1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
11 #include "dm-uevent.h"
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
35 #define DM_MSG_PREFIX "core"
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
49 #define REQ_DM_POLL_LIST REQ_DRV
51 static const char *_name = DM_NAME;
53 static unsigned int major;
54 static unsigned int _major;
56 static DEFINE_IDR(_minor_idr);
58 static DEFINE_SPINLOCK(_minor_lock);
60 static void do_deferred_remove(struct work_struct *w);
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 static struct workqueue_struct *deferred_remove_workqueue;
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 void dm_issue_global_event(void)
71 atomic_inc(&dm_global_event_nr);
72 wake_up(&dm_global_eventq);
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
80 * One of these is allocated (on-stack) per original bio.
87 unsigned int sector_count;
88 bool is_abnormal_io:1;
89 bool submit_as_polled:1;
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 return container_of(clone, struct dm_target_io, clone);
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 if (io->magic == DM_IO_MAGIC)
110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 BUG_ON(io->magic != DM_TIO_MAGIC);
112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 #define MINOR_ALLOCED ((void *)-1)
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
131 int latch = READ_ONCE(swap_bios);
133 if (unlikely(latch <= 0))
134 latch = DEFAULT_SWAP_BIOS;
138 struct table_device {
139 struct list_head list;
141 struct dm_dev dm_dev;
145 * Bio-based DM's mempools' reserved IOs set by the user.
147 #define RESERVED_BIO_BASED_IOS 16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 int param = READ_ONCE(*module_param);
153 int modified_param = 0;
154 bool modified = true;
157 modified_param = min;
158 else if (param > max)
159 modified_param = max;
164 (void)cmpxchg(module_param, param, modified_param);
165 param = modified_param;
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 unsigned int param = READ_ONCE(*module_param);
174 unsigned int modified_param = 0;
177 modified_param = def;
178 else if (param > max)
179 modified_param = max;
181 if (modified_param) {
182 (void)cmpxchg(module_param, param, modified_param);
183 param = modified_param;
189 unsigned int dm_get_reserved_bio_based_ios(void)
191 return __dm_get_module_param(&reserved_bio_based_ios,
192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 static unsigned int dm_get_numa_node(void)
198 return __dm_get_module_param_int(&dm_numa_node,
199 DM_NUMA_NODE, num_online_nodes() - 1);
202 static int __init local_init(void)
206 r = dm_uevent_init();
210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 if (!deferred_remove_workqueue) {
213 goto out_uevent_exit;
217 r = register_blkdev(_major, _name);
219 goto out_free_workqueue;
227 destroy_workqueue(deferred_remove_workqueue);
234 static void local_exit(void)
236 destroy_workqueue(deferred_remove_workqueue);
238 unregister_blkdev(_major, _name);
243 DMINFO("cleaned up");
246 static int (*_inits[])(void) __initdata = {
257 static void (*_exits[])(void) = {
268 static int __init dm_init(void)
270 const int count = ARRAY_SIZE(_inits);
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 " Duplicate IMA measurements will not be recorded in the IMA log.");
278 for (i = 0; i < count; i++) {
292 static void __exit dm_exit(void)
294 int i = ARRAY_SIZE(_exits);
300 * Should be empty by this point.
302 idr_destroy(&_minor_idr);
306 * Block device functions
308 int dm_deleting_md(struct mapped_device *md)
310 return test_bit(DMF_DELETING, &md->flags);
313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
315 struct mapped_device *md;
317 spin_lock(&_minor_lock);
319 md = bdev->bd_disk->private_data;
323 if (test_bit(DMF_FREEING, &md->flags) ||
324 dm_deleting_md(md)) {
330 atomic_inc(&md->open_count);
332 spin_unlock(&_minor_lock);
334 return md ? 0 : -ENXIO;
337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
339 struct mapped_device *md;
341 spin_lock(&_minor_lock);
343 md = disk->private_data;
347 if (atomic_dec_and_test(&md->open_count) &&
348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 spin_unlock(&_minor_lock);
356 int dm_open_count(struct mapped_device *md)
358 return atomic_read(&md->open_count);
362 * Guarantees nothing is using the device before it's deleted.
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 spin_lock(&_minor_lock);
370 if (dm_open_count(md)) {
373 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
377 set_bit(DMF_DELETING, &md->flags);
379 spin_unlock(&_minor_lock);
384 int dm_cancel_deferred_remove(struct mapped_device *md)
388 spin_lock(&_minor_lock);
390 if (test_bit(DMF_DELETING, &md->flags))
393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 spin_unlock(&_minor_lock);
400 static void do_deferred_remove(struct work_struct *w)
402 dm_deferred_remove();
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 struct mapped_device *md = bdev->bd_disk->private_data;
409 return dm_get_geometry(md, geo);
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 struct block_device **bdev)
415 struct dm_target *ti;
416 struct dm_table *map;
421 map = dm_get_live_table(md, srcu_idx);
422 if (!map || !dm_table_get_size(map))
425 /* We only support devices that have a single target */
426 if (map->num_targets != 1)
429 ti = dm_table_get_target(map, 0);
430 if (!ti->type->prepare_ioctl)
433 if (dm_suspended_md(md))
436 r = ti->type->prepare_ioctl(ti, bdev);
437 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 dm_put_live_table(md, *srcu_idx);
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 dm_put_live_table(md, srcu_idx);
451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 unsigned int cmd, unsigned long arg)
454 struct mapped_device *md = bdev->bd_disk->private_data;
457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
463 * Target determined this ioctl is being issued against a
464 * subset of the parent bdev; require extra privileges.
466 if (!capable(CAP_SYS_RAWIO)) {
468 "%s: sending ioctl %x to DM device without required privilege.",
475 if (!bdev->bd_disk->fops->ioctl)
478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 dm_unprepare_ioctl(md, srcu_idx);
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490 static bool bio_is_flush_with_data(struct bio *bio)
492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
495 static void dm_io_acct(struct dm_io *io, bool end)
497 struct dm_stats_aux *stats_aux = &io->stats_aux;
498 unsigned long start_time = io->start_time;
499 struct mapped_device *md = io->md;
500 struct bio *bio = io->orig_bio;
501 unsigned int sectors;
504 * If REQ_PREFLUSH set, don't account payload, it will be
505 * submitted (and accounted) after this flush completes.
507 if (bio_is_flush_with_data(bio))
509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 sectors = bio_sectors(bio);
512 sectors = io->sectors;
515 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
520 if (static_branch_unlikely(&stats_enabled) &&
521 unlikely(dm_stats_used(&md->stats))) {
524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 sector = bio->bi_iter.bi_sector;
527 sector = bio_end_sector(bio) - io->sector_offset;
529 dm_stats_account_io(&md->stats, bio_data_dir(bio),
531 end, start_time, stats_aux);
535 static void __dm_start_io_acct(struct dm_io *io)
537 dm_io_acct(io, false);
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543 * Ensure IO accounting is only ever started once.
545 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 dm_io_set_flag(io, DM_IO_ACCOUNTED);
553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 spin_lock_irqsave(&io->lock, flags);
555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 spin_unlock_irqrestore(&io->lock, flags);
559 dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 spin_unlock_irqrestore(&io->lock, flags);
563 __dm_start_io_acct(io);
566 static void dm_end_io_acct(struct dm_io *io)
568 dm_io_acct(io, true);
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
574 struct dm_target_io *tio;
577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 tio = clone_to_tio(clone);
580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 io = container_of(tio, struct dm_io, tio);
584 io->magic = DM_IO_MAGIC;
585 io->status = BLK_STS_OK;
587 /* one ref is for submission, the other is for completion */
588 atomic_set(&io->io_count, 2);
589 this_cpu_inc(*md->pending_io);
592 spin_lock_init(&io->lock);
593 io->start_time = jiffies;
596 if (static_branch_unlikely(&stats_enabled))
597 dm_stats_record_start(&md->stats, &io->stats_aux);
602 static void free_io(struct dm_io *io)
604 bio_put(&io->tio.clone);
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
610 struct mapped_device *md = ci->io->md;
611 struct dm_target_io *tio;
614 if (!ci->io->tio.io) {
615 /* the dm_target_io embedded in ci->io is available */
617 /* alloc_io() already initialized embedded clone */
620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
625 /* REQ_DM_POLL_LIST shouldn't be inherited */
626 clone->bi_opf &= ~REQ_DM_POLL_LIST;
628 tio = clone_to_tio(clone);
629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
632 tio->magic = DM_TIO_MAGIC;
635 tio->target_bio_nr = target_bio_nr;
639 /* Set default bdev, but target must bio_set_dev() before issuing IO */
640 clone->bi_bdev = md->disk->part0;
641 if (unlikely(ti->needs_bio_set_dev))
642 bio_set_dev(clone, md->disk->part0);
645 clone->bi_iter.bi_size = to_bytes(*len);
646 if (bio_integrity(clone))
647 bio_integrity_trim(clone);
653 static void free_tio(struct bio *clone)
655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661 * Add the bio to the list of deferred io.
663 static void queue_io(struct mapped_device *md, struct bio *bio)
667 spin_lock_irqsave(&md->deferred_lock, flags);
668 bio_list_add(&md->deferred, bio);
669 spin_unlock_irqrestore(&md->deferred_lock, flags);
670 queue_work(md->wq, &md->work);
674 * Everyone (including functions in this file), should use this
675 * function to access the md->map field, and make sure they call
676 * dm_put_live_table() when finished.
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 int *srcu_idx) __acquires(md->io_barrier)
681 *srcu_idx = srcu_read_lock(&md->io_barrier);
683 return srcu_dereference(md->map, &md->io_barrier);
686 void dm_put_live_table(struct mapped_device *md,
687 int srcu_idx) __releases(md->io_barrier)
689 srcu_read_unlock(&md->io_barrier, srcu_idx);
692 void dm_sync_table(struct mapped_device *md)
694 synchronize_srcu(&md->io_barrier);
695 synchronize_rcu_expedited();
699 * A fast alternative to dm_get_live_table/dm_put_live_table.
700 * The caller must not block between these two functions.
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
705 return rcu_dereference(md->map);
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 int *srcu_idx, blk_opf_t bio_opf)
716 if (bio_opf & REQ_NOWAIT)
717 return dm_get_live_table_fast(md);
719 return dm_get_live_table(md, srcu_idx);
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
725 if (bio_opf & REQ_NOWAIT)
726 dm_put_live_table_fast(md);
728 dm_put_live_table(md, srcu_idx);
731 static char *_dm_claim_ptr = "I belong to device-mapper";
734 * Open a table device so we can use it as a map destination.
736 static struct table_device *open_table_device(struct mapped_device *md,
737 dev_t dev, fmode_t mode)
739 struct table_device *td;
740 struct block_device *bdev;
744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
746 return ERR_PTR(-ENOMEM);
747 refcount_set(&td->count, 1);
749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
756 * We can be called before the dm disk is added. In that case we can't
757 * register the holder relation here. It will be done once add_disk was
760 if (md->disk->slave_dir) {
761 r = bd_link_disk_holder(bdev, md->disk);
766 td->dm_dev.mode = mode;
767 td->dm_dev.bdev = bdev;
768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 format_dev_t(td->dm_dev.name, dev);
770 list_add(&td->list, &md->table_devices);
774 blkdev_put(bdev, mode | FMODE_EXCL);
781 * Close a table device that we've been using.
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
785 if (md->disk->slave_dir)
786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 put_dax(td->dm_dev.dax_dev);
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
796 struct table_device *td;
798 list_for_each_entry(td, l, list)
799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 struct dm_dev **result)
808 struct table_device *td;
810 mutex_lock(&md->table_devices_lock);
811 td = find_table_device(&md->table_devices, dev, mode);
813 td = open_table_device(md, dev, mode);
815 mutex_unlock(&md->table_devices_lock);
819 refcount_inc(&td->count);
821 mutex_unlock(&md->table_devices_lock);
823 *result = &td->dm_dev;
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 struct table_device *td = container_of(d, struct table_device, dm_dev);
831 mutex_lock(&md->table_devices_lock);
832 if (refcount_dec_and_test(&td->count))
833 close_table_device(td, md);
834 mutex_unlock(&md->table_devices_lock);
838 * Get the geometry associated with a dm device
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
848 * Set the geometry of a device.
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
854 if (geo->start > sz) {
855 DMERR("Start sector is beyond the geometry limits.");
864 static int __noflush_suspending(struct mapped_device *md)
866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
871 struct mapped_device *md = io->md;
874 struct dm_io *next = md->requeue_list;
876 md->requeue_list = io;
879 bio_list_add_head(&md->deferred, io->orig_bio);
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
886 queue_work(md->wq, &md->requeue_work);
888 queue_work(md->wq, &md->work);
892 * Return true if the dm_io's original bio is requeued.
893 * io->status is updated with error if requeue disallowed.
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
897 struct bio *bio = io->orig_bio;
898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 (bio->bi_opf & REQ_POLLED));
901 struct mapped_device *md = io->md;
902 bool requeued = false;
904 if (handle_requeue || handle_polled_eagain) {
907 if (bio->bi_opf & REQ_POLLED) {
909 * Upper layer won't help us poll split bio
910 * (io->orig_bio may only reflect a subset of the
911 * pre-split original) so clear REQ_POLLED.
913 bio_clear_polled(bio);
917 * Target requested pushing back the I/O or
918 * polled IO hit BLK_STS_AGAIN.
920 spin_lock_irqsave(&md->deferred_lock, flags);
921 if ((__noflush_suspending(md) &&
922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 handle_polled_eagain || first_stage) {
924 dm_requeue_add_io(io, first_stage);
928 * noflush suspend was interrupted or this is
929 * a write to a zoned target.
931 io->status = BLK_STS_IOERR;
933 spin_unlock_irqrestore(&md->deferred_lock, flags);
937 dm_kick_requeue(md, first_stage);
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
944 struct bio *bio = io->orig_bio;
945 struct mapped_device *md = io->md;
946 blk_status_t io_error;
949 requeued = dm_handle_requeue(io, first_stage);
950 if (requeued && first_stage)
953 io_error = io->status;
954 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 else if (!io_error) {
958 * Must handle target that DM_MAPIO_SUBMITTED only to
959 * then bio_endio() rather than dm_submit_bio_remap()
961 __dm_start_io_acct(io);
966 this_cpu_dec(*md->pending_io);
968 /* nudge anyone waiting on suspend queue */
969 if (unlikely(wq_has_sleeper(&md->wait)))
972 /* Return early if the original bio was requeued */
976 if (bio_is_flush_with_data(bio)) {
978 * Preflush done for flush with data, reissue
979 * without REQ_PREFLUSH.
981 bio->bi_opf &= ~REQ_PREFLUSH;
984 /* done with normal IO or empty flush */
986 bio->bi_status = io_error;
991 static void dm_wq_requeue_work(struct work_struct *work)
993 struct mapped_device *md = container_of(work, struct mapped_device,
998 /* reuse deferred lock to simplify dm_handle_requeue */
999 spin_lock_irqsave(&md->deferred_lock, flags);
1000 io = md->requeue_list;
1001 md->requeue_list = NULL;
1002 spin_unlock_irqrestore(&md->deferred_lock, flags);
1005 struct dm_io *next = io->next;
1007 dm_io_rewind(io, &md->disk->bio_split);
1010 __dm_io_complete(io, false);
1017 * Two staged requeue:
1019 * 1) io->orig_bio points to the real original bio, and the part mapped to
1020 * this io must be requeued, instead of other parts of the original bio.
1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 static void dm_io_complete(struct dm_io *io)
1029 * Only dm_io that has been split needs two stage requeue, otherwise
1030 * we may run into long bio clone chain during suspend and OOM could
1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 * also aren't handled via the first stage requeue.
1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 first_requeue = true;
1039 first_requeue = false;
1041 __dm_io_complete(io, first_requeue);
1045 * Decrements the number of outstanding ios that a bio has been
1046 * cloned into, completing the original io if necc.
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1050 if (atomic_dec_and_test(&io->io_count))
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056 unsigned long flags;
1058 /* Push-back supersedes any I/O errors */
1059 spin_lock_irqsave(&io->lock, flags);
1060 if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 __noflush_suspending(io->md))) {
1064 spin_unlock_irqrestore(&io->lock, flags);
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069 if (unlikely(error))
1070 dm_io_set_error(io, error);
1072 __dm_io_dec_pending(io);
1075 void disable_discard(struct mapped_device *md)
1077 struct queue_limits *limits = dm_get_queue_limits(md);
1079 /* device doesn't really support DISCARD, disable it */
1080 limits->max_discard_sectors = 0;
1083 void disable_write_zeroes(struct mapped_device *md)
1085 struct queue_limits *limits = dm_get_queue_limits(md);
1087 /* device doesn't really support WRITE ZEROES, disable it */
1088 limits->max_write_zeroes_sectors = 0;
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1096 static void clone_endio(struct bio *bio)
1098 blk_status_t error = bio->bi_status;
1099 struct dm_target_io *tio = clone_to_tio(bio);
1100 struct dm_target *ti = tio->ti;
1101 dm_endio_fn endio = ti->type->end_io;
1102 struct dm_io *io = tio->io;
1103 struct mapped_device *md = io->md;
1105 if (unlikely(error == BLK_STS_TARGET)) {
1106 if (bio_op(bio) == REQ_OP_DISCARD &&
1107 !bdev_max_discard_sectors(bio->bi_bdev))
1108 disable_discard(md);
1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 disable_write_zeroes(md);
1114 if (static_branch_unlikely(&zoned_enabled) &&
1115 unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 dm_zone_endio(io, bio);
1119 int r = endio(ti, bio, &error);
1122 case DM_ENDIO_REQUEUE:
1123 if (static_branch_unlikely(&zoned_enabled)) {
1125 * Requeuing writes to a sequential zone of a zoned
1126 * target will break the sequential write pattern:
1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 error = BLK_STS_IOERR;
1132 error = BLK_STS_DM_REQUEUE;
1134 error = BLK_STS_DM_REQUEUE;
1138 case DM_ENDIO_INCOMPLETE:
1139 /* The target will handle the io */
1142 DMCRIT("unimplemented target endio return value: %d", r);
1147 if (static_branch_unlikely(&swap_bios_enabled) &&
1148 unlikely(swap_bios_limit(ti, bio)))
1149 up(&md->swap_bios_semaphore);
1152 dm_io_dec_pending(io, error);
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 sector_t target_offset)
1162 return ti->len - target_offset;
1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1167 sector_t target_offset = dm_target_offset(ti, sector);
1168 sector_t len = max_io_len_target_boundary(ti, target_offset);
1171 * Does the target need to split IO even further?
1172 * - varied (per target) IO splitting is a tenet of DM; this
1173 * explains why stacked chunk_sectors based splitting via
1174 * bio_split_to_limits() isn't possible here.
1176 if (!ti->max_io_len)
1178 return min_t(sector_t, len,
1179 min(queue_max_sectors(ti->table->md->queue),
1180 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1185 if (len > UINT_MAX) {
1186 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1187 (unsigned long long)len, UINT_MAX);
1188 ti->error = "Maximum size of target IO is too large";
1192 ti->max_io_len = (uint32_t) len;
1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1199 sector_t sector, int *srcu_idx)
1200 __acquires(md->io_barrier)
1202 struct dm_table *map;
1203 struct dm_target *ti;
1205 map = dm_get_live_table(md, srcu_idx);
1209 ti = dm_table_find_target(map, sector);
1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1217 long nr_pages, enum dax_access_mode mode, void **kaddr,
1220 struct mapped_device *md = dax_get_private(dax_dev);
1221 sector_t sector = pgoff * PAGE_SECTORS;
1222 struct dm_target *ti;
1223 long len, ret = -EIO;
1226 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1230 if (!ti->type->direct_access)
1232 len = max_io_len(ti, sector) / PAGE_SECTORS;
1235 nr_pages = min(len, nr_pages);
1236 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1239 dm_put_live_table(md, srcu_idx);
1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1247 struct mapped_device *md = dax_get_private(dax_dev);
1248 sector_t sector = pgoff * PAGE_SECTORS;
1249 struct dm_target *ti;
1253 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1257 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1259 * ->zero_page_range() is mandatory dax operation. If we are
1260 * here, something is wrong.
1264 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1266 dm_put_live_table(md, srcu_idx);
1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1272 void *addr, size_t bytes, struct iov_iter *i)
1274 struct mapped_device *md = dax_get_private(dax_dev);
1275 sector_t sector = pgoff * PAGE_SECTORS;
1276 struct dm_target *ti;
1280 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1281 if (!ti || !ti->type->dax_recovery_write)
1284 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1286 dm_put_live_table(md, srcu_idx);
1291 * A target may call dm_accept_partial_bio only from the map routine. It is
1292 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1293 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1294 * __send_duplicate_bios().
1296 * dm_accept_partial_bio informs the dm that the target only wants to process
1297 * additional n_sectors sectors of the bio and the rest of the data should be
1298 * sent in a next bio.
1300 * A diagram that explains the arithmetics:
1301 * +--------------------+---------------+-------+
1303 * +--------------------+---------------+-------+
1305 * <-------------- *tio->len_ptr --------------->
1306 * <----- bio_sectors ----->
1309 * Region 1 was already iterated over with bio_advance or similar function.
1310 * (it may be empty if the target doesn't use bio_advance)
1311 * Region 2 is the remaining bio size that the target wants to process.
1312 * (it may be empty if region 1 is non-empty, although there is no reason
1314 * The target requires that region 3 is to be sent in the next bio.
1316 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1317 * the partially processed part (the sum of regions 1+2) must be the same for all
1318 * copies of the bio.
1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1322 struct dm_target_io *tio = clone_to_tio(bio);
1323 struct dm_io *io = tio->io;
1324 unsigned int bio_sectors = bio_sectors(bio);
1326 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1327 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1328 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1329 BUG_ON(bio_sectors > *tio->len_ptr);
1330 BUG_ON(n_sectors > bio_sectors);
1332 *tio->len_ptr -= bio_sectors - n_sectors;
1333 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1336 * __split_and_process_bio() may have already saved mapped part
1337 * for accounting but it is being reduced so update accordingly.
1339 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1340 io->sectors = n_sectors;
1341 io->sector_offset = bio_sectors(io->orig_bio);
1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1346 * @clone: clone bio that DM core passed to target's .map function
1347 * @tgt_clone: clone of @clone bio that target needs submitted
1349 * Targets should use this interface to submit bios they take
1350 * ownership of when returning DM_MAPIO_SUBMITTED.
1352 * Target should also enable ti->accounts_remapped_io
1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1356 struct dm_target_io *tio = clone_to_tio(clone);
1357 struct dm_io *io = tio->io;
1359 /* establish bio that will get submitted */
1364 * Account io->origin_bio to DM dev on behalf of target
1365 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1367 dm_start_io_acct(io, clone);
1369 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1371 submit_bio_noacct(tgt_clone);
1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1377 mutex_lock(&md->swap_bios_lock);
1378 while (latch < md->swap_bios) {
1380 down(&md->swap_bios_semaphore);
1383 while (latch > md->swap_bios) {
1385 up(&md->swap_bios_semaphore);
1388 mutex_unlock(&md->swap_bios_lock);
1391 static void __map_bio(struct bio *clone)
1393 struct dm_target_io *tio = clone_to_tio(clone);
1394 struct dm_target *ti = tio->ti;
1395 struct dm_io *io = tio->io;
1396 struct mapped_device *md = io->md;
1399 clone->bi_end_io = clone_endio;
1404 tio->old_sector = clone->bi_iter.bi_sector;
1406 if (static_branch_unlikely(&swap_bios_enabled) &&
1407 unlikely(swap_bios_limit(ti, clone))) {
1408 int latch = get_swap_bios();
1410 if (unlikely(latch != md->swap_bios))
1411 __set_swap_bios_limit(md, latch);
1412 down(&md->swap_bios_semaphore);
1415 if (static_branch_unlikely(&zoned_enabled)) {
1417 * Check if the IO needs a special mapping due to zone append
1418 * emulation on zoned target. In this case, dm_zone_map_bio()
1419 * calls the target map operation.
1421 if (unlikely(dm_emulate_zone_append(md)))
1422 r = dm_zone_map_bio(tio);
1424 r = ti->type->map(ti, clone);
1426 r = ti->type->map(ti, clone);
1429 case DM_MAPIO_SUBMITTED:
1430 /* target has assumed ownership of this io */
1431 if (!ti->accounts_remapped_io)
1432 dm_start_io_acct(io, clone);
1434 case DM_MAPIO_REMAPPED:
1435 dm_submit_bio_remap(clone, NULL);
1438 case DM_MAPIO_REQUEUE:
1439 if (static_branch_unlikely(&swap_bios_enabled) &&
1440 unlikely(swap_bios_limit(ti, clone)))
1441 up(&md->swap_bios_semaphore);
1443 if (r == DM_MAPIO_KILL)
1444 dm_io_dec_pending(io, BLK_STS_IOERR);
1446 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1449 DMCRIT("unimplemented target map return value: %d", r);
1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1456 struct dm_io *io = ci->io;
1458 if (ci->sector_count > len) {
1460 * Split needed, save the mapped part for accounting.
1461 * NOTE: dm_accept_partial_bio() will update accordingly.
1463 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1465 io->sector_offset = bio_sectors(ci->bio);
1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1470 struct dm_target *ti, unsigned int num_bios)
1475 for (try = 0; try < 2; try++) {
1479 mutex_lock(&ci->io->md->table_devices_lock);
1480 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1481 bio = alloc_tio(ci, ti, bio_nr, NULL,
1482 try ? GFP_NOIO : GFP_NOWAIT);
1486 bio_list_add(blist, bio);
1489 mutex_unlock(&ci->io->md->table_devices_lock);
1490 if (bio_nr == num_bios)
1493 while ((bio = bio_list_pop(blist)))
1498 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1499 unsigned int num_bios, unsigned int *len)
1501 struct bio_list blist = BIO_EMPTY_LIST;
1503 unsigned int ret = 0;
1510 setup_split_accounting(ci, *len);
1511 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1516 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1517 alloc_multiple_bios(&blist, ci, ti, num_bios);
1518 while ((clone = bio_list_pop(&blist))) {
1519 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529 static void __send_empty_flush(struct clone_info *ci)
1531 struct dm_table *t = ci->map;
1532 struct bio flush_bio;
1535 * Use an on-stack bio for this, it's safe since we don't
1536 * need to reference it after submit. It's just used as
1537 * the basis for the clone(s).
1539 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1540 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1542 ci->bio = &flush_bio;
1543 ci->sector_count = 0;
1544 ci->io->tio.clone.bi_iter.bi_size = 0;
1546 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 struct dm_target *ti = dm_table_get_target(t, i);
1550 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1551 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1552 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1556 * alloc_io() takes one extra reference for submission, so the
1557 * reference won't reach 0 without the following subtraction
1559 atomic_sub(1, &ci->io->io_count);
1561 bio_uninit(ci->bio);
1564 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1565 unsigned int num_bios)
1567 unsigned int len, bios;
1569 len = min_t(sector_t, ci->sector_count,
1570 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1572 atomic_add(num_bios, &ci->io->io_count);
1573 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1575 * alloc_io() takes one extra reference for submission, so the
1576 * reference won't reach 0 without the following (+1) subtraction
1578 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1581 ci->sector_count -= len;
1584 static bool is_abnormal_io(struct bio *bio)
1586 enum req_op op = bio_op(bio);
1588 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1590 case REQ_OP_DISCARD:
1591 case REQ_OP_SECURE_ERASE:
1592 case REQ_OP_WRITE_ZEROES:
1602 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1603 struct dm_target *ti)
1605 unsigned int num_bios = 0;
1607 switch (bio_op(ci->bio)) {
1608 case REQ_OP_DISCARD:
1609 num_bios = ti->num_discard_bios;
1611 case REQ_OP_SECURE_ERASE:
1612 num_bios = ti->num_secure_erase_bios;
1614 case REQ_OP_WRITE_ZEROES:
1615 num_bios = ti->num_write_zeroes_bios;
1622 * Even though the device advertised support for this type of
1623 * request, that does not mean every target supports it, and
1624 * reconfiguration might also have changed that since the
1625 * check was performed.
1627 if (unlikely(!num_bios))
1628 return BLK_STS_NOTSUPP;
1630 __send_changing_extent_only(ci, ti, num_bios);
1635 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1636 * associated with this bio, and this bio's bi_private needs to be
1637 * stored in dm_io->data before the reuse.
1639 * bio->bi_private is owned by fs or upper layer, so block layer won't
1640 * touch it after splitting. Meantime it won't be changed by anyone after
1641 * bio is submitted. So this reuse is safe.
1643 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1645 return (struct dm_io **)&bio->bi_private;
1648 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1650 struct dm_io **head = dm_poll_list_head(bio);
1652 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1653 bio->bi_opf |= REQ_DM_POLL_LIST;
1655 * Save .bi_private into dm_io, so that we can reuse
1656 * .bi_private as dm_io list head for storing dm_io list
1658 io->data = bio->bi_private;
1660 /* tell block layer to poll for completion */
1661 bio->bi_cookie = ~BLK_QC_T_NONE;
1666 * bio recursed due to split, reuse original poll list,
1667 * and save bio->bi_private too.
1669 io->data = (*head)->data;
1677 * Select the correct strategy for processing a non-flush bio.
1679 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1682 struct dm_target *ti;
1685 ti = dm_table_find_target(ci->map, ci->sector);
1687 return BLK_STS_IOERR;
1689 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1690 unlikely(!dm_target_supports_nowait(ti->type)))
1691 return BLK_STS_NOTSUPP;
1693 if (unlikely(ci->is_abnormal_io))
1694 return __process_abnormal_io(ci, ti);
1697 * Only support bio polling for normal IO, and the target io is
1698 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1700 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1702 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1703 setup_split_accounting(ci, len);
1704 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1708 ci->sector_count -= len;
1713 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1714 struct dm_table *map, struct bio *bio, bool is_abnormal)
1717 ci->io = alloc_io(md, bio);
1719 ci->is_abnormal_io = is_abnormal;
1720 ci->submit_as_polled = false;
1721 ci->sector = bio->bi_iter.bi_sector;
1722 ci->sector_count = bio_sectors(bio);
1724 /* Shouldn't happen but sector_count was being set to 0 so... */
1725 if (static_branch_unlikely(&zoned_enabled) &&
1726 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1727 ci->sector_count = 0;
1731 * Entry point to split a bio into clones and submit them to the targets.
1733 static void dm_split_and_process_bio(struct mapped_device *md,
1734 struct dm_table *map, struct bio *bio)
1736 struct clone_info ci;
1738 blk_status_t error = BLK_STS_OK;
1741 is_abnormal = is_abnormal_io(bio);
1742 if (unlikely(is_abnormal)) {
1744 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1745 * otherwise associated queue_limits won't be imposed.
1747 bio = bio_split_to_limits(bio);
1752 init_clone_info(&ci, md, map, bio, is_abnormal);
1755 if (bio->bi_opf & REQ_PREFLUSH) {
1756 __send_empty_flush(&ci);
1757 /* dm_io_complete submits any data associated with flush */
1761 error = __split_and_process_bio(&ci);
1762 if (error || !ci.sector_count)
1765 * Remainder must be passed to submit_bio_noacct() so it gets handled
1766 * *after* bios already submitted have been completely processed.
1768 bio_trim(bio, io->sectors, ci.sector_count);
1769 trace_block_split(bio, bio->bi_iter.bi_sector);
1770 bio_inc_remaining(bio);
1771 submit_bio_noacct(bio);
1774 * Drop the extra reference count for non-POLLED bio, and hold one
1775 * reference for POLLED bio, which will be released in dm_poll_bio
1777 * Add every dm_io instance into the dm_io list head which is stored
1778 * in bio->bi_private, so that dm_poll_bio can poll them all.
1780 if (error || !ci.submit_as_polled) {
1782 * In case of submission failure, the extra reference for
1783 * submitting io isn't consumed yet
1786 atomic_dec(&io->io_count);
1787 dm_io_dec_pending(io, error);
1789 dm_queue_poll_io(bio, io);
1792 static void dm_submit_bio(struct bio *bio)
1794 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1796 struct dm_table *map;
1797 blk_opf_t bio_opf = bio->bi_opf;
1799 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1801 /* If suspended, or map not yet available, queue this IO for later */
1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1804 if (bio->bi_opf & REQ_NOWAIT)
1805 bio_wouldblock_error(bio);
1806 else if (bio->bi_opf & REQ_RAHEAD)
1813 dm_split_and_process_bio(md, map, bio);
1815 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1818 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1821 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1823 /* don't poll if the mapped io is done */
1824 if (atomic_read(&io->io_count) > 1)
1825 bio_poll(&io->tio.clone, iob, flags);
1827 /* bio_poll holds the last reference */
1828 return atomic_read(&io->io_count) == 1;
1831 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1834 struct dm_io **head = dm_poll_list_head(bio);
1835 struct dm_io *list = *head;
1836 struct dm_io *tmp = NULL;
1837 struct dm_io *curr, *next;
1839 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1840 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1843 WARN_ON_ONCE(!list);
1846 * Restore .bi_private before possibly completing dm_io.
1848 * bio_poll() is only possible once @bio has been completely
1849 * submitted via submit_bio_noacct()'s depth-first submission.
1850 * So there is no dm_queue_poll_io() race associated with
1851 * clearing REQ_DM_POLL_LIST here.
1853 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1854 bio->bi_private = list->data;
1856 for (curr = list, next = curr->next; curr; curr = next, next =
1857 curr ? curr->next : NULL) {
1858 if (dm_poll_dm_io(curr, iob, flags)) {
1860 * clone_endio() has already occurred, so no
1861 * error handling is needed here.
1863 __dm_io_dec_pending(curr);
1872 bio->bi_opf |= REQ_DM_POLL_LIST;
1873 /* Reset bio->bi_private to dm_io list head */
1881 *---------------------------------------------------------------
1882 * An IDR is used to keep track of allocated minor numbers.
1883 *---------------------------------------------------------------
1885 static void free_minor(int minor)
1887 spin_lock(&_minor_lock);
1888 idr_remove(&_minor_idr, minor);
1889 spin_unlock(&_minor_lock);
1893 * See if the device with a specific minor # is free.
1895 static int specific_minor(int minor)
1899 if (minor >= (1 << MINORBITS))
1902 idr_preload(GFP_KERNEL);
1903 spin_lock(&_minor_lock);
1905 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1907 spin_unlock(&_minor_lock);
1910 return r == -ENOSPC ? -EBUSY : r;
1914 static int next_free_minor(int *minor)
1918 idr_preload(GFP_KERNEL);
1919 spin_lock(&_minor_lock);
1921 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1923 spin_unlock(&_minor_lock);
1931 static const struct block_device_operations dm_blk_dops;
1932 static const struct block_device_operations dm_rq_blk_dops;
1933 static const struct dax_operations dm_dax_ops;
1935 static void dm_wq_work(struct work_struct *work);
1937 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1938 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1940 dm_destroy_crypto_profile(q->crypto_profile);
1943 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1945 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1948 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1950 static void cleanup_mapped_device(struct mapped_device *md)
1953 destroy_workqueue(md->wq);
1954 dm_free_md_mempools(md->mempools);
1957 dax_remove_host(md->disk);
1958 kill_dax(md->dax_dev);
1959 put_dax(md->dax_dev);
1963 dm_cleanup_zoned_dev(md);
1965 spin_lock(&_minor_lock);
1966 md->disk->private_data = NULL;
1967 spin_unlock(&_minor_lock);
1968 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1969 struct table_device *td;
1972 list_for_each_entry(td, &md->table_devices, list) {
1973 bd_unlink_disk_holder(td->dm_dev.bdev,
1978 * Hold lock to make sure del_gendisk() won't concurrent
1979 * with open/close_table_device().
1981 mutex_lock(&md->table_devices_lock);
1982 del_gendisk(md->disk);
1983 mutex_unlock(&md->table_devices_lock);
1985 dm_queue_destroy_crypto_profile(md->queue);
1989 if (md->pending_io) {
1990 free_percpu(md->pending_io);
1991 md->pending_io = NULL;
1994 cleanup_srcu_struct(&md->io_barrier);
1996 mutex_destroy(&md->suspend_lock);
1997 mutex_destroy(&md->type_lock);
1998 mutex_destroy(&md->table_devices_lock);
1999 mutex_destroy(&md->swap_bios_lock);
2001 dm_mq_cleanup_mapped_device(md);
2005 * Allocate and initialise a blank device with a given minor.
2007 static struct mapped_device *alloc_dev(int minor)
2009 int r, numa_node_id = dm_get_numa_node();
2010 struct mapped_device *md;
2013 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2015 DMERR("unable to allocate device, out of memory.");
2019 if (!try_module_get(THIS_MODULE))
2020 goto bad_module_get;
2022 /* get a minor number for the dev */
2023 if (minor == DM_ANY_MINOR)
2024 r = next_free_minor(&minor);
2026 r = specific_minor(minor);
2030 r = init_srcu_struct(&md->io_barrier);
2032 goto bad_io_barrier;
2034 md->numa_node_id = numa_node_id;
2035 md->init_tio_pdu = false;
2036 md->type = DM_TYPE_NONE;
2037 mutex_init(&md->suspend_lock);
2038 mutex_init(&md->type_lock);
2039 mutex_init(&md->table_devices_lock);
2040 spin_lock_init(&md->deferred_lock);
2041 atomic_set(&md->holders, 1);
2042 atomic_set(&md->open_count, 0);
2043 atomic_set(&md->event_nr, 0);
2044 atomic_set(&md->uevent_seq, 0);
2045 INIT_LIST_HEAD(&md->uevent_list);
2046 INIT_LIST_HEAD(&md->table_devices);
2047 spin_lock_init(&md->uevent_lock);
2050 * default to bio-based until DM table is loaded and md->type
2051 * established. If request-based table is loaded: blk-mq will
2052 * override accordingly.
2054 md->disk = blk_alloc_disk(md->numa_node_id);
2057 md->queue = md->disk->queue;
2059 init_waitqueue_head(&md->wait);
2060 INIT_WORK(&md->work, dm_wq_work);
2061 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2062 init_waitqueue_head(&md->eventq);
2063 init_completion(&md->kobj_holder.completion);
2065 md->requeue_list = NULL;
2066 md->swap_bios = get_swap_bios();
2067 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2068 mutex_init(&md->swap_bios_lock);
2070 md->disk->major = _major;
2071 md->disk->first_minor = minor;
2072 md->disk->minors = 1;
2073 md->disk->flags |= GENHD_FL_NO_PART;
2074 md->disk->fops = &dm_blk_dops;
2075 md->disk->private_data = md;
2076 sprintf(md->disk->disk_name, "dm-%d", minor);
2078 if (IS_ENABLED(CONFIG_FS_DAX)) {
2079 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2080 if (IS_ERR(md->dax_dev)) {
2084 set_dax_nocache(md->dax_dev);
2085 set_dax_nomc(md->dax_dev);
2086 if (dax_add_host(md->dax_dev, md->disk))
2090 format_dev_t(md->name, MKDEV(_major, minor));
2092 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2096 md->pending_io = alloc_percpu(unsigned long);
2097 if (!md->pending_io)
2100 dm_stats_init(&md->stats);
2102 /* Populate the mapping, nobody knows we exist yet */
2103 spin_lock(&_minor_lock);
2104 old_md = idr_replace(&_minor_idr, md, minor);
2105 spin_unlock(&_minor_lock);
2107 BUG_ON(old_md != MINOR_ALLOCED);
2112 cleanup_mapped_device(md);
2116 module_put(THIS_MODULE);
2122 static void unlock_fs(struct mapped_device *md);
2124 static void free_dev(struct mapped_device *md)
2126 int minor = MINOR(disk_devt(md->disk));
2130 cleanup_mapped_device(md);
2132 WARN_ON_ONCE(!list_empty(&md->table_devices));
2133 dm_stats_cleanup(&md->stats);
2136 module_put(THIS_MODULE);
2141 * Bind a table to the device.
2143 static void event_callback(void *context)
2145 unsigned long flags;
2147 struct mapped_device *md = context;
2149 spin_lock_irqsave(&md->uevent_lock, flags);
2150 list_splice_init(&md->uevent_list, &uevents);
2151 spin_unlock_irqrestore(&md->uevent_lock, flags);
2153 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2155 atomic_inc(&md->event_nr);
2156 wake_up(&md->eventq);
2157 dm_issue_global_event();
2161 * Returns old map, which caller must destroy.
2163 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2164 struct queue_limits *limits)
2166 struct dm_table *old_map;
2170 lockdep_assert_held(&md->suspend_lock);
2172 size = dm_table_get_size(t);
2175 * Wipe any geometry if the size of the table changed.
2177 if (size != dm_get_size(md))
2178 memset(&md->geometry, 0, sizeof(md->geometry));
2180 set_capacity(md->disk, size);
2182 dm_table_event_callback(t, event_callback, md);
2184 if (dm_table_request_based(t)) {
2186 * Leverage the fact that request-based DM targets are
2187 * immutable singletons - used to optimize dm_mq_queue_rq.
2189 md->immutable_target = dm_table_get_immutable_target(t);
2192 * There is no need to reload with request-based dm because the
2193 * size of front_pad doesn't change.
2195 * Note for future: If you are to reload bioset, prep-ed
2196 * requests in the queue may refer to bio from the old bioset,
2197 * so you must walk through the queue to unprep.
2199 if (!md->mempools) {
2200 md->mempools = t->mempools;
2205 * The md may already have mempools that need changing.
2206 * If so, reload bioset because front_pad may have changed
2207 * because a different table was loaded.
2209 dm_free_md_mempools(md->mempools);
2210 md->mempools = t->mempools;
2214 ret = dm_table_set_restrictions(t, md->queue, limits);
2216 old_map = ERR_PTR(ret);
2220 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2221 rcu_assign_pointer(md->map, (void *)t);
2222 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2231 * Returns unbound table for the caller to free.
2233 static struct dm_table *__unbind(struct mapped_device *md)
2235 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2240 dm_table_event_callback(map, NULL, NULL);
2241 RCU_INIT_POINTER(md->map, NULL);
2248 * Constructor for a new device.
2250 int dm_create(int minor, struct mapped_device **result)
2252 struct mapped_device *md;
2254 md = alloc_dev(minor);
2258 dm_ima_reset_data(md);
2265 * Functions to manage md->type.
2266 * All are required to hold md->type_lock.
2268 void dm_lock_md_type(struct mapped_device *md)
2270 mutex_lock(&md->type_lock);
2273 void dm_unlock_md_type(struct mapped_device *md)
2275 mutex_unlock(&md->type_lock);
2278 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2280 BUG_ON(!mutex_is_locked(&md->type_lock));
2284 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2289 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2291 return md->immutable_target_type;
2295 * The queue_limits are only valid as long as you have a reference
2298 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2300 BUG_ON(!atomic_read(&md->holders));
2301 return &md->queue->limits;
2303 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2306 * Setup the DM device's queue based on md's type
2308 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2310 enum dm_queue_mode type = dm_table_get_type(t);
2311 struct queue_limits limits;
2312 struct table_device *td;
2316 case DM_TYPE_REQUEST_BASED:
2317 md->disk->fops = &dm_rq_blk_dops;
2318 r = dm_mq_init_request_queue(md, t);
2320 DMERR("Cannot initialize queue for request-based dm mapped device");
2324 case DM_TYPE_BIO_BASED:
2325 case DM_TYPE_DAX_BIO_BASED:
2332 r = dm_calculate_queue_limits(t, &limits);
2334 DMERR("Cannot calculate initial queue limits");
2337 r = dm_table_set_restrictions(t, md->queue, &limits);
2342 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2343 * with open_table_device() and close_table_device().
2345 mutex_lock(&md->table_devices_lock);
2346 r = add_disk(md->disk);
2347 mutex_unlock(&md->table_devices_lock);
2352 * Register the holder relationship for devices added before the disk
2355 list_for_each_entry(td, &md->table_devices, list) {
2356 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2358 goto out_undo_holders;
2361 r = dm_sysfs_init(md);
2363 goto out_undo_holders;
2369 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2370 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2371 mutex_lock(&md->table_devices_lock);
2372 del_gendisk(md->disk);
2373 mutex_unlock(&md->table_devices_lock);
2377 struct mapped_device *dm_get_md(dev_t dev)
2379 struct mapped_device *md;
2380 unsigned int minor = MINOR(dev);
2382 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2385 spin_lock(&_minor_lock);
2387 md = idr_find(&_minor_idr, minor);
2388 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2389 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2395 spin_unlock(&_minor_lock);
2399 EXPORT_SYMBOL_GPL(dm_get_md);
2401 void *dm_get_mdptr(struct mapped_device *md)
2403 return md->interface_ptr;
2406 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2408 md->interface_ptr = ptr;
2411 void dm_get(struct mapped_device *md)
2413 atomic_inc(&md->holders);
2414 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2417 int dm_hold(struct mapped_device *md)
2419 spin_lock(&_minor_lock);
2420 if (test_bit(DMF_FREEING, &md->flags)) {
2421 spin_unlock(&_minor_lock);
2425 spin_unlock(&_minor_lock);
2428 EXPORT_SYMBOL_GPL(dm_hold);
2430 const char *dm_device_name(struct mapped_device *md)
2434 EXPORT_SYMBOL_GPL(dm_device_name);
2436 static void __dm_destroy(struct mapped_device *md, bool wait)
2438 struct dm_table *map;
2443 spin_lock(&_minor_lock);
2444 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2445 set_bit(DMF_FREEING, &md->flags);
2446 spin_unlock(&_minor_lock);
2448 blk_mark_disk_dead(md->disk);
2451 * Take suspend_lock so that presuspend and postsuspend methods
2452 * do not race with internal suspend.
2454 mutex_lock(&md->suspend_lock);
2455 map = dm_get_live_table(md, &srcu_idx);
2456 if (!dm_suspended_md(md)) {
2457 dm_table_presuspend_targets(map);
2458 set_bit(DMF_SUSPENDED, &md->flags);
2459 set_bit(DMF_POST_SUSPENDING, &md->flags);
2460 dm_table_postsuspend_targets(map);
2462 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2463 dm_put_live_table(md, srcu_idx);
2464 mutex_unlock(&md->suspend_lock);
2467 * Rare, but there may be I/O requests still going to complete,
2468 * for example. Wait for all references to disappear.
2469 * No one should increment the reference count of the mapped_device,
2470 * after the mapped_device state becomes DMF_FREEING.
2473 while (atomic_read(&md->holders))
2475 else if (atomic_read(&md->holders))
2476 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2477 dm_device_name(md), atomic_read(&md->holders));
2479 dm_table_destroy(__unbind(md));
2483 void dm_destroy(struct mapped_device *md)
2485 __dm_destroy(md, true);
2488 void dm_destroy_immediate(struct mapped_device *md)
2490 __dm_destroy(md, false);
2493 void dm_put(struct mapped_device *md)
2495 atomic_dec(&md->holders);
2497 EXPORT_SYMBOL_GPL(dm_put);
2499 static bool dm_in_flight_bios(struct mapped_device *md)
2502 unsigned long sum = 0;
2504 for_each_possible_cpu(cpu)
2505 sum += *per_cpu_ptr(md->pending_io, cpu);
2510 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2516 prepare_to_wait(&md->wait, &wait, task_state);
2518 if (!dm_in_flight_bios(md))
2521 if (signal_pending_state(task_state, current)) {
2528 finish_wait(&md->wait, &wait);
2535 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2539 if (!queue_is_mq(md->queue))
2540 return dm_wait_for_bios_completion(md, task_state);
2543 if (!blk_mq_queue_inflight(md->queue))
2546 if (signal_pending_state(task_state, current)) {
2558 * Process the deferred bios
2560 static void dm_wq_work(struct work_struct *work)
2562 struct mapped_device *md = container_of(work, struct mapped_device, work);
2565 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2566 spin_lock_irq(&md->deferred_lock);
2567 bio = bio_list_pop(&md->deferred);
2568 spin_unlock_irq(&md->deferred_lock);
2573 submit_bio_noacct(bio);
2578 static void dm_queue_flush(struct mapped_device *md)
2580 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2581 smp_mb__after_atomic();
2582 queue_work(md->wq, &md->work);
2586 * Swap in a new table, returning the old one for the caller to destroy.
2588 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2590 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2591 struct queue_limits limits;
2594 mutex_lock(&md->suspend_lock);
2596 /* device must be suspended */
2597 if (!dm_suspended_md(md))
2601 * If the new table has no data devices, retain the existing limits.
2602 * This helps multipath with queue_if_no_path if all paths disappear,
2603 * then new I/O is queued based on these limits, and then some paths
2606 if (dm_table_has_no_data_devices(table)) {
2607 live_map = dm_get_live_table_fast(md);
2609 limits = md->queue->limits;
2610 dm_put_live_table_fast(md);
2614 r = dm_calculate_queue_limits(table, &limits);
2621 map = __bind(md, table, &limits);
2622 dm_issue_global_event();
2625 mutex_unlock(&md->suspend_lock);
2630 * Functions to lock and unlock any filesystem running on the
2633 static int lock_fs(struct mapped_device *md)
2637 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2639 r = freeze_bdev(md->disk->part0);
2641 set_bit(DMF_FROZEN, &md->flags);
2645 static void unlock_fs(struct mapped_device *md)
2647 if (!test_bit(DMF_FROZEN, &md->flags))
2649 thaw_bdev(md->disk->part0);
2650 clear_bit(DMF_FROZEN, &md->flags);
2654 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2655 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2656 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2658 * If __dm_suspend returns 0, the device is completely quiescent
2659 * now. There is no request-processing activity. All new requests
2660 * are being added to md->deferred list.
2662 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2663 unsigned int suspend_flags, unsigned int task_state,
2664 int dmf_suspended_flag)
2666 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2667 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2670 lockdep_assert_held(&md->suspend_lock);
2673 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2674 * This flag is cleared before dm_suspend returns.
2677 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2679 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2682 * This gets reverted if there's an error later and the targets
2683 * provide the .presuspend_undo hook.
2685 dm_table_presuspend_targets(map);
2688 * Flush I/O to the device.
2689 * Any I/O submitted after lock_fs() may not be flushed.
2690 * noflush takes precedence over do_lockfs.
2691 * (lock_fs() flushes I/Os and waits for them to complete.)
2693 if (!noflush && do_lockfs) {
2696 dm_table_presuspend_undo_targets(map);
2702 * Here we must make sure that no processes are submitting requests
2703 * to target drivers i.e. no one may be executing
2704 * dm_split_and_process_bio from dm_submit_bio.
2706 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2707 * we take the write lock. To prevent any process from reentering
2708 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2709 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2710 * flush_workqueue(md->wq).
2712 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2714 synchronize_srcu(&md->io_barrier);
2717 * Stop md->queue before flushing md->wq in case request-based
2718 * dm defers requests to md->wq from md->queue.
2720 if (dm_request_based(md))
2721 dm_stop_queue(md->queue);
2723 flush_workqueue(md->wq);
2726 * At this point no more requests are entering target request routines.
2727 * We call dm_wait_for_completion to wait for all existing requests
2730 r = dm_wait_for_completion(md, task_state);
2732 set_bit(dmf_suspended_flag, &md->flags);
2735 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2737 synchronize_srcu(&md->io_barrier);
2739 /* were we interrupted ? */
2743 if (dm_request_based(md))
2744 dm_start_queue(md->queue);
2747 dm_table_presuspend_undo_targets(map);
2748 /* pushback list is already flushed, so skip flush */
2755 * We need to be able to change a mapping table under a mounted
2756 * filesystem. For example we might want to move some data in
2757 * the background. Before the table can be swapped with
2758 * dm_bind_table, dm_suspend must be called to flush any in
2759 * flight bios and ensure that any further io gets deferred.
2762 * Suspend mechanism in request-based dm.
2764 * 1. Flush all I/Os by lock_fs() if needed.
2765 * 2. Stop dispatching any I/O by stopping the request_queue.
2766 * 3. Wait for all in-flight I/Os to be completed or requeued.
2768 * To abort suspend, start the request_queue.
2770 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2772 struct dm_table *map = NULL;
2776 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2778 if (dm_suspended_md(md)) {
2783 if (dm_suspended_internally_md(md)) {
2784 /* already internally suspended, wait for internal resume */
2785 mutex_unlock(&md->suspend_lock);
2786 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2792 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2794 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2798 set_bit(DMF_POST_SUSPENDING, &md->flags);
2799 dm_table_postsuspend_targets(map);
2800 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2803 mutex_unlock(&md->suspend_lock);
2807 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2810 int r = dm_table_resume_targets(map);
2819 * Flushing deferred I/Os must be done after targets are resumed
2820 * so that mapping of targets can work correctly.
2821 * Request-based dm is queueing the deferred I/Os in its request_queue.
2823 if (dm_request_based(md))
2824 dm_start_queue(md->queue);
2831 int dm_resume(struct mapped_device *md)
2834 struct dm_table *map = NULL;
2838 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2840 if (!dm_suspended_md(md))
2843 if (dm_suspended_internally_md(md)) {
2844 /* already internally suspended, wait for internal resume */
2845 mutex_unlock(&md->suspend_lock);
2846 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2852 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2853 if (!map || !dm_table_get_size(map))
2856 r = __dm_resume(md, map);
2860 clear_bit(DMF_SUSPENDED, &md->flags);
2862 mutex_unlock(&md->suspend_lock);
2868 * Internal suspend/resume works like userspace-driven suspend. It waits
2869 * until all bios finish and prevents issuing new bios to the target drivers.
2870 * It may be used only from the kernel.
2873 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2875 struct dm_table *map = NULL;
2877 lockdep_assert_held(&md->suspend_lock);
2879 if (md->internal_suspend_count++)
2880 return; /* nested internal suspend */
2882 if (dm_suspended_md(md)) {
2883 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2884 return; /* nest suspend */
2887 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2890 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2891 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2892 * would require changing .presuspend to return an error -- avoid this
2893 * until there is a need for more elaborate variants of internal suspend.
2895 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2896 DMF_SUSPENDED_INTERNALLY);
2898 set_bit(DMF_POST_SUSPENDING, &md->flags);
2899 dm_table_postsuspend_targets(map);
2900 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2903 static void __dm_internal_resume(struct mapped_device *md)
2905 BUG_ON(!md->internal_suspend_count);
2907 if (--md->internal_suspend_count)
2908 return; /* resume from nested internal suspend */
2910 if (dm_suspended_md(md))
2911 goto done; /* resume from nested suspend */
2914 * NOTE: existing callers don't need to call dm_table_resume_targets
2915 * (which may fail -- so best to avoid it for now by passing NULL map)
2917 (void) __dm_resume(md, NULL);
2920 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2921 smp_mb__after_atomic();
2922 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2925 void dm_internal_suspend_noflush(struct mapped_device *md)
2927 mutex_lock(&md->suspend_lock);
2928 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2929 mutex_unlock(&md->suspend_lock);
2931 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2933 void dm_internal_resume(struct mapped_device *md)
2935 mutex_lock(&md->suspend_lock);
2936 __dm_internal_resume(md);
2937 mutex_unlock(&md->suspend_lock);
2939 EXPORT_SYMBOL_GPL(dm_internal_resume);
2942 * Fast variants of internal suspend/resume hold md->suspend_lock,
2943 * which prevents interaction with userspace-driven suspend.
2946 void dm_internal_suspend_fast(struct mapped_device *md)
2948 mutex_lock(&md->suspend_lock);
2949 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2952 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2953 synchronize_srcu(&md->io_barrier);
2954 flush_workqueue(md->wq);
2955 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2957 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2959 void dm_internal_resume_fast(struct mapped_device *md)
2961 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2967 mutex_unlock(&md->suspend_lock);
2969 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2972 *---------------------------------------------------------------
2973 * Event notification.
2974 *---------------------------------------------------------------
2976 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2977 unsigned int cookie, bool need_resize_uevent)
2980 unsigned int noio_flag;
2981 char udev_cookie[DM_COOKIE_LENGTH];
2982 char *envp[3] = { NULL, NULL, NULL };
2983 char **envpp = envp;
2985 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2986 DM_COOKIE_ENV_VAR_NAME, cookie);
2987 *envpp++ = udev_cookie;
2989 if (need_resize_uevent) {
2990 *envpp++ = "RESIZE=1";
2993 noio_flag = memalloc_noio_save();
2995 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2997 memalloc_noio_restore(noio_flag);
3002 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3004 return atomic_add_return(1, &md->uevent_seq);
3007 uint32_t dm_get_event_nr(struct mapped_device *md)
3009 return atomic_read(&md->event_nr);
3012 int dm_wait_event(struct mapped_device *md, int event_nr)
3014 return wait_event_interruptible(md->eventq,
3015 (event_nr != atomic_read(&md->event_nr)));
3018 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3020 unsigned long flags;
3022 spin_lock_irqsave(&md->uevent_lock, flags);
3023 list_add(elist, &md->uevent_list);
3024 spin_unlock_irqrestore(&md->uevent_lock, flags);
3028 * The gendisk is only valid as long as you have a reference
3031 struct gendisk *dm_disk(struct mapped_device *md)
3035 EXPORT_SYMBOL_GPL(dm_disk);
3037 struct kobject *dm_kobject(struct mapped_device *md)
3039 return &md->kobj_holder.kobj;
3042 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3044 struct mapped_device *md;
3046 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3048 spin_lock(&_minor_lock);
3049 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3055 spin_unlock(&_minor_lock);
3060 int dm_suspended_md(struct mapped_device *md)
3062 return test_bit(DMF_SUSPENDED, &md->flags);
3065 static int dm_post_suspending_md(struct mapped_device *md)
3067 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3070 int dm_suspended_internally_md(struct mapped_device *md)
3072 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3075 int dm_test_deferred_remove_flag(struct mapped_device *md)
3077 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3080 int dm_suspended(struct dm_target *ti)
3082 return dm_suspended_md(ti->table->md);
3084 EXPORT_SYMBOL_GPL(dm_suspended);
3086 int dm_post_suspending(struct dm_target *ti)
3088 return dm_post_suspending_md(ti->table->md);
3090 EXPORT_SYMBOL_GPL(dm_post_suspending);
3092 int dm_noflush_suspending(struct dm_target *ti)
3094 return __noflush_suspending(ti->table->md);
3096 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3098 void dm_free_md_mempools(struct dm_md_mempools *pools)
3103 bioset_exit(&pools->bs);
3104 bioset_exit(&pools->io_bs);
3119 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3122 struct mapped_device *md = bdev->bd_disk->private_data;
3123 struct dm_table *table;
3124 struct dm_target *ti;
3125 int ret = -ENOTTY, srcu_idx;
3127 table = dm_get_live_table(md, &srcu_idx);
3128 if (!table || !dm_table_get_size(table))
3131 /* We only support devices that have a single target */
3132 if (table->num_targets != 1)
3134 ti = dm_table_get_target(table, 0);
3136 if (dm_suspended_md(md)) {
3142 if (!ti->type->iterate_devices)
3145 ti->type->iterate_devices(ti, fn, pr);
3148 dm_put_live_table(md, srcu_idx);
3153 * For register / unregister we need to manually call out to every path.
3155 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3156 sector_t start, sector_t len, void *data)
3158 struct dm_pr *pr = data;
3159 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3162 if (!ops || !ops->pr_register) {
3163 pr->ret = -EOPNOTSUPP;
3167 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3180 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3192 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3194 /* Didn't even get to register a path */
3205 /* unregister all paths if we failed to register any path */
3206 pr.old_key = new_key;
3209 pr.fail_early = false;
3210 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3215 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3216 sector_t start, sector_t len, void *data)
3218 struct dm_pr *pr = data;
3219 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3221 if (!ops || !ops->pr_reserve) {
3222 pr->ret = -EOPNOTSUPP;
3226 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3233 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3240 .fail_early = false,
3245 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3253 * If there is a non-All Registrants type of reservation, the release must be
3254 * sent down the holding path. For the cases where there is no reservation or
3255 * the path is not the holder the device will also return success, so we must
3256 * try each path to make sure we got the correct path.
3258 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3259 sector_t start, sector_t len, void *data)
3261 struct dm_pr *pr = data;
3262 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3264 if (!ops || !ops->pr_release) {
3265 pr->ret = -EOPNOTSUPP;
3269 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3276 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3281 .fail_early = false,
3285 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3292 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3293 sector_t start, sector_t len, void *data)
3295 struct dm_pr *pr = data;
3296 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3298 if (!ops || !ops->pr_preempt) {
3299 pr->ret = -EOPNOTSUPP;
3303 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3311 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3312 enum pr_type type, bool abort)
3318 .fail_early = false,
3322 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3329 static int dm_pr_clear(struct block_device *bdev, u64 key)
3331 struct mapped_device *md = bdev->bd_disk->private_data;
3332 const struct pr_ops *ops;
3335 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3339 ops = bdev->bd_disk->fops->pr_ops;
3340 if (ops && ops->pr_clear)
3341 r = ops->pr_clear(bdev, key);
3345 dm_unprepare_ioctl(md, srcu_idx);
3349 static const struct pr_ops dm_pr_ops = {
3350 .pr_register = dm_pr_register,
3351 .pr_reserve = dm_pr_reserve,
3352 .pr_release = dm_pr_release,
3353 .pr_preempt = dm_pr_preempt,
3354 .pr_clear = dm_pr_clear,
3357 static const struct block_device_operations dm_blk_dops = {
3358 .submit_bio = dm_submit_bio,
3359 .poll_bio = dm_poll_bio,
3360 .open = dm_blk_open,
3361 .release = dm_blk_close,
3362 .ioctl = dm_blk_ioctl,
3363 .getgeo = dm_blk_getgeo,
3364 .report_zones = dm_blk_report_zones,
3365 .pr_ops = &dm_pr_ops,
3366 .owner = THIS_MODULE
3369 static const struct block_device_operations dm_rq_blk_dops = {
3370 .open = dm_blk_open,
3371 .release = dm_blk_close,
3372 .ioctl = dm_blk_ioctl,
3373 .getgeo = dm_blk_getgeo,
3374 .pr_ops = &dm_pr_ops,
3375 .owner = THIS_MODULE
3378 static const struct dax_operations dm_dax_ops = {
3379 .direct_access = dm_dax_direct_access,
3380 .zero_page_range = dm_dax_zero_page_range,
3381 .recovery_write = dm_dax_recovery_write,
3387 module_init(dm_init);
3388 module_exit(dm_exit);
3390 module_param(major, uint, 0);
3391 MODULE_PARM_DESC(major, "The major number of the device mapper");
3393 module_param(reserved_bio_based_ios, uint, 0644);
3394 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3396 module_param(dm_numa_node, int, 0644);
3397 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3399 module_param(swap_bios, int, 0644);
3400 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3402 MODULE_DESCRIPTION(DM_NAME " driver");
3404 MODULE_LICENSE("GPL");