4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
29 #include <linux/debugfs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/srcu.h>
37 #include <drm/drm_client.h>
38 #include <drm/drm_drv.h>
41 #include "drm_crtc_internal.h"
42 #include "drm_legacy.h"
43 #include "drm_internal.h"
44 #include "drm_crtc_internal.h"
47 * drm_debug: Enable debug output.
48 * Bitmask of DRM_UT_x. See include/drm/drmP.h for details.
50 unsigned int drm_debug = 0;
51 EXPORT_SYMBOL(drm_debug);
53 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
54 MODULE_DESCRIPTION("DRM shared core routines");
55 MODULE_LICENSE("GPL and additional rights");
56 MODULE_PARM_DESC(debug, "Enable debug output, where each bit enables a debug category.\n"
57 "\t\tBit 0 (0x01) will enable CORE messages (drm core code)\n"
58 "\t\tBit 1 (0x02) will enable DRIVER messages (drm controller code)\n"
59 "\t\tBit 2 (0x04) will enable KMS messages (modesetting code)\n"
60 "\t\tBit 3 (0x08) will enable PRIME messages (prime code)\n"
61 "\t\tBit 4 (0x10) will enable ATOMIC messages (atomic code)\n"
62 "\t\tBit 5 (0x20) will enable VBL messages (vblank code)\n"
63 "\t\tBit 7 (0x80) will enable LEASE messages (leasing code)\n"
64 "\t\tBit 8 (0x100) will enable DP messages (displayport code)");
65 module_param_named(debug, drm_debug, int, 0600);
67 static DEFINE_SPINLOCK(drm_minor_lock);
68 static struct idr drm_minors_idr;
71 * If the drm core fails to init for whatever reason,
72 * we should prevent any drivers from registering with it.
73 * It's best to check this at drm_dev_init(), as some drivers
74 * prefer to embed struct drm_device into their own device
75 * structure and call drm_dev_init() themselves.
77 static bool drm_core_init_complete = false;
79 static struct dentry *drm_debugfs_root;
81 DEFINE_STATIC_SRCU(drm_unplug_srcu);
85 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
86 * of them is represented by a drm_minor object. Depending on the capabilities
87 * of the device-driver, different interfaces are registered.
89 * Minors can be accessed via dev->$minor_name. This pointer is either
90 * NULL or a valid drm_minor pointer and stays valid as long as the device is
91 * valid. This means, DRM minors have the same life-time as the underlying
92 * device. However, this doesn't mean that the minor is active. Minors are
93 * registered and unregistered dynamically according to device-state.
96 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
100 case DRM_MINOR_PRIMARY:
101 return &dev->primary;
102 case DRM_MINOR_RENDER:
109 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
111 struct drm_minor *minor;
115 minor = kzalloc(sizeof(*minor), GFP_KERNEL);
122 idr_preload(GFP_KERNEL);
123 spin_lock_irqsave(&drm_minor_lock, flags);
124 r = idr_alloc(&drm_minors_idr,
129 spin_unlock_irqrestore(&drm_minor_lock, flags);
137 minor->kdev = drm_sysfs_minor_alloc(minor);
138 if (IS_ERR(minor->kdev)) {
139 r = PTR_ERR(minor->kdev);
143 *drm_minor_get_slot(dev, type) = minor;
147 spin_lock_irqsave(&drm_minor_lock, flags);
148 idr_remove(&drm_minors_idr, minor->index);
149 spin_unlock_irqrestore(&drm_minor_lock, flags);
155 static void drm_minor_free(struct drm_device *dev, unsigned int type)
157 struct drm_minor **slot, *minor;
160 slot = drm_minor_get_slot(dev, type);
165 put_device(minor->kdev);
167 spin_lock_irqsave(&drm_minor_lock, flags);
168 idr_remove(&drm_minors_idr, minor->index);
169 spin_unlock_irqrestore(&drm_minor_lock, flags);
175 static int drm_minor_register(struct drm_device *dev, unsigned int type)
177 struct drm_minor *minor;
183 minor = *drm_minor_get_slot(dev, type);
187 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
189 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
193 ret = device_add(minor->kdev);
197 /* replace NULL with @minor so lookups will succeed from now on */
198 spin_lock_irqsave(&drm_minor_lock, flags);
199 idr_replace(&drm_minors_idr, minor, minor->index);
200 spin_unlock_irqrestore(&drm_minor_lock, flags);
202 DRM_DEBUG("new minor registered %d\n", minor->index);
206 drm_debugfs_cleanup(minor);
210 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
212 struct drm_minor *minor;
215 minor = *drm_minor_get_slot(dev, type);
216 if (!minor || !device_is_registered(minor->kdev))
219 /* replace @minor with NULL so lookups will fail from now on */
220 spin_lock_irqsave(&drm_minor_lock, flags);
221 idr_replace(&drm_minors_idr, NULL, minor->index);
222 spin_unlock_irqrestore(&drm_minor_lock, flags);
224 device_del(minor->kdev);
225 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
226 drm_debugfs_cleanup(minor);
230 * Looks up the given minor-ID and returns the respective DRM-minor object. The
231 * refence-count of the underlying device is increased so you must release this
232 * object with drm_minor_release().
234 * As long as you hold this minor, it is guaranteed that the object and the
235 * minor->dev pointer will stay valid! However, the device may get unplugged and
236 * unregistered while you hold the minor.
238 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
240 struct drm_minor *minor;
243 spin_lock_irqsave(&drm_minor_lock, flags);
244 minor = idr_find(&drm_minors_idr, minor_id);
246 drm_dev_get(minor->dev);
247 spin_unlock_irqrestore(&drm_minor_lock, flags);
250 return ERR_PTR(-ENODEV);
251 } else if (drm_dev_is_unplugged(minor->dev)) {
252 drm_dev_put(minor->dev);
253 return ERR_PTR(-ENODEV);
259 void drm_minor_release(struct drm_minor *minor)
261 drm_dev_put(minor->dev);
265 * DOC: driver instance overview
267 * A device instance for a drm driver is represented by &struct drm_device. This
268 * is allocated with drm_dev_alloc(), usually from bus-specific ->probe()
269 * callbacks implemented by the driver. The driver then needs to initialize all
270 * the various subsystems for the drm device like memory management, vblank
271 * handling, modesetting support and intial output configuration plus obviously
272 * initialize all the corresponding hardware bits. An important part of this is
273 * also calling drm_dev_set_unique() to set the userspace-visible unique name of
274 * this device instance. Finally when everything is up and running and ready for
275 * userspace the device instance can be published using drm_dev_register().
277 * There is also deprecated support for initalizing device instances using
278 * bus-specific helpers and the &drm_driver.load callback. But due to
279 * backwards-compatibility needs the device instance have to be published too
280 * early, which requires unpretty global locking to make safe and is therefore
281 * only support for existing drivers not yet converted to the new scheme.
283 * When cleaning up a device instance everything needs to be done in reverse:
284 * First unpublish the device instance with drm_dev_unregister(). Then clean up
285 * any other resources allocated at device initialization and drop the driver's
286 * reference to &drm_device using drm_dev_put().
288 * Note that the lifetime rules for &drm_device instance has still a lot of
289 * historical baggage. Hence use the reference counting provided by
290 * drm_dev_get() and drm_dev_put() only carefully.
292 * It is recommended that drivers embed &struct drm_device into their own device
293 * structure, which is supported through drm_dev_init().
297 * drm_put_dev - Unregister and release a DRM device
300 * Called at module unload time or when a PCI device is unplugged.
302 * Cleans up all DRM device, calling drm_lastclose().
304 * Note: Use of this function is deprecated. It will eventually go away
305 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
306 * instead to make sure that the device isn't userspace accessible any more
307 * while teardown is in progress, ensuring that userspace can't access an
308 * inconsistent state.
310 void drm_put_dev(struct drm_device *dev)
315 DRM_ERROR("cleanup called no dev\n");
319 drm_dev_unregister(dev);
322 EXPORT_SYMBOL(drm_put_dev);
325 * drm_dev_enter - Enter device critical section
327 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
329 * This function marks and protects the beginning of a section that should not
330 * be entered after the device has been unplugged. The section end is marked
331 * with drm_dev_exit(). Calls to this function can be nested.
334 * True if it is OK to enter the section, false otherwise.
336 bool drm_dev_enter(struct drm_device *dev, int *idx)
338 *idx = srcu_read_lock(&drm_unplug_srcu);
340 if (dev->unplugged) {
341 srcu_read_unlock(&drm_unplug_srcu, *idx);
347 EXPORT_SYMBOL(drm_dev_enter);
350 * drm_dev_exit - Exit device critical section
351 * @idx: index returned from drm_dev_enter()
353 * This function marks the end of a section that should not be entered after
354 * the device has been unplugged.
356 void drm_dev_exit(int idx)
358 srcu_read_unlock(&drm_unplug_srcu, idx);
360 EXPORT_SYMBOL(drm_dev_exit);
363 * drm_dev_unplug - unplug a DRM device
366 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
367 * userspace operations. Entry-points can use drm_dev_enter() and
368 * drm_dev_exit() to protect device resources in a race free manner. This
369 * essentially unregisters the device like drm_dev_unregister(), but can be
370 * called while there are still open users of @dev.
372 void drm_dev_unplug(struct drm_device *dev)
375 * After synchronizing any critical read section is guaranteed to see
376 * the new value of ->unplugged, and any critical section which might
377 * still have seen the old value of ->unplugged is guaranteed to have
380 dev->unplugged = true;
381 synchronize_srcu(&drm_unplug_srcu);
383 drm_dev_unregister(dev);
385 mutex_lock(&drm_global_mutex);
386 if (dev->open_count == 0)
388 mutex_unlock(&drm_global_mutex);
390 EXPORT_SYMBOL(drm_dev_unplug);
394 * We want to be able to allocate our own "struct address_space" to control
395 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
396 * stand-alone address_space objects, so we need an underlying inode. As there
397 * is no way to allocate an independent inode easily, we need a fake internal
400 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
401 * frees it again. You are allowed to use iget() and iput() to get references to
402 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
403 * drm_fs_inode_free() call (which does not have to be the last iput()).
404 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
405 * between multiple inode-users. You could, technically, call
406 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
407 * iput(), but this way you'd end up with a new vfsmount for each inode.
410 static int drm_fs_cnt;
411 static struct vfsmount *drm_fs_mnt;
413 static const struct dentry_operations drm_fs_dops = {
414 .d_dname = simple_dname,
417 static const struct super_operations drm_fs_sops = {
418 .statfs = simple_statfs,
421 static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags,
422 const char *dev_name, void *data)
424 return mount_pseudo(fs_type,
431 static struct file_system_type drm_fs_type = {
433 .owner = THIS_MODULE,
434 .mount = drm_fs_mount,
435 .kill_sb = kill_anon_super,
438 static struct inode *drm_fs_inode_new(void)
443 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
445 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
449 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
451 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
456 static void drm_fs_inode_free(struct inode *inode)
460 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
465 * drm_dev_init - Initialise new DRM device
467 * @driver: DRM driver
468 * @parent: Parent device object
470 * Initialize a new DRM device. No device registration is done.
471 * Call drm_dev_register() to advertice the device to user space and register it
472 * with other core subsystems. This should be done last in the device
473 * initialization sequence to make sure userspace can't access an inconsistent
476 * The initial ref-count of the object is 1. Use drm_dev_get() and
477 * drm_dev_put() to take and drop further ref-counts.
479 * Drivers that do not want to allocate their own device struct
480 * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers
481 * that do embed &struct drm_device it must be placed first in the overall
482 * structure, and the overall structure must be allocated using kmalloc(): The
483 * drm core's release function unconditionally calls kfree() on the @dev pointer
484 * when the final reference is released. To override this behaviour, and so
485 * allow embedding of the drm_device inside the driver's device struct at an
486 * arbitrary offset, you must supply a &drm_driver.release callback and control
487 * the finalization explicitly.
490 * 0 on success, or error code on failure.
492 int drm_dev_init(struct drm_device *dev,
493 struct drm_driver *driver,
494 struct device *parent)
498 if (!drm_core_init_complete) {
499 DRM_ERROR("DRM core is not initialized\n");
505 kref_init(&dev->ref);
507 dev->driver = driver;
509 /* no per-device feature limits by default */
510 dev->driver_features = ~0u;
512 INIT_LIST_HEAD(&dev->filelist);
513 INIT_LIST_HEAD(&dev->filelist_internal);
514 INIT_LIST_HEAD(&dev->clientlist);
515 INIT_LIST_HEAD(&dev->ctxlist);
516 INIT_LIST_HEAD(&dev->vmalist);
517 INIT_LIST_HEAD(&dev->maplist);
518 INIT_LIST_HEAD(&dev->vblank_event_list);
520 spin_lock_init(&dev->buf_lock);
521 spin_lock_init(&dev->event_lock);
522 mutex_init(&dev->struct_mutex);
523 mutex_init(&dev->filelist_mutex);
524 mutex_init(&dev->clientlist_mutex);
525 mutex_init(&dev->ctxlist_mutex);
526 mutex_init(&dev->master_mutex);
528 dev->anon_inode = drm_fs_inode_new();
529 if (IS_ERR(dev->anon_inode)) {
530 ret = PTR_ERR(dev->anon_inode);
531 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
535 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
536 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
541 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
545 ret = drm_ht_create(&dev->map_hash, 12);
549 drm_legacy_ctxbitmap_init(dev);
551 if (drm_core_check_feature(dev, DRIVER_GEM)) {
552 ret = drm_gem_init(dev);
554 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
559 ret = drm_dev_set_unique(dev, dev_name(parent));
566 if (drm_core_check_feature(dev, DRIVER_GEM))
567 drm_gem_destroy(dev);
569 drm_legacy_ctxbitmap_cleanup(dev);
570 drm_ht_remove(&dev->map_hash);
572 drm_minor_free(dev, DRM_MINOR_PRIMARY);
573 drm_minor_free(dev, DRM_MINOR_RENDER);
574 drm_fs_inode_free(dev->anon_inode);
576 mutex_destroy(&dev->master_mutex);
577 mutex_destroy(&dev->ctxlist_mutex);
578 mutex_destroy(&dev->clientlist_mutex);
579 mutex_destroy(&dev->filelist_mutex);
580 mutex_destroy(&dev->struct_mutex);
583 EXPORT_SYMBOL(drm_dev_init);
586 * drm_dev_fini - Finalize a dead DRM device
589 * Finalize a dead DRM device. This is the converse to drm_dev_init() and
590 * frees up all data allocated by it. All driver private data should be
591 * finalized first. Note that this function does not free the @dev, that is
592 * left to the caller.
594 * The ref-count of @dev must be zero, and drm_dev_fini() should only be called
595 * from a &drm_driver.release callback.
597 void drm_dev_fini(struct drm_device *dev)
599 drm_vblank_cleanup(dev);
601 if (drm_core_check_feature(dev, DRIVER_GEM))
602 drm_gem_destroy(dev);
604 drm_legacy_ctxbitmap_cleanup(dev);
605 drm_ht_remove(&dev->map_hash);
606 drm_fs_inode_free(dev->anon_inode);
608 drm_minor_free(dev, DRM_MINOR_PRIMARY);
609 drm_minor_free(dev, DRM_MINOR_RENDER);
611 mutex_destroy(&dev->master_mutex);
612 mutex_destroy(&dev->ctxlist_mutex);
613 mutex_destroy(&dev->clientlist_mutex);
614 mutex_destroy(&dev->filelist_mutex);
615 mutex_destroy(&dev->struct_mutex);
618 EXPORT_SYMBOL(drm_dev_fini);
621 * drm_dev_alloc - Allocate new DRM device
622 * @driver: DRM driver to allocate device for
623 * @parent: Parent device object
625 * Allocate and initialize a new DRM device. No device registration is done.
626 * Call drm_dev_register() to advertice the device to user space and register it
627 * with other core subsystems. This should be done last in the device
628 * initialization sequence to make sure userspace can't access an inconsistent
631 * The initial ref-count of the object is 1. Use drm_dev_get() and
632 * drm_dev_put() to take and drop further ref-counts.
634 * Note that for purely virtual devices @parent can be NULL.
636 * Drivers that wish to subclass or embed &struct drm_device into their
637 * own struct should look at using drm_dev_init() instead.
640 * Pointer to new DRM device, or ERR_PTR on failure.
642 struct drm_device *drm_dev_alloc(struct drm_driver *driver,
643 struct device *parent)
645 struct drm_device *dev;
648 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
650 return ERR_PTR(-ENOMEM);
652 ret = drm_dev_init(dev, driver, parent);
660 EXPORT_SYMBOL(drm_dev_alloc);
662 static void drm_dev_release(struct kref *ref)
664 struct drm_device *dev = container_of(ref, struct drm_device, ref);
666 if (dev->driver->release) {
667 dev->driver->release(dev);
675 * drm_dev_get - Take reference of a DRM device
676 * @dev: device to take reference of or NULL
678 * This increases the ref-count of @dev by one. You *must* already own a
679 * reference when calling this. Use drm_dev_put() to drop this reference
682 * This function never fails. However, this function does not provide *any*
683 * guarantee whether the device is alive or running. It only provides a
684 * reference to the object and the memory associated with it.
686 void drm_dev_get(struct drm_device *dev)
691 EXPORT_SYMBOL(drm_dev_get);
694 * drm_dev_put - Drop reference of a DRM device
695 * @dev: device to drop reference of or NULL
697 * This decreases the ref-count of @dev by one. The device is destroyed if the
698 * ref-count drops to zero.
700 void drm_dev_put(struct drm_device *dev)
703 kref_put(&dev->ref, drm_dev_release);
705 EXPORT_SYMBOL(drm_dev_put);
707 static int create_compat_control_link(struct drm_device *dev)
709 struct drm_minor *minor;
713 if (!drm_core_check_feature(dev, DRIVER_MODESET))
716 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
721 * Some existing userspace out there uses the existing of the controlD*
722 * sysfs files to figure out whether it's a modeset driver. It only does
723 * readdir, hence a symlink is sufficient (and the least confusing
724 * option). Otherwise controlD* is entirely unused.
726 * Old controlD chardev have been allocated in the range
729 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
733 ret = sysfs_create_link(minor->kdev->kobj.parent,
742 static void remove_compat_control_link(struct drm_device *dev)
744 struct drm_minor *minor;
747 if (!drm_core_check_feature(dev, DRIVER_MODESET))
750 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
754 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
758 sysfs_remove_link(minor->kdev->kobj.parent, name);
764 * drm_dev_register - Register DRM device
765 * @dev: Device to register
766 * @flags: Flags passed to the driver's .load() function
768 * Register the DRM device @dev with the system, advertise device to user-space
769 * and start normal device operation. @dev must be allocated via drm_dev_alloc()
772 * Never call this twice on any device!
774 * NOTE: To ensure backward compatibility with existing drivers method this
775 * function calls the &drm_driver.load method after registering the device
776 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
777 * therefore deprecated, drivers must perform all initialization before calling
778 * drm_dev_register().
781 * 0 on success, negative error code on failure.
783 int drm_dev_register(struct drm_device *dev, unsigned long flags)
785 struct drm_driver *driver = dev->driver;
788 mutex_lock(&drm_global_mutex);
790 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
794 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
798 ret = create_compat_control_link(dev);
802 dev->registered = true;
804 if (dev->driver->load) {
805 ret = dev->driver->load(dev, flags);
810 if (drm_core_check_feature(dev, DRIVER_MODESET))
811 drm_modeset_register_all(dev);
815 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
816 driver->name, driver->major, driver->minor,
817 driver->patchlevel, driver->date,
818 dev->dev ? dev_name(dev->dev) : "virtual device",
819 dev->primary->index);
824 remove_compat_control_link(dev);
825 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
826 drm_minor_unregister(dev, DRM_MINOR_RENDER);
828 mutex_unlock(&drm_global_mutex);
831 EXPORT_SYMBOL(drm_dev_register);
834 * drm_dev_unregister - Unregister DRM device
835 * @dev: Device to unregister
837 * Unregister the DRM device from the system. This does the reverse of
838 * drm_dev_register() but does not deallocate the device. The caller must call
839 * drm_dev_put() to drop their final reference.
841 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
842 * which can be called while there are still open users of @dev.
844 * This should be called first in the device teardown code to make sure
845 * userspace can't access the device instance any more.
847 void drm_dev_unregister(struct drm_device *dev)
849 struct drm_map_list *r_list, *list_temp;
851 if (drm_core_check_feature(dev, DRIVER_LEGACY))
854 dev->registered = false;
856 drm_client_dev_unregister(dev);
858 if (drm_core_check_feature(dev, DRIVER_MODESET))
859 drm_modeset_unregister_all(dev);
861 if (dev->driver->unload)
862 dev->driver->unload(dev);
865 drm_pci_agp_destroy(dev);
867 list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head)
868 drm_legacy_rmmap(dev, r_list->map);
870 remove_compat_control_link(dev);
871 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
872 drm_minor_unregister(dev, DRM_MINOR_RENDER);
874 EXPORT_SYMBOL(drm_dev_unregister);
877 * drm_dev_set_unique - Set the unique name of a DRM device
878 * @dev: device of which to set the unique name
881 * Sets the unique name of a DRM device using the specified string. Drivers
882 * can use this at driver probe time if the unique name of the devices they
885 * Return: 0 on success or a negative error code on failure.
887 int drm_dev_set_unique(struct drm_device *dev, const char *name)
890 dev->unique = kstrdup(name, GFP_KERNEL);
892 return dev->unique ? 0 : -ENOMEM;
894 EXPORT_SYMBOL(drm_dev_set_unique);
898 * The DRM core module initializes all global DRM objects and makes them
899 * available to drivers. Once setup, drivers can probe their respective
901 * Currently, core management includes:
902 * - The "DRM-Global" key/value database
903 * - Global ID management for connectors
904 * - DRM major number allocation
905 * - DRM minor management
909 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
910 * interface registered on a DRM device, you can request minor numbers from DRM
911 * core. DRM core takes care of major-number management and char-dev
912 * registration. A stub ->open() callback forwards any open() requests to the
916 static int drm_stub_open(struct inode *inode, struct file *filp)
918 const struct file_operations *new_fops;
919 struct drm_minor *minor;
924 mutex_lock(&drm_global_mutex);
925 minor = drm_minor_acquire(iminor(inode));
927 err = PTR_ERR(minor);
931 new_fops = fops_get(minor->dev->driver->fops);
937 replace_fops(filp, new_fops);
938 if (filp->f_op->open)
939 err = filp->f_op->open(inode, filp);
944 drm_minor_release(minor);
946 mutex_unlock(&drm_global_mutex);
950 static const struct file_operations drm_stub_fops = {
951 .owner = THIS_MODULE,
952 .open = drm_stub_open,
953 .llseek = noop_llseek,
956 static void drm_core_exit(void)
958 unregister_chrdev(DRM_MAJOR, "drm");
959 debugfs_remove(drm_debugfs_root);
961 idr_destroy(&drm_minors_idr);
962 drm_connector_ida_destroy();
965 static int __init drm_core_init(void)
969 drm_connector_ida_init();
970 idr_init(&drm_minors_idr);
972 ret = drm_sysfs_init();
974 DRM_ERROR("Cannot create DRM class: %d\n", ret);
978 drm_debugfs_root = debugfs_create_dir("dri", NULL);
979 if (!drm_debugfs_root) {
981 DRM_ERROR("Cannot create debugfs-root: %d\n", ret);
985 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
989 drm_core_init_complete = true;
991 DRM_DEBUG("Initialized\n");
999 module_init(drm_core_init);
1000 module_exit(drm_core_exit);