(&tasklist_lock);
2520 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2521 cgroup_enter_frozen();
2526 * While ptraced, group stop is handled by STOP trap.
2527 * Schedule it and let the caller deal with it.
2529 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2535 * do_jobctl_trap - take care of ptrace jobctl traps
2537 * When PT_SEIZED, it's used for both group stop and explicit
2538 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2539 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2540 * the stop signal; otherwise, %SIGTRAP.
2542 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2543 * number as exit_code and no siginfo.
2546 * Must be called with @current->sighand->siglock held, which may be
2547 * released and re-acquired before returning with intervening sleep.
2549 static void do_jobctl_trap(void)
2551 struct signal_struct *signal = current->signal;
2552 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2554 if (current->ptrace & PT_SEIZED) {
2555 if (!signal->group_stop_count &&
2556 !(signal->flags & SIGNAL_STOP_STOPPED))
2558 WARN_ON_ONCE(!signr);
2559 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2562 WARN_ON_ONCE(!signr);
2563 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2568 * do_freezer_trap - handle the freezer jobctl trap
2570 * Puts the task into frozen state, if only the task is not about to quit.
2571 * In this case it drops JOBCTL_TRAP_FREEZE.
2574 * Must be called with @current->sighand->siglock held,
2575 * which is always released before returning.
2577 static void do_freezer_trap(void)
2578 __releases(¤t->sighand->siglock)
2581 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2582 * let's make another loop to give it a chance to be handled.
2583 * In any case, we'll return back.
2585 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2586 JOBCTL_TRAP_FREEZE) {
2587 spin_unlock_irq(¤t->sighand->siglock);
2592 * Now we're sure that there is no pending fatal signal and no
2593 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2594 * immediately (if there is a non-fatal signal pending), and
2595 * put the task into sleep.
2597 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2598 clear_thread_flag(TIF_SIGPENDING);
2599 spin_unlock_irq(¤t->sighand->siglock);
2600 cgroup_enter_frozen();
2604 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2607 * We do not check sig_kernel_stop(signr) but set this marker
2608 * unconditionally because we do not know whether debugger will
2609 * change signr. This flag has no meaning unless we are going
2610 * to stop after return from ptrace_stop(). In this case it will
2611 * be checked in do_signal_stop(), we should only stop if it was
2612 * not cleared by SIGCONT while we were sleeping. See also the
2613 * comment in dequeue_signal().
2615 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2616 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2618 /* We're back. Did the debugger cancel the sig? */
2623 * Update the siginfo structure if the signal has
2624 * changed. If the debugger wanted something
2625 * specific in the siginfo structure then it should
2626 * have updated *info via PTRACE_SETSIGINFO.
2628 if (signr != info->si_signo) {
2629 clear_siginfo(info);
2630 info->si_signo = signr;
2632 info->si_code = SI_USER;
2634 info->si_pid = task_pid_vnr(current->parent);
2635 info->si_uid = from_kuid_munged(current_user_ns(),
2636 task_uid(current->parent));
2640 /* If the (new) signal is now blocked, requeue it. */
2641 if (sigismember(¤t->blocked, signr) ||
2642 fatal_signal_pending(current)) {
2643 send_signal_locked(signr, info, current, type);
2650 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2652 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2654 case SIL_FAULT_TRAPNO:
2655 case SIL_FAULT_MCEERR:
2656 case SIL_FAULT_BNDERR:
2657 case SIL_FAULT_PKUERR:
2658 case SIL_FAULT_PERF_EVENT:
2659 ksig->info.si_addr = arch_untagged_si_addr(
2660 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2672 bool get_signal(struct ksignal *ksig)
2674 struct sighand_struct *sighand = current->sighand;
2675 struct signal_struct *signal = current->signal;
2678 clear_notify_signal();
2679 if (unlikely(task_work_pending(current)))
2682 if (!task_sigpending(current))
2685 if (unlikely(uprobe_deny_signal()))
2689 * Do this once, we can't return to user-mode if freezing() == T.
2690 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2691 * thus do not need another check after return.
2696 spin_lock_irq(&sighand->siglock);
2699 * Every stopped thread goes here after wakeup. Check to see if
2700 * we should notify the parent, prepare_signal(SIGCONT) encodes
2701 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2703 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2706 if (signal->flags & SIGNAL_CLD_CONTINUED)
2707 why = CLD_CONTINUED;
2711 signal->flags &= ~SIGNAL_CLD_MASK;
2713 spin_unlock_irq(&sighand->siglock);
2716 * Notify the parent that we're continuing. This event is
2717 * always per-process and doesn't make whole lot of sense
2718 * for ptracers, who shouldn't consume the state via
2719 * wait(2) either, but, for backward compatibility, notify
2720 * the ptracer of the group leader too unless it's gonna be
2723 read_lock(&tasklist_lock);
2724 do_notify_parent_cldstop(current, false, why);
2726 if (ptrace_reparented(current->group_leader))
2727 do_notify_parent_cldstop(current->group_leader,
2729 read_unlock(&tasklist_lock);
2735 struct k_sigaction *ka;
2738 /* Has this task already been marked for death? */
2739 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2740 signal->group_exec_task) {
2741 clear_siginfo(&ksig->info);
2742 ksig->info.si_signo = signr = SIGKILL;
2743 sigdelset(¤t->pending.signal, SIGKILL);
2744 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2745 &sighand->action[SIGKILL - 1]);
2746 recalc_sigpending();
2750 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2754 if (unlikely(current->jobctl &
2755 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2756 if (current->jobctl & JOBCTL_TRAP_MASK) {
2758 spin_unlock_irq(&sighand->siglock);
2759 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766 * If the task is leaving the frozen state, let's update
2767 * cgroup counters and reset the frozen bit.
2769 if (unlikely(cgroup_task_frozen(current))) {
2770 spin_unlock_irq(&sighand->siglock);
2771 cgroup_leave_frozen(false);
2776 * Signals generated by the execution of an instruction
2777 * need to be delivered before any other pending signals
2778 * so that the instruction pointer in the signal stack
2779 * frame points to the faulting instruction.
2782 signr = dequeue_synchronous_signal(&ksig->info);
2784 signr = dequeue_signal(current, ¤t->blocked,
2785 &ksig->info, &type);
2788 break; /* will return 0 */
2790 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2791 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2792 signr = ptrace_signal(signr, &ksig->info, type);
2797 ka = &sighand->action[signr-1];
2799 /* Trace actually delivered signals. */
2800 trace_signal_deliver(signr, &ksig->info, ka);
2802 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2804 if (ka->sa.sa_handler != SIG_DFL) {
2805 /* Run the handler. */
2808 if (ka->sa.sa_flags & SA_ONESHOT)
2809 ka->sa.sa_handler = SIG_DFL;
2811 break; /* will return non-zero "signr" value */
2815 * Now we are doing the default action for this signal.
2817 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2821 * Global init gets no signals it doesn't want.
2822 * Container-init gets no signals it doesn't want from same
2825 * Note that if global/container-init sees a sig_kernel_only()
2826 * signal here, the signal must have been generated internally
2827 * or must have come from an ancestor namespace. In either
2828 * case, the signal cannot be dropped.
2830 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2831 !sig_kernel_only(signr))
2834 if (sig_kernel_stop(signr)) {
2836 * The default action is to stop all threads in
2837 * the thread group. The job control signals
2838 * do nothing in an orphaned pgrp, but SIGSTOP
2839 * always works. Note that siglock needs to be
2840 * dropped during the call to is_orphaned_pgrp()
2841 * because of lock ordering with tasklist_lock.
2842 * This allows an intervening SIGCONT to be posted.
2843 * We need to check for that and bail out if necessary.
2845 if (signr != SIGSTOP) {
2846 spin_unlock_irq(&sighand->siglock);
2848 /* signals can be posted during this window */
2850 if (is_current_pgrp_orphaned())
2853 spin_lock_irq(&sighand->siglock);
2856 if (likely(do_signal_stop(ksig->info.si_signo))) {
2857 /* It released the siglock. */
2862 * We didn't actually stop, due to a race
2863 * with SIGCONT or something like that.
2869 spin_unlock_irq(&sighand->siglock);
2870 if (unlikely(cgroup_task_frozen(current)))
2871 cgroup_leave_frozen(true);
2874 * Anything else is fatal, maybe with a core dump.
2876 current->flags |= PF_SIGNALED;
2878 if (sig_kernel_coredump(signr)) {
2879 if (print_fatal_signals)
2880 print_fatal_signal(ksig->info.si_signo);
2881 proc_coredump_connector(current);
2883 * If it was able to dump core, this kills all
2884 * other threads in the group and synchronizes with
2885 * their demise. If we lost the race with another
2886 * thread getting here, it set group_exit_code
2887 * first and our do_group_exit call below will use
2888 * that value and ignore the one we pass it.
2890 do_coredump(&ksig->info);
2894 * PF_USER_WORKER threads will catch and exit on fatal signals
2895 * themselves. They have cleanup that must be performed, so
2896 * we cannot call do_exit() on their behalf.
2898 if (current->flags & PF_USER_WORKER)
2902 * Death signals, no core dump.
2904 do_group_exit(ksig->info.si_signo);
2907 spin_unlock_irq(&sighand->siglock);
2911 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2912 hide_si_addr_tag_bits(ksig);
2914 return ksig->sig > 0;
2918 * signal_delivered - called after signal delivery to update blocked signals
2919 * @ksig: kernel signal struct
2920 * @stepping: nonzero if debugger single-step or block-step in use
2922 * This function should be called when a signal has successfully been
2923 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2924 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2925 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2927 static void signal_delivered(struct ksignal *ksig, int stepping)
2931 /* A signal was successfully delivered, and the
2932 saved sigmask was stored on the signal frame,
2933 and will be restored by sigreturn. So we can
2934 simply clear the restore sigmask flag. */
2935 clear_restore_sigmask();
2937 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2938 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2939 sigaddset(&blocked, ksig->sig);
2940 set_current_blocked(&blocked);
2941 if (current->sas_ss_flags & SS_AUTODISARM)
2942 sas_ss_reset(current);
2944 ptrace_notify(SIGTRAP, 0);
2947 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2950 force_sigsegv(ksig->sig);
2952 signal_delivered(ksig, stepping);
2956 * It could be that complete_signal() picked us to notify about the
2957 * group-wide signal. Other threads should be notified now to take
2958 * the shared signals in @which since we will not.
2960 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2963 struct task_struct *t;
2965 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2966 if (sigisemptyset(&retarget))
2970 while_each_thread(tsk, t) {
2971 if (t->flags & PF_EXITING)
2974 if (!has_pending_signals(&retarget, &t->blocked))
2976 /* Remove the signals this thread can handle. */
2977 sigandsets(&retarget, &retarget, &t->blocked);
2979 if (!task_sigpending(t))
2980 signal_wake_up(t, 0);
2982 if (sigisemptyset(&retarget))
2987 void exit_signals(struct task_struct *tsk)
2993 * @tsk is about to have PF_EXITING set - lock out users which
2994 * expect stable threadgroup.
2996 cgroup_threadgroup_change_begin(tsk);
2998 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2999 sched_mm_cid_exit_signals(tsk);
3000 tsk->flags |= PF_EXITING;
3001 cgroup_threadgroup_change_end(tsk);
3005 spin_lock_irq(&tsk->sighand->siglock);
3007 * From now this task is not visible for group-wide signals,
3008 * see wants_signal(), do_signal_stop().
3010 sched_mm_cid_exit_signals(tsk);
3011 tsk->flags |= PF_EXITING;
3013 cgroup_threadgroup_change_end(tsk);
3015 if (!task_sigpending(tsk))
3018 unblocked = tsk->blocked;
3019 signotset(&unblocked);
3020 retarget_shared_pending(tsk, &unblocked);
3022 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3023 task_participate_group_stop(tsk))
3024 group_stop = CLD_STOPPED;
3026 spin_unlock_irq(&tsk->sighand->siglock);
3029 * If group stop has completed, deliver the notification. This
3030 * should always go to the real parent of the group leader.
3032 if (unlikely(group_stop)) {
3033 read_lock(&tasklist_lock);
3034 do_notify_parent_cldstop(tsk, false, group_stop);
3035 read_unlock(&tasklist_lock);
3040 * System call entry points.
3044 * sys_restart_syscall - restart a system call
3046 SYSCALL_DEFINE0(restart_syscall)
3048 struct restart_block *restart = ¤t->restart_block;
3049 return restart->fn(restart);
3052 long do_no_restart_syscall(struct restart_block *param)
3057 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3059 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3060 sigset_t newblocked;
3061 /* A set of now blocked but previously unblocked signals. */
3062 sigandnsets(&newblocked, newset, ¤t->blocked);
3063 retarget_shared_pending(tsk, &newblocked);
3065 tsk->blocked = *newset;
3066 recalc_sigpending();
3070 * set_current_blocked - change current->blocked mask
3073 * It is wrong to change ->blocked directly, this helper should be used
3074 * to ensure the process can't miss a shared signal we are going to block.
3076 void set_current_blocked(sigset_t *newset)
3078 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3079 __set_current_blocked(newset);
3082 void __set_current_blocked(const sigset_t *newset)
3084 struct task_struct *tsk = current;
3087 * In case the signal mask hasn't changed, there is nothing we need
3088 * to do. The current->blocked shouldn't be modified by other task.
3090 if (sigequalsets(&tsk->blocked, newset))
3093 spin_lock_irq(&tsk->sighand->siglock);
3094 __set_task_blocked(tsk, newset);
3095 spin_unlock_irq(&tsk->sighand->siglock);
3099 * This is also useful for kernel threads that want to temporarily
3100 * (or permanently) block certain signals.
3102 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3103 * interface happily blocks "unblockable" signals like SIGKILL
3106 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3108 struct task_struct *tsk = current;
3111 /* Lockless, only current can change ->blocked, never from irq */
3113 *oldset = tsk->blocked;
3117 sigorsets(&newset, &tsk->blocked, set);
3120 sigandnsets(&newset, &tsk->blocked, set);
3129 __set_current_blocked(&newset);
3132 EXPORT_SYMBOL(sigprocmask);
3135 * The api helps set app-provided sigmasks.
3137 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3138 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3140 * Note that it does set_restore_sigmask() in advance, so it must be always
3141 * paired with restore_saved_sigmask_unless() before return from syscall.
3143 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3149 if (sigsetsize != sizeof(sigset_t))
3151 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3154 set_restore_sigmask();
3155 current->saved_sigmask = current->blocked;
3156 set_current_blocked(&kmask);
3161 #ifdef CONFIG_COMPAT
3162 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169 if (sigsetsize != sizeof(compat_sigset_t))
3171 if (get_compat_sigset(&kmask, umask))
3174 set_restore_sigmask();
3175 current->saved_sigmask = current->blocked;
3176 set_current_blocked(&kmask);
3183 * sys_rt_sigprocmask - change the list of currently blocked signals
3184 * @how: whether to add, remove, or set signals
3185 * @nset: stores pending signals
3186 * @oset: previous value of signal mask if non-null
3187 * @sigsetsize: size of sigset_t type
3189 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3190 sigset_t __user *, oset, size_t, sigsetsize)
3192 sigset_t old_set, new_set;
3195 /* XXX: Don't preclude handling different sized sigset_t's. */
3196 if (sigsetsize != sizeof(sigset_t))
3199 old_set = current->blocked;
3202 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3204 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3206 error = sigprocmask(how, &new_set, NULL);
3212 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219 #ifdef CONFIG_COMPAT
3220 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3221 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3223 sigset_t old_set = current->blocked;
3225 /* XXX: Don't preclude handling different sized sigset_t's. */
3226 if (sigsetsize != sizeof(sigset_t))
3232 if (get_compat_sigset(&new_set, nset))
3234 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3236 error = sigprocmask(how, &new_set, NULL);
3240 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3244 static void do_sigpending(sigset_t *set)
3246 spin_lock_irq(¤t->sighand->siglock);
3247 sigorsets(set, ¤t->pending.signal,
3248 ¤t->signal->shared_pending.signal);
3249 spin_unlock_irq(¤t->sighand->siglock);
3251 /* Outside the lock because only this thread touches it. */
3252 sigandsets(set, ¤t->blocked, set);
3256 * sys_rt_sigpending - examine a pending signal that has been raised
3258 * @uset: stores pending signals
3259 * @sigsetsize: size of sigset_t type or larger
3261 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3265 if (sigsetsize > sizeof(*uset))
3268 do_sigpending(&set);
3270 if (copy_to_user(uset, &set, sigsetsize))
3276 #ifdef CONFIG_COMPAT
3277 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3278 compat_size_t, sigsetsize)
3282 if (sigsetsize > sizeof(*uset))
3285 do_sigpending(&set);
3287 return put_compat_sigset(uset, &set, sigsetsize);
3291 static const struct {
3292 unsigned char limit, layout;
3294 [SIGILL] = { NSIGILL, SIL_FAULT },
3295 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3296 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3297 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3298 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3300 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3302 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3303 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3304 [SIGSYS] = { NSIGSYS, SIL_SYS },
3307 static bool known_siginfo_layout(unsigned sig, int si_code)
3309 if (si_code == SI_KERNEL)
3311 else if ((si_code > SI_USER)) {
3312 if (sig_specific_sicodes(sig)) {
3313 if (si_code <= sig_sicodes[sig].limit)
3316 else if (si_code <= NSIGPOLL)
3319 else if (si_code >= SI_DETHREAD)
3321 else if (si_code == SI_ASYNCNL)
3326 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3328 enum siginfo_layout layout = SIL_KILL;
3329 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3330 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3331 (si_code <= sig_sicodes[sig].limit)) {
3332 layout = sig_sicodes[sig].layout;
3333 /* Handle the exceptions */
3334 if ((sig == SIGBUS) &&
3335 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3336 layout = SIL_FAULT_MCEERR;
3337 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3338 layout = SIL_FAULT_BNDERR;
3340 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3341 layout = SIL_FAULT_PKUERR;
3343 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3344 layout = SIL_FAULT_PERF_EVENT;
3345 else if (IS_ENABLED(CONFIG_SPARC) &&
3346 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3347 layout = SIL_FAULT_TRAPNO;
3348 else if (IS_ENABLED(CONFIG_ALPHA) &&
3350 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3351 layout = SIL_FAULT_TRAPNO;
3353 else if (si_code <= NSIGPOLL)
3356 if (si_code == SI_TIMER)
3358 else if (si_code == SI_SIGIO)
3360 else if (si_code < 0)
3366 static inline char __user *si_expansion(const siginfo_t __user *info)
3368 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3371 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3373 char __user *expansion = si_expansion(to);
3374 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3376 if (clear_user(expansion, SI_EXPANSION_SIZE))
3381 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3382 const siginfo_t __user *from)
3384 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3385 char __user *expansion = si_expansion(from);
3386 char buf[SI_EXPANSION_SIZE];
3389 * An unknown si_code might need more than
3390 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3391 * extra bytes are 0. This guarantees copy_siginfo_to_user
3392 * will return this data to userspace exactly.
3394 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3396 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3404 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3405 const siginfo_t __user *from)
3407 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3409 to->si_signo = signo;
3410 return post_copy_siginfo_from_user(to, from);
3413 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3415 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3417 return post_copy_siginfo_from_user(to, from);
3420 #ifdef CONFIG_COMPAT
3422 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3423 * @to: compat siginfo destination
3424 * @from: kernel siginfo source
3426 * Note: This function does not work properly for the SIGCHLD on x32, but
3427 * fortunately it doesn't have to. The only valid callers for this function are
3428 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3429 * The latter does not care because SIGCHLD will never cause a coredump.
3431 void copy_siginfo_to_external32(struct compat_siginfo *to,
3432 const struct kernel_siginfo *from)
3434 memset(to, 0, sizeof(*to));
3436 to->si_signo = from->si_signo;
3437 to->si_errno = from->si_errno;
3438 to->si_code = from->si_code;
3439 switch(siginfo_layout(from->si_signo, from->si_code)) {
3441 to->si_pid = from->si_pid;
3442 to->si_uid = from->si_uid;
3445 to->si_tid = from->si_tid;
3446 to->si_overrun = from->si_overrun;
3447 to->si_int = from->si_int;
3450 to->si_band = from->si_band;
3451 to->si_fd = from->si_fd;
3454 to->si_addr = ptr_to_compat(from->si_addr);
3456 case SIL_FAULT_TRAPNO:
3457 to->si_addr = ptr_to_compat(from->si_addr);
3458 to->si_trapno = from->si_trapno;
3460 case SIL_FAULT_MCEERR:
3461 to->si_addr = ptr_to_compat(from->si_addr);
3462 to->si_addr_lsb = from->si_addr_lsb;
3464 case SIL_FAULT_BNDERR:
3465 to->si_addr = ptr_to_compat(from->si_addr);
3466 to->si_lower = ptr_to_compat(from->si_lower);
3467 to->si_upper = ptr_to_compat(from->si_upper);
3469 case SIL_FAULT_PKUERR:
3470 to->si_addr = ptr_to_compat(from->si_addr);
3471 to->si_pkey = from->si_pkey;
3473 case SIL_FAULT_PERF_EVENT:
3474 to->si_addr = ptr_to_compat(from->si_addr);
3475 to->si_perf_data = from->si_perf_data;
3476 to->si_perf_type = from->si_perf_type;
3477 to->si_perf_flags = from->si_perf_flags;
3480 to->si_pid = from->si_pid;
3481 to->si_uid = from->si_uid;
3482 to->si_status = from->si_status;
3483 to->si_utime = from->si_utime;
3484 to->si_stime = from->si_stime;
3487 to->si_pid = from->si_pid;
3488 to->si_uid = from->si_uid;
3489 to->si_int = from->si_int;
3492 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3493 to->si_syscall = from->si_syscall;
3494 to->si_arch = from->si_arch;
3499 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3500 const struct kernel_siginfo *from)
3502 struct compat_siginfo new;
3504 copy_siginfo_to_external32(&new, from);
3505 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3510 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3511 const struct compat_siginfo *from)
3514 to->si_signo = from->si_signo;
3515 to->si_errno = from->si_errno;
3516 to->si_code = from->si_code;
3517 switch(siginfo_layout(from->si_signo, from->si_code)) {
3519 to->si_pid = from->si_pid;
3520 to->si_uid = from->si_uid;
3523 to->si_tid = from->si_tid;
3524 to->si_overrun = from->si_overrun;
3525 to->si_int = from->si_int;
3528 to->si_band = from->si_band;
3529 to->si_fd = from->si_fd;
3532 to->si_addr = compat_ptr(from->si_addr);
3534 case SIL_FAULT_TRAPNO:
3535 to->si_addr = compat_ptr(from->si_addr);
3536 to->si_trapno = from->si_trapno;
3538 case SIL_FAULT_MCEERR:
3539 to->si_addr = compat_ptr(from->si_addr);
3540 to->si_addr_lsb = from->si_addr_lsb;
3542 case SIL_FAULT_BNDERR:
3543 to->si_addr = compat_ptr(from->si_addr);
3544 to->si_lower = compat_ptr(from->si_lower);
3545 to->si_upper = compat_ptr(from->si_upper);
3547 case SIL_FAULT_PKUERR:
3548 to->si_addr = compat_ptr(from->si_addr);
3549 to->si_pkey = from->si_pkey;
3551 case SIL_FAULT_PERF_EVENT:
3552 to->si_addr = compat_ptr(from->si_addr);
3553 to->si_perf_data = from->si_perf_data;
3554 to->si_perf_type = from->si_perf_type;
3555 to->si_perf_flags = from->si_perf_flags;
3558 to->si_pid = from->si_pid;
3559 to->si_uid = from->si_uid;
3560 to->si_status = from->si_status;
3561 #ifdef CONFIG_X86_X32_ABI
3562 if (in_x32_syscall()) {
3563 to->si_utime = from->_sifields._sigchld_x32._utime;
3564 to->si_stime = from->_sifields._sigchld_x32._stime;
3568 to->si_utime = from->si_utime;
3569 to->si_stime = from->si_stime;
3573 to->si_pid = from->si_pid;
3574 to->si_uid = from->si_uid;
3575 to->si_int = from->si_int;
3578 to->si_call_addr = compat_ptr(from->si_call_addr);
3579 to->si_syscall = from->si_syscall;
3580 to->si_arch = from->si_arch;
3586 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3587 const struct compat_siginfo __user *ufrom)
3589 struct compat_siginfo from;
3591 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3594 from.si_signo = signo;
3595 return post_copy_siginfo_from_user32(to, &from);
3598 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3599 const struct compat_siginfo __user *ufrom)
3601 struct compat_siginfo from;
3603 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3606 return post_copy_siginfo_from_user32(to, &from);
3608 #endif /* CONFIG_COMPAT */
3611 * do_sigtimedwait - wait for queued signals specified in @which
3612 * @which: queued signals to wait for
3613 * @info: if non-null, the signal's siginfo is returned here
3614 * @ts: upper bound on process time suspension
3616 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3617 const struct timespec64 *ts)
3619 ktime_t *to = NULL, timeout = KTIME_MAX;
3620 struct task_struct *tsk = current;
3621 sigset_t mask = *which;
3626 if (!timespec64_valid(ts))
3628 timeout = timespec64_to_ktime(*ts);
3633 * Invert the set of allowed signals to get those we want to block.
3635 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3638 spin_lock_irq(&tsk->sighand->siglock);
3639 sig = dequeue_signal(tsk, &mask, info, &type);
3640 if (!sig && timeout) {
3642 * None ready, temporarily unblock those we're interested
3643 * while we are sleeping in so that we'll be awakened when
3644 * they arrive. Unblocking is always fine, we can avoid
3645 * set_current_blocked().
3647 tsk->real_blocked = tsk->blocked;
3648 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3649 recalc_sigpending();
3650 spin_unlock_irq(&tsk->sighand->siglock);
3652 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3653 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3655 spin_lock_irq(&tsk->sighand->siglock);
3656 __set_task_blocked(tsk, &tsk->real_blocked);
3657 sigemptyset(&tsk->real_blocked);
3658 sig = dequeue_signal(tsk, &mask, info, &type);
3660 spin_unlock_irq(&tsk->sighand->siglock);
3664 return ret ? -EINTR : -EAGAIN;
3668 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3670 * @uthese: queued signals to wait for
3671 * @uinfo: if non-null, the signal's siginfo is returned here
3672 * @uts: upper bound on process time suspension
3673 * @sigsetsize: size of sigset_t type
3675 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3676 siginfo_t __user *, uinfo,
3677 const struct __kernel_timespec __user *, uts,
3681 struct timespec64 ts;
3682 kernel_siginfo_t info;
3685 /* XXX: Don't preclude handling different sized sigset_t's. */
3686 if (sigsetsize != sizeof(sigset_t))
3689 if (copy_from_user(&these, uthese, sizeof(these)))
3693 if (get_timespec64(&ts, uts))
3697 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3699 if (ret > 0 && uinfo) {
3700 if (copy_siginfo_to_user(uinfo, &info))
3707 #ifdef CONFIG_COMPAT_32BIT_TIME
3708 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3709 siginfo_t __user *, uinfo,
3710 const struct old_timespec32 __user *, uts,
3714 struct timespec64 ts;
3715 kernel_siginfo_t info;
3718 if (sigsetsize != sizeof(sigset_t))
3721 if (copy_from_user(&these, uthese, sizeof(these)))
3725 if (get_old_timespec32(&ts, uts))
3729 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3731 if (ret > 0 && uinfo) {
3732 if (copy_siginfo_to_user(uinfo, &info))
3740 #ifdef CONFIG_COMPAT
3741 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3742 struct compat_siginfo __user *, uinfo,
3743 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3746 struct timespec64 t;
3747 kernel_siginfo_t info;
3750 if (sigsetsize != sizeof(sigset_t))
3753 if (get_compat_sigset(&s, uthese))
3757 if (get_timespec64(&t, uts))
3761 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3763 if (ret > 0 && uinfo) {
3764 if (copy_siginfo_to_user32(uinfo, &info))
3771 #ifdef CONFIG_COMPAT_32BIT_TIME
3772 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3773 struct compat_siginfo __user *, uinfo,
3774 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3777 struct timespec64 t;
3778 kernel_siginfo_t info;
3781 if (sigsetsize != sizeof(sigset_t))
3784 if (get_compat_sigset(&s, uthese))
3788 if (get_old_timespec32(&t, uts))
3792 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3794 if (ret > 0 && uinfo) {
3795 if (copy_siginfo_to_user32(uinfo, &info))
3804 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3806 clear_siginfo(info);
3807 info->si_signo = sig;
3809 info->si_code = SI_USER;
3810 info->si_pid = task_tgid_vnr(current);
3811 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3815 * sys_kill - send a signal to a process
3816 * @pid: the PID of the process
3817 * @sig: signal to be sent
3819 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3821 struct kernel_siginfo info;
3823 prepare_kill_siginfo(sig, &info);
3825 return kill_something_info(sig, &info, pid);
3829 * Verify that the signaler and signalee either are in the same pid namespace
3830 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3833 static bool access_pidfd_pidns(struct pid *pid)
3835 struct pid_namespace *active = task_active_pid_ns(current);
3836 struct pid_namespace *p = ns_of_pid(pid);
3849 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3850 siginfo_t __user *info)
3852 #ifdef CONFIG_COMPAT
3854 * Avoid hooking up compat syscalls and instead handle necessary
3855 * conversions here. Note, this is a stop-gap measure and should not be
3856 * considered a generic solution.
3858 if (in_compat_syscall())
3859 return copy_siginfo_from_user32(
3860 kinfo, (struct compat_siginfo __user *)info);
3862 return copy_siginfo_from_user(kinfo, info);
3865 static struct pid *pidfd_to_pid(const struct file *file)
3869 pid = pidfd_pid(file);
3873 return tgid_pidfd_to_pid(file);
3877 * sys_pidfd_send_signal - Signal a process through a pidfd
3878 * @pidfd: file descriptor of the process
3879 * @sig: signal to send
3880 * @info: signal info
3881 * @flags: future flags
3883 * The syscall currently only signals via PIDTYPE_PID which covers
3884 * kill(<positive-pid>, <signal>. It does not signal threads or process
3886 * In order to extend the syscall to threads and process groups the @flags
3887 * argument should be used. In essence, the @flags argument will determine
3888 * what is signaled and not the file descriptor itself. Put in other words,
3889 * grouping is a property of the flags argument not a property of the file
3892 * Return: 0 on success, negative errno on failure
3894 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3895 siginfo_t __user *, info, unsigned int, flags)
3900 kernel_siginfo_t kinfo;
3902 /* Enforce flags be set to 0 until we add an extension. */
3910 /* Is this a pidfd? */
3911 pid = pidfd_to_pid(f.file);
3918 if (!access_pidfd_pidns(pid))
3922 ret = copy_siginfo_from_user_any(&kinfo, info);
3927 if (unlikely(sig != kinfo.si_signo))
3930 /* Only allow sending arbitrary signals to yourself. */
3932 if ((task_pid(current) != pid) &&
3933 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3936 prepare_kill_siginfo(sig, &kinfo);
3939 ret = kill_pid_info(sig, &kinfo, pid);
3947 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3949 struct task_struct *p;
3953 p = find_task_by_vpid(pid);
3954 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3955 error = check_kill_permission(sig, info, p);
3957 * The null signal is a permissions and process existence
3958 * probe. No signal is actually delivered.
3960 if (!error && sig) {
3961 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3963 * If lock_task_sighand() failed we pretend the task
3964 * dies after receiving the signal. The window is tiny,
3965 * and the signal is private anyway.
3967 if (unlikely(error == -ESRCH))
3976 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3978 struct kernel_siginfo info;
3980 clear_siginfo(&info);
3981 info.si_signo = sig;
3983 info.si_code = SI_TKILL;
3984 info.si_pid = task_tgid_vnr(current);
3985 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3987 return do_send_specific(tgid, pid, sig, &info);
3991 * sys_tgkill - send signal to one specific thread
3992 * @tgid: the thread group ID of the thread
3993 * @pid: the PID of the thread
3994 * @sig: signal to be sent
3996 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3997 * exists but it's not belonging to the target process anymore. This
3998 * method solves the problem of threads exiting and PIDs getting reused.
4000 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4002 /* This is only valid for single tasks */
4003 if (pid <= 0 || tgid <= 0)
4006 return do_tkill(tgid, pid, sig);
4010 * sys_tkill - send signal to one specific task
4011 * @pid: the PID of the task
4012 * @sig: signal to be sent
4014 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4016 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4018 /* This is only valid for single tasks */
4022 return do_tkill(0, pid, sig);
4025 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4027 /* Not even root can pretend to send signals from the kernel.
4028 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4030 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031 (task_pid_vnr(current) != pid))
4034 /* POSIX.1b doesn't mention process groups. */
4035 return kill_proc_info(sig, info, pid);
4039 * sys_rt_sigqueueinfo - send signal information to a signal
4040 * @pid: the PID of the thread
4041 * @sig: signal to be sent
4042 * @uinfo: signal info to be sent
4044 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4045 siginfo_t __user *, uinfo)
4047 kernel_siginfo_t info;
4048 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4051 return do_rt_sigqueueinfo(pid, sig, &info);
4054 #ifdef CONFIG_COMPAT
4055 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4058 struct compat_siginfo __user *, uinfo)
4060 kernel_siginfo_t info;
4061 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4064 return do_rt_sigqueueinfo(pid, sig, &info);
4068 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4070 /* This is only valid for single tasks */
4071 if (pid <= 0 || tgid <= 0)
4074 /* Not even root can pretend to send signals from the kernel.
4075 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4077 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4078 (task_pid_vnr(current) != pid))
4081 return do_send_specific(tgid, pid, sig, info);
4084 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4085 siginfo_t __user *, uinfo)
4087 kernel_siginfo_t info;
4088 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4091 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4094 #ifdef CONFIG_COMPAT
4095 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4099 struct compat_siginfo __user *, uinfo)
4101 kernel_siginfo_t info;
4102 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4105 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4110 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4112 void kernel_sigaction(int sig, __sighandler_t action)
4114 spin_lock_irq(¤t->sighand->siglock);
4115 current->sighand->action[sig - 1].sa.sa_handler = action;
4116 if (action == SIG_IGN) {
4120 sigaddset(&mask, sig);
4122 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4123 flush_sigqueue_mask(&mask, ¤t->pending);
4124 recalc_sigpending();
4126 spin_unlock_irq(¤t->sighand->siglock);
4128 EXPORT_SYMBOL(kernel_sigaction);
4130 void __weak sigaction_compat_abi(struct k_sigaction *act,
4131 struct k_sigaction *oact)
4135 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4137 struct task_struct *p = current, *t;
4138 struct k_sigaction *k;
4141 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4144 k = &p->sighand->action[sig-1];
4146 spin_lock_irq(&p->sighand->siglock);
4147 if (k->sa.sa_flags & SA_IMMUTABLE) {
4148 spin_unlock_irq(&p->sighand->siglock);
4155 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4156 * e.g. by having an architecture use the bit in their uapi.
4158 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4161 * Clear unknown flag bits in order to allow userspace to detect missing
4162 * support for flag bits and to allow the kernel to use non-uapi bits
4166 act->sa.sa_flags &= UAPI_SA_FLAGS;
4168 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4170 sigaction_compat_abi(act, oact);
4173 sigdelsetmask(&act->sa.sa_mask,
4174 sigmask(SIGKILL) | sigmask(SIGSTOP));
4178 * "Setting a signal action to SIG_IGN for a signal that is
4179 * pending shall cause the pending signal to be discarded,
4180 * whether or not it is blocked."
4182 * "Setting a signal action to SIG_DFL for a signal that is
4183 * pending and whose default action is to ignore the signal
4184 * (for example, SIGCHLD), shall cause the pending signal to
4185 * be discarded, whether or not it is blocked"
4187 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4189 sigaddset(&mask, sig);
4190 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4191 for_each_thread(p, t)
4192 flush_sigqueue_mask(&mask, &t->pending);
4196 spin_unlock_irq(&p->sighand->siglock);
4200 #ifdef CONFIG_DYNAMIC_SIGFRAME
4201 static inline void sigaltstack_lock(void)
4202 __acquires(¤t->sighand->siglock)
4204 spin_lock_irq(¤t->sighand->siglock);
4207 static inline void sigaltstack_unlock(void)
4208 __releases(¤t->sighand->siglock)
4210 spin_unlock_irq(¤t->sighand->siglock);
4213 static inline void sigaltstack_lock(void) { }
4214 static inline void sigaltstack_unlock(void) { }
4218 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4221 struct task_struct *t = current;
4225 memset(oss, 0, sizeof(stack_t));
4226 oss->ss_sp = (void __user *) t->sas_ss_sp;
4227 oss->ss_size = t->sas_ss_size;
4228 oss->ss_flags = sas_ss_flags(sp) |
4229 (current->sas_ss_flags & SS_FLAG_BITS);
4233 void __user *ss_sp = ss->ss_sp;
4234 size_t ss_size = ss->ss_size;
4235 unsigned ss_flags = ss->ss_flags;
4238 if (unlikely(on_sig_stack(sp)))
4241 ss_mode = ss_flags & ~SS_FLAG_BITS;
4242 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4247 * Return before taking any locks if no actual
4248 * sigaltstack changes were requested.
4250 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4251 t->sas_ss_size == ss_size &&
4252 t->sas_ss_flags == ss_flags)
4256 if (ss_mode == SS_DISABLE) {
4260 if (unlikely(ss_size < min_ss_size))
4262 if (!sigaltstack_size_valid(ss_size))
4266 t->sas_ss_sp = (unsigned long) ss_sp;
4267 t->sas_ss_size = ss_size;
4268 t->sas_ss_flags = ss_flags;
4270 sigaltstack_unlock();
4275 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4279 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4281 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4282 current_user_stack_pointer(),
4284 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4289 int restore_altstack(const stack_t __user *uss)
4292 if (copy_from_user(&new, uss, sizeof(stack_t)))
4294 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4296 /* squash all but EFAULT for now */
4300 int __save_altstack(stack_t __user *uss, unsigned long sp)
4302 struct task_struct *t = current;
4303 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4304 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4305 __put_user(t->sas_ss_size, &uss->ss_size);
4309 #ifdef CONFIG_COMPAT
4310 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4311 compat_stack_t __user *uoss_ptr)
4317 compat_stack_t uss32;
4318 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4320 uss.ss_sp = compat_ptr(uss32.ss_sp);
4321 uss.ss_flags = uss32.ss_flags;
4322 uss.ss_size = uss32.ss_size;
4324 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4325 compat_user_stack_pointer(),
4326 COMPAT_MINSIGSTKSZ);
4327 if (ret >= 0 && uoss_ptr) {
4329 memset(&old, 0, sizeof(old));
4330 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4331 old.ss_flags = uoss.ss_flags;
4332 old.ss_size = uoss.ss_size;
4333 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4339 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4340 const compat_stack_t __user *, uss_ptr,
4341 compat_stack_t __user *, uoss_ptr)
4343 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4346 int compat_restore_altstack(const compat_stack_t __user *uss)
4348 int err = do_compat_sigaltstack(uss, NULL);
4349 /* squash all but -EFAULT for now */
4350 return err == -EFAULT ? err : 0;
4353 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4356 struct task_struct *t = current;
4357 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4359 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4360 __put_user(t->sas_ss_size, &uss->ss_size);
4365 #ifdef __ARCH_WANT_SYS_SIGPENDING
4368 * sys_sigpending - examine pending signals
4369 * @uset: where mask of pending signal is returned
4371 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4375 if (sizeof(old_sigset_t) > sizeof(*uset))
4378 do_sigpending(&set);
4380 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4386 #ifdef CONFIG_COMPAT
4387 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4391 do_sigpending(&set);
4393 return put_user(set.sig[0], set32);
4399 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4401 * sys_sigprocmask - examine and change blocked signals
4402 * @how: whether to add, remove, or set signals
4403 * @nset: signals to add or remove (if non-null)
4404 * @oset: previous value of signal mask if non-null
4406 * Some platforms have their own version with special arguments;
4407 * others support only sys_rt_sigprocmask.
4410 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4411 old_sigset_t __user *, oset)
4413 old_sigset_t old_set, new_set;
4414 sigset_t new_blocked;
4416 old_set = current->blocked.sig[0];
4419 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4422 new_blocked = current->blocked;
4426 sigaddsetmask(&new_blocked, new_set);
4429 sigdelsetmask(&new_blocked, new_set);
4432 new_blocked.sig[0] = new_set;
4438 set_current_blocked(&new_blocked);
4442 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4448 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4450 #ifndef CONFIG_ODD_RT_SIGACTION
4452 * sys_rt_sigaction - alter an action taken by a process
4453 * @sig: signal to be sent
4454 * @act: new sigaction
4455 * @oact: used to save the previous sigaction
4456 * @sigsetsize: size of sigset_t type
4458 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4459 const struct sigaction __user *, act,
4460 struct sigaction __user *, oact,
4463 struct k_sigaction new_sa, old_sa;
4466 /* XXX: Don't preclude handling different sized sigset_t's. */
4467 if (sigsetsize != sizeof(sigset_t))
4470 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4473 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4477 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4482 #ifdef CONFIG_COMPAT
4483 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4484 const struct compat_sigaction __user *, act,
4485 struct compat_sigaction __user *, oact,
4486 compat_size_t, sigsetsize)
4488 struct k_sigaction new_ka, old_ka;
4489 #ifdef __ARCH_HAS_SA_RESTORER
4490 compat_uptr_t restorer;
4494 /* XXX: Don't preclude handling different sized sigset_t's. */
4495 if (sigsetsize != sizeof(compat_sigset_t))
4499 compat_uptr_t handler;
4500 ret = get_user(handler, &act->sa_handler);
4501 new_ka.sa.sa_handler = compat_ptr(handler);
4502 #ifdef __ARCH_HAS_SA_RESTORER
4503 ret |= get_user(restorer, &act->sa_restorer);
4504 new_ka.sa.sa_restorer = compat_ptr(restorer);
4506 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4507 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4512 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4514 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4516 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4517 sizeof(oact->sa_mask));
4518 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4519 #ifdef __ARCH_HAS_SA_RESTORER
4520 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4521 &oact->sa_restorer);
4527 #endif /* !CONFIG_ODD_RT_SIGACTION */
4529 #ifdef CONFIG_OLD_SIGACTION
4530 SYSCALL_DEFINE3(sigaction, int, sig,
4531 const struct old_sigaction __user *, act,
4532 struct old_sigaction __user *, oact)
4534 struct k_sigaction new_ka, old_ka;
4539 if (!access_ok(act, sizeof(*act)) ||
4540 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4541 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4542 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4543 __get_user(mask, &act->sa_mask))
4545 #ifdef __ARCH_HAS_KA_RESTORER
4546 new_ka.ka_restorer = NULL;
4548 siginitset(&new_ka.sa.sa_mask, mask);
4551 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4554 if (!access_ok(oact, sizeof(*oact)) ||
4555 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4556 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4557 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4558 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4565 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4566 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4567 const struct compat_old_sigaction __user *, act,
4568 struct compat_old_sigaction __user *, oact)
4570 struct k_sigaction new_ka, old_ka;
4572 compat_old_sigset_t mask;
4573 compat_uptr_t handler, restorer;
4576 if (!access_ok(act, sizeof(*act)) ||
4577 __get_user(handler, &act->sa_handler) ||
4578 __get_user(restorer, &act->sa_restorer) ||
4579 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4580 __get_user(mask, &act->sa_mask))
4583 #ifdef __ARCH_HAS_KA_RESTORER
4584 new_ka.ka_restorer = NULL;
4586 new_ka.sa.sa_handler = compat_ptr(handler);
4587 new_ka.sa.sa_restorer = compat_ptr(restorer);
4588 siginitset(&new_ka.sa.sa_mask, mask);
4591 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4594 if (!access_ok(oact, sizeof(*oact)) ||
4595 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4596 &oact->sa_handler) ||
4597 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4598 &oact->sa_restorer) ||
4599 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4600 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4607 #ifdef CONFIG_SGETMASK_SYSCALL
4610 * For backwards compatibility. Functionality superseded by sigprocmask.
4612 SYSCALL_DEFINE0(sgetmask)
4615 return current->blocked.sig[0];
4618 SYSCALL_DEFINE1(ssetmask, int, newmask)
4620 int old = current->blocked.sig[0];
4623 siginitset(&newset, newmask);
4624 set_current_blocked(&newset);
4628 #endif /* CONFIG_SGETMASK_SYSCALL */
4630 #ifdef __ARCH_WANT_SYS_SIGNAL
4632 * For backwards compatibility. Functionality superseded by sigaction.
4634 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4636 struct k_sigaction new_sa, old_sa;
4639 new_sa.sa.sa_handler = handler;
4640 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4641 sigemptyset(&new_sa.sa.sa_mask);
4643 ret = do_sigaction(sig, &new_sa, &old_sa);
4645 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4647 #endif /* __ARCH_WANT_SYS_SIGNAL */
4649 #ifdef __ARCH_WANT_SYS_PAUSE
4651 SYSCALL_DEFINE0(pause)
4653 while (!signal_pending(current)) {
4654 __set_current_state(TASK_INTERRUPTIBLE);
4657 return -ERESTARTNOHAND;
4662 static int sigsuspend(sigset_t *set)
4664 current->saved_sigmask = current->blocked;
4665 set_current_blocked(set);
4667 while (!signal_pending(current)) {
4668 __set_current_state(TASK_INTERRUPTIBLE);
4671 set_restore_sigmask();
4672 return -ERESTARTNOHAND;
4676 * sys_rt_sigsuspend - replace the signal mask for a value with the
4677 * @unewset value until a signal is received
4678 * @unewset: new signal mask value
4679 * @sigsetsize: size of sigset_t type
4681 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4685 /* XXX: Don't preclude handling different sized sigset_t's. */
4686 if (sigsetsize != sizeof(sigset_t))
4689 if (copy_from_user(&newset, unewset, sizeof(newset)))
4691 return sigsuspend(&newset);
4694 #ifdef CONFIG_COMPAT
4695 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4699 /* XXX: Don't preclude handling different sized sigset_t's. */
4700 if (sigsetsize != sizeof(sigset_t))
4703 if (get_compat_sigset(&newset, unewset))
4705 return sigsuspend(&newset);
4709 #ifdef CONFIG_OLD_SIGSUSPEND
4710 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4713 siginitset(&blocked, mask);
4714 return sigsuspend(&blocked);
4717 #ifdef CONFIG_OLD_SIGSUSPEND3
4718 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4721 siginitset(&blocked, mask);
4722 return sigsuspend(&blocked);
4726 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4731 static inline void siginfo_buildtime_checks(void)
4733 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4735 /* Verify the offsets in the two siginfos match */
4736 #define CHECK_OFFSET(field) \
4737 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4740 CHECK_OFFSET(si_pid);
4741 CHECK_OFFSET(si_uid);
4744 CHECK_OFFSET(si_tid);
4745 CHECK_OFFSET(si_overrun);
4746 CHECK_OFFSET(si_value);
4749 CHECK_OFFSET(si_pid);
4750 CHECK_OFFSET(si_uid);
4751 CHECK_OFFSET(si_value);
4754 CHECK_OFFSET(si_pid);
4755 CHECK_OFFSET(si_uid);
4756 CHECK_OFFSET(si_status);
4757 CHECK_OFFSET(si_utime);
4758 CHECK_OFFSET(si_stime);
4761 CHECK_OFFSET(si_addr);
4762 CHECK_OFFSET(si_trapno);
4763 CHECK_OFFSET(si_addr_lsb);
4764 CHECK_OFFSET(si_lower);
4765 CHECK_OFFSET(si_upper);
4766 CHECK_OFFSET(si_pkey);
4767 CHECK_OFFSET(si_perf_data);
4768 CHECK_OFFSET(si_perf_type);
4769 CHECK_OFFSET(si_perf_flags);
4772 CHECK_OFFSET(si_band);
4773 CHECK_OFFSET(si_fd);
4776 CHECK_OFFSET(si_call_addr);
4777 CHECK_OFFSET(si_syscall);
4778 CHECK_OFFSET(si_arch);
4782 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4783 offsetof(struct siginfo, si_addr));
4784 if (sizeof(int) == sizeof(void __user *)) {
4785 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4786 sizeof(void __user *));
4788 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4789 sizeof_field(struct siginfo, si_uid)) !=
4790 sizeof(void __user *));
4791 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4792 offsetof(struct siginfo, si_uid));
4794 #ifdef CONFIG_COMPAT
4795 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4796 offsetof(struct compat_siginfo, si_addr));
4797 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4798 sizeof(compat_uptr_t));
4799 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4800 sizeof_field(struct siginfo, si_pid));
4804 #if defined(CONFIG_SYSCTL)
4805 static struct ctl_table signal_debug_table[] = {
4806 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4808 .procname = "exception-trace",
4809 .data = &show_unhandled_signals,
4810 .maxlen = sizeof(int),
4812 .proc_handler = proc_dointvec
4818 static int __init init_signal_sysctls(void)
4820 register_sysctl_init("debug", signal_debug_table);
4823 early_initcall(init_signal_sysctls);
4824 #endif /* CONFIG_SYSCTL */
4826 void __init signals_init(void)
4828 siginfo_buildtime_checks();
4830 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4833 #ifdef CONFIG_KGDB_KDB
4834 #include <linux/kdb.h>
4836 * kdb_send_sig - Allows kdb to send signals without exposing
4837 * signal internals. This function checks if the required locks are
4838 * available before calling the main signal code, to avoid kdb
4841 void kdb_send_sig(struct task_struct *t, int sig)
4843 static struct task_struct *kdb_prev_t;
4845 if (!spin_trylock(&t->sighand->siglock)) {
4846 kdb_printf("Can't do kill command now.\n"
4847 "The sigmask lock is held somewhere else in "
4848 "kernel, try again later\n");
4851 new_t = kdb_prev_t != t;
4853 if (!task_is_running(t) && new_t) {
4854 spin_unlock(&t->sighand->siglock);
4855 kdb_printf("Process is not RUNNING, sending a signal from "
4856 "kdb risks deadlock\n"
4857 "on the run queue locks. "
4858 "The signal has _not_ been sent.\n"
4859 "Reissue the kill command if you want to risk "
4863 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4864 spin_unlock(&t->sighand->siglock);
4866 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4869 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4871 #endif /* CONFIG_KGDB_KDB */