1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/init.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/kthread.h>
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 #include <linux/sched/signal.h>
17 #include <linux/random.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *victim_entry_slab;
28 static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
31 static int gc_thread_func(void *data)
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
39 wait_ms = gc_th->min_sleep_time;
43 bool sync_mode, foreground = false;
45 wait_event_interruptible_timeout(*wq,
46 kthread_should_stop() || freezing(current) ||
47 waitqueue_active(fggc_wq) ||
49 msecs_to_jiffies(wait_ms));
51 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
54 /* give it a try one time */
58 if (try_to_freeze()) {
59 stat_other_skip_bggc_count(sbi);
62 if (kthread_should_stop())
65 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
66 increase_sleep_time(gc_th, &wait_ms);
67 stat_other_skip_bggc_count(sbi);
71 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
72 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
73 f2fs_stop_checkpoint(sbi, false);
76 if (!sb_start_write_trylock(sbi->sb)) {
77 stat_other_skip_bggc_count(sbi);
82 * [GC triggering condition]
83 * 0. GC is not conducted currently.
84 * 1. There are enough dirty segments.
85 * 2. IO subsystem is idle by checking the # of writeback pages.
86 * 3. IO subsystem is idle by checking the # of requests in
87 * bdev's request list.
89 * Note) We have to avoid triggering GCs frequently.
90 * Because it is possible that some segments can be
91 * invalidated soon after by user update or deletion.
92 * So, I'd like to wait some time to collect dirty segments.
94 if (sbi->gc_mode == GC_URGENT_HIGH) {
95 wait_ms = gc_th->urgent_sleep_time;
96 down_write(&sbi->gc_lock);
101 down_write(&sbi->gc_lock);
103 } else if (!down_write_trylock(&sbi->gc_lock)) {
104 stat_other_skip_bggc_count(sbi);
108 if (!is_idle(sbi, GC_TIME)) {
109 increase_sleep_time(gc_th, &wait_ms);
110 up_write(&sbi->gc_lock);
111 stat_io_skip_bggc_count(sbi);
115 if (has_enough_invalid_blocks(sbi))
116 decrease_sleep_time(gc_th, &wait_ms);
118 increase_sleep_time(gc_th, &wait_ms);
121 stat_inc_bggc_count(sbi->stat_info);
123 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
125 /* foreground GC was been triggered via f2fs_balance_fs() */
129 /* if return value is not zero, no victim was selected */
130 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO))
131 wait_ms = gc_th->no_gc_sleep_time;
134 wake_up_all(&gc_th->fggc_wq);
136 trace_f2fs_background_gc(sbi->sb, wait_ms,
137 prefree_segments(sbi), free_segments(sbi));
139 /* balancing f2fs's metadata periodically */
140 f2fs_balance_fs_bg(sbi, true);
142 sb_end_write(sbi->sb);
144 } while (!kthread_should_stop());
148 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
150 struct f2fs_gc_kthread *gc_th;
151 dev_t dev = sbi->sb->s_bdev->bd_dev;
154 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
160 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
161 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
162 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
163 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
167 sbi->gc_thread = gc_th;
168 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
169 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
170 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
171 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
172 if (IS_ERR(gc_th->f2fs_gc_task)) {
173 err = PTR_ERR(gc_th->f2fs_gc_task);
175 sbi->gc_thread = NULL;
181 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
183 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
187 kthread_stop(gc_th->f2fs_gc_task);
188 wake_up_all(&gc_th->fggc_wq);
190 sbi->gc_thread = NULL;
193 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
197 if (gc_type == BG_GC) {
198 if (sbi->am.atgc_enabled)
206 switch (sbi->gc_mode) {
222 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
223 int type, struct victim_sel_policy *p)
225 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
227 if (p->alloc_mode == SSR) {
228 p->gc_mode = GC_GREEDY;
229 p->dirty_bitmap = dirty_i->dirty_segmap[type];
230 p->max_search = dirty_i->nr_dirty[type];
232 } else if (p->alloc_mode == AT_SSR) {
233 p->gc_mode = GC_GREEDY;
234 p->dirty_bitmap = dirty_i->dirty_segmap[type];
235 p->max_search = dirty_i->nr_dirty[type];
238 p->gc_mode = select_gc_type(sbi, gc_type);
239 p->ofs_unit = sbi->segs_per_sec;
240 if (__is_large_section(sbi)) {
241 p->dirty_bitmap = dirty_i->dirty_secmap;
242 p->max_search = count_bits(p->dirty_bitmap,
245 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
246 p->max_search = dirty_i->nr_dirty[DIRTY];
251 * adjust candidates range, should select all dirty segments for
252 * foreground GC and urgent GC cases.
254 if (gc_type != FG_GC &&
255 (sbi->gc_mode != GC_URGENT_HIGH) &&
256 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
257 p->max_search > sbi->max_victim_search)
258 p->max_search = sbi->max_victim_search;
260 /* let's select beginning hot/small space first in no_heap mode*/
261 if (f2fs_need_rand_seg(sbi))
262 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
263 else if (test_opt(sbi, NOHEAP) &&
264 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
267 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
270 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
271 struct victim_sel_policy *p)
273 /* SSR allocates in a segment unit */
274 if (p->alloc_mode == SSR)
275 return sbi->blocks_per_seg;
276 else if (p->alloc_mode == AT_SSR)
280 if (p->gc_mode == GC_GREEDY)
281 return 2 * sbi->blocks_per_seg * p->ofs_unit;
282 else if (p->gc_mode == GC_CB)
284 else if (p->gc_mode == GC_AT)
286 else /* No other gc_mode */
290 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
292 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
296 * If the gc_type is FG_GC, we can select victim segments
297 * selected by background GC before.
298 * Those segments guarantee they have small valid blocks.
300 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
301 if (sec_usage_check(sbi, secno))
303 clear_bit(secno, dirty_i->victim_secmap);
304 return GET_SEG_FROM_SEC(sbi, secno);
309 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
311 struct sit_info *sit_i = SIT_I(sbi);
312 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
313 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
314 unsigned long long mtime = 0;
315 unsigned int vblocks;
316 unsigned char age = 0;
319 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
321 for (i = 0; i < usable_segs_per_sec; i++)
322 mtime += get_seg_entry(sbi, start + i)->mtime;
323 vblocks = get_valid_blocks(sbi, segno, true);
325 mtime = div_u64(mtime, usable_segs_per_sec);
326 vblocks = div_u64(vblocks, usable_segs_per_sec);
328 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
330 /* Handle if the system time has changed by the user */
331 if (mtime < sit_i->min_mtime)
332 sit_i->min_mtime = mtime;
333 if (mtime > sit_i->max_mtime)
334 sit_i->max_mtime = mtime;
335 if (sit_i->max_mtime != sit_i->min_mtime)
336 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
337 sit_i->max_mtime - sit_i->min_mtime);
339 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
342 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
343 unsigned int segno, struct victim_sel_policy *p)
345 if (p->alloc_mode == SSR)
346 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
348 /* alloc_mode == LFS */
349 if (p->gc_mode == GC_GREEDY)
350 return get_valid_blocks(sbi, segno, true);
351 else if (p->gc_mode == GC_CB)
352 return get_cb_cost(sbi, segno);
358 static unsigned int count_bits(const unsigned long *addr,
359 unsigned int offset, unsigned int len)
361 unsigned int end = offset + len, sum = 0;
363 while (offset < end) {
364 if (test_bit(offset++, addr))
370 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
371 unsigned long long mtime, unsigned int segno,
372 struct rb_node *parent, struct rb_node **p,
375 struct atgc_management *am = &sbi->am;
376 struct victim_entry *ve;
378 ve = f2fs_kmem_cache_alloc(victim_entry_slab,
379 GFP_NOFS, true, NULL);
384 rb_link_node(&ve->rb_node, parent, p);
385 rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
387 list_add_tail(&ve->list, &am->victim_list);
394 static void insert_victim_entry(struct f2fs_sb_info *sbi,
395 unsigned long long mtime, unsigned int segno)
397 struct atgc_management *am = &sbi->am;
399 struct rb_node *parent = NULL;
400 bool left_most = true;
402 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
403 attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
406 static void add_victim_entry(struct f2fs_sb_info *sbi,
407 struct victim_sel_policy *p, unsigned int segno)
409 struct sit_info *sit_i = SIT_I(sbi);
410 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
411 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
412 unsigned long long mtime = 0;
415 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
416 if (p->gc_mode == GC_AT &&
417 get_valid_blocks(sbi, segno, true) == 0)
421 for (i = 0; i < sbi->segs_per_sec; i++)
422 mtime += get_seg_entry(sbi, start + i)->mtime;
423 mtime = div_u64(mtime, sbi->segs_per_sec);
425 /* Handle if the system time has changed by the user */
426 if (mtime < sit_i->min_mtime)
427 sit_i->min_mtime = mtime;
428 if (mtime > sit_i->max_mtime)
429 sit_i->max_mtime = mtime;
430 if (mtime < sit_i->dirty_min_mtime)
431 sit_i->dirty_min_mtime = mtime;
432 if (mtime > sit_i->dirty_max_mtime)
433 sit_i->dirty_max_mtime = mtime;
435 /* don't choose young section as candidate */
436 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
439 insert_victim_entry(sbi, mtime, segno);
442 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
443 struct victim_sel_policy *p)
445 struct atgc_management *am = &sbi->am;
446 struct rb_node *parent = NULL;
449 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
454 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
455 struct victim_sel_policy *p)
457 struct sit_info *sit_i = SIT_I(sbi);
458 struct atgc_management *am = &sbi->am;
459 struct rb_root_cached *root = &am->root;
460 struct rb_node *node;
462 struct victim_entry *ve;
463 unsigned long long total_time;
464 unsigned long long age, u, accu;
465 unsigned long long max_mtime = sit_i->dirty_max_mtime;
466 unsigned long long min_mtime = sit_i->dirty_min_mtime;
467 unsigned int sec_blocks = BLKS_PER_SEC(sbi);
468 unsigned int vblocks;
469 unsigned int dirty_threshold = max(am->max_candidate_count,
470 am->candidate_ratio *
471 am->victim_count / 100);
472 unsigned int age_weight = am->age_weight;
474 unsigned int iter = 0;
476 if (max_mtime < min_mtime)
480 total_time = max_mtime - min_mtime;
482 accu = div64_u64(ULLONG_MAX, total_time);
483 accu = min_t(unsigned long long, div_u64(accu, 100),
484 DEFAULT_ACCURACY_CLASS);
486 node = rb_first_cached(root);
488 re = rb_entry_safe(node, struct rb_entry, rb_node);
492 ve = (struct victim_entry *)re;
494 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
497 /* age = 10000 * x% * 60 */
498 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
501 vblocks = get_valid_blocks(sbi, ve->segno, true);
502 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
504 /* u = 10000 * x% * 40 */
505 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
508 f2fs_bug_on(sbi, age + u >= UINT_MAX);
510 cost = UINT_MAX - (age + u);
513 if (cost < p->min_cost ||
514 (cost == p->min_cost && age > p->oldest_age)) {
517 p->min_segno = ve->segno;
520 if (iter < dirty_threshold) {
521 node = rb_next(node);
527 * select candidates around source section in range of
528 * [target - dirty_threshold, target + dirty_threshold]
530 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
531 struct victim_sel_policy *p)
533 struct sit_info *sit_i = SIT_I(sbi);
534 struct atgc_management *am = &sbi->am;
535 struct rb_node *node;
537 struct victim_entry *ve;
538 unsigned long long age;
539 unsigned long long max_mtime = sit_i->dirty_max_mtime;
540 unsigned long long min_mtime = sit_i->dirty_min_mtime;
541 unsigned int seg_blocks = sbi->blocks_per_seg;
542 unsigned int vblocks;
543 unsigned int dirty_threshold = max(am->max_candidate_count,
544 am->candidate_ratio *
545 am->victim_count / 100);
547 unsigned int iter = 0;
550 if (max_mtime < min_mtime)
554 node = lookup_central_victim(sbi, p);
556 re = rb_entry_safe(node, struct rb_entry, rb_node);
563 ve = (struct victim_entry *)re;
565 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
568 age = max_mtime - ve->mtime;
570 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
571 f2fs_bug_on(sbi, !vblocks);
574 if (vblocks == seg_blocks)
579 age = max_mtime - abs(p->age - age);
580 cost = UINT_MAX - vblocks;
582 if (cost < p->min_cost ||
583 (cost == p->min_cost && age > p->oldest_age)) {
586 p->min_segno = ve->segno;
589 if (iter < dirty_threshold) {
591 node = rb_prev(node);
593 node = rb_next(node);
603 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
604 struct victim_sel_policy *p)
606 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
607 &sbi->am.root, true));
609 if (p->gc_mode == GC_AT)
610 atgc_lookup_victim(sbi, p);
611 else if (p->alloc_mode == AT_SSR)
612 atssr_lookup_victim(sbi, p);
617 static void release_victim_entry(struct f2fs_sb_info *sbi)
619 struct atgc_management *am = &sbi->am;
620 struct victim_entry *ve, *tmp;
622 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
624 kmem_cache_free(victim_entry_slab, ve);
628 am->root = RB_ROOT_CACHED;
630 f2fs_bug_on(sbi, am->victim_count);
631 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
635 * This function is called from two paths.
636 * One is garbage collection and the other is SSR segment selection.
637 * When it is called during GC, it just gets a victim segment
638 * and it does not remove it from dirty seglist.
639 * When it is called from SSR segment selection, it finds a segment
640 * which has minimum valid blocks and removes it from dirty seglist.
642 static int get_victim_by_default(struct f2fs_sb_info *sbi,
643 unsigned int *result, int gc_type, int type,
644 char alloc_mode, unsigned long long age)
646 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
647 struct sit_info *sm = SIT_I(sbi);
648 struct victim_sel_policy p;
649 unsigned int secno, last_victim;
650 unsigned int last_segment;
651 unsigned int nsearched;
655 mutex_lock(&dirty_i->seglist_lock);
656 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
658 p.alloc_mode = alloc_mode;
660 p.age_threshold = sbi->am.age_threshold;
663 select_policy(sbi, gc_type, type, &p);
664 p.min_segno = NULL_SEGNO;
666 p.min_cost = get_max_cost(sbi, &p);
668 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
672 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
674 if (*result != NULL_SEGNO) {
675 if (!get_valid_blocks(sbi, *result, false)) {
680 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
683 p.min_segno = *result;
688 if (p.max_search == 0)
691 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
692 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
693 p.min_segno = sbi->next_victim_seg[BG_GC];
694 *result = p.min_segno;
695 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
698 if (gc_type == FG_GC &&
699 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
700 p.min_segno = sbi->next_victim_seg[FG_GC];
701 *result = p.min_segno;
702 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
707 last_victim = sm->last_victim[p.gc_mode];
708 if (p.alloc_mode == LFS && gc_type == FG_GC) {
709 p.min_segno = check_bg_victims(sbi);
710 if (p.min_segno != NULL_SEGNO)
715 unsigned long cost, *dirty_bitmap;
716 unsigned int unit_no, segno;
718 dirty_bitmap = p.dirty_bitmap;
719 unit_no = find_next_bit(dirty_bitmap,
720 last_segment / p.ofs_unit,
721 p.offset / p.ofs_unit);
722 segno = unit_no * p.ofs_unit;
723 if (segno >= last_segment) {
724 if (sm->last_victim[p.gc_mode]) {
726 sm->last_victim[p.gc_mode];
727 sm->last_victim[p.gc_mode] = 0;
734 p.offset = segno + p.ofs_unit;
737 #ifdef CONFIG_F2FS_CHECK_FS
739 * skip selecting the invalid segno (that is failed due to block
740 * validity check failure during GC) to avoid endless GC loop in
743 if (test_bit(segno, sm->invalid_segmap))
747 secno = GET_SEC_FROM_SEG(sbi, segno);
749 if (sec_usage_check(sbi, secno))
752 /* Don't touch checkpointed data */
753 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
754 if (p.alloc_mode == LFS) {
756 * LFS is set to find source section during GC.
757 * The victim should have no checkpointed data.
759 if (get_ckpt_valid_blocks(sbi, segno, true))
763 * SSR | AT_SSR are set to find target segment
764 * for writes which can be full by checkpointed
765 * and newly written blocks.
767 if (!f2fs_segment_has_free_slot(sbi, segno))
772 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
776 add_victim_entry(sbi, &p, segno);
780 cost = get_gc_cost(sbi, segno, &p);
782 if (p.min_cost > cost) {
787 if (nsearched >= p.max_search) {
788 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
789 sm->last_victim[p.gc_mode] =
790 last_victim + p.ofs_unit;
792 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
793 sm->last_victim[p.gc_mode] %=
794 (MAIN_SECS(sbi) * sbi->segs_per_sec);
799 /* get victim for GC_AT/AT_SSR */
801 lookup_victim_by_age(sbi, &p);
802 release_victim_entry(sbi);
805 if (is_atgc && p.min_segno == NULL_SEGNO &&
806 sm->elapsed_time < p.age_threshold) {
811 if (p.min_segno != NULL_SEGNO) {
813 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
815 if (p.alloc_mode == LFS) {
816 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
817 if (gc_type == FG_GC)
818 sbi->cur_victim_sec = secno;
820 set_bit(secno, dirty_i->victim_secmap);
826 if (p.min_segno != NULL_SEGNO)
827 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
829 prefree_segments(sbi), free_segments(sbi));
830 mutex_unlock(&dirty_i->seglist_lock);
835 static const struct victim_selection default_v_ops = {
836 .get_victim = get_victim_by_default,
839 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
841 struct inode_entry *ie;
843 ie = radix_tree_lookup(&gc_list->iroot, ino);
849 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
851 struct inode_entry *new_ie;
853 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
857 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
858 GFP_NOFS, true, NULL);
859 new_ie->inode = inode;
861 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
862 list_add_tail(&new_ie->list, &gc_list->ilist);
865 static void put_gc_inode(struct gc_inode_list *gc_list)
867 struct inode_entry *ie, *next_ie;
869 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
870 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
873 kmem_cache_free(f2fs_inode_entry_slab, ie);
877 static int check_valid_map(struct f2fs_sb_info *sbi,
878 unsigned int segno, int offset)
880 struct sit_info *sit_i = SIT_I(sbi);
881 struct seg_entry *sentry;
884 down_read(&sit_i->sentry_lock);
885 sentry = get_seg_entry(sbi, segno);
886 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
887 up_read(&sit_i->sentry_lock);
892 * This function compares node address got in summary with that in NAT.
893 * On validity, copy that node with cold status, otherwise (invalid node)
896 static int gc_node_segment(struct f2fs_sb_info *sbi,
897 struct f2fs_summary *sum, unsigned int segno, int gc_type)
899 struct f2fs_summary *entry;
903 bool fggc = (gc_type == FG_GC);
905 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
907 start_addr = START_BLOCK(sbi, segno);
912 if (fggc && phase == 2)
913 atomic_inc(&sbi->wb_sync_req[NODE]);
915 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
916 nid_t nid = le32_to_cpu(entry->nid);
917 struct page *node_page;
921 /* stop BG_GC if there is not enough free sections. */
922 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
925 if (check_valid_map(sbi, segno, off) == 0)
929 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
935 f2fs_ra_node_page(sbi, nid);
940 node_page = f2fs_get_node_page(sbi, nid);
941 if (IS_ERR(node_page))
944 /* block may become invalid during f2fs_get_node_page */
945 if (check_valid_map(sbi, segno, off) == 0) {
946 f2fs_put_page(node_page, 1);
950 if (f2fs_get_node_info(sbi, nid, &ni)) {
951 f2fs_put_page(node_page, 1);
955 if (ni.blk_addr != start_addr + off) {
956 f2fs_put_page(node_page, 1);
960 err = f2fs_move_node_page(node_page, gc_type);
961 if (!err && gc_type == FG_GC)
963 stat_inc_node_blk_count(sbi, 1, gc_type);
970 atomic_dec(&sbi->wb_sync_req[NODE]);
975 * Calculate start block index indicating the given node offset.
976 * Be careful, caller should give this node offset only indicating direct node
977 * blocks. If any node offsets, which point the other types of node blocks such
978 * as indirect or double indirect node blocks, are given, it must be a caller's
981 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
983 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
991 } else if (node_ofs <= indirect_blks) {
992 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
994 bidx = node_ofs - 2 - dec;
996 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
998 bidx = node_ofs - 5 - dec;
1000 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1003 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1004 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1006 struct page *node_page;
1008 unsigned int ofs_in_node;
1009 block_t source_blkaddr;
1011 nid = le32_to_cpu(sum->nid);
1012 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1014 node_page = f2fs_get_node_page(sbi, nid);
1015 if (IS_ERR(node_page))
1018 if (f2fs_get_node_info(sbi, nid, dni)) {
1019 f2fs_put_page(node_page, 1);
1023 if (sum->version != dni->version) {
1024 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1026 set_sbi_flag(sbi, SBI_NEED_FSCK);
1029 *nofs = ofs_of_node(node_page);
1030 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1031 f2fs_put_page(node_page, 1);
1033 if (source_blkaddr != blkaddr) {
1034 #ifdef CONFIG_F2FS_CHECK_FS
1035 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1036 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1038 if (unlikely(check_valid_map(sbi, segno, offset))) {
1039 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1040 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1041 blkaddr, source_blkaddr, segno);
1042 f2fs_bug_on(sbi, 1);
1051 static int ra_data_block(struct inode *inode, pgoff_t index)
1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 struct address_space *mapping = inode->i_mapping;
1055 struct dnode_of_data dn;
1057 struct extent_info ei = {0, 0, 0};
1058 struct f2fs_io_info fio = {
1060 .ino = inode->i_ino,
1065 .encrypted_page = NULL,
1071 page = f2fs_grab_cache_page(mapping, index, true);
1075 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1076 dn.data_blkaddr = ei.blk + index - ei.fofs;
1077 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1078 DATA_GENERIC_ENHANCE_READ))) {
1079 err = -EFSCORRUPTED;
1085 set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1089 f2fs_put_dnode(&dn);
1091 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1095 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1096 DATA_GENERIC_ENHANCE))) {
1097 err = -EFSCORRUPTED;
1103 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1106 * don't cache encrypted data into meta inode until previous dirty
1107 * data were writebacked to avoid racing between GC and flush.
1109 f2fs_wait_on_page_writeback(page, DATA, true, true);
1111 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1113 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1115 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1116 if (!fio.encrypted_page) {
1121 err = f2fs_submit_page_bio(&fio);
1123 goto put_encrypted_page;
1124 f2fs_put_page(fio.encrypted_page, 0);
1125 f2fs_put_page(page, 1);
1127 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1128 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1132 f2fs_put_page(fio.encrypted_page, 1);
1134 f2fs_put_page(page, 1);
1139 * Move data block via META_MAPPING while keeping locked data page.
1140 * This can be used to move blocks, aka LBAs, directly on disk.
1142 static int move_data_block(struct inode *inode, block_t bidx,
1143 int gc_type, unsigned int segno, int off)
1145 struct f2fs_io_info fio = {
1146 .sbi = F2FS_I_SB(inode),
1147 .ino = inode->i_ino,
1152 .encrypted_page = NULL,
1156 struct dnode_of_data dn;
1157 struct f2fs_summary sum;
1158 struct node_info ni;
1159 struct page *page, *mpage;
1162 bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1163 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1164 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1165 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1167 /* do not read out */
1168 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1172 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1177 if (f2fs_is_atomic_file(inode)) {
1178 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1179 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1184 if (f2fs_is_pinned_file(inode)) {
1185 f2fs_pin_file_control(inode, true);
1190 set_new_dnode(&dn, inode, NULL, NULL, 0);
1191 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1195 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1196 ClearPageUptodate(page);
1202 * don't cache encrypted data into meta inode until previous dirty
1203 * data were writebacked to avoid racing between GC and flush.
1205 f2fs_wait_on_page_writeback(page, DATA, true, true);
1207 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1209 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1215 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1218 down_write(&fio.sbi->io_order_lock);
1220 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1221 fio.old_blkaddr, false);
1227 fio.encrypted_page = mpage;
1229 /* read source block in mpage */
1230 if (!PageUptodate(mpage)) {
1231 err = f2fs_submit_page_bio(&fio);
1233 f2fs_put_page(mpage, 1);
1237 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1238 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1241 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1242 !PageUptodate(mpage))) {
1244 f2fs_put_page(mpage, 1);
1249 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1251 /* allocate block address */
1252 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1255 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1256 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1257 if (!fio.encrypted_page) {
1259 f2fs_put_page(mpage, 1);
1263 /* write target block */
1264 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1265 memcpy(page_address(fio.encrypted_page),
1266 page_address(mpage), PAGE_SIZE);
1267 f2fs_put_page(mpage, 1);
1268 invalidate_mapping_pages(META_MAPPING(fio.sbi),
1269 fio.old_blkaddr, fio.old_blkaddr);
1270 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1272 set_page_dirty(fio.encrypted_page);
1273 if (clear_page_dirty_for_io(fio.encrypted_page))
1274 dec_page_count(fio.sbi, F2FS_DIRTY_META);
1276 set_page_writeback(fio.encrypted_page);
1277 ClearPageError(page);
1279 fio.op = REQ_OP_WRITE;
1280 fio.op_flags = REQ_SYNC;
1281 fio.new_blkaddr = newaddr;
1282 f2fs_submit_page_write(&fio);
1285 if (PageWriteback(fio.encrypted_page))
1286 end_page_writeback(fio.encrypted_page);
1290 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1292 f2fs_update_data_blkaddr(&dn, newaddr);
1293 set_inode_flag(inode, FI_APPEND_WRITE);
1294 if (page->index == 0)
1295 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1297 f2fs_put_page(fio.encrypted_page, 1);
1300 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1304 up_write(&fio.sbi->io_order_lock);
1306 f2fs_put_dnode(&dn);
1308 f2fs_put_page(page, 1);
1312 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1313 unsigned int segno, int off)
1318 page = f2fs_get_lock_data_page(inode, bidx, true);
1320 return PTR_ERR(page);
1322 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1327 if (f2fs_is_atomic_file(inode)) {
1328 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
1329 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
1333 if (f2fs_is_pinned_file(inode)) {
1334 if (gc_type == FG_GC)
1335 f2fs_pin_file_control(inode, true);
1340 if (gc_type == BG_GC) {
1341 if (PageWriteback(page)) {
1345 set_page_dirty(page);
1346 set_page_private_gcing(page);
1348 struct f2fs_io_info fio = {
1349 .sbi = F2FS_I_SB(inode),
1350 .ino = inode->i_ino,
1354 .op_flags = REQ_SYNC,
1355 .old_blkaddr = NULL_ADDR,
1357 .encrypted_page = NULL,
1358 .need_lock = LOCK_REQ,
1359 .io_type = FS_GC_DATA_IO,
1361 bool is_dirty = PageDirty(page);
1364 f2fs_wait_on_page_writeback(page, DATA, true, true);
1366 set_page_dirty(page);
1367 if (clear_page_dirty_for_io(page)) {
1368 inode_dec_dirty_pages(inode);
1369 f2fs_remove_dirty_inode(inode);
1372 set_page_private_gcing(page);
1374 err = f2fs_do_write_data_page(&fio);
1376 clear_page_private_gcing(page);
1377 if (err == -ENOMEM) {
1378 congestion_wait(BLK_RW_ASYNC,
1379 DEFAULT_IO_TIMEOUT);
1383 set_page_dirty(page);
1387 f2fs_put_page(page, 1);
1392 * This function tries to get parent node of victim data block, and identifies
1393 * data block validity. If the block is valid, copy that with cold status and
1394 * modify parent node.
1395 * If the parent node is not valid or the data block address is different,
1396 * the victim data block is ignored.
1398 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1399 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1402 struct super_block *sb = sbi->sb;
1403 struct f2fs_summary *entry;
1408 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1410 start_addr = START_BLOCK(sbi, segno);
1415 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1416 struct page *data_page;
1417 struct inode *inode;
1418 struct node_info dni; /* dnode info for the data */
1419 unsigned int ofs_in_node, nofs;
1421 nid_t nid = le32_to_cpu(entry->nid);
1424 * stop BG_GC if there is not enough free sections.
1425 * Or, stop GC if the segment becomes fully valid caused by
1426 * race condition along with SSR block allocation.
1428 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1429 (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1433 if (check_valid_map(sbi, segno, off) == 0)
1437 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1443 f2fs_ra_node_page(sbi, nid);
1447 /* Get an inode by ino with checking validity */
1448 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1452 f2fs_ra_node_page(sbi, dni.ino);
1456 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1459 inode = f2fs_iget(sb, dni.ino);
1460 if (IS_ERR(inode) || is_bad_inode(inode))
1463 if (!down_write_trylock(
1464 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1466 sbi->skipped_gc_rwsem++;
1470 start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1473 if (f2fs_post_read_required(inode)) {
1474 int err = ra_data_block(inode, start_bidx);
1476 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1481 add_gc_inode(gc_list, inode);
1485 data_page = f2fs_get_read_data_page(inode,
1486 start_bidx, REQ_RAHEAD, true);
1487 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1488 if (IS_ERR(data_page)) {
1493 f2fs_put_page(data_page, 0);
1494 add_gc_inode(gc_list, inode);
1499 inode = find_gc_inode(gc_list, dni.ino);
1501 struct f2fs_inode_info *fi = F2FS_I(inode);
1502 bool locked = false;
1505 if (S_ISREG(inode->i_mode)) {
1506 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) {
1507 sbi->skipped_gc_rwsem++;
1510 if (!down_write_trylock(
1511 &fi->i_gc_rwsem[WRITE])) {
1512 sbi->skipped_gc_rwsem++;
1513 up_write(&fi->i_gc_rwsem[READ]);
1518 /* wait for all inflight aio data */
1519 inode_dio_wait(inode);
1522 start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1524 if (f2fs_post_read_required(inode))
1525 err = move_data_block(inode, start_bidx,
1526 gc_type, segno, off);
1528 err = move_data_page(inode, start_bidx, gc_type,
1531 if (!err && (gc_type == FG_GC ||
1532 f2fs_post_read_required(inode)))
1536 up_write(&fi->i_gc_rwsem[WRITE]);
1537 up_write(&fi->i_gc_rwsem[READ]);
1540 stat_inc_data_blk_count(sbi, 1, gc_type);
1550 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1553 struct sit_info *sit_i = SIT_I(sbi);
1556 down_write(&sit_i->sentry_lock);
1557 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1558 NO_CHECK_TYPE, LFS, 0);
1559 up_write(&sit_i->sentry_lock);
1563 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1564 unsigned int start_segno,
1565 struct gc_inode_list *gc_list, int gc_type,
1568 struct page *sum_page;
1569 struct f2fs_summary_block *sum;
1570 struct blk_plug plug;
1571 unsigned int segno = start_segno;
1572 unsigned int end_segno = start_segno + sbi->segs_per_sec;
1573 int seg_freed = 0, migrated = 0;
1574 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1575 SUM_TYPE_DATA : SUM_TYPE_NODE;
1578 if (__is_large_section(sbi))
1579 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1582 * zone-capacity can be less than zone-size in zoned devices,
1583 * resulting in less than expected usable segments in the zone,
1584 * calculate the end segno in the zone which can be garbage collected
1586 if (f2fs_sb_has_blkzoned(sbi))
1587 end_segno -= sbi->segs_per_sec -
1588 f2fs_usable_segs_in_sec(sbi, segno);
1590 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1592 /* readahead multi ssa blocks those have contiguous address */
1593 if (__is_large_section(sbi))
1594 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1595 end_segno - segno, META_SSA, true);
1597 /* reference all summary page */
1598 while (segno < end_segno) {
1599 sum_page = f2fs_get_sum_page(sbi, segno++);
1600 if (IS_ERR(sum_page)) {
1601 int err = PTR_ERR(sum_page);
1603 end_segno = segno - 1;
1604 for (segno = start_segno; segno < end_segno; segno++) {
1605 sum_page = find_get_page(META_MAPPING(sbi),
1606 GET_SUM_BLOCK(sbi, segno));
1607 f2fs_put_page(sum_page, 0);
1608 f2fs_put_page(sum_page, 0);
1612 unlock_page(sum_page);
1615 blk_start_plug(&plug);
1617 for (segno = start_segno; segno < end_segno; segno++) {
1619 /* find segment summary of victim */
1620 sum_page = find_get_page(META_MAPPING(sbi),
1621 GET_SUM_BLOCK(sbi, segno));
1622 f2fs_put_page(sum_page, 0);
1624 if (get_valid_blocks(sbi, segno, false) == 0)
1626 if (gc_type == BG_GC && __is_large_section(sbi) &&
1627 migrated >= sbi->migration_granularity)
1629 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1632 sum = page_address(sum_page);
1633 if (type != GET_SUM_TYPE((&sum->footer))) {
1634 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1635 segno, type, GET_SUM_TYPE((&sum->footer)));
1636 set_sbi_flag(sbi, SBI_NEED_FSCK);
1637 f2fs_stop_checkpoint(sbi, false);
1642 * this is to avoid deadlock:
1643 * - lock_page(sum_page) - f2fs_replace_block
1644 * - check_valid_map() - down_write(sentry_lock)
1645 * - down_read(sentry_lock) - change_curseg()
1646 * - lock_page(sum_page)
1648 if (type == SUM_TYPE_NODE)
1649 submitted += gc_node_segment(sbi, sum->entries, segno,
1652 submitted += gc_data_segment(sbi, sum->entries, gc_list,
1656 stat_inc_seg_count(sbi, type, gc_type);
1657 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1661 if (gc_type == FG_GC &&
1662 get_valid_blocks(sbi, segno, false) == 0)
1665 if (__is_large_section(sbi) && segno + 1 < end_segno)
1666 sbi->next_victim_seg[gc_type] = segno + 1;
1668 f2fs_put_page(sum_page, 0);
1672 f2fs_submit_merged_write(sbi,
1673 (type == SUM_TYPE_NODE) ? NODE : DATA);
1675 blk_finish_plug(&plug);
1677 stat_inc_call_count(sbi->stat_info);
1682 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1683 bool background, bool force, unsigned int segno)
1685 int gc_type = sync ? FG_GC : BG_GC;
1686 int sec_freed = 0, seg_freed = 0, total_freed = 0;
1688 struct cp_control cpc;
1689 unsigned int init_segno = segno;
1690 struct gc_inode_list gc_list = {
1691 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1692 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1694 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC];
1695 unsigned long long first_skipped;
1696 unsigned int skipped_round = 0, round = 0;
1698 trace_f2fs_gc_begin(sbi->sb, sync, background,
1699 get_pages(sbi, F2FS_DIRTY_NODES),
1700 get_pages(sbi, F2FS_DIRTY_DENTS),
1701 get_pages(sbi, F2FS_DIRTY_IMETA),
1704 reserved_segments(sbi),
1705 prefree_segments(sbi));
1707 cpc.reason = __get_cp_reason(sbi);
1708 sbi->skipped_gc_rwsem = 0;
1709 first_skipped = last_skipped;
1711 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1715 if (unlikely(f2fs_cp_error(sbi))) {
1720 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1722 * For example, if there are many prefree_segments below given
1723 * threshold, we can make them free by checkpoint. Then, we
1724 * secure free segments which doesn't need fggc any more.
1726 if (prefree_segments(sbi) &&
1727 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1728 ret = f2fs_write_checkpoint(sbi, &cpc);
1732 if (has_not_enough_free_secs(sbi, 0, 0))
1736 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1737 if (gc_type == BG_GC && !background) {
1741 ret = __get_victim(sbi, &segno, gc_type);
1745 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force);
1746 if (gc_type == FG_GC &&
1747 seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1749 total_freed += seg_freed;
1751 if (gc_type == FG_GC) {
1752 if (sbi->skipped_atomic_files[FG_GC] > last_skipped ||
1753 sbi->skipped_gc_rwsem)
1755 last_skipped = sbi->skipped_atomic_files[FG_GC];
1759 if (gc_type == FG_GC)
1760 sbi->cur_victim_sec = NULL_SEGNO;
1765 if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1766 if (skipped_round <= MAX_SKIP_GC_COUNT ||
1767 skipped_round * 2 < round) {
1772 if (first_skipped < last_skipped &&
1773 (last_skipped - first_skipped) >
1774 sbi->skipped_gc_rwsem) {
1775 f2fs_drop_inmem_pages_all(sbi, true);
1779 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1780 ret = f2fs_write_checkpoint(sbi, &cpc);
1783 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1784 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1786 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1787 get_pages(sbi, F2FS_DIRTY_NODES),
1788 get_pages(sbi, F2FS_DIRTY_DENTS),
1789 get_pages(sbi, F2FS_DIRTY_IMETA),
1792 reserved_segments(sbi),
1793 prefree_segments(sbi));
1795 up_write(&sbi->gc_lock);
1797 put_gc_inode(&gc_list);
1800 ret = sec_freed ? 0 : -EAGAIN;
1804 int __init f2fs_create_garbage_collection_cache(void)
1806 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1807 sizeof(struct victim_entry));
1808 if (!victim_entry_slab)
1813 void f2fs_destroy_garbage_collection_cache(void)
1815 kmem_cache_destroy(victim_entry_slab);
1818 static void init_atgc_management(struct f2fs_sb_info *sbi)
1820 struct atgc_management *am = &sbi->am;
1822 if (test_opt(sbi, ATGC) &&
1823 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1824 am->atgc_enabled = true;
1826 am->root = RB_ROOT_CACHED;
1827 INIT_LIST_HEAD(&am->victim_list);
1828 am->victim_count = 0;
1830 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1831 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1832 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1833 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1836 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1838 DIRTY_I(sbi)->v_ops = &default_v_ops;
1840 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1842 /* give warm/cold data area from slower device */
1843 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1844 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1845 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1847 init_atgc_management(sbi);
1850 static int free_segment_range(struct f2fs_sb_info *sbi,
1851 unsigned int secs, bool gc_only)
1853 unsigned int segno, next_inuse, start, end;
1854 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1855 int gc_mode, gc_type;
1859 /* Force block allocation for GC */
1860 MAIN_SECS(sbi) -= secs;
1861 start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1862 end = MAIN_SEGS(sbi) - 1;
1864 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1865 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1866 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1867 SIT_I(sbi)->last_victim[gc_mode] = 0;
1869 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1870 if (sbi->next_victim_seg[gc_type] >= start)
1871 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1872 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1874 /* Move out cursegs from the target range */
1875 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1876 f2fs_allocate_segment_for_resize(sbi, type, start, end);
1878 /* do GC to move out valid blocks in the range */
1879 for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1880 struct gc_inode_list gc_list = {
1881 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1882 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1885 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1886 put_gc_inode(&gc_list);
1888 if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1892 if (fatal_signal_pending(current)) {
1900 err = f2fs_write_checkpoint(sbi, &cpc);
1904 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1905 if (next_inuse <= end) {
1906 f2fs_err(sbi, "segno %u should be free but still inuse!",
1908 f2fs_bug_on(sbi, 1);
1911 MAIN_SECS(sbi) += secs;
1915 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1917 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
1920 int segment_count_main;
1921 long long block_count;
1922 int segs = secs * sbi->segs_per_sec;
1924 down_write(&sbi->sb_lock);
1926 section_count = le32_to_cpu(raw_sb->section_count);
1927 segment_count = le32_to_cpu(raw_sb->segment_count);
1928 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
1929 block_count = le64_to_cpu(raw_sb->block_count);
1931 raw_sb->section_count = cpu_to_le32(section_count + secs);
1932 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
1933 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
1934 raw_sb->block_count = cpu_to_le64(block_count +
1935 (long long)segs * sbi->blocks_per_seg);
1936 if (f2fs_is_multi_device(sbi)) {
1937 int last_dev = sbi->s_ndevs - 1;
1939 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
1941 raw_sb->devs[last_dev].total_segments =
1942 cpu_to_le32(dev_segs + segs);
1945 up_write(&sbi->sb_lock);
1948 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
1950 int segs = secs * sbi->segs_per_sec;
1951 long long blks = (long long)segs * sbi->blocks_per_seg;
1952 long long user_block_count =
1953 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
1955 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
1956 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
1957 MAIN_SECS(sbi) += secs;
1958 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
1959 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
1960 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
1962 if (f2fs_is_multi_device(sbi)) {
1963 int last_dev = sbi->s_ndevs - 1;
1965 FDEV(last_dev).total_segments =
1966 (int)FDEV(last_dev).total_segments + segs;
1967 FDEV(last_dev).end_blk =
1968 (long long)FDEV(last_dev).end_blk + blks;
1969 #ifdef CONFIG_BLK_DEV_ZONED
1970 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
1971 (int)(blks >> sbi->log_blocks_per_blkz);
1976 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
1978 __u64 old_block_count, shrunk_blocks;
1979 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1984 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
1985 if (block_count > old_block_count)
1988 if (f2fs_is_multi_device(sbi)) {
1989 int last_dev = sbi->s_ndevs - 1;
1990 __u64 last_segs = FDEV(last_dev).total_segments;
1992 if (block_count + last_segs * sbi->blocks_per_seg <=
1997 /* new fs size should align to section size */
1998 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2002 if (block_count == old_block_count)
2005 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2006 f2fs_err(sbi, "Should run fsck to repair first.");
2007 return -EFSCORRUPTED;
2010 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2011 f2fs_err(sbi, "Checkpoint should be enabled.");
2015 shrunk_blocks = old_block_count - block_count;
2016 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2019 if (!down_write_trylock(&sbi->gc_lock))
2022 /* stop CP to protect MAIN_SEC in free_segment_range */
2025 spin_lock(&sbi->stat_lock);
2026 if (shrunk_blocks + valid_user_blocks(sbi) +
2027 sbi->current_reserved_blocks + sbi->unusable_block_count +
2028 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2030 spin_unlock(&sbi->stat_lock);
2035 err = free_segment_range(sbi, secs, true);
2038 f2fs_unlock_op(sbi);
2039 up_write(&sbi->gc_lock);
2043 set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2045 freeze_super(sbi->sb);
2046 down_write(&sbi->gc_lock);
2047 down_write(&sbi->cp_global_sem);
2049 spin_lock(&sbi->stat_lock);
2050 if (shrunk_blocks + valid_user_blocks(sbi) +
2051 sbi->current_reserved_blocks + sbi->unusable_block_count +
2052 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2055 sbi->user_block_count -= shrunk_blocks;
2056 spin_unlock(&sbi->stat_lock);
2060 err = free_segment_range(sbi, secs, false);
2064 update_sb_metadata(sbi, -secs);
2066 err = f2fs_commit_super(sbi, false);
2068 update_sb_metadata(sbi, secs);
2072 update_fs_metadata(sbi, -secs);
2073 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2074 set_sbi_flag(sbi, SBI_IS_DIRTY);
2076 err = f2fs_write_checkpoint(sbi, &cpc);
2078 update_fs_metadata(sbi, secs);
2079 update_sb_metadata(sbi, secs);
2080 f2fs_commit_super(sbi, false);
2084 set_sbi_flag(sbi, SBI_NEED_FSCK);
2085 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2087 spin_lock(&sbi->stat_lock);
2088 sbi->user_block_count += shrunk_blocks;
2089 spin_unlock(&sbi->stat_lock);
2092 up_write(&sbi->cp_global_sem);
2093 up_write(&sbi->gc_lock);
2094 thaw_super(sbi->sb);
2095 clear_sbi_flag(sbi, SBI_IS_RESIZEFS);