]> Git Repo - linux.git/blob - mm/sparse.c
i2c: Fix conditional for substituting empty ACPI functions
[linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 #include <linux/vmstat.h>
18 #include "internal.h"
19 #include <asm/dma.h>
20
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section       - memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30         ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48         return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54         section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65         struct mem_section *section = NULL;
66         unsigned long array_size = SECTIONS_PER_ROOT *
67                                    sizeof(struct mem_section);
68
69         if (slab_is_available()) {
70                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71         } else {
72                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73                                               nid);
74                 if (!section)
75                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
76                               __func__, array_size, nid);
77         }
78
79         return section;
80 }
81
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85         struct mem_section *section;
86
87         /*
88          * An existing section is possible in the sub-section hotplug
89          * case. First hot-add instantiates, follow-on hot-add reuses
90          * the existing section.
91          *
92          * The mem_hotplug_lock resolves the apparent race below.
93          */
94         if (mem_section[root])
95                 return 0;
96
97         section = sparse_index_alloc(nid);
98         if (!section)
99                 return -ENOMEM;
100
101         mem_section[root] = section;
102
103         return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108         return 0;
109 }
110 #endif
111
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120         return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122
123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125         return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127
128 /* Validate the physical addressing limitations of the model */
129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130                                                 unsigned long *end_pfn)
131 {
132         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
133
134         /*
135          * Sanity checks - do not allow an architecture to pass
136          * in larger pfns than the maximum scope of sparsemem:
137          */
138         if (*start_pfn > max_sparsemem_pfn) {
139                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141                         *start_pfn, *end_pfn, max_sparsemem_pfn);
142                 WARN_ON_ONCE(1);
143                 *start_pfn = max_sparsemem_pfn;
144                 *end_pfn = max_sparsemem_pfn;
145         } else if (*end_pfn > max_sparsemem_pfn) {
146                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148                         *start_pfn, *end_pfn, max_sparsemem_pfn);
149                 WARN_ON_ONCE(1);
150                 *end_pfn = max_sparsemem_pfn;
151         }
152 }
153
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
164 static void __section_mark_present(struct mem_section *ms,
165                 unsigned long section_nr)
166 {
167         if (section_nr > __highest_present_section_nr)
168                 __highest_present_section_nr = section_nr;
169
170         ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172
173 #define for_each_present_section_nr(start, section_nr)          \
174         for (section_nr = next_present_section_nr(start-1);     \
175              section_nr != -1;                                                          \
176              section_nr = next_present_section_nr(section_nr))
177
178 static inline unsigned long first_present_section_nr(void)
179 {
180         return next_present_section_nr(-1);
181 }
182
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
184 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185                 unsigned long nr_pages)
186 {
187         int idx = subsection_map_index(pfn);
188         int end = subsection_map_index(pfn + nr_pages - 1);
189
190         bitmap_set(map, idx, end - idx + 1);
191 }
192
193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194 {
195         int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196         unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197
198         for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199                 struct mem_section *ms;
200                 unsigned long pfns;
201
202                 pfns = min(nr_pages, PAGES_PER_SECTION
203                                 - (pfn & ~PAGE_SECTION_MASK));
204                 ms = __nr_to_section(nr);
205                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206
207                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208                                 pfns, subsection_map_index(pfn),
209                                 subsection_map_index(pfn + pfns - 1));
210
211                 pfn += pfns;
212                 nr_pages -= pfns;
213         }
214 }
215 #else
216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217 {
218 }
219 #endif
220
221 /* Record a memory area against a node. */
222 static void __init memory_present(int nid, unsigned long start, unsigned long end)
223 {
224         unsigned long pfn;
225
226         start &= PAGE_SECTION_MASK;
227         mminit_validate_memmodel_limits(&start, &end);
228         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229                 unsigned long section_nr = pfn_to_section_nr(pfn);
230                 struct mem_section *ms;
231
232                 sparse_index_init(section_nr, nid);
233                 set_section_nid(section_nr, nid);
234
235                 ms = __nr_to_section(section_nr);
236                 if (!ms->section_mem_map) {
237                         ms->section_mem_map = sparse_encode_early_nid(nid) |
238                                                         SECTION_IS_ONLINE;
239                         __section_mark_present(ms, section_nr);
240                 }
241         }
242 }
243
244 /*
245  * Mark all memblocks as present using memory_present().
246  * This is a convenience function that is useful to mark all of the systems
247  * memory as present during initialization.
248  */
249 static void __init memblocks_present(void)
250 {
251         unsigned long start, end;
252         int i, nid;
253
254 #ifdef CONFIG_SPARSEMEM_EXTREME
255         if (unlikely(!mem_section)) {
256                 unsigned long size, align;
257
258                 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259                 align = 1 << (INTERNODE_CACHE_SHIFT);
260                 mem_section = memblock_alloc(size, align);
261                 if (!mem_section)
262                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263                               __func__, size, align);
264         }
265 #endif
266
267         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268                 memory_present(nid, start, end);
269 }
270
271 /*
272  * Subtle, we encode the real pfn into the mem_map such that
273  * the identity pfn - section_mem_map will return the actual
274  * physical page frame number.
275  */
276 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277 {
278         unsigned long coded_mem_map =
279                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282         return coded_mem_map;
283 }
284
285 #ifdef CONFIG_MEMORY_HOTPLUG
286 /*
287  * Decode mem_map from the coded memmap
288  */
289 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290 {
291         /* mask off the extra low bits of information */
292         coded_mem_map &= SECTION_MAP_MASK;
293         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
297 static void __meminit sparse_init_one_section(struct mem_section *ms,
298                 unsigned long pnum, struct page *mem_map,
299                 struct mem_section_usage *usage, unsigned long flags)
300 {
301         ms->section_mem_map &= ~SECTION_MAP_MASK;
302         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303                 | SECTION_HAS_MEM_MAP | flags;
304         ms->usage = usage;
305 }
306
307 static unsigned long usemap_size(void)
308 {
309         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310 }
311
312 size_t mem_section_usage_size(void)
313 {
314         return sizeof(struct mem_section_usage) + usemap_size();
315 }
316
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319 {
320 #ifndef CONFIG_NUMA
321         VM_BUG_ON(pgdat != &contig_page_data);
322         return __pa_symbol(&contig_page_data);
323 #else
324         return __pa(pgdat);
325 #endif
326 }
327
328 static struct mem_section_usage * __init
329 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330                                          unsigned long size)
331 {
332         struct mem_section_usage *usage;
333         unsigned long goal, limit;
334         int nid;
335         /*
336          * A page may contain usemaps for other sections preventing the
337          * page being freed and making a section unremovable while
338          * other sections referencing the usemap remain active. Similarly,
339          * a pgdat can prevent a section being removed. If section A
340          * contains a pgdat and section B contains the usemap, both
341          * sections become inter-dependent. This allocates usemaps
342          * from the same section as the pgdat where possible to avoid
343          * this problem.
344          */
345         goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346         limit = goal + (1UL << PA_SECTION_SHIFT);
347         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348 again:
349         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350         if (!usage && limit) {
351                 limit = MEMBLOCK_ALLOC_ACCESSIBLE;
352                 goto again;
353         }
354         return usage;
355 }
356
357 static void __init check_usemap_section_nr(int nid,
358                 struct mem_section_usage *usage)
359 {
360         unsigned long usemap_snr, pgdat_snr;
361         static unsigned long old_usemap_snr;
362         static unsigned long old_pgdat_snr;
363         struct pglist_data *pgdat = NODE_DATA(nid);
364         int usemap_nid;
365
366         /* First call */
367         if (!old_usemap_snr) {
368                 old_usemap_snr = NR_MEM_SECTIONS;
369                 old_pgdat_snr = NR_MEM_SECTIONS;
370         }
371
372         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373         pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374         if (usemap_snr == pgdat_snr)
375                 return;
376
377         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378                 /* skip redundant message */
379                 return;
380
381         old_usemap_snr = usemap_snr;
382         old_pgdat_snr = pgdat_snr;
383
384         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385         if (usemap_nid != nid) {
386                 pr_info("node %d must be removed before remove section %ld\n",
387                         nid, usemap_snr);
388                 return;
389         }
390         /*
391          * There is a circular dependency.
392          * Some platforms allow un-removable section because they will just
393          * gather other removable sections for dynamic partitioning.
394          * Just notify un-removable section's number here.
395          */
396         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397                 usemap_snr, pgdat_snr, nid);
398 }
399 #else
400 static struct mem_section_usage * __init
401 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402                                          unsigned long size)
403 {
404         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405 }
406
407 static void __init check_usemap_section_nr(int nid,
408                 struct mem_section_usage *usage)
409 {
410 }
411 #endif /* CONFIG_MEMORY_HOTREMOVE */
412
413 #ifdef CONFIG_SPARSEMEM_VMEMMAP
414 static unsigned long __init section_map_size(void)
415 {
416         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
417 }
418
419 #else
420 static unsigned long __init section_map_size(void)
421 {
422         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
423 }
424
425 struct page __init *__populate_section_memmap(unsigned long pfn,
426                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427                 struct dev_pagemap *pgmap)
428 {
429         unsigned long size = section_map_size();
430         struct page *map = sparse_buffer_alloc(size);
431         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432
433         if (map)
434                 return map;
435
436         map = memmap_alloc(size, size, addr, nid, false);
437         if (!map)
438                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439                       __func__, size, PAGE_SIZE, nid, &addr);
440
441         return map;
442 }
443 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444
445 static void *sparsemap_buf __meminitdata;
446 static void *sparsemap_buf_end __meminitdata;
447
448 static inline void __meminit sparse_buffer_free(unsigned long size)
449 {
450         WARN_ON(!sparsemap_buf || size == 0);
451         memblock_free(sparsemap_buf, size);
452 }
453
454 static void __init sparse_buffer_init(unsigned long size, int nid)
455 {
456         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
458         /*
459          * Pre-allocated buffer is mainly used by __populate_section_memmap
460          * and we want it to be properly aligned to the section size - this is
461          * especially the case for VMEMMAP which maps memmap to PMDs
462          */
463         sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464         sparsemap_buf_end = sparsemap_buf + size;
465 #ifndef CONFIG_SPARSEMEM_VMEMMAP
466         mod_node_early_perpage_metadata(nid, DIV_ROUND_UP(size, PAGE_SIZE));
467 #endif
468 }
469
470 static void __init sparse_buffer_fini(void)
471 {
472         unsigned long size = sparsemap_buf_end - sparsemap_buf;
473
474         if (sparsemap_buf && size > 0)
475                 sparse_buffer_free(size);
476         sparsemap_buf = NULL;
477 }
478
479 void * __meminit sparse_buffer_alloc(unsigned long size)
480 {
481         void *ptr = NULL;
482
483         if (sparsemap_buf) {
484                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485                 if (ptr + size > sparsemap_buf_end)
486                         ptr = NULL;
487                 else {
488                         /* Free redundant aligned space */
489                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
490                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491                         sparsemap_buf = ptr + size;
492                 }
493         }
494         return ptr;
495 }
496
497 void __weak __meminit vmemmap_populate_print_last(void)
498 {
499 }
500
501 /*
502  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503  * And number of present sections in this node is map_count.
504  */
505 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506                                    unsigned long pnum_end,
507                                    unsigned long map_count)
508 {
509         struct mem_section_usage *usage;
510         unsigned long pnum;
511         struct page *map;
512
513         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514                         mem_section_usage_size() * map_count);
515         if (!usage) {
516                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517                 goto failed;
518         }
519         sparse_buffer_init(map_count * section_map_size(), nid);
520         for_each_present_section_nr(pnum_begin, pnum) {
521                 unsigned long pfn = section_nr_to_pfn(pnum);
522
523                 if (pnum >= pnum_end)
524                         break;
525
526                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527                                 nid, NULL, NULL);
528                 if (!map) {
529                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530                                __func__, nid);
531                         pnum_begin = pnum;
532                         sparse_buffer_fini();
533                         goto failed;
534                 }
535                 check_usemap_section_nr(nid, usage);
536                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537                                 SECTION_IS_EARLY);
538                 usage = (void *) usage + mem_section_usage_size();
539         }
540         sparse_buffer_fini();
541         return;
542 failed:
543         /* We failed to allocate, mark all the following pnums as not present */
544         for_each_present_section_nr(pnum_begin, pnum) {
545                 struct mem_section *ms;
546
547                 if (pnum >= pnum_end)
548                         break;
549                 ms = __nr_to_section(pnum);
550                 ms->section_mem_map = 0;
551         }
552 }
553
554 /*
555  * Allocate the accumulated non-linear sections, allocate a mem_map
556  * for each and record the physical to section mapping.
557  */
558 void __init sparse_init(void)
559 {
560         unsigned long pnum_end, pnum_begin, map_count = 1;
561         int nid_begin;
562
563         /* see include/linux/mmzone.h 'struct mem_section' definition */
564         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565         memblocks_present();
566
567         pnum_begin = first_present_section_nr();
568         nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569
570         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571         set_pageblock_order();
572
573         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
575
576                 if (nid == nid_begin) {
577                         map_count++;
578                         continue;
579                 }
580                 /* Init node with sections in range [pnum_begin, pnum_end) */
581                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582                 nid_begin = nid;
583                 pnum_begin = pnum_end;
584                 map_count = 1;
585         }
586         /* cover the last node */
587         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588         vmemmap_populate_print_last();
589 }
590
591 #ifdef CONFIG_MEMORY_HOTPLUG
592
593 /* Mark all memory sections within the pfn range as online */
594 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595 {
596         unsigned long pfn;
597
598         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599                 unsigned long section_nr = pfn_to_section_nr(pfn);
600                 struct mem_section *ms;
601
602                 /* onlining code should never touch invalid ranges */
603                 if (WARN_ON(!valid_section_nr(section_nr)))
604                         continue;
605
606                 ms = __nr_to_section(section_nr);
607                 ms->section_mem_map |= SECTION_IS_ONLINE;
608         }
609 }
610
611 /* Mark all memory sections within the pfn range as offline */
612 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613 {
614         unsigned long pfn;
615
616         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617                 unsigned long section_nr = pfn_to_section_nr(pfn);
618                 struct mem_section *ms;
619
620                 /*
621                  * TODO this needs some double checking. Offlining code makes
622                  * sure to check pfn_valid but those checks might be just bogus
623                  */
624                 if (WARN_ON(!valid_section_nr(section_nr)))
625                         continue;
626
627                 ms = __nr_to_section(section_nr);
628                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
629         }
630 }
631
632 #ifdef CONFIG_SPARSEMEM_VMEMMAP
633 static struct page * __meminit populate_section_memmap(unsigned long pfn,
634                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635                 struct dev_pagemap *pgmap)
636 {
637         return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
638 }
639
640 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641                 struct vmem_altmap *altmap)
642 {
643         unsigned long start = (unsigned long) pfn_to_page(pfn);
644         unsigned long end = start + nr_pages * sizeof(struct page);
645
646         mod_node_page_state(page_pgdat(pfn_to_page(pfn)), NR_MEMMAP,
647                             -1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
648         vmemmap_free(start, end, altmap);
649 }
650 static void free_map_bootmem(struct page *memmap)
651 {
652         unsigned long start = (unsigned long)memmap;
653         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
654
655         vmemmap_free(start, end, NULL);
656 }
657
658 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
659 {
660         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
661         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
662         struct mem_section *ms = __pfn_to_section(pfn);
663         unsigned long *subsection_map = ms->usage
664                 ? &ms->usage->subsection_map[0] : NULL;
665
666         subsection_mask_set(map, pfn, nr_pages);
667         if (subsection_map)
668                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
669
670         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
671                                 "section already deactivated (%#lx + %ld)\n",
672                                 pfn, nr_pages))
673                 return -EINVAL;
674
675         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
676         return 0;
677 }
678
679 static bool is_subsection_map_empty(struct mem_section *ms)
680 {
681         return bitmap_empty(&ms->usage->subsection_map[0],
682                             SUBSECTIONS_PER_SECTION);
683 }
684
685 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
686 {
687         struct mem_section *ms = __pfn_to_section(pfn);
688         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
689         unsigned long *subsection_map;
690         int rc = 0;
691
692         subsection_mask_set(map, pfn, nr_pages);
693
694         subsection_map = &ms->usage->subsection_map[0];
695
696         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
697                 rc = -EINVAL;
698         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
699                 rc = -EEXIST;
700         else
701                 bitmap_or(subsection_map, map, subsection_map,
702                                 SUBSECTIONS_PER_SECTION);
703
704         return rc;
705 }
706 #else
707 static struct page * __meminit populate_section_memmap(unsigned long pfn,
708                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
709                 struct dev_pagemap *pgmap)
710 {
711         return kvmalloc_node(array_size(sizeof(struct page),
712                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
713 }
714
715 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
716                 struct vmem_altmap *altmap)
717 {
718         kvfree(pfn_to_page(pfn));
719 }
720
721 static void free_map_bootmem(struct page *memmap)
722 {
723         unsigned long maps_section_nr, removing_section_nr, i;
724         unsigned long magic, nr_pages;
725         struct page *page = virt_to_page(memmap);
726
727         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
728                 >> PAGE_SHIFT;
729
730         for (i = 0; i < nr_pages; i++, page++) {
731                 magic = page->index;
732
733                 BUG_ON(magic == NODE_INFO);
734
735                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
736                 removing_section_nr = page_private(page);
737
738                 /*
739                  * When this function is called, the removing section is
740                  * logical offlined state. This means all pages are isolated
741                  * from page allocator. If removing section's memmap is placed
742                  * on the same section, it must not be freed.
743                  * If it is freed, page allocator may allocate it which will
744                  * be removed physically soon.
745                  */
746                 if (maps_section_nr != removing_section_nr)
747                         put_page_bootmem(page);
748         }
749 }
750
751 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
752 {
753         return 0;
754 }
755
756 static bool is_subsection_map_empty(struct mem_section *ms)
757 {
758         return true;
759 }
760
761 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
762 {
763         return 0;
764 }
765 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
766
767 /*
768  * To deactivate a memory region, there are 3 cases to handle across
769  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
770  *
771  * 1. deactivation of a partial hot-added section (only possible in
772  *    the SPARSEMEM_VMEMMAP=y case).
773  *      a) section was present at memory init.
774  *      b) section was hot-added post memory init.
775  * 2. deactivation of a complete hot-added section.
776  * 3. deactivation of a complete section from memory init.
777  *
778  * For 1, when subsection_map does not empty we will not be freeing the
779  * usage map, but still need to free the vmemmap range.
780  *
781  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
782  */
783 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
784                 struct vmem_altmap *altmap)
785 {
786         struct mem_section *ms = __pfn_to_section(pfn);
787         bool section_is_early = early_section(ms);
788         struct page *memmap = NULL;
789         bool empty;
790
791         if (clear_subsection_map(pfn, nr_pages))
792                 return;
793
794         empty = is_subsection_map_empty(ms);
795         if (empty) {
796                 unsigned long section_nr = pfn_to_section_nr(pfn);
797
798                 /*
799                  * Mark the section invalid so that valid_section()
800                  * return false. This prevents code from dereferencing
801                  * ms->usage array.
802                  */
803                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
804
805                 /*
806                  * When removing an early section, the usage map is kept (as the
807                  * usage maps of other sections fall into the same page). It
808                  * will be re-used when re-adding the section - which is then no
809                  * longer an early section. If the usage map is PageReserved, it
810                  * was allocated during boot.
811                  */
812                 if (!PageReserved(virt_to_page(ms->usage))) {
813                         kfree_rcu(ms->usage, rcu);
814                         WRITE_ONCE(ms->usage, NULL);
815                 }
816                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
817         }
818
819         /*
820          * The memmap of early sections is always fully populated. See
821          * section_activate() and pfn_valid() .
822          */
823         if (!section_is_early)
824                 depopulate_section_memmap(pfn, nr_pages, altmap);
825         else if (memmap)
826                 free_map_bootmem(memmap);
827
828         if (empty)
829                 ms->section_mem_map = (unsigned long)NULL;
830 }
831
832 static struct page * __meminit section_activate(int nid, unsigned long pfn,
833                 unsigned long nr_pages, struct vmem_altmap *altmap,
834                 struct dev_pagemap *pgmap)
835 {
836         struct mem_section *ms = __pfn_to_section(pfn);
837         struct mem_section_usage *usage = NULL;
838         struct page *memmap;
839         int rc;
840
841         if (!ms->usage) {
842                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
843                 if (!usage)
844                         return ERR_PTR(-ENOMEM);
845                 ms->usage = usage;
846         }
847
848         rc = fill_subsection_map(pfn, nr_pages);
849         if (rc) {
850                 if (usage)
851                         ms->usage = NULL;
852                 kfree(usage);
853                 return ERR_PTR(rc);
854         }
855
856         /*
857          * The early init code does not consider partially populated
858          * initial sections, it simply assumes that memory will never be
859          * referenced.  If we hot-add memory into such a section then we
860          * do not need to populate the memmap and can simply reuse what
861          * is already there.
862          */
863         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
864                 return pfn_to_page(pfn);
865
866         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
867         if (!memmap) {
868                 section_deactivate(pfn, nr_pages, altmap);
869                 return ERR_PTR(-ENOMEM);
870         }
871
872         return memmap;
873 }
874
875 /**
876  * sparse_add_section - add a memory section, or populate an existing one
877  * @nid: The node to add section on
878  * @start_pfn: start pfn of the memory range
879  * @nr_pages: number of pfns to add in the section
880  * @altmap: alternate pfns to allocate the memmap backing store
881  * @pgmap: alternate compound page geometry for devmap mappings
882  *
883  * This is only intended for hotplug.
884  *
885  * Note that only VMEMMAP supports sub-section aligned hotplug,
886  * the proper alignment and size are gated by check_pfn_span().
887  *
888  *
889  * Return:
890  * * 0          - On success.
891  * * -EEXIST    - Section has been present.
892  * * -ENOMEM    - Out of memory.
893  */
894 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
895                 unsigned long nr_pages, struct vmem_altmap *altmap,
896                 struct dev_pagemap *pgmap)
897 {
898         unsigned long section_nr = pfn_to_section_nr(start_pfn);
899         struct mem_section *ms;
900         struct page *memmap;
901         int ret;
902
903         ret = sparse_index_init(section_nr, nid);
904         if (ret < 0)
905                 return ret;
906
907         memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
908         if (IS_ERR(memmap))
909                 return PTR_ERR(memmap);
910
911         /*
912          * Poison uninitialized struct pages in order to catch invalid flags
913          * combinations.
914          */
915         if (!altmap || !altmap->inaccessible)
916                 page_init_poison(memmap, sizeof(struct page) * nr_pages);
917
918         ms = __nr_to_section(section_nr);
919         set_section_nid(section_nr, nid);
920         __section_mark_present(ms, section_nr);
921
922         /* Align memmap to section boundary in the subsection case */
923         if (section_nr_to_pfn(section_nr) != start_pfn)
924                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
925         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
926
927         return 0;
928 }
929
930 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
931                            struct vmem_altmap *altmap)
932 {
933         struct mem_section *ms = __pfn_to_section(pfn);
934
935         if (WARN_ON_ONCE(!valid_section(ms)))
936                 return;
937
938         section_deactivate(pfn, nr_pages, altmap);
939 }
940 #endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.086097 seconds and 4 git commands to generate.