1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
4 * Authors: David Chinner and Glauber Costa
6 * Generic LRU infrastructure
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/list_lru.h>
12 #include <linux/slab.h>
13 #include <linux/mutex.h>
14 #include <linux/memcontrol.h>
19 static LIST_HEAD(memcg_list_lrus);
20 static DEFINE_MUTEX(list_lrus_mutex);
22 static inline bool list_lru_memcg_aware(struct list_lru *lru)
24 return lru->memcg_aware;
27 static void list_lru_register(struct list_lru *lru)
29 if (!list_lru_memcg_aware(lru))
32 mutex_lock(&list_lrus_mutex);
33 list_add(&lru->list, &memcg_list_lrus);
34 mutex_unlock(&list_lrus_mutex);
37 static void list_lru_unregister(struct list_lru *lru)
39 if (!list_lru_memcg_aware(lru))
42 mutex_lock(&list_lrus_mutex);
44 mutex_unlock(&list_lrus_mutex);
47 static int lru_shrinker_id(struct list_lru *lru)
49 return lru->shrinker_id;
52 static inline struct list_lru_one *
53 list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
55 if (list_lru_memcg_aware(lru) && idx >= 0) {
56 struct list_lru_memcg *mlru = xa_load(&lru->xa, idx);
58 return mlru ? &mlru->node[nid] : NULL;
60 return &lru->node[nid].lru;
63 static void list_lru_register(struct list_lru *lru)
67 static void list_lru_unregister(struct list_lru *lru)
71 static int lru_shrinker_id(struct list_lru *lru)
76 static inline bool list_lru_memcg_aware(struct list_lru *lru)
81 static inline struct list_lru_one *
82 list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
84 return &lru->node[nid].lru;
86 #endif /* CONFIG_MEMCG */
88 bool list_lru_add(struct list_lru *lru, struct list_head *item, int nid,
89 struct mem_cgroup *memcg)
91 struct list_lru_node *nlru = &lru->node[nid];
92 struct list_lru_one *l;
94 spin_lock(&nlru->lock);
95 if (list_empty(item)) {
96 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
97 list_add_tail(item, &l->list);
98 /* Set shrinker bit if the first element was added */
100 set_shrinker_bit(memcg, nid, lru_shrinker_id(lru));
102 spin_unlock(&nlru->lock);
105 spin_unlock(&nlru->lock);
108 EXPORT_SYMBOL_GPL(list_lru_add);
110 bool list_lru_add_obj(struct list_lru *lru, struct list_head *item)
112 int nid = page_to_nid(virt_to_page(item));
113 struct mem_cgroup *memcg = list_lru_memcg_aware(lru) ?
114 mem_cgroup_from_slab_obj(item) : NULL;
116 return list_lru_add(lru, item, nid, memcg);
118 EXPORT_SYMBOL_GPL(list_lru_add_obj);
120 bool list_lru_del(struct list_lru *lru, struct list_head *item, int nid,
121 struct mem_cgroup *memcg)
123 struct list_lru_node *nlru = &lru->node[nid];
124 struct list_lru_one *l;
126 spin_lock(&nlru->lock);
127 if (!list_empty(item)) {
128 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
132 spin_unlock(&nlru->lock);
135 spin_unlock(&nlru->lock);
138 EXPORT_SYMBOL_GPL(list_lru_del);
140 bool list_lru_del_obj(struct list_lru *lru, struct list_head *item)
142 int nid = page_to_nid(virt_to_page(item));
143 struct mem_cgroup *memcg = list_lru_memcg_aware(lru) ?
144 mem_cgroup_from_slab_obj(item) : NULL;
146 return list_lru_del(lru, item, nid, memcg);
148 EXPORT_SYMBOL_GPL(list_lru_del_obj);
150 void list_lru_isolate(struct list_lru_one *list, struct list_head *item)
155 EXPORT_SYMBOL_GPL(list_lru_isolate);
157 void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item,
158 struct list_head *head)
160 list_move(item, head);
163 EXPORT_SYMBOL_GPL(list_lru_isolate_move);
165 unsigned long list_lru_count_one(struct list_lru *lru,
166 int nid, struct mem_cgroup *memcg)
168 struct list_lru_one *l;
172 l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
173 count = l ? READ_ONCE(l->nr_items) : 0;
176 if (unlikely(count < 0))
181 EXPORT_SYMBOL_GPL(list_lru_count_one);
183 unsigned long list_lru_count_node(struct list_lru *lru, int nid)
185 struct list_lru_node *nlru;
187 nlru = &lru->node[nid];
188 return nlru->nr_items;
190 EXPORT_SYMBOL_GPL(list_lru_count_node);
193 __list_lru_walk_one(struct list_lru *lru, int nid, int memcg_idx,
194 list_lru_walk_cb isolate, void *cb_arg,
195 unsigned long *nr_to_walk)
197 struct list_lru_node *nlru = &lru->node[nid];
198 struct list_lru_one *l;
199 struct list_head *item, *n;
200 unsigned long isolated = 0;
203 l = list_lru_from_memcg_idx(lru, nid, memcg_idx);
207 list_for_each_safe(item, n, &l->list) {
211 * decrement nr_to_walk first so that we don't livelock if we
212 * get stuck on large numbers of LRU_RETRY items
218 ret = isolate(item, l, &nlru->lock, cb_arg);
220 case LRU_REMOVED_RETRY:
221 assert_spin_locked(&nlru->lock);
227 * If the lru lock has been dropped, our list
228 * traversal is now invalid and so we have to
229 * restart from scratch.
231 if (ret == LRU_REMOVED_RETRY)
235 list_move_tail(item, &l->list);
241 * The lru lock has been dropped, our list traversal is
242 * now invalid and so we have to restart from scratch.
244 assert_spin_locked(&nlru->lock);
247 assert_spin_locked(&nlru->lock);
258 list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
259 list_lru_walk_cb isolate, void *cb_arg,
260 unsigned long *nr_to_walk)
262 struct list_lru_node *nlru = &lru->node[nid];
265 spin_lock(&nlru->lock);
266 ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate,
268 spin_unlock(&nlru->lock);
271 EXPORT_SYMBOL_GPL(list_lru_walk_one);
274 list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
275 list_lru_walk_cb isolate, void *cb_arg,
276 unsigned long *nr_to_walk)
278 struct list_lru_node *nlru = &lru->node[nid];
281 spin_lock_irq(&nlru->lock);
282 ret = __list_lru_walk_one(lru, nid, memcg_kmem_id(memcg), isolate,
284 spin_unlock_irq(&nlru->lock);
288 unsigned long list_lru_walk_node(struct list_lru *lru, int nid,
289 list_lru_walk_cb isolate, void *cb_arg,
290 unsigned long *nr_to_walk)
294 isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg,
298 if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) {
299 struct list_lru_memcg *mlru;
302 xa_for_each(&lru->xa, index, mlru) {
303 struct list_lru_node *nlru = &lru->node[nid];
305 spin_lock(&nlru->lock);
306 isolated += __list_lru_walk_one(lru, nid, index,
309 spin_unlock(&nlru->lock);
311 if (*nr_to_walk <= 0)
319 EXPORT_SYMBOL_GPL(list_lru_walk_node);
321 static void init_one_lru(struct list_lru_one *l)
323 INIT_LIST_HEAD(&l->list);
328 static struct list_lru_memcg *memcg_init_list_lru_one(gfp_t gfp)
331 struct list_lru_memcg *mlru;
333 mlru = kmalloc(struct_size(mlru, node, nr_node_ids), gfp);
338 init_one_lru(&mlru->node[nid]);
343 static void memcg_list_lru_free(struct list_lru *lru, int src_idx)
345 struct list_lru_memcg *mlru = xa_erase_irq(&lru->xa, src_idx);
348 * The __list_lru_walk_one() can walk the list of this node.
349 * We need kvfree_rcu() here. And the walking of the list
350 * is under lru->node[nid]->lock, which can serve as a RCU
351 * read-side critical section.
354 kvfree_rcu(mlru, rcu);
357 static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
360 xa_init_flags(&lru->xa, XA_FLAGS_LOCK_IRQ);
361 lru->memcg_aware = memcg_aware;
364 static void memcg_destroy_list_lru(struct list_lru *lru)
366 XA_STATE(xas, &lru->xa, 0);
367 struct list_lru_memcg *mlru;
369 if (!list_lru_memcg_aware(lru))
373 xas_for_each(&xas, mlru, ULONG_MAX) {
375 xas_store(&xas, NULL);
377 xas_unlock_irq(&xas);
380 static void memcg_reparent_list_lru_node(struct list_lru *lru, int nid,
381 int src_idx, struct mem_cgroup *dst_memcg)
383 struct list_lru_node *nlru = &lru->node[nid];
384 int dst_idx = dst_memcg->kmemcg_id;
385 struct list_lru_one *src, *dst;
388 * Since list_lru_{add,del} may be called under an IRQ-safe lock,
389 * we have to use IRQ-safe primitives here to avoid deadlock.
391 spin_lock_irq(&nlru->lock);
393 src = list_lru_from_memcg_idx(lru, nid, src_idx);
396 dst = list_lru_from_memcg_idx(lru, nid, dst_idx);
398 list_splice_init(&src->list, &dst->list);
401 dst->nr_items += src->nr_items;
402 set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru));
406 spin_unlock_irq(&nlru->lock);
409 static void memcg_reparent_list_lru(struct list_lru *lru,
410 int src_idx, struct mem_cgroup *dst_memcg)
415 memcg_reparent_list_lru_node(lru, i, src_idx, dst_memcg);
417 memcg_list_lru_free(lru, src_idx);
420 void memcg_reparent_list_lrus(struct mem_cgroup *memcg, struct mem_cgroup *parent)
422 struct cgroup_subsys_state *css;
423 struct list_lru *lru;
424 int src_idx = memcg->kmemcg_id;
427 * Change kmemcg_id of this cgroup and all its descendants to the
428 * parent's id, and then move all entries from this cgroup's list_lrus
429 * to ones of the parent.
431 * After we have finished, all list_lrus corresponding to this cgroup
432 * are guaranteed to remain empty. So we can safely free this cgroup's
433 * list lrus in memcg_list_lru_free().
435 * Changing ->kmemcg_id to the parent can prevent memcg_list_lru_alloc()
436 * from allocating list lrus for this cgroup after memcg_list_lru_free()
440 css_for_each_descendant_pre(css, &memcg->css) {
441 struct mem_cgroup *child;
443 child = mem_cgroup_from_css(css);
444 WRITE_ONCE(child->kmemcg_id, parent->kmemcg_id);
448 mutex_lock(&list_lrus_mutex);
449 list_for_each_entry(lru, &memcg_list_lrus, list)
450 memcg_reparent_list_lru(lru, src_idx, parent);
451 mutex_unlock(&list_lrus_mutex);
454 static inline bool memcg_list_lru_allocated(struct mem_cgroup *memcg,
455 struct list_lru *lru)
457 int idx = memcg->kmemcg_id;
459 return idx < 0 || xa_load(&lru->xa, idx);
462 int memcg_list_lru_alloc(struct mem_cgroup *memcg, struct list_lru *lru,
467 struct list_lru_memcg_table {
468 struct list_lru_memcg *mlru;
469 struct mem_cgroup *memcg;
471 XA_STATE(xas, &lru->xa, 0);
473 if (!list_lru_memcg_aware(lru) || memcg_list_lru_allocated(memcg, lru))
476 gfp &= GFP_RECLAIM_MASK;
477 table = kmalloc_array(memcg->css.cgroup->level, sizeof(*table), gfp);
482 * Because the list_lru can be reparented to the parent cgroup's
483 * list_lru, we should make sure that this cgroup and all its
484 * ancestors have allocated list_lru_memcg.
486 for (i = 0; memcg; memcg = parent_mem_cgroup(memcg), i++) {
487 if (memcg_list_lru_allocated(memcg, lru))
490 table[i].memcg = memcg;
491 table[i].mlru = memcg_init_list_lru_one(gfp);
492 if (!table[i].mlru) {
494 kfree(table[i].mlru);
500 xas_lock_irqsave(&xas, flags);
502 int index = READ_ONCE(table[i].memcg->kmemcg_id);
503 struct list_lru_memcg *mlru = table[i].mlru;
505 xas_set(&xas, index);
507 if (unlikely(index < 0 || xas_error(&xas) || xas_load(&xas))) {
510 xas_store(&xas, mlru);
511 if (xas_error(&xas) == -ENOMEM) {
512 xas_unlock_irqrestore(&xas, flags);
513 if (xas_nomem(&xas, gfp))
514 xas_set_err(&xas, 0);
515 xas_lock_irqsave(&xas, flags);
517 * The xas lock has been released, this memcg
518 * can be reparented before us. So reload
519 * memcg id. More details see the comments
520 * in memcg_reparent_list_lrus().
522 index = READ_ONCE(table[i].memcg->kmemcg_id);
524 xas_set_err(&xas, 0);
525 else if (!xas_error(&xas) && index != xas.xa_index)
526 xas_set(&xas, index);
531 /* xas_nomem() is used to free memory instead of memory allocation. */
533 xas_nomem(&xas, gfp);
534 xas_unlock_irqrestore(&xas, flags);
537 return xas_error(&xas);
540 static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
544 static void memcg_destroy_list_lru(struct list_lru *lru)
547 #endif /* CONFIG_MEMCG */
549 int __list_lru_init(struct list_lru *lru, bool memcg_aware,
550 struct lock_class_key *key, struct shrinker *shrinker)
556 lru->shrinker_id = shrinker->id;
558 lru->shrinker_id = -1;
560 if (mem_cgroup_kmem_disabled())
564 lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL);
569 spin_lock_init(&lru->node[i].lock);
571 lockdep_set_class(&lru->node[i].lock, key);
572 init_one_lru(&lru->node[i].lru);
575 memcg_init_list_lru(lru, memcg_aware);
576 list_lru_register(lru);
580 EXPORT_SYMBOL_GPL(__list_lru_init);
582 void list_lru_destroy(struct list_lru *lru)
584 /* Already destroyed or not yet initialized? */
588 list_lru_unregister(lru);
590 memcg_destroy_list_lru(lru);
595 lru->shrinker_id = -1;
598 EXPORT_SYMBOL_GPL(list_lru_destroy);