4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 ctx->attr_gencount = nfsi->attr_gencount;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
86 return ERR_PTR(-ENOMEM);
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 spin_lock(&dir->i_lock);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
102 nfs_opendir(struct inode *inode, struct file *filp)
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
112 cred = rpc_lookup_cred();
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
134 nfs_closedir(struct inode *inode, struct file *filp)
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
140 struct nfs_cache_array_entry {
144 unsigned char d_type;
147 struct nfs_cache_array {
151 struct nfs_cache_array_entry array[0];
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
158 struct dir_context *ctx;
159 unsigned long page_index;
162 loff_t current_index;
163 decode_dirent_t decode;
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
170 } nfs_readdir_descriptor_t;
173 * The caller is responsible for calling nfs_readdir_release_array(page)
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
180 return ERR_PTR(-EIO);
183 return ERR_PTR(-ENOMEM);
188 void nfs_readdir_release_array(struct page *page)
194 * we are freeing strings created by nfs_add_to_readdir_array()
197 void nfs_readdir_clear_array(struct page *page)
199 struct nfs_cache_array *array;
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
237 return PTR_ERR(array);
239 cache_entry = &array->array[array->size];
241 /* Check that this entry lies within the page bounds */
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
252 array->last_cookie = entry->cookie;
255 array->eof_index = array->size;
257 nfs_readdir_release_array(page);
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 loff_t diff = desc->ctx->pos - desc->current_index;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
298 int status = -EAGAIN;
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
323 ctx->dup_cookie = *desc->dir_cookie;
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
343 struct nfs_cache_array *array;
346 array = nfs_readdir_get_array(desc->page);
348 status = PTR_ERR(array);
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
355 status = nfs_readdir_search_for_cookie(array, desc);
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
362 nfs_readdir_release_array(desc->page);
367 /* Fill a page with xdr information before transferring to the cache page */
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
403 error = desc->decode(xdr, entry, desc->plus);
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
411 /* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 struct nfs_inode *nfsi;
419 if (dentry->d_inode == NULL)
422 nfsi = NFS_I(dentry->d_inode);
423 if (entry->fattr->fileid == nfsi->fileid)
425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
432 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
434 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
436 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
444 * This function is called by the lookup code to request the use of
445 * readdirplus to accelerate any future lookups in the same
449 void nfs_advise_use_readdirplus(struct inode *dir)
451 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
455 * This function is mainly for use by nfs_getattr().
457 * If this is an 'ls -l', we want to force use of readdirplus.
458 * Do this by checking if there is an active file descriptor
459 * and calling nfs_advise_use_readdirplus, then forcing a
462 void nfs_force_use_readdirplus(struct inode *dir)
464 if (!list_empty(&NFS_I(dir)->open_files)) {
465 nfs_advise_use_readdirplus(dir);
466 nfs_zap_mapping(dir, dir->i_mapping);
471 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
473 struct qstr filename = QSTR_INIT(entry->name, entry->len);
474 struct dentry *dentry;
475 struct dentry *alias;
476 struct inode *dir = parent->d_inode;
480 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
482 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
484 if (filename.name[0] == '.') {
485 if (filename.len == 1)
487 if (filename.len == 2 && filename.name[1] == '.')
490 filename.hash = full_name_hash(filename.name, filename.len);
492 dentry = d_lookup(parent, &filename);
493 if (dentry != NULL) {
494 /* Is there a mountpoint here? If so, just exit */
495 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
496 &entry->fattr->fsid))
498 if (nfs_same_file(dentry, entry)) {
499 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
500 status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
502 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
505 d_invalidate(dentry);
510 dentry = d_alloc(parent, &filename);
514 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
518 alias = d_splice_alias(inode, dentry);
522 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
525 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
531 /* Perform conversion from xdr to cache array */
533 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
534 struct page **xdr_pages, struct page *page, unsigned int buflen)
536 struct xdr_stream stream;
538 struct page *scratch;
539 struct nfs_cache_array *array;
540 unsigned int count = 0;
543 scratch = alloc_page(GFP_KERNEL);
550 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
551 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
554 status = xdr_decode(desc, entry, &stream);
556 if (status == -EAGAIN)
564 nfs_prime_dcache(desc->file->f_path.dentry, entry);
566 status = nfs_readdir_add_to_array(entry, page);
569 } while (!entry->eof);
572 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
573 array = nfs_readdir_get_array(page);
574 if (!IS_ERR(array)) {
575 array->eof_index = array->size;
577 nfs_readdir_release_array(page);
579 status = PTR_ERR(array);
587 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
590 for (i = 0; i < npages; i++)
595 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
598 nfs_readdir_free_pagearray(pages, npages);
602 * nfs_readdir_large_page will allocate pages that must be freed with a call
603 * to nfs_readdir_free_large_page
606 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
610 for (i = 0; i < npages; i++) {
611 struct page *page = alloc_page(GFP_KERNEL);
619 nfs_readdir_free_pagearray(pages, i);
624 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
626 struct page *pages[NFS_MAX_READDIR_PAGES];
627 void *pages_ptr = NULL;
628 struct nfs_entry entry;
629 struct file *file = desc->file;
630 struct nfs_cache_array *array;
631 int status = -ENOMEM;
632 unsigned int array_size = ARRAY_SIZE(pages);
634 entry.prev_cookie = 0;
635 entry.cookie = desc->last_cookie;
637 entry.fh = nfs_alloc_fhandle();
638 entry.fattr = nfs_alloc_fattr();
639 entry.server = NFS_SERVER(inode);
640 if (entry.fh == NULL || entry.fattr == NULL)
643 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
644 if (IS_ERR(entry.label)) {
645 status = PTR_ERR(entry.label);
649 array = nfs_readdir_get_array(page);
651 status = PTR_ERR(array);
654 memset(array, 0, sizeof(struct nfs_cache_array));
655 array->eof_index = -1;
657 status = nfs_readdir_large_page(pages, array_size);
659 goto out_release_array;
662 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
667 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
669 if (status == -ENOSPC)
673 } while (array->eof_index < 0);
675 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
677 nfs_readdir_release_array(page);
679 nfs4_label_free(entry.label);
681 nfs_free_fattr(entry.fattr);
682 nfs_free_fhandle(entry.fh);
687 * Now we cache directories properly, by converting xdr information
688 * to an array that can be used for lookups later. This results in
689 * fewer cache pages, since we can store more information on each page.
690 * We only need to convert from xdr once so future lookups are much simpler
693 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
695 struct inode *inode = file_inode(desc->file);
698 ret = nfs_readdir_xdr_to_array(desc, page, inode);
701 SetPageUptodate(page);
703 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
704 /* Should never happen */
705 nfs_zap_mapping(inode, inode->i_mapping);
715 void cache_page_release(nfs_readdir_descriptor_t *desc)
717 if (!desc->page->mapping)
718 nfs_readdir_clear_array(desc->page);
719 page_cache_release(desc->page);
724 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
726 return read_cache_page(file_inode(desc->file)->i_mapping,
727 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
731 * Returns 0 if desc->dir_cookie was found on page desc->page_index
734 int find_cache_page(nfs_readdir_descriptor_t *desc)
738 desc->page = get_cache_page(desc);
739 if (IS_ERR(desc->page))
740 return PTR_ERR(desc->page);
742 res = nfs_readdir_search_array(desc);
744 cache_page_release(desc);
748 /* Search for desc->dir_cookie from the beginning of the page cache */
750 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
754 if (desc->page_index == 0) {
755 desc->current_index = 0;
756 desc->last_cookie = 0;
759 res = find_cache_page(desc);
760 } while (res == -EAGAIN);
765 * Once we've found the start of the dirent within a page: fill 'er up...
768 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
770 struct file *file = desc->file;
773 struct nfs_cache_array *array = NULL;
774 struct nfs_open_dir_context *ctx = file->private_data;
776 array = nfs_readdir_get_array(desc->page);
778 res = PTR_ERR(array);
782 for (i = desc->cache_entry_index; i < array->size; i++) {
783 struct nfs_cache_array_entry *ent;
785 ent = &array->array[i];
786 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
787 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
792 if (i < (array->size-1))
793 *desc->dir_cookie = array->array[i+1].cookie;
795 *desc->dir_cookie = array->last_cookie;
799 if (array->eof_index >= 0)
802 nfs_readdir_release_array(desc->page);
804 cache_page_release(desc);
805 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
806 (unsigned long long)*desc->dir_cookie, res);
811 * If we cannot find a cookie in our cache, we suspect that this is
812 * because it points to a deleted file, so we ask the server to return
813 * whatever it thinks is the next entry. We then feed this to filldir.
814 * If all goes well, we should then be able to find our way round the
815 * cache on the next call to readdir_search_pagecache();
817 * NOTE: we cannot add the anonymous page to the pagecache because
818 * the data it contains might not be page aligned. Besides,
819 * we should already have a complete representation of the
820 * directory in the page cache by the time we get here.
823 int uncached_readdir(nfs_readdir_descriptor_t *desc)
825 struct page *page = NULL;
827 struct inode *inode = file_inode(desc->file);
828 struct nfs_open_dir_context *ctx = desc->file->private_data;
830 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
831 (unsigned long long)*desc->dir_cookie);
833 page = alloc_page(GFP_HIGHUSER);
839 desc->page_index = 0;
840 desc->last_cookie = *desc->dir_cookie;
844 status = nfs_readdir_xdr_to_array(desc, page, inode);
848 status = nfs_do_filldir(desc);
851 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
855 cache_page_release(desc);
859 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
861 struct nfs_inode *nfsi = NFS_I(dir);
863 if (nfs_attribute_cache_expired(dir))
865 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
870 /* The file offset position represents the dirent entry number. A
871 last cookie cache takes care of the common case of reading the
874 static int nfs_readdir(struct file *file, struct dir_context *ctx)
876 struct dentry *dentry = file->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 nfs_readdir_descriptor_t my_desc,
880 struct nfs_open_dir_context *dir_ctx = file->private_data;
883 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
884 file, (long long)ctx->pos);
885 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
888 * ctx->pos points to the dirent entry number.
889 * *desc->dir_cookie has the cookie for the next entry. We have
890 * to either find the entry with the appropriate number or
891 * revalidate the cookie.
893 memset(desc, 0, sizeof(*desc));
897 desc->dir_cookie = &dir_ctx->dir_cookie;
898 desc->decode = NFS_PROTO(inode)->decode_dirent;
899 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
901 nfs_block_sillyrename(dentry);
902 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
903 res = nfs_revalidate_mapping(inode, file->f_mapping);
908 res = readdir_search_pagecache(desc);
910 if (res == -EBADCOOKIE) {
912 /* This means either end of directory */
913 if (*desc->dir_cookie && desc->eof == 0) {
914 /* Or that the server has 'lost' a cookie */
915 res = uncached_readdir(desc);
921 if (res == -ETOOSMALL && desc->plus) {
922 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
923 nfs_zap_caches(inode);
924 desc->page_index = 0;
932 res = nfs_do_filldir(desc);
935 } while (!desc->eof);
937 nfs_unblock_sillyrename(dentry);
940 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
944 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
946 struct inode *inode = file_inode(filp);
947 struct nfs_open_dir_context *dir_ctx = filp->private_data;
949 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
950 filp, offset, whence);
952 mutex_lock(&inode->i_mutex);
955 offset += filp->f_pos;
963 if (offset != filp->f_pos) {
964 filp->f_pos = offset;
965 dir_ctx->dir_cookie = 0;
969 mutex_unlock(&inode->i_mutex);
974 * All directory operations under NFS are synchronous, so fsync()
975 * is a dummy operation.
977 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
980 struct inode *inode = file_inode(filp);
982 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
984 mutex_lock(&inode->i_mutex);
985 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
986 mutex_unlock(&inode->i_mutex);
991 * nfs_force_lookup_revalidate - Mark the directory as having changed
992 * @dir - pointer to directory inode
994 * This forces the revalidation code in nfs_lookup_revalidate() to do a
995 * full lookup on all child dentries of 'dir' whenever a change occurs
996 * on the server that might have invalidated our dcache.
998 * The caller should be holding dir->i_lock
1000 void nfs_force_lookup_revalidate(struct inode *dir)
1002 NFS_I(dir)->cache_change_attribute++;
1004 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1007 * A check for whether or not the parent directory has changed.
1008 * In the case it has, we assume that the dentries are untrustworthy
1009 * and may need to be looked up again.
1010 * If rcu_walk prevents us from performing a full check, return 0.
1012 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1017 if (IS_ROOT(dentry))
1019 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1021 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1023 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1025 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1027 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1030 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1036 * Use intent information to check whether or not we're going to do
1037 * an O_EXCL create using this path component.
1039 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1041 if (NFS_PROTO(dir)->version == 2)
1043 return flags & LOOKUP_EXCL;
1047 * Inode and filehandle revalidation for lookups.
1049 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1050 * or if the intent information indicates that we're about to open this
1051 * particular file and the "nocto" mount flag is not set.
1055 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1057 struct nfs_server *server = NFS_SERVER(inode);
1060 if (IS_AUTOMOUNT(inode))
1062 /* VFS wants an on-the-wire revalidation */
1063 if (flags & LOOKUP_REVAL)
1065 /* This is an open(2) */
1066 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1067 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1070 return (inode->i_nlink == 0) ? -ENOENT : 0;
1072 if (flags & LOOKUP_RCU)
1074 ret = __nfs_revalidate_inode(server, inode);
1081 * We judge how long we want to trust negative
1082 * dentries by looking at the parent inode mtime.
1084 * If parent mtime has changed, we revalidate, else we wait for a
1085 * period corresponding to the parent's attribute cache timeout value.
1087 * If LOOKUP_RCU prevents us from performing a full check, return 1
1088 * suggesting a reval is needed.
1091 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1094 /* Don't revalidate a negative dentry if we're creating a new file */
1095 if (flags & LOOKUP_CREATE)
1097 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1099 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1103 * This is called every time the dcache has a lookup hit,
1104 * and we should check whether we can really trust that
1107 * NOTE! The hit can be a negative hit too, don't assume
1110 * If the parent directory is seen to have changed, we throw out the
1111 * cached dentry and do a new lookup.
1113 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1116 struct inode *inode;
1117 struct dentry *parent;
1118 struct nfs_fh *fhandle = NULL;
1119 struct nfs_fattr *fattr = NULL;
1120 struct nfs4_label *label = NULL;
1123 if (flags & LOOKUP_RCU) {
1124 parent = ACCESS_ONCE(dentry->d_parent);
1125 dir = ACCESS_ONCE(parent->d_inode);
1129 parent = dget_parent(dentry);
1130 dir = parent->d_inode;
1132 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1133 inode = dentry->d_inode;
1136 if (nfs_neg_need_reval(dir, dentry, flags)) {
1137 if (flags & LOOKUP_RCU)
1141 goto out_valid_noent;
1144 if (is_bad_inode(inode)) {
1145 if (flags & LOOKUP_RCU)
1147 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1152 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1153 goto out_set_verifier;
1155 /* Force a full look up iff the parent directory has changed */
1156 if (!nfs_is_exclusive_create(dir, flags) &&
1157 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1159 if (nfs_lookup_verify_inode(inode, flags)) {
1160 if (flags & LOOKUP_RCU)
1162 goto out_zap_parent;
1167 if (flags & LOOKUP_RCU)
1170 if (NFS_STALE(inode))
1174 fhandle = nfs_alloc_fhandle();
1175 fattr = nfs_alloc_fattr();
1176 if (fhandle == NULL || fattr == NULL)
1179 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1183 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1184 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1185 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1188 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1190 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1193 nfs_setsecurity(inode, fattr, label);
1195 nfs_free_fattr(fattr);
1196 nfs_free_fhandle(fhandle);
1197 nfs4_label_free(label);
1200 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1202 /* Success: notify readdir to use READDIRPLUS */
1203 nfs_advise_use_readdirplus(dir);
1205 if (flags & LOOKUP_RCU) {
1206 if (parent != ACCESS_ONCE(dentry->d_parent))
1210 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1214 nfs_zap_caches(dir);
1216 WARN_ON(flags & LOOKUP_RCU);
1217 nfs_free_fattr(fattr);
1218 nfs_free_fhandle(fhandle);
1219 nfs4_label_free(label);
1220 nfs_mark_for_revalidate(dir);
1221 if (inode && S_ISDIR(inode->i_mode)) {
1222 /* Purge readdir caches. */
1223 nfs_zap_caches(inode);
1225 * We can't d_drop the root of a disconnected tree:
1226 * its d_hash is on the s_anon list and d_drop() would hide
1227 * it from shrink_dcache_for_unmount(), leading to busy
1228 * inodes on unmount and further oopses.
1230 if (IS_ROOT(dentry))
1234 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1238 WARN_ON(flags & LOOKUP_RCU);
1239 nfs_free_fattr(fattr);
1240 nfs_free_fhandle(fhandle);
1241 nfs4_label_free(label);
1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1244 __func__, dentry, error);
1249 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1250 * when we don't really care about the dentry name. This is called when a
1251 * pathwalk ends on a dentry that was not found via a normal lookup in the
1252 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1254 * In this situation, we just want to verify that the inode itself is OK
1255 * since the dentry might have changed on the server.
1257 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1260 struct inode *inode = dentry->d_inode;
1263 * I believe we can only get a negative dentry here in the case of a
1264 * procfs-style symlink. Just assume it's correct for now, but we may
1265 * eventually need to do something more here.
1268 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1273 if (is_bad_inode(inode)) {
1274 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1279 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1280 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1281 __func__, inode->i_ino, error ? "invalid" : "valid");
1286 * This is called from dput() when d_count is going to 0.
1288 static int nfs_dentry_delete(const struct dentry *dentry)
1290 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1291 dentry, dentry->d_flags);
1293 /* Unhash any dentry with a stale inode */
1294 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1297 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1298 /* Unhash it, so that ->d_iput() would be called */
1301 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1302 /* Unhash it, so that ancestors of killed async unlink
1303 * files will be cleaned up during umount */
1310 /* Ensure that we revalidate inode->i_nlink */
1311 static void nfs_drop_nlink(struct inode *inode)
1313 spin_lock(&inode->i_lock);
1314 /* drop the inode if we're reasonably sure this is the last link */
1315 if (inode->i_nlink == 1)
1317 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1318 spin_unlock(&inode->i_lock);
1322 * Called when the dentry loses inode.
1323 * We use it to clean up silly-renamed files.
1325 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1327 if (S_ISDIR(inode->i_mode))
1328 /* drop any readdir cache as it could easily be old */
1329 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1331 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1332 nfs_complete_unlink(dentry, inode);
1333 nfs_drop_nlink(inode);
1338 static void nfs_d_release(struct dentry *dentry)
1340 /* free cached devname value, if it survived that far */
1341 if (unlikely(dentry->d_fsdata)) {
1342 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1345 kfree(dentry->d_fsdata);
1349 const struct dentry_operations nfs_dentry_operations = {
1350 .d_revalidate = nfs_lookup_revalidate,
1351 .d_weak_revalidate = nfs_weak_revalidate,
1352 .d_delete = nfs_dentry_delete,
1353 .d_iput = nfs_dentry_iput,
1354 .d_automount = nfs_d_automount,
1355 .d_release = nfs_d_release,
1357 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1359 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1362 struct dentry *parent;
1363 struct inode *inode = NULL;
1364 struct nfs_fh *fhandle = NULL;
1365 struct nfs_fattr *fattr = NULL;
1366 struct nfs4_label *label = NULL;
1369 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1370 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1372 res = ERR_PTR(-ENAMETOOLONG);
1373 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1377 * If we're doing an exclusive create, optimize away the lookup
1378 * but don't hash the dentry.
1380 if (nfs_is_exclusive_create(dir, flags)) {
1381 d_instantiate(dentry, NULL);
1386 res = ERR_PTR(-ENOMEM);
1387 fhandle = nfs_alloc_fhandle();
1388 fattr = nfs_alloc_fattr();
1389 if (fhandle == NULL || fattr == NULL)
1392 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1396 parent = dentry->d_parent;
1397 /* Protect against concurrent sillydeletes */
1398 trace_nfs_lookup_enter(dir, dentry, flags);
1399 nfs_block_sillyrename(parent);
1400 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1401 if (error == -ENOENT)
1404 res = ERR_PTR(error);
1405 goto out_unblock_sillyrename;
1407 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1408 res = ERR_CAST(inode);
1410 goto out_unblock_sillyrename;
1412 /* Success: notify readdir to use READDIRPLUS */
1413 nfs_advise_use_readdirplus(dir);
1416 res = d_splice_alias(inode, dentry);
1419 goto out_unblock_sillyrename;
1422 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1423 out_unblock_sillyrename:
1424 nfs_unblock_sillyrename(parent);
1425 trace_nfs_lookup_exit(dir, dentry, flags, error);
1426 nfs4_label_free(label);
1428 nfs_free_fattr(fattr);
1429 nfs_free_fhandle(fhandle);
1432 EXPORT_SYMBOL_GPL(nfs_lookup);
1434 #if IS_ENABLED(CONFIG_NFS_V4)
1435 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1437 const struct dentry_operations nfs4_dentry_operations = {
1438 .d_revalidate = nfs4_lookup_revalidate,
1439 .d_delete = nfs_dentry_delete,
1440 .d_iput = nfs_dentry_iput,
1441 .d_automount = nfs_d_automount,
1442 .d_release = nfs_d_release,
1444 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1446 static fmode_t flags_to_mode(int flags)
1448 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1449 if ((flags & O_ACCMODE) != O_WRONLY)
1451 if ((flags & O_ACCMODE) != O_RDONLY)
1456 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1458 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1461 static int do_open(struct inode *inode, struct file *filp)
1463 nfs_fscache_open_file(inode, filp);
1467 static int nfs_finish_open(struct nfs_open_context *ctx,
1468 struct dentry *dentry,
1469 struct file *file, unsigned open_flags,
1474 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1475 *opened |= FILE_CREATED;
1477 err = finish_open(file, dentry, do_open, opened);
1480 nfs_file_set_open_context(file, ctx);
1486 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1487 struct file *file, unsigned open_flags,
1488 umode_t mode, int *opened)
1490 struct nfs_open_context *ctx;
1492 struct iattr attr = { .ia_valid = ATTR_OPEN };
1493 struct inode *inode;
1494 unsigned int lookup_flags = 0;
1497 /* Expect a negative dentry */
1498 BUG_ON(dentry->d_inode);
1500 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1501 dir->i_sb->s_id, dir->i_ino, dentry);
1503 err = nfs_check_flags(open_flags);
1507 /* NFS only supports OPEN on regular files */
1508 if ((open_flags & O_DIRECTORY)) {
1509 if (!d_unhashed(dentry)) {
1511 * Hashed negative dentry with O_DIRECTORY: dentry was
1512 * revalidated and is fine, no need to perform lookup
1517 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1521 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1522 return -ENAMETOOLONG;
1524 if (open_flags & O_CREAT) {
1525 attr.ia_valid |= ATTR_MODE;
1526 attr.ia_mode = mode & ~current_umask();
1528 if (open_flags & O_TRUNC) {
1529 attr.ia_valid |= ATTR_SIZE;
1533 ctx = create_nfs_open_context(dentry, open_flags);
1538 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1539 nfs_block_sillyrename(dentry->d_parent);
1540 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1541 nfs_unblock_sillyrename(dentry->d_parent);
1542 if (IS_ERR(inode)) {
1543 err = PTR_ERR(inode);
1544 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1545 put_nfs_open_context(ctx);
1549 d_add(dentry, NULL);
1550 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1556 if (!(open_flags & O_NOFOLLOW))
1566 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1567 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1568 put_nfs_open_context(ctx);
1573 res = nfs_lookup(dir, dentry, lookup_flags);
1578 return finish_no_open(file, res);
1580 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1582 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1584 struct inode *inode;
1587 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1589 if (d_mountpoint(dentry))
1591 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1594 inode = dentry->d_inode;
1596 /* We can't create new files in nfs_open_revalidate(), so we
1597 * optimize away revalidation of negative dentries.
1599 if (inode == NULL) {
1600 struct dentry *parent;
1603 if (flags & LOOKUP_RCU) {
1604 parent = ACCESS_ONCE(dentry->d_parent);
1605 dir = ACCESS_ONCE(parent->d_inode);
1609 parent = dget_parent(dentry);
1610 dir = parent->d_inode;
1612 if (!nfs_neg_need_reval(dir, dentry, flags))
1614 else if (flags & LOOKUP_RCU)
1616 if (!(flags & LOOKUP_RCU))
1618 else if (parent != ACCESS_ONCE(dentry->d_parent))
1623 /* NFS only supports OPEN on regular files */
1624 if (!S_ISREG(inode->i_mode))
1626 /* We cannot do exclusive creation on a positive dentry */
1627 if (flags & LOOKUP_EXCL)
1630 /* Let f_op->open() actually open (and revalidate) the file */
1637 return nfs_lookup_revalidate(dentry, flags);
1640 #endif /* CONFIG_NFSV4 */
1643 * Code common to create, mkdir, and mknod.
1645 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1646 struct nfs_fattr *fattr,
1647 struct nfs4_label *label)
1649 struct dentry *parent = dget_parent(dentry);
1650 struct inode *dir = parent->d_inode;
1651 struct inode *inode;
1652 int error = -EACCES;
1656 /* We may have been initialized further down */
1657 if (dentry->d_inode)
1659 if (fhandle->size == 0) {
1660 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1664 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1665 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1666 struct nfs_server *server = NFS_SB(dentry->d_sb);
1667 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1671 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1672 error = PTR_ERR(inode);
1675 d_add(dentry, inode);
1680 nfs_mark_for_revalidate(dir);
1684 EXPORT_SYMBOL_GPL(nfs_instantiate);
1687 * Following a failed create operation, we drop the dentry rather
1688 * than retain a negative dentry. This avoids a problem in the event
1689 * that the operation succeeded on the server, but an error in the
1690 * reply path made it appear to have failed.
1692 int nfs_create(struct inode *dir, struct dentry *dentry,
1693 umode_t mode, bool excl)
1696 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1699 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1700 dir->i_sb->s_id, dir->i_ino, dentry);
1702 attr.ia_mode = mode;
1703 attr.ia_valid = ATTR_MODE;
1705 trace_nfs_create_enter(dir, dentry, open_flags);
1706 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1707 trace_nfs_create_exit(dir, dentry, open_flags, error);
1715 EXPORT_SYMBOL_GPL(nfs_create);
1718 * See comments for nfs_proc_create regarding failed operations.
1721 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1726 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1727 dir->i_sb->s_id, dir->i_ino, dentry);
1729 if (!new_valid_dev(rdev))
1732 attr.ia_mode = mode;
1733 attr.ia_valid = ATTR_MODE;
1735 trace_nfs_mknod_enter(dir, dentry);
1736 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1737 trace_nfs_mknod_exit(dir, dentry, status);
1745 EXPORT_SYMBOL_GPL(nfs_mknod);
1748 * See comments for nfs_proc_create regarding failed operations.
1750 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1755 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1756 dir->i_sb->s_id, dir->i_ino, dentry);
1758 attr.ia_valid = ATTR_MODE;
1759 attr.ia_mode = mode | S_IFDIR;
1761 trace_nfs_mkdir_enter(dir, dentry);
1762 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1763 trace_nfs_mkdir_exit(dir, dentry, error);
1771 EXPORT_SYMBOL_GPL(nfs_mkdir);
1773 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1775 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1779 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1783 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1784 dir->i_sb->s_id, dir->i_ino, dentry);
1786 trace_nfs_rmdir_enter(dir, dentry);
1787 if (dentry->d_inode) {
1788 nfs_wait_on_sillyrename(dentry);
1789 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1790 /* Ensure the VFS deletes this inode */
1793 clear_nlink(dentry->d_inode);
1796 nfs_dentry_handle_enoent(dentry);
1799 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1800 trace_nfs_rmdir_exit(dir, dentry, error);
1804 EXPORT_SYMBOL_GPL(nfs_rmdir);
1807 * Remove a file after making sure there are no pending writes,
1808 * and after checking that the file has only one user.
1810 * We invalidate the attribute cache and free the inode prior to the operation
1811 * to avoid possible races if the server reuses the inode.
1813 static int nfs_safe_remove(struct dentry *dentry)
1815 struct inode *dir = dentry->d_parent->d_inode;
1816 struct inode *inode = dentry->d_inode;
1819 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1821 /* If the dentry was sillyrenamed, we simply call d_delete() */
1822 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1827 trace_nfs_remove_enter(dir, dentry);
1828 if (inode != NULL) {
1829 NFS_PROTO(inode)->return_delegation(inode);
1830 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1832 nfs_drop_nlink(inode);
1834 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1835 if (error == -ENOENT)
1836 nfs_dentry_handle_enoent(dentry);
1837 trace_nfs_remove_exit(dir, dentry, error);
1842 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1843 * belongs to an active ".nfs..." file and we return -EBUSY.
1845 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1847 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1850 int need_rehash = 0;
1852 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1853 dir->i_ino, dentry);
1855 trace_nfs_unlink_enter(dir, dentry);
1856 spin_lock(&dentry->d_lock);
1857 if (d_count(dentry) > 1) {
1858 spin_unlock(&dentry->d_lock);
1859 /* Start asynchronous writeout of the inode */
1860 write_inode_now(dentry->d_inode, 0);
1861 error = nfs_sillyrename(dir, dentry);
1864 if (!d_unhashed(dentry)) {
1868 spin_unlock(&dentry->d_lock);
1869 error = nfs_safe_remove(dentry);
1870 if (!error || error == -ENOENT) {
1871 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1872 } else if (need_rehash)
1875 trace_nfs_unlink_exit(dir, dentry, error);
1878 EXPORT_SYMBOL_GPL(nfs_unlink);
1881 * To create a symbolic link, most file systems instantiate a new inode,
1882 * add a page to it containing the path, then write it out to the disk
1883 * using prepare_write/commit_write.
1885 * Unfortunately the NFS client can't create the in-core inode first
1886 * because it needs a file handle to create an in-core inode (see
1887 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1888 * symlink request has completed on the server.
1890 * So instead we allocate a raw page, copy the symname into it, then do
1891 * the SYMLINK request with the page as the buffer. If it succeeds, we
1892 * now have a new file handle and can instantiate an in-core NFS inode
1893 * and move the raw page into its mapping.
1895 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1900 unsigned int pathlen = strlen(symname);
1903 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1904 dir->i_ino, dentry, symname);
1906 if (pathlen > PAGE_SIZE)
1907 return -ENAMETOOLONG;
1909 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1910 attr.ia_valid = ATTR_MODE;
1912 page = alloc_page(GFP_HIGHUSER);
1916 kaddr = kmap_atomic(page);
1917 memcpy(kaddr, symname, pathlen);
1918 if (pathlen < PAGE_SIZE)
1919 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1920 kunmap_atomic(kaddr);
1922 trace_nfs_symlink_enter(dir, dentry);
1923 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1924 trace_nfs_symlink_exit(dir, dentry, error);
1926 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1927 dir->i_sb->s_id, dir->i_ino,
1928 dentry, symname, error);
1935 * No big deal if we can't add this page to the page cache here.
1936 * READLINK will get the missing page from the server if needed.
1938 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1940 SetPageUptodate(page);
1943 * add_to_page_cache_lru() grabs an extra page refcount.
1944 * Drop it here to avoid leaking this page later.
1946 page_cache_release(page);
1952 EXPORT_SYMBOL_GPL(nfs_symlink);
1955 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1957 struct inode *inode = old_dentry->d_inode;
1960 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1961 old_dentry, dentry);
1963 trace_nfs_link_enter(inode, dir, dentry);
1964 NFS_PROTO(inode)->return_delegation(inode);
1967 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1970 d_add(dentry, inode);
1972 trace_nfs_link_exit(inode, dir, dentry, error);
1975 EXPORT_SYMBOL_GPL(nfs_link);
1979 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1980 * different file handle for the same inode after a rename (e.g. when
1981 * moving to a different directory). A fail-safe method to do so would
1982 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1983 * rename the old file using the sillyrename stuff. This way, the original
1984 * file in old_dir will go away when the last process iput()s the inode.
1988 * It actually works quite well. One needs to have the possibility for
1989 * at least one ".nfs..." file in each directory the file ever gets
1990 * moved or linked to which happens automagically with the new
1991 * implementation that only depends on the dcache stuff instead of
1992 * using the inode layer
1994 * Unfortunately, things are a little more complicated than indicated
1995 * above. For a cross-directory move, we want to make sure we can get
1996 * rid of the old inode after the operation. This means there must be
1997 * no pending writes (if it's a file), and the use count must be 1.
1998 * If these conditions are met, we can drop the dentries before doing
2001 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2002 struct inode *new_dir, struct dentry *new_dentry)
2004 struct inode *old_inode = old_dentry->d_inode;
2005 struct inode *new_inode = new_dentry->d_inode;
2006 struct dentry *dentry = NULL, *rehash = NULL;
2007 struct rpc_task *task;
2010 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2011 old_dentry, new_dentry,
2012 d_count(new_dentry));
2014 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2016 * For non-directories, check whether the target is busy and if so,
2017 * make a copy of the dentry and then do a silly-rename. If the
2018 * silly-rename succeeds, the copied dentry is hashed and becomes
2021 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2023 * To prevent any new references to the target during the
2024 * rename, we unhash the dentry in advance.
2026 if (!d_unhashed(new_dentry)) {
2028 rehash = new_dentry;
2031 if (d_count(new_dentry) > 2) {
2034 /* copy the target dentry's name */
2035 dentry = d_alloc(new_dentry->d_parent,
2036 &new_dentry->d_name);
2040 /* silly-rename the existing target ... */
2041 err = nfs_sillyrename(new_dir, new_dentry);
2045 new_dentry = dentry;
2051 NFS_PROTO(old_inode)->return_delegation(old_inode);
2052 if (new_inode != NULL)
2053 NFS_PROTO(new_inode)->return_delegation(new_inode);
2055 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2057 error = PTR_ERR(task);
2061 error = rpc_wait_for_completion_task(task);
2063 error = task->tk_status;
2065 nfs_mark_for_revalidate(old_inode);
2069 trace_nfs_rename_exit(old_dir, old_dentry,
2070 new_dir, new_dentry, error);
2072 if (new_inode != NULL)
2073 nfs_drop_nlink(new_inode);
2074 d_move(old_dentry, new_dentry);
2075 nfs_set_verifier(new_dentry,
2076 nfs_save_change_attribute(new_dir));
2077 } else if (error == -ENOENT)
2078 nfs_dentry_handle_enoent(old_dentry);
2080 /* new dentry created? */
2085 EXPORT_SYMBOL_GPL(nfs_rename);
2087 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2088 static LIST_HEAD(nfs_access_lru_list);
2089 static atomic_long_t nfs_access_nr_entries;
2091 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2092 module_param(nfs_access_max_cachesize, ulong, 0644);
2093 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2095 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2097 put_rpccred(entry->cred);
2098 kfree_rcu(entry, rcu_head);
2099 smp_mb__before_atomic();
2100 atomic_long_dec(&nfs_access_nr_entries);
2101 smp_mb__after_atomic();
2104 static void nfs_access_free_list(struct list_head *head)
2106 struct nfs_access_entry *cache;
2108 while (!list_empty(head)) {
2109 cache = list_entry(head->next, struct nfs_access_entry, lru);
2110 list_del(&cache->lru);
2111 nfs_access_free_entry(cache);
2115 static unsigned long
2116 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2119 struct nfs_inode *nfsi, *next;
2120 struct nfs_access_entry *cache;
2123 spin_lock(&nfs_access_lru_lock);
2124 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2125 struct inode *inode;
2127 if (nr_to_scan-- == 0)
2129 inode = &nfsi->vfs_inode;
2130 spin_lock(&inode->i_lock);
2131 if (list_empty(&nfsi->access_cache_entry_lru))
2132 goto remove_lru_entry;
2133 cache = list_entry(nfsi->access_cache_entry_lru.next,
2134 struct nfs_access_entry, lru);
2135 list_move(&cache->lru, &head);
2136 rb_erase(&cache->rb_node, &nfsi->access_cache);
2138 if (!list_empty(&nfsi->access_cache_entry_lru))
2139 list_move_tail(&nfsi->access_cache_inode_lru,
2140 &nfs_access_lru_list);
2143 list_del_init(&nfsi->access_cache_inode_lru);
2144 smp_mb__before_atomic();
2145 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2146 smp_mb__after_atomic();
2148 spin_unlock(&inode->i_lock);
2150 spin_unlock(&nfs_access_lru_lock);
2151 nfs_access_free_list(&head);
2156 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2158 int nr_to_scan = sc->nr_to_scan;
2159 gfp_t gfp_mask = sc->gfp_mask;
2161 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2163 return nfs_do_access_cache_scan(nr_to_scan);
2168 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2170 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2174 nfs_access_cache_enforce_limit(void)
2176 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2178 unsigned int nr_to_scan;
2180 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2183 diff = nr_entries - nfs_access_max_cachesize;
2184 if (diff < nr_to_scan)
2186 nfs_do_access_cache_scan(nr_to_scan);
2189 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2191 struct rb_root *root_node = &nfsi->access_cache;
2193 struct nfs_access_entry *entry;
2195 /* Unhook entries from the cache */
2196 while ((n = rb_first(root_node)) != NULL) {
2197 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2198 rb_erase(n, root_node);
2199 list_move(&entry->lru, head);
2201 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2204 void nfs_access_zap_cache(struct inode *inode)
2208 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2210 /* Remove from global LRU init */
2211 spin_lock(&nfs_access_lru_lock);
2212 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2213 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2215 spin_lock(&inode->i_lock);
2216 __nfs_access_zap_cache(NFS_I(inode), &head);
2217 spin_unlock(&inode->i_lock);
2218 spin_unlock(&nfs_access_lru_lock);
2219 nfs_access_free_list(&head);
2221 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2223 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2225 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2226 struct nfs_access_entry *entry;
2229 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2231 if (cred < entry->cred)
2233 else if (cred > entry->cred)
2241 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2243 struct nfs_inode *nfsi = NFS_I(inode);
2244 struct nfs_access_entry *cache;
2247 spin_lock(&inode->i_lock);
2248 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2250 cache = nfs_access_search_rbtree(inode, cred);
2253 if (!nfs_have_delegated_attributes(inode) &&
2254 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2256 res->jiffies = cache->jiffies;
2257 res->cred = cache->cred;
2258 res->mask = cache->mask;
2259 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2262 spin_unlock(&inode->i_lock);
2265 rb_erase(&cache->rb_node, &nfsi->access_cache);
2266 list_del(&cache->lru);
2267 spin_unlock(&inode->i_lock);
2268 nfs_access_free_entry(cache);
2271 spin_unlock(&inode->i_lock);
2272 nfs_access_zap_cache(inode);
2276 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2278 /* Only check the most recently returned cache entry,
2279 * but do it without locking.
2281 struct nfs_inode *nfsi = NFS_I(inode);
2282 struct nfs_access_entry *cache;
2284 struct list_head *lh;
2287 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2289 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2290 cache = list_entry(lh, struct nfs_access_entry, lru);
2291 if (lh == &nfsi->access_cache_entry_lru ||
2292 cred != cache->cred)
2296 if (!nfs_have_delegated_attributes(inode) &&
2297 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2299 res->jiffies = cache->jiffies;
2300 res->cred = cache->cred;
2301 res->mask = cache->mask;
2308 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2310 struct nfs_inode *nfsi = NFS_I(inode);
2311 struct rb_root *root_node = &nfsi->access_cache;
2312 struct rb_node **p = &root_node->rb_node;
2313 struct rb_node *parent = NULL;
2314 struct nfs_access_entry *entry;
2316 spin_lock(&inode->i_lock);
2317 while (*p != NULL) {
2319 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2321 if (set->cred < entry->cred)
2322 p = &parent->rb_left;
2323 else if (set->cred > entry->cred)
2324 p = &parent->rb_right;
2328 rb_link_node(&set->rb_node, parent, p);
2329 rb_insert_color(&set->rb_node, root_node);
2330 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2331 spin_unlock(&inode->i_lock);
2334 rb_replace_node(parent, &set->rb_node, root_node);
2335 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2336 list_del(&entry->lru);
2337 spin_unlock(&inode->i_lock);
2338 nfs_access_free_entry(entry);
2341 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2343 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2346 RB_CLEAR_NODE(&cache->rb_node);
2347 cache->jiffies = set->jiffies;
2348 cache->cred = get_rpccred(set->cred);
2349 cache->mask = set->mask;
2351 /* The above field assignments must be visible
2352 * before this item appears on the lru. We cannot easily
2353 * use rcu_assign_pointer, so just force the memory barrier.
2356 nfs_access_add_rbtree(inode, cache);
2358 /* Update accounting */
2359 smp_mb__before_atomic();
2360 atomic_long_inc(&nfs_access_nr_entries);
2361 smp_mb__after_atomic();
2363 /* Add inode to global LRU list */
2364 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2365 spin_lock(&nfs_access_lru_lock);
2366 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2367 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2368 &nfs_access_lru_list);
2369 spin_unlock(&nfs_access_lru_lock);
2371 nfs_access_cache_enforce_limit();
2373 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2375 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2378 if (access_result & NFS4_ACCESS_READ)
2379 entry->mask |= MAY_READ;
2381 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2382 entry->mask |= MAY_WRITE;
2383 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2384 entry->mask |= MAY_EXEC;
2386 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2388 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2390 struct nfs_access_entry cache;
2393 trace_nfs_access_enter(inode);
2395 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2397 status = nfs_access_get_cached(inode, cred, &cache);
2402 if (mask & MAY_NOT_BLOCK)
2405 /* Be clever: ask server to check for all possible rights */
2406 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2408 cache.jiffies = jiffies;
2409 status = NFS_PROTO(inode)->access(inode, &cache);
2411 if (status == -ESTALE) {
2412 nfs_zap_caches(inode);
2413 if (!S_ISDIR(inode->i_mode))
2414 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2418 nfs_access_add_cache(inode, &cache);
2420 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2423 trace_nfs_access_exit(inode, status);
2427 static int nfs_open_permission_mask(int openflags)
2431 if (openflags & __FMODE_EXEC) {
2432 /* ONLY check exec rights */
2435 if ((openflags & O_ACCMODE) != O_WRONLY)
2437 if ((openflags & O_ACCMODE) != O_RDONLY)
2444 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2446 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2448 EXPORT_SYMBOL_GPL(nfs_may_open);
2450 int nfs_permission(struct inode *inode, int mask)
2452 struct rpc_cred *cred;
2455 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2457 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2459 /* Is this sys_access() ? */
2460 if (mask & (MAY_ACCESS | MAY_CHDIR))
2463 switch (inode->i_mode & S_IFMT) {
2470 * Optimize away all write operations, since the server
2471 * will check permissions when we perform the op.
2473 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2478 if (!NFS_PROTO(inode)->access)
2481 /* Always try fast lookups first */
2483 cred = rpc_lookup_cred_nonblock();
2485 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2487 res = PTR_ERR(cred);
2489 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2490 /* Fast lookup failed, try the slow way */
2491 cred = rpc_lookup_cred();
2492 if (!IS_ERR(cred)) {
2493 res = nfs_do_access(inode, cred, mask);
2496 res = PTR_ERR(cred);
2499 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2502 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2503 inode->i_sb->s_id, inode->i_ino, mask, res);
2506 if (mask & MAY_NOT_BLOCK)
2509 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2511 res = generic_permission(inode, mask);
2514 EXPORT_SYMBOL_GPL(nfs_permission);
2518 * version-control: t
2519 * kept-new-versions: 5