]> Git Repo - linux.git/blob - fs/btrfs/ordered-data.c
btrfs: ensure fast fsync waits for ordered extents after a write failure
[linux.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22
23 static struct kmem_cache *btrfs_ordered_extent_cache;
24
25 static u64 entry_end(struct btrfs_ordered_extent *entry)
26 {
27         if (entry->file_offset + entry->num_bytes < entry->file_offset)
28                 return (u64)-1;
29         return entry->file_offset + entry->num_bytes;
30 }
31
32 /* returns NULL if the insertion worked, or it returns the node it did find
33  * in the tree
34  */
35 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36                                    struct rb_node *node)
37 {
38         struct rb_node **p = &root->rb_node;
39         struct rb_node *parent = NULL;
40         struct btrfs_ordered_extent *entry;
41
42         while (*p) {
43                 parent = *p;
44                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
45
46                 if (file_offset < entry->file_offset)
47                         p = &(*p)->rb_left;
48                 else if (file_offset >= entry_end(entry))
49                         p = &(*p)->rb_right;
50                 else
51                         return parent;
52         }
53
54         rb_link_node(node, parent, p);
55         rb_insert_color(node, root);
56         return NULL;
57 }
58
59 /*
60  * look for a given offset in the tree, and if it can't be found return the
61  * first lesser offset
62  */
63 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
64                                      struct rb_node **prev_ret)
65 {
66         struct rb_node *n = root->rb_node;
67         struct rb_node *prev = NULL;
68         struct rb_node *test;
69         struct btrfs_ordered_extent *entry;
70         struct btrfs_ordered_extent *prev_entry = NULL;
71
72         while (n) {
73                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74                 prev = n;
75                 prev_entry = entry;
76
77                 if (file_offset < entry->file_offset)
78                         n = n->rb_left;
79                 else if (file_offset >= entry_end(entry))
80                         n = n->rb_right;
81                 else
82                         return n;
83         }
84         if (!prev_ret)
85                 return NULL;
86
87         while (prev && file_offset >= entry_end(prev_entry)) {
88                 test = rb_next(prev);
89                 if (!test)
90                         break;
91                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
92                                       rb_node);
93                 if (file_offset < entry_end(prev_entry))
94                         break;
95
96                 prev = test;
97         }
98         if (prev)
99                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
100                                       rb_node);
101         while (prev && file_offset < entry_end(prev_entry)) {
102                 test = rb_prev(prev);
103                 if (!test)
104                         break;
105                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106                                       rb_node);
107                 prev = test;
108         }
109         *prev_ret = prev;
110         return NULL;
111 }
112
113 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
114                           u64 len)
115 {
116         if (file_offset + len <= entry->file_offset ||
117             entry->file_offset + entry->num_bytes <= file_offset)
118                 return 0;
119         return 1;
120 }
121
122 /*
123  * look find the first ordered struct that has this offset, otherwise
124  * the first one less than this offset
125  */
126 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
127                                                   u64 file_offset)
128 {
129         struct rb_node *prev = NULL;
130         struct rb_node *ret;
131         struct btrfs_ordered_extent *entry;
132
133         if (inode->ordered_tree_last) {
134                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
135                                  rb_node);
136                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
137                         return inode->ordered_tree_last;
138         }
139         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
140         if (!ret)
141                 ret = prev;
142         if (ret)
143                 inode->ordered_tree_last = ret;
144         return ret;
145 }
146
147 static struct btrfs_ordered_extent *alloc_ordered_extent(
148                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
149                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
150                         u64 offset, unsigned long flags, int compress_type)
151 {
152         struct btrfs_ordered_extent *entry;
153         int ret;
154         u64 qgroup_rsv = 0;
155
156         if (flags &
157             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158                 /* For nocow write, we can release the qgroup rsv right now */
159                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
160                 if (ret < 0)
161                         return ERR_PTR(ret);
162         } else {
163                 /*
164                  * The ordered extent has reserved qgroup space, release now
165                  * and pass the reserved number for qgroup_record to free.
166                  */
167                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
168                 if (ret < 0)
169                         return ERR_PTR(ret);
170         }
171         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172         if (!entry)
173                 return ERR_PTR(-ENOMEM);
174
175         entry->file_offset = file_offset;
176         entry->num_bytes = num_bytes;
177         entry->ram_bytes = ram_bytes;
178         entry->disk_bytenr = disk_bytenr;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->offset = offset;
181         entry->bytes_left = num_bytes;
182         entry->inode = igrab(&inode->vfs_inode);
183         entry->compress_type = compress_type;
184         entry->truncated_len = (u64)-1;
185         entry->qgroup_rsv = qgroup_rsv;
186         entry->flags = flags;
187         refcount_set(&entry->refs, 1);
188         init_waitqueue_head(&entry->wait);
189         INIT_LIST_HEAD(&entry->list);
190         INIT_LIST_HEAD(&entry->log_list);
191         INIT_LIST_HEAD(&entry->root_extent_list);
192         INIT_LIST_HEAD(&entry->work_list);
193         INIT_LIST_HEAD(&entry->bioc_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_root *root = inode->root;
212         struct btrfs_fs_info *fs_info = root->fs_info;
213         struct rb_node *node;
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* One ref for the tree. */
221         refcount_inc(&entry->refs);
222
223         spin_lock_irq(&inode->ordered_tree_lock);
224         node = tree_insert(&inode->ordered_tree, entry->file_offset,
225                            &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&inode->ordered_tree_lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292         spin_lock_irq(&inode->ordered_tree_lock);
293         list_add_tail(&sum->list, &entry->list);
294         spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296
297 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
298 {
299         if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
300                 mapping_set_error(ordered->inode->i_mapping, -EIO);
301 }
302
303 static void finish_ordered_fn(struct btrfs_work *work)
304 {
305         struct btrfs_ordered_extent *ordered_extent;
306
307         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
308         btrfs_finish_ordered_io(ordered_extent);
309 }
310
311 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
312                                       struct page *page, u64 file_offset,
313                                       u64 len, bool uptodate)
314 {
315         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
316         struct btrfs_fs_info *fs_info = inode->root->fs_info;
317
318         lockdep_assert_held(&inode->ordered_tree_lock);
319
320         if (page) {
321                 ASSERT(page->mapping);
322                 ASSERT(page_offset(page) <= file_offset);
323                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
324
325                 /*
326                  * Ordered (Private2) bit indicates whether we still have
327                  * pending io unfinished for the ordered extent.
328                  *
329                  * If there's no such bit, we need to skip to next range.
330                  */
331                 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
332                                               file_offset, len))
333                         return false;
334                 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
335         }
336
337         /* Now we're fine to update the accounting. */
338         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
339                 btrfs_crit(fs_info,
340 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
341                            btrfs_root_id(inode->root), btrfs_ino(inode),
342                            ordered->file_offset, ordered->num_bytes,
343                            len, ordered->bytes_left);
344                 ordered->bytes_left = 0;
345         } else {
346                 ordered->bytes_left -= len;
347         }
348
349         if (!uptodate)
350                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
351
352         if (ordered->bytes_left)
353                 return false;
354
355         /*
356          * All the IO of the ordered extent is finished, we need to queue
357          * the finish_func to be executed.
358          */
359         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
360         cond_wake_up(&ordered->wait);
361         refcount_inc(&ordered->refs);
362         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
363         return true;
364 }
365
366 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
367 {
368         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
369         struct btrfs_fs_info *fs_info = inode->root->fs_info;
370         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
371                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
372
373         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
374         btrfs_queue_work(wq, &ordered->work);
375 }
376
377 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
378                                  struct page *page, u64 file_offset, u64 len,
379                                  bool uptodate)
380 {
381         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
382         unsigned long flags;
383         bool ret;
384
385         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
386
387         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
388         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
389         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
390
391         /*
392          * If this is a COW write it means we created new extent maps for the
393          * range and they point to unwritten locations if we got an error either
394          * before submitting a bio or during IO.
395          *
396          * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
397          * are queuing its completion below. During completion, at
398          * btrfs_finish_one_ordered(), we will drop the extent maps for the
399          * unwritten extents.
400          *
401          * However because completion runs in a work queue we can end up having
402          * a fast fsync running before that. In the case of direct IO, once we
403          * unlock the inode the fsync might start, and we queue the completion
404          * before unlocking the inode. In the case of buffered IO when writeback
405          * finishes (end_bbio_data_write()) we queue the completion, so if the
406          * writeback was triggered by a fast fsync, the fsync might start
407          * logging before ordered extent completion runs in the work queue.
408          *
409          * The fast fsync will log file extent items based on the extent maps it
410          * finds, so if by the time it collects extent maps the ordered extent
411          * completion didn't happen yet, it will log file extent items that
412          * point to unwritten extents, resulting in a corruption if a crash
413          * happens and the log tree is replayed. Note that a fast fsync does not
414          * wait for completion of ordered extents in order to reduce latency.
415          *
416          * Set a flag in the inode so that the next fast fsync will wait for
417          * ordered extents to complete before starting to log.
418          */
419         if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
420                 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
421
422         if (ret)
423                 btrfs_queue_ordered_fn(ordered);
424         return ret;
425 }
426
427 /*
428  * Mark all ordered extents io inside the specified range finished.
429  *
430  * @page:        The involved page for the operation.
431  *               For uncompressed buffered IO, the page status also needs to be
432  *               updated to indicate whether the pending ordered io is finished.
433  *               Can be NULL for direct IO and compressed write.
434  *               For these cases, callers are ensured they won't execute the
435  *               endio function twice.
436  *
437  * This function is called for endio, thus the range must have ordered
438  * extent(s) covering it.
439  */
440 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
441                                     struct page *page, u64 file_offset,
442                                     u64 num_bytes, bool uptodate)
443 {
444         struct rb_node *node;
445         struct btrfs_ordered_extent *entry = NULL;
446         unsigned long flags;
447         u64 cur = file_offset;
448
449         trace_btrfs_writepage_end_io_hook(inode, file_offset,
450                                           file_offset + num_bytes - 1,
451                                           uptodate);
452
453         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
454         while (cur < file_offset + num_bytes) {
455                 u64 entry_end;
456                 u64 end;
457                 u32 len;
458
459                 node = ordered_tree_search(inode, cur);
460                 /* No ordered extents at all */
461                 if (!node)
462                         break;
463
464                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
465                 entry_end = entry->file_offset + entry->num_bytes;
466                 /*
467                  * |<-- OE --->|  |
468                  *                cur
469                  * Go to next OE.
470                  */
471                 if (cur >= entry_end) {
472                         node = rb_next(node);
473                         /* No more ordered extents, exit */
474                         if (!node)
475                                 break;
476                         entry = rb_entry(node, struct btrfs_ordered_extent,
477                                          rb_node);
478
479                         /* Go to next ordered extent and continue */
480                         cur = entry->file_offset;
481                         continue;
482                 }
483                 /*
484                  * |    |<--- OE --->|
485                  * cur
486                  * Go to the start of OE.
487                  */
488                 if (cur < entry->file_offset) {
489                         cur = entry->file_offset;
490                         continue;
491                 }
492
493                 /*
494                  * Now we are definitely inside one ordered extent.
495                  *
496                  * |<--- OE --->|
497                  *      |
498                  *      cur
499                  */
500                 end = min(entry->file_offset + entry->num_bytes,
501                           file_offset + num_bytes) - 1;
502                 ASSERT(end + 1 - cur < U32_MAX);
503                 len = end + 1 - cur;
504
505                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
506                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
507                         btrfs_queue_ordered_fn(entry);
508                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
509                 }
510                 cur += len;
511         }
512         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
513 }
514
515 /*
516  * Finish IO for one ordered extent across a given range.  The range can only
517  * contain one ordered extent.
518  *
519  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
520  *               search and use the ordered extent directly.
521  *               Will be also used to store the finished ordered extent.
522  * @file_offset: File offset for the finished IO
523  * @io_size:     Length of the finish IO range
524  *
525  * Return true if the ordered extent is finished in the range, and update
526  * @cached.
527  * Return false otherwise.
528  *
529  * NOTE: The range can NOT cross multiple ordered extents.
530  * Thus caller should ensure the range doesn't cross ordered extents.
531  */
532 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
533                                     struct btrfs_ordered_extent **cached,
534                                     u64 file_offset, u64 io_size)
535 {
536         struct rb_node *node;
537         struct btrfs_ordered_extent *entry = NULL;
538         unsigned long flags;
539         bool finished = false;
540
541         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
542         if (cached && *cached) {
543                 entry = *cached;
544                 goto have_entry;
545         }
546
547         node = ordered_tree_search(inode, file_offset);
548         if (!node)
549                 goto out;
550
551         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
552 have_entry:
553         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
554                 goto out;
555
556         if (io_size > entry->bytes_left)
557                 btrfs_crit(inode->root->fs_info,
558                            "bad ordered accounting left %llu size %llu",
559                        entry->bytes_left, io_size);
560
561         entry->bytes_left -= io_size;
562
563         if (entry->bytes_left == 0) {
564                 /*
565                  * Ensure only one caller can set the flag and finished_ret
566                  * accordingly
567                  */
568                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
569                 /* test_and_set_bit implies a barrier */
570                 cond_wake_up_nomb(&entry->wait);
571         }
572 out:
573         if (finished && cached && entry) {
574                 *cached = entry;
575                 refcount_inc(&entry->refs);
576                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
577         }
578         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
579         return finished;
580 }
581
582 /*
583  * used to drop a reference on an ordered extent.  This will free
584  * the extent if the last reference is dropped
585  */
586 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
587 {
588         struct list_head *cur;
589         struct btrfs_ordered_sum *sum;
590
591         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
592
593         if (refcount_dec_and_test(&entry->refs)) {
594                 ASSERT(list_empty(&entry->root_extent_list));
595                 ASSERT(list_empty(&entry->log_list));
596                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
597                 if (entry->inode)
598                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
599                 while (!list_empty(&entry->list)) {
600                         cur = entry->list.next;
601                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
602                         list_del(&sum->list);
603                         kvfree(sum);
604                 }
605                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
606         }
607 }
608
609 /*
610  * remove an ordered extent from the tree.  No references are dropped
611  * and waiters are woken up.
612  */
613 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
614                                  struct btrfs_ordered_extent *entry)
615 {
616         struct btrfs_root *root = btrfs_inode->root;
617         struct btrfs_fs_info *fs_info = root->fs_info;
618         struct rb_node *node;
619         bool pending;
620         bool freespace_inode;
621
622         /*
623          * If this is a free space inode the thread has not acquired the ordered
624          * extents lockdep map.
625          */
626         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
627
628         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
629         /* This is paired with btrfs_alloc_ordered_extent. */
630         spin_lock(&btrfs_inode->lock);
631         btrfs_mod_outstanding_extents(btrfs_inode, -1);
632         spin_unlock(&btrfs_inode->lock);
633         if (root != fs_info->tree_root) {
634                 u64 release;
635
636                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
637                         release = entry->disk_num_bytes;
638                 else
639                         release = entry->num_bytes;
640                 btrfs_delalloc_release_metadata(btrfs_inode, release,
641                                                 test_bit(BTRFS_ORDERED_IOERR,
642                                                          &entry->flags));
643         }
644
645         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
646                                  fs_info->delalloc_batch);
647
648         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
649         node = &entry->rb_node;
650         rb_erase(node, &btrfs_inode->ordered_tree);
651         RB_CLEAR_NODE(node);
652         if (btrfs_inode->ordered_tree_last == node)
653                 btrfs_inode->ordered_tree_last = NULL;
654         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
655         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
656         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
657
658         /*
659          * The current running transaction is waiting on us, we need to let it
660          * know that we're complete and wake it up.
661          */
662         if (pending) {
663                 struct btrfs_transaction *trans;
664
665                 /*
666                  * The checks for trans are just a formality, it should be set,
667                  * but if it isn't we don't want to deref/assert under the spin
668                  * lock, so be nice and check if trans is set, but ASSERT() so
669                  * if it isn't set a developer will notice.
670                  */
671                 spin_lock(&fs_info->trans_lock);
672                 trans = fs_info->running_transaction;
673                 if (trans)
674                         refcount_inc(&trans->use_count);
675                 spin_unlock(&fs_info->trans_lock);
676
677                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
678                 if (trans) {
679                         if (atomic_dec_and_test(&trans->pending_ordered))
680                                 wake_up(&trans->pending_wait);
681                         btrfs_put_transaction(trans);
682                 }
683         }
684
685         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
686
687         spin_lock(&root->ordered_extent_lock);
688         list_del_init(&entry->root_extent_list);
689         root->nr_ordered_extents--;
690
691         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
692
693         if (!root->nr_ordered_extents) {
694                 spin_lock(&fs_info->ordered_root_lock);
695                 BUG_ON(list_empty(&root->ordered_root));
696                 list_del_init(&root->ordered_root);
697                 spin_unlock(&fs_info->ordered_root_lock);
698         }
699         spin_unlock(&root->ordered_extent_lock);
700         wake_up(&entry->wait);
701         if (!freespace_inode)
702                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
703 }
704
705 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
706 {
707         struct btrfs_ordered_extent *ordered;
708
709         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
710         btrfs_start_ordered_extent(ordered);
711         complete(&ordered->completion);
712 }
713
714 /*
715  * wait for all the ordered extents in a root.  This is done when balancing
716  * space between drives.
717  */
718 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
719                                const u64 range_start, const u64 range_len)
720 {
721         struct btrfs_fs_info *fs_info = root->fs_info;
722         LIST_HEAD(splice);
723         LIST_HEAD(skipped);
724         LIST_HEAD(works);
725         struct btrfs_ordered_extent *ordered, *next;
726         u64 count = 0;
727         const u64 range_end = range_start + range_len;
728
729         mutex_lock(&root->ordered_extent_mutex);
730         spin_lock(&root->ordered_extent_lock);
731         list_splice_init(&root->ordered_extents, &splice);
732         while (!list_empty(&splice) && nr) {
733                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
734                                            root_extent_list);
735
736                 if (range_end <= ordered->disk_bytenr ||
737                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
738                         list_move_tail(&ordered->root_extent_list, &skipped);
739                         cond_resched_lock(&root->ordered_extent_lock);
740                         continue;
741                 }
742
743                 list_move_tail(&ordered->root_extent_list,
744                                &root->ordered_extents);
745                 refcount_inc(&ordered->refs);
746                 spin_unlock(&root->ordered_extent_lock);
747
748                 btrfs_init_work(&ordered->flush_work,
749                                 btrfs_run_ordered_extent_work, NULL);
750                 list_add_tail(&ordered->work_list, &works);
751                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
752
753                 cond_resched();
754                 spin_lock(&root->ordered_extent_lock);
755                 if (nr != U64_MAX)
756                         nr--;
757                 count++;
758         }
759         list_splice_tail(&skipped, &root->ordered_extents);
760         list_splice_tail(&splice, &root->ordered_extents);
761         spin_unlock(&root->ordered_extent_lock);
762
763         list_for_each_entry_safe(ordered, next, &works, work_list) {
764                 list_del_init(&ordered->work_list);
765                 wait_for_completion(&ordered->completion);
766                 btrfs_put_ordered_extent(ordered);
767                 cond_resched();
768         }
769         mutex_unlock(&root->ordered_extent_mutex);
770
771         return count;
772 }
773
774 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
775                              const u64 range_start, const u64 range_len)
776 {
777         struct btrfs_root *root;
778         LIST_HEAD(splice);
779         u64 done;
780
781         mutex_lock(&fs_info->ordered_operations_mutex);
782         spin_lock(&fs_info->ordered_root_lock);
783         list_splice_init(&fs_info->ordered_roots, &splice);
784         while (!list_empty(&splice) && nr) {
785                 root = list_first_entry(&splice, struct btrfs_root,
786                                         ordered_root);
787                 root = btrfs_grab_root(root);
788                 BUG_ON(!root);
789                 list_move_tail(&root->ordered_root,
790                                &fs_info->ordered_roots);
791                 spin_unlock(&fs_info->ordered_root_lock);
792
793                 done = btrfs_wait_ordered_extents(root, nr,
794                                                   range_start, range_len);
795                 btrfs_put_root(root);
796
797                 spin_lock(&fs_info->ordered_root_lock);
798                 if (nr != U64_MAX) {
799                         nr -= done;
800                 }
801         }
802         list_splice_tail(&splice, &fs_info->ordered_roots);
803         spin_unlock(&fs_info->ordered_root_lock);
804         mutex_unlock(&fs_info->ordered_operations_mutex);
805 }
806
807 /*
808  * Start IO and wait for a given ordered extent to finish.
809  *
810  * Wait on page writeback for all the pages in the extent and the IO completion
811  * code to insert metadata into the btree corresponding to the extent.
812  */
813 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
814 {
815         u64 start = entry->file_offset;
816         u64 end = start + entry->num_bytes - 1;
817         struct btrfs_inode *inode = BTRFS_I(entry->inode);
818         bool freespace_inode;
819
820         trace_btrfs_ordered_extent_start(inode, entry);
821
822         /*
823          * If this is a free space inode do not take the ordered extents lockdep
824          * map.
825          */
826         freespace_inode = btrfs_is_free_space_inode(inode);
827
828         /*
829          * pages in the range can be dirty, clean or writeback.  We
830          * start IO on any dirty ones so the wait doesn't stall waiting
831          * for the flusher thread to find them
832          */
833         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
834                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
835
836         if (!freespace_inode)
837                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
838         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
839 }
840
841 /*
842  * Used to wait on ordered extents across a large range of bytes.
843  */
844 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
845 {
846         int ret = 0;
847         int ret_wb = 0;
848         u64 end;
849         u64 orig_end;
850         struct btrfs_ordered_extent *ordered;
851
852         if (start + len < start) {
853                 orig_end = OFFSET_MAX;
854         } else {
855                 orig_end = start + len - 1;
856                 if (orig_end > OFFSET_MAX)
857                         orig_end = OFFSET_MAX;
858         }
859
860         /* start IO across the range first to instantiate any delalloc
861          * extents
862          */
863         ret = btrfs_fdatawrite_range(inode, start, orig_end);
864         if (ret)
865                 return ret;
866
867         /*
868          * If we have a writeback error don't return immediately. Wait first
869          * for any ordered extents that haven't completed yet. This is to make
870          * sure no one can dirty the same page ranges and call writepages()
871          * before the ordered extents complete - to avoid failures (-EEXIST)
872          * when adding the new ordered extents to the ordered tree.
873          */
874         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
875
876         end = orig_end;
877         while (1) {
878                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
879                 if (!ordered)
880                         break;
881                 if (ordered->file_offset > orig_end) {
882                         btrfs_put_ordered_extent(ordered);
883                         break;
884                 }
885                 if (ordered->file_offset + ordered->num_bytes <= start) {
886                         btrfs_put_ordered_extent(ordered);
887                         break;
888                 }
889                 btrfs_start_ordered_extent(ordered);
890                 end = ordered->file_offset;
891                 /*
892                  * If the ordered extent had an error save the error but don't
893                  * exit without waiting first for all other ordered extents in
894                  * the range to complete.
895                  */
896                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
897                         ret = -EIO;
898                 btrfs_put_ordered_extent(ordered);
899                 if (end == 0 || end == start)
900                         break;
901                 end--;
902         }
903         return ret_wb ? ret_wb : ret;
904 }
905
906 /*
907  * find an ordered extent corresponding to file_offset.  return NULL if
908  * nothing is found, otherwise take a reference on the extent and return it
909  */
910 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
911                                                          u64 file_offset)
912 {
913         struct rb_node *node;
914         struct btrfs_ordered_extent *entry = NULL;
915         unsigned long flags;
916
917         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
918         node = ordered_tree_search(inode, file_offset);
919         if (!node)
920                 goto out;
921
922         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
923         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
924                 entry = NULL;
925         if (entry) {
926                 refcount_inc(&entry->refs);
927                 trace_btrfs_ordered_extent_lookup(inode, entry);
928         }
929 out:
930         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
931         return entry;
932 }
933
934 /* Since the DIO code tries to lock a wide area we need to look for any ordered
935  * extents that exist in the range, rather than just the start of the range.
936  */
937 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
938                 struct btrfs_inode *inode, u64 file_offset, u64 len)
939 {
940         struct rb_node *node;
941         struct btrfs_ordered_extent *entry = NULL;
942
943         spin_lock_irq(&inode->ordered_tree_lock);
944         node = ordered_tree_search(inode, file_offset);
945         if (!node) {
946                 node = ordered_tree_search(inode, file_offset + len);
947                 if (!node)
948                         goto out;
949         }
950
951         while (1) {
952                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
953                 if (range_overlaps(entry, file_offset, len))
954                         break;
955
956                 if (entry->file_offset >= file_offset + len) {
957                         entry = NULL;
958                         break;
959                 }
960                 entry = NULL;
961                 node = rb_next(node);
962                 if (!node)
963                         break;
964         }
965 out:
966         if (entry) {
967                 refcount_inc(&entry->refs);
968                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
969         }
970         spin_unlock_irq(&inode->ordered_tree_lock);
971         return entry;
972 }
973
974 /*
975  * Adds all ordered extents to the given list. The list ends up sorted by the
976  * file_offset of the ordered extents.
977  */
978 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
979                                            struct list_head *list)
980 {
981         struct rb_node *n;
982
983         ASSERT(inode_is_locked(&inode->vfs_inode));
984
985         spin_lock_irq(&inode->ordered_tree_lock);
986         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
987                 struct btrfs_ordered_extent *ordered;
988
989                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
990
991                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
992                         continue;
993
994                 ASSERT(list_empty(&ordered->log_list));
995                 list_add_tail(&ordered->log_list, list);
996                 refcount_inc(&ordered->refs);
997                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
998         }
999         spin_unlock_irq(&inode->ordered_tree_lock);
1000 }
1001
1002 /*
1003  * lookup and return any extent before 'file_offset'.  NULL is returned
1004  * if none is found
1005  */
1006 struct btrfs_ordered_extent *
1007 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1008 {
1009         struct rb_node *node;
1010         struct btrfs_ordered_extent *entry = NULL;
1011
1012         spin_lock_irq(&inode->ordered_tree_lock);
1013         node = ordered_tree_search(inode, file_offset);
1014         if (!node)
1015                 goto out;
1016
1017         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1018         refcount_inc(&entry->refs);
1019         trace_btrfs_ordered_extent_lookup_first(inode, entry);
1020 out:
1021         spin_unlock_irq(&inode->ordered_tree_lock);
1022         return entry;
1023 }
1024
1025 /*
1026  * Lookup the first ordered extent that overlaps the range
1027  * [@file_offset, @file_offset + @len).
1028  *
1029  * The difference between this and btrfs_lookup_first_ordered_extent() is
1030  * that this one won't return any ordered extent that does not overlap the range.
1031  * And the difference against btrfs_lookup_ordered_extent() is, this function
1032  * ensures the first ordered extent gets returned.
1033  */
1034 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1035                         struct btrfs_inode *inode, u64 file_offset, u64 len)
1036 {
1037         struct rb_node *node;
1038         struct rb_node *cur;
1039         struct rb_node *prev;
1040         struct rb_node *next;
1041         struct btrfs_ordered_extent *entry = NULL;
1042
1043         spin_lock_irq(&inode->ordered_tree_lock);
1044         node = inode->ordered_tree.rb_node;
1045         /*
1046          * Here we don't want to use tree_search() which will use tree->last
1047          * and screw up the search order.
1048          * And __tree_search() can't return the adjacent ordered extents
1049          * either, thus here we do our own search.
1050          */
1051         while (node) {
1052                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1053
1054                 if (file_offset < entry->file_offset) {
1055                         node = node->rb_left;
1056                 } else if (file_offset >= entry_end(entry)) {
1057                         node = node->rb_right;
1058                 } else {
1059                         /*
1060                          * Direct hit, got an ordered extent that starts at
1061                          * @file_offset
1062                          */
1063                         goto out;
1064                 }
1065         }
1066         if (!entry) {
1067                 /* Empty tree */
1068                 goto out;
1069         }
1070
1071         cur = &entry->rb_node;
1072         /* We got an entry around @file_offset, check adjacent entries */
1073         if (entry->file_offset < file_offset) {
1074                 prev = cur;
1075                 next = rb_next(cur);
1076         } else {
1077                 prev = rb_prev(cur);
1078                 next = cur;
1079         }
1080         if (prev) {
1081                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1082                 if (range_overlaps(entry, file_offset, len))
1083                         goto out;
1084         }
1085         if (next) {
1086                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1087                 if (range_overlaps(entry, file_offset, len))
1088                         goto out;
1089         }
1090         /* No ordered extent in the range */
1091         entry = NULL;
1092 out:
1093         if (entry) {
1094                 refcount_inc(&entry->refs);
1095                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1096         }
1097
1098         spin_unlock_irq(&inode->ordered_tree_lock);
1099         return entry;
1100 }
1101
1102 /*
1103  * Lock the passed range and ensures all pending ordered extents in it are run
1104  * to completion.
1105  *
1106  * @inode:        Inode whose ordered tree is to be searched
1107  * @start:        Beginning of range to flush
1108  * @end:          Last byte of range to lock
1109  * @cached_state: If passed, will return the extent state responsible for the
1110  *                locked range. It's the caller's responsibility to free the
1111  *                cached state.
1112  *
1113  * Always return with the given range locked, ensuring after it's called no
1114  * order extent can be pending.
1115  */
1116 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1117                                         u64 end,
1118                                         struct extent_state **cached_state)
1119 {
1120         struct btrfs_ordered_extent *ordered;
1121         struct extent_state *cache = NULL;
1122         struct extent_state **cachedp = &cache;
1123
1124         if (cached_state)
1125                 cachedp = cached_state;
1126
1127         while (1) {
1128                 lock_extent(&inode->io_tree, start, end, cachedp);
1129                 ordered = btrfs_lookup_ordered_range(inode, start,
1130                                                      end - start + 1);
1131                 if (!ordered) {
1132                         /*
1133                          * If no external cached_state has been passed then
1134                          * decrement the extra ref taken for cachedp since we
1135                          * aren't exposing it outside of this function
1136                          */
1137                         if (!cached_state)
1138                                 refcount_dec(&cache->refs);
1139                         break;
1140                 }
1141                 unlock_extent(&inode->io_tree, start, end, cachedp);
1142                 btrfs_start_ordered_extent(ordered);
1143                 btrfs_put_ordered_extent(ordered);
1144         }
1145 }
1146
1147 /*
1148  * Lock the passed range and ensure all pending ordered extents in it are run
1149  * to completion in nowait mode.
1150  *
1151  * Return true if btrfs_lock_ordered_range does not return any extents,
1152  * otherwise false.
1153  */
1154 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1155                                   struct extent_state **cached_state)
1156 {
1157         struct btrfs_ordered_extent *ordered;
1158
1159         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1160                 return false;
1161
1162         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1163         if (!ordered)
1164                 return true;
1165
1166         btrfs_put_ordered_extent(ordered);
1167         unlock_extent(&inode->io_tree, start, end, cached_state);
1168
1169         return false;
1170 }
1171
1172 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1173 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1174                         struct btrfs_ordered_extent *ordered, u64 len)
1175 {
1176         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1177         struct btrfs_root *root = inode->root;
1178         struct btrfs_fs_info *fs_info = root->fs_info;
1179         u64 file_offset = ordered->file_offset;
1180         u64 disk_bytenr = ordered->disk_bytenr;
1181         unsigned long flags = ordered->flags;
1182         struct btrfs_ordered_sum *sum, *tmpsum;
1183         struct btrfs_ordered_extent *new;
1184         struct rb_node *node;
1185         u64 offset = 0;
1186
1187         trace_btrfs_ordered_extent_split(inode, ordered);
1188
1189         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1190
1191         /*
1192          * The entire bio must be covered by the ordered extent, but we can't
1193          * reduce the original extent to a zero length either.
1194          */
1195         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1196                 return ERR_PTR(-EINVAL);
1197         /* We cannot split partially completed ordered extents. */
1198         if (ordered->bytes_left) {
1199                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1200                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1201                         return ERR_PTR(-EINVAL);
1202         }
1203         /* We cannot split a compressed ordered extent. */
1204         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1205                 return ERR_PTR(-EINVAL);
1206
1207         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1208                                    len, 0, flags, ordered->compress_type);
1209         if (IS_ERR(new))
1210                 return new;
1211
1212         /* One ref for the tree. */
1213         refcount_inc(&new->refs);
1214
1215         spin_lock_irq(&root->ordered_extent_lock);
1216         spin_lock(&inode->ordered_tree_lock);
1217         /* Remove from tree once */
1218         node = &ordered->rb_node;
1219         rb_erase(node, &inode->ordered_tree);
1220         RB_CLEAR_NODE(node);
1221         if (inode->ordered_tree_last == node)
1222                 inode->ordered_tree_last = NULL;
1223
1224         ordered->file_offset += len;
1225         ordered->disk_bytenr += len;
1226         ordered->num_bytes -= len;
1227         ordered->disk_num_bytes -= len;
1228         ordered->ram_bytes -= len;
1229
1230         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1231                 ASSERT(ordered->bytes_left == 0);
1232                 new->bytes_left = 0;
1233         } else {
1234                 ordered->bytes_left -= len;
1235         }
1236
1237         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1238                 if (ordered->truncated_len > len) {
1239                         ordered->truncated_len -= len;
1240                 } else {
1241                         new->truncated_len = ordered->truncated_len;
1242                         ordered->truncated_len = 0;
1243                 }
1244         }
1245
1246         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1247                 if (offset == len)
1248                         break;
1249                 list_move_tail(&sum->list, &new->list);
1250                 offset += sum->len;
1251         }
1252
1253         /* Re-insert the node */
1254         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1255                            &ordered->rb_node);
1256         if (node)
1257                 btrfs_panic(fs_info, -EEXIST,
1258                         "zoned: inconsistency in ordered tree at offset %llu",
1259                         ordered->file_offset);
1260
1261         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1262         if (node)
1263                 btrfs_panic(fs_info, -EEXIST,
1264                         "zoned: inconsistency in ordered tree at offset %llu",
1265                         new->file_offset);
1266         spin_unlock(&inode->ordered_tree_lock);
1267
1268         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1269         root->nr_ordered_extents++;
1270         spin_unlock_irq(&root->ordered_extent_lock);
1271         return new;
1272 }
1273
1274 int __init ordered_data_init(void)
1275 {
1276         btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1277         if (!btrfs_ordered_extent_cache)
1278                 return -ENOMEM;
1279
1280         return 0;
1281 }
1282
1283 void __cold ordered_data_exit(void)
1284 {
1285         kmem_cache_destroy(btrfs_ordered_extent_cache);
1286 }
This page took 0.114462 seconds and 4 git commands to generate.