1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
17 * Types defining task->signal and task->sighand and APIs using them:
20 struct sighand_struct {
23 wait_queue_head_t signalfd_wqh;
24 struct k_sigaction action[_NSIG];
28 * Per-process accounting stats:
34 u64 ac_utime, ac_stime;
35 unsigned long ac_minflt, ac_majflt;
44 * This is the atomic variant of task_cputime, which can be used for
45 * storing and updating task_cputime statistics without locking.
47 struct task_cputime_atomic {
50 atomic64_t sum_exec_runtime;
53 #define INIT_CPUTIME_ATOMIC \
54 (struct task_cputime_atomic) { \
55 .utime = ATOMIC64_INIT(0), \
56 .stime = ATOMIC64_INIT(0), \
57 .sum_exec_runtime = ATOMIC64_INIT(0), \
60 * struct thread_group_cputimer - thread group interval timer counts
61 * @cputime_atomic: atomic thread group interval timers.
63 * This structure contains the version of task_cputime, above, that is
64 * used for thread group CPU timer calculations.
66 struct thread_group_cputimer {
67 struct task_cputime_atomic cputime_atomic;
70 struct multiprocess_signals {
72 struct hlist_node node;
76 struct task_struct *task;
77 struct core_thread *next;
82 struct core_thread dumper;
83 struct completion startup;
87 * NOTE! "signal_struct" does not have its own
88 * locking, because a shared signal_struct always
89 * implies a shared sighand_struct, so locking
90 * sighand_struct is always a proper superset of
91 * the locking of signal_struct.
93 struct signal_struct {
98 struct list_head thread_head;
100 wait_queue_head_t wait_chldexit; /* for wait4() */
102 /* current thread group signal load-balancing target: */
103 struct task_struct *curr_target;
105 /* shared signal handling: */
106 struct sigpending shared_pending;
108 /* For collecting multiprocess signals during fork */
109 struct hlist_head multiprocess;
111 /* thread group exit support */
113 /* notify group_exec_task when notify_count is less or equal to 0 */
115 struct task_struct *group_exec_task;
117 /* thread group stop support, overloads group_exit_code too */
118 int group_stop_count;
119 unsigned int flags; /* see SIGNAL_* flags below */
121 struct core_state *core_state; /* coredumping support */
124 * PR_SET_CHILD_SUBREAPER marks a process, like a service
125 * manager, to re-parent orphan (double-forking) child processes
126 * to this process instead of 'init'. The service manager is
127 * able to receive SIGCHLD signals and is able to investigate
128 * the process until it calls wait(). All children of this
129 * process will inherit a flag if they should look for a
130 * child_subreaper process at exit.
132 unsigned int is_child_subreaper:1;
133 unsigned int has_child_subreaper:1;
135 #ifdef CONFIG_POSIX_TIMERS
137 /* POSIX.1b Interval Timers */
139 struct list_head posix_timers;
141 /* ITIMER_REAL timer for the process */
142 struct hrtimer real_timer;
143 ktime_t it_real_incr;
146 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
147 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
148 * values are defined to 0 and 1 respectively
150 struct cpu_itimer it[2];
153 * Thread group totals for process CPU timers.
154 * See thread_group_cputimer(), et al, for details.
156 struct thread_group_cputimer cputimer;
159 /* Empty if CONFIG_POSIX_TIMERS=n */
160 struct posix_cputimers posix_cputimers;
162 /* PID/PID hash table linkage. */
163 struct pid *pids[PIDTYPE_MAX];
165 #ifdef CONFIG_NO_HZ_FULL
166 atomic_t tick_dep_mask;
169 struct pid *tty_old_pgrp;
171 /* boolean value for session group leader */
174 struct tty_struct *tty; /* NULL if no tty */
176 #ifdef CONFIG_SCHED_AUTOGROUP
177 struct autogroup *autogroup;
180 * Cumulative resource counters for dead threads in the group,
181 * and for reaped dead child processes forked by this group.
182 * Live threads maintain their own counters and add to these
183 * in __exit_signal, except for the group leader.
185 seqlock_t stats_lock;
186 u64 utime, stime, cutime, cstime;
189 struct prev_cputime prev_cputime;
190 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
191 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
192 unsigned long inblock, oublock, cinblock, coublock;
193 unsigned long maxrss, cmaxrss;
194 struct task_io_accounting ioac;
197 * Cumulative ns of schedule CPU time fo dead threads in the
198 * group, not including a zombie group leader, (This only differs
199 * from jiffies_to_ns(utime + stime) if sched_clock uses something
200 * other than jiffies.)
202 unsigned long long sum_sched_runtime;
205 * We don't bother to synchronize most readers of this at all,
206 * because there is no reader checking a limit that actually needs
207 * to get both rlim_cur and rlim_max atomically, and either one
208 * alone is a single word that can safely be read normally.
209 * getrlimit/setrlimit use task_lock(current->group_leader) to
210 * protect this instead of the siglock, because they really
211 * have no need to disable irqs.
213 struct rlimit rlim[RLIM_NLIMITS];
215 #ifdef CONFIG_BSD_PROCESS_ACCT
216 struct pacct_struct pacct; /* per-process accounting information */
218 #ifdef CONFIG_TASKSTATS
219 struct taskstats *stats;
223 struct tty_audit_buf *tty_audit_buf;
227 * Thread is the potential origin of an oom condition; kill first on
230 bool oom_flag_origin;
231 short oom_score_adj; /* OOM kill score adjustment */
232 short oom_score_adj_min; /* OOM kill score adjustment min value.
233 * Only settable by CAP_SYS_RESOURCE. */
234 struct mm_struct *oom_mm; /* recorded mm when the thread group got
235 * killed by the oom killer */
237 struct mutex cred_guard_mutex; /* guard against foreign influences on
238 * credential calculations
240 * Deprecated do not use in new code.
241 * Use exec_update_lock instead.
243 struct rw_semaphore exec_update_lock; /* Held while task_struct is
244 * being updated during exec,
245 * and may have inconsistent
248 } __randomize_layout;
251 * Bits in flags field of signal_struct.
253 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
254 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
255 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
257 * Pending notifications to parent.
259 #define SIGNAL_CLD_STOPPED 0x00000010
260 #define SIGNAL_CLD_CONTINUED 0x00000020
261 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
263 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
265 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
266 SIGNAL_STOP_CONTINUED)
268 static inline void signal_set_stop_flags(struct signal_struct *sig,
271 WARN_ON(sig->flags & SIGNAL_GROUP_EXIT);
272 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
275 extern void flush_signals(struct task_struct *);
276 extern void ignore_signals(struct task_struct *);
277 extern void flush_signal_handlers(struct task_struct *, int force_default);
278 extern int dequeue_signal(struct task_struct *task, sigset_t *mask,
279 kernel_siginfo_t *info, enum pid_type *type);
281 static inline int kernel_dequeue_signal(void)
283 struct task_struct *task = current;
284 kernel_siginfo_t __info;
285 enum pid_type __type;
288 spin_lock_irq(&task->sighand->siglock);
289 ret = dequeue_signal(task, &task->blocked, &__info, &__type);
290 spin_unlock_irq(&task->sighand->siglock);
295 static inline void kernel_signal_stop(void)
297 spin_lock_irq(¤t->sighand->siglock);
298 if (current->jobctl & JOBCTL_STOP_DEQUEUED) {
299 current->jobctl |= JOBCTL_STOPPED;
300 set_special_state(TASK_STOPPED);
302 spin_unlock_irq(¤t->sighand->siglock);
307 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
309 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
312 int force_sig_fault_to_task(int sig, int code, void __user *addr
313 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
314 , struct task_struct *t);
315 int force_sig_fault(int sig, int code, void __user *addr
316 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
317 int send_sig_fault(int sig, int code, void __user *addr
318 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
319 , struct task_struct *t);
321 int force_sig_mceerr(int code, void __user *, short);
322 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
324 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
325 int force_sig_pkuerr(void __user *addr, u32 pkey);
326 int send_sig_perf(void __user *addr, u32 type, u64 sig_data);
328 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
329 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
330 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
331 struct task_struct *t);
332 int force_sig_seccomp(int syscall, int reason, bool force_coredump);
334 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
335 extern void force_sigsegv(int sig);
336 extern int force_sig_info(struct kernel_siginfo *);
337 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
338 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
339 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
340 const struct cred *);
341 extern int kill_pgrp(struct pid *pid, int sig, int priv);
342 extern int kill_pid(struct pid *pid, int sig, int priv);
343 extern __must_check bool do_notify_parent(struct task_struct *, int);
344 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
345 extern void force_sig(int);
346 extern void force_fatal_sig(int);
347 extern void force_exit_sig(int);
348 extern int send_sig(int, struct task_struct *, int);
349 extern int zap_other_threads(struct task_struct *p);
350 extern struct sigqueue *sigqueue_alloc(void);
351 extern void sigqueue_free(struct sigqueue *);
352 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
353 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
355 static inline void clear_notify_signal(void)
357 clear_thread_flag(TIF_NOTIFY_SIGNAL);
358 smp_mb__after_atomic();
362 * Returns 'true' if kick_process() is needed to force a transition from
363 * user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work.
365 static inline bool __set_notify_signal(struct task_struct *task)
367 return !test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) &&
368 !wake_up_state(task, TASK_INTERRUPTIBLE);
372 * Called to break out of interruptible wait loops, and enter the
373 * exit_to_user_mode_loop().
375 static inline void set_notify_signal(struct task_struct *task)
377 if (__set_notify_signal(task))
381 static inline int restart_syscall(void)
383 set_tsk_thread_flag(current, TIF_SIGPENDING);
384 return -ERESTARTNOINTR;
387 static inline int task_sigpending(struct task_struct *p)
389 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
392 static inline int signal_pending(struct task_struct *p)
395 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
396 * behavior in terms of ensuring that we break out of wait loops
397 * so that notify signal callbacks can be processed.
399 if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
401 return task_sigpending(p);
404 static inline int __fatal_signal_pending(struct task_struct *p)
406 return unlikely(sigismember(&p->pending.signal, SIGKILL));
409 static inline int fatal_signal_pending(struct task_struct *p)
411 return task_sigpending(p) && __fatal_signal_pending(p);
414 static inline int signal_pending_state(unsigned int state, struct task_struct *p)
416 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
418 if (!signal_pending(p))
421 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
425 * This should only be used in fault handlers to decide whether we
426 * should stop the current fault routine to handle the signals
427 * instead, especially with the case where we've got interrupted with
430 static inline bool fault_signal_pending(vm_fault_t fault_flags,
431 struct pt_regs *regs)
433 return unlikely((fault_flags & VM_FAULT_RETRY) &&
434 (fatal_signal_pending(current) ||
435 (user_mode(regs) && signal_pending(current))));
439 * Reevaluate whether the task has signals pending delivery.
440 * Wake the task if so.
441 * This is required every time the blocked sigset_t changes.
442 * callers must hold sighand->siglock.
444 extern void recalc_sigpending_and_wake(struct task_struct *t);
445 extern void recalc_sigpending(void);
446 extern void calculate_sigpending(void);
448 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
450 static inline void signal_wake_up(struct task_struct *t, bool fatal)
452 unsigned int state = 0;
453 if (fatal && !(t->jobctl & JOBCTL_PTRACE_FROZEN)) {
454 t->jobctl &= ~(JOBCTL_STOPPED | JOBCTL_TRACED);
455 state = TASK_WAKEKILL | __TASK_TRACED;
457 signal_wake_up_state(t, state);
459 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
461 unsigned int state = 0;
463 t->jobctl &= ~JOBCTL_TRACED;
464 state = __TASK_TRACED;
466 signal_wake_up_state(t, state);
469 void task_join_group_stop(struct task_struct *task);
471 #ifdef TIF_RESTORE_SIGMASK
473 * Legacy restore_sigmask accessors. These are inefficient on
474 * SMP architectures because they require atomic operations.
478 * set_restore_sigmask() - make sure saved_sigmask processing gets done
480 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
481 * will run before returning to user mode, to process the flag. For
482 * all callers, TIF_SIGPENDING is already set or it's no harm to set
483 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
484 * arch code will notice on return to user mode, in case those bits
485 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
486 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
488 static inline void set_restore_sigmask(void)
490 set_thread_flag(TIF_RESTORE_SIGMASK);
493 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
495 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
498 static inline void clear_restore_sigmask(void)
500 clear_thread_flag(TIF_RESTORE_SIGMASK);
502 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
504 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
506 static inline bool test_restore_sigmask(void)
508 return test_thread_flag(TIF_RESTORE_SIGMASK);
510 static inline bool test_and_clear_restore_sigmask(void)
512 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
515 #else /* TIF_RESTORE_SIGMASK */
517 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
518 static inline void set_restore_sigmask(void)
520 current->restore_sigmask = true;
522 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
524 task->restore_sigmask = false;
526 static inline void clear_restore_sigmask(void)
528 current->restore_sigmask = false;
530 static inline bool test_restore_sigmask(void)
532 return current->restore_sigmask;
534 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
536 return task->restore_sigmask;
538 static inline bool test_and_clear_restore_sigmask(void)
540 if (!current->restore_sigmask)
542 current->restore_sigmask = false;
547 static inline void restore_saved_sigmask(void)
549 if (test_and_clear_restore_sigmask())
550 __set_current_blocked(¤t->saved_sigmask);
553 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
555 static inline void restore_saved_sigmask_unless(bool interrupted)
558 WARN_ON(!signal_pending(current));
560 restore_saved_sigmask();
563 static inline sigset_t *sigmask_to_save(void)
565 sigset_t *res = ¤t->blocked;
566 if (unlikely(test_restore_sigmask()))
567 res = ¤t->saved_sigmask;
571 static inline int kill_cad_pid(int sig, int priv)
573 return kill_pid(cad_pid, sig, priv);
576 /* These can be the second arg to send_sig_info/send_group_sig_info. */
577 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
578 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1)
580 static inline int __on_sig_stack(unsigned long sp)
582 #ifdef CONFIG_STACK_GROWSUP
583 return sp >= current->sas_ss_sp &&
584 sp - current->sas_ss_sp < current->sas_ss_size;
586 return sp > current->sas_ss_sp &&
587 sp - current->sas_ss_sp <= current->sas_ss_size;
592 * True if we are on the alternate signal stack.
594 static inline int on_sig_stack(unsigned long sp)
597 * If the signal stack is SS_AUTODISARM then, by construction, we
598 * can't be on the signal stack unless user code deliberately set
599 * SS_AUTODISARM when we were already on it.
601 * This improves reliability: if user state gets corrupted such that
602 * the stack pointer points very close to the end of the signal stack,
603 * then this check will enable the signal to be handled anyway.
605 if (current->sas_ss_flags & SS_AUTODISARM)
608 return __on_sig_stack(sp);
611 static inline int sas_ss_flags(unsigned long sp)
613 if (!current->sas_ss_size)
616 return on_sig_stack(sp) ? SS_ONSTACK : 0;
619 static inline void sas_ss_reset(struct task_struct *p)
623 p->sas_ss_flags = SS_DISABLE;
626 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
628 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
629 #ifdef CONFIG_STACK_GROWSUP
630 return current->sas_ss_sp;
632 return current->sas_ss_sp + current->sas_ss_size;
637 extern void __cleanup_sighand(struct sighand_struct *);
638 extern void flush_itimer_signals(void);
640 #define tasklist_empty() \
641 list_empty(&init_task.tasks)
643 #define next_task(p) \
644 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
646 #define for_each_process(p) \
647 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
649 extern bool current_is_single_threaded(void);
652 * Careful: do_each_thread/while_each_thread is a double loop so
653 * 'break' will not work as expected - use goto instead.
655 #define do_each_thread(g, t) \
656 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
658 #define while_each_thread(g, t) \
659 while ((t = next_thread(t)) != g)
661 #define __for_each_thread(signal, t) \
662 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
664 #define for_each_thread(p, t) \
665 __for_each_thread((p)->signal, t)
667 /* Careful: this is a double loop, 'break' won't work as expected. */
668 #define for_each_process_thread(p, t) \
669 for_each_process(p) for_each_thread(p, t)
671 typedef int (*proc_visitor)(struct task_struct *p, void *data);
672 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
675 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
678 if (type == PIDTYPE_PID)
679 pid = task_pid(task);
681 pid = task->signal->pids[type];
685 static inline struct pid *task_tgid(struct task_struct *task)
687 return task->signal->pids[PIDTYPE_TGID];
691 * Without tasklist or RCU lock it is not safe to dereference
692 * the result of task_pgrp/task_session even if task == current,
693 * we can race with another thread doing sys_setsid/sys_setpgid.
695 static inline struct pid *task_pgrp(struct task_struct *task)
697 return task->signal->pids[PIDTYPE_PGID];
700 static inline struct pid *task_session(struct task_struct *task)
702 return task->signal->pids[PIDTYPE_SID];
705 static inline int get_nr_threads(struct task_struct *task)
707 return task->signal->nr_threads;
710 static inline bool thread_group_leader(struct task_struct *p)
712 return p->exit_signal >= 0;
716 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
718 return p1->signal == p2->signal;
721 static inline struct task_struct *next_thread(const struct task_struct *p)
723 return list_entry_rcu(p->thread_group.next,
724 struct task_struct, thread_group);
727 static inline int thread_group_empty(struct task_struct *p)
729 return list_empty(&p->thread_group);
732 #define delay_group_leader(p) \
733 (thread_group_leader(p) && !thread_group_empty(p))
735 extern bool thread_group_exited(struct pid *pid);
737 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
738 unsigned long *flags);
740 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
741 unsigned long *flags)
743 struct sighand_struct *ret;
745 ret = __lock_task_sighand(task, flags);
746 (void)__cond_lock(&task->sighand->siglock, ret);
750 static inline void unlock_task_sighand(struct task_struct *task,
751 unsigned long *flags)
753 spin_unlock_irqrestore(&task->sighand->siglock, *flags);
756 #ifdef CONFIG_LOCKDEP
757 extern void lockdep_assert_task_sighand_held(struct task_struct *task);
759 static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
762 static inline unsigned long task_rlimit(const struct task_struct *task,
765 return READ_ONCE(task->signal->rlim[limit].rlim_cur);
768 static inline unsigned long task_rlimit_max(const struct task_struct *task,
771 return READ_ONCE(task->signal->rlim[limit].rlim_max);
774 static inline unsigned long rlimit(unsigned int limit)
776 return task_rlimit(current, limit);
779 static inline unsigned long rlimit_max(unsigned int limit)
781 return task_rlimit_max(current, limit);
784 #endif /* _LINUX_SCHED_SIGNAL_H */