1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/pwm/pwm-tegra.c
5 * Tegra pulse-width-modulation controller driver
7 * Copyright (c) 2010-2020, NVIDIA Corporation.
10 * Overview of Tegra Pulse Width Modulator Register:
11 * 1. 13-bit: Frequency division (SCALE)
12 * 2. 8-bit : Pulse division (DUTY)
13 * 3. 1-bit : Enable bit
15 * The PWM clock frequency is divided by 256 before subdividing it based
16 * on the programmable frequency division value to generate the required
17 * frequency for PWM output. The maximum output frequency that can be
18 * achieved is (max rate of source clock) / 256.
19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20 * 408 MHz/256 = 1.6 MHz.
21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24 * To achieve 100% duty cycle, program Bit [24] of this register to
25 * 1’b1. In which case the other bits [23:16] are set to don't care.
28 * - When PWM is disabled, the output is driven to inactive.
29 * - It does not allow the current PWM period to complete and
32 * - If the register is reconfigured while PWM is running,
33 * it does not complete the currently running period.
35 * - If the user input duty is beyond acceptible limits,
36 * -EINVAL is returned.
39 #include <linux/clk.h>
40 #include <linux/err.h>
42 #include <linux/module.h>
44 #include <linux/of_device.h>
45 #include <linux/pm_opp.h>
46 #include <linux/pwm.h>
47 #include <linux/platform_device.h>
48 #include <linux/pinctrl/consumer.h>
49 #include <linux/pm_runtime.h>
50 #include <linux/slab.h>
51 #include <linux/reset.h>
53 #include <soc/tegra/common.h>
55 #define PWM_ENABLE (1 << 31)
56 #define PWM_DUTY_WIDTH 8
57 #define PWM_DUTY_SHIFT 16
58 #define PWM_SCALE_WIDTH 13
59 #define PWM_SCALE_SHIFT 0
61 struct tegra_pwm_soc {
62 unsigned int num_channels;
64 /* Maximum IP frequency for given SoCs */
65 unsigned long max_frequency;
68 struct tegra_pwm_chip {
73 struct reset_control*rst;
75 unsigned long clk_rate;
76 unsigned long min_period_ns;
80 const struct tegra_pwm_soc *soc;
83 static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
85 return container_of(chip, struct tegra_pwm_chip, chip);
88 static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
90 return readl(chip->regs + (num << 4));
93 static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
96 writel(val, chip->regs + (num << 4));
99 static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
100 int duty_ns, int period_ns)
102 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
103 unsigned long long c = duty_ns, hz;
104 unsigned long rate, required_clk_rate;
109 * Convert from duty_ns / period_ns to a fixed number of duty ticks
110 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
111 * nearest integer during division.
113 c *= (1 << PWM_DUTY_WIDTH);
114 c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
116 val = (u32)c << PWM_DUTY_SHIFT;
119 * min period = max clock limit >> PWM_DUTY_WIDTH
121 if (period_ns < pc->min_period_ns)
125 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
126 * cycles at the PWM clock rate will take period_ns nanoseconds.
128 * num_channels: If single instance of PWM controller has multiple
129 * channels (e.g. Tegra210 or older) then it is not possible to
130 * configure separate clock rates to each of the channels, in such
131 * case the value stored during probe will be referred.
133 * If every PWM controller instance has one channel respectively, i.e.
134 * nums_channels == 1 then only the clock rate can be modified
135 * dynamically (e.g. Tegra186 or Tegra194).
137 if (pc->soc->num_channels == 1) {
139 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
140 * with the maximum possible rate that the controller can
141 * provide. Any further lower value can be derived by setting
144 * required_clk_rate is a reference rate for source clock and
145 * it is derived based on user requested period. By setting the
146 * source clock rate as required_clk_rate, PWM controller will
147 * be able to configure the requested period.
150 (NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
152 err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
156 /* Store the new rate for further references */
157 pc->clk_rate = clk_get_rate(pc->clk);
160 rate = pc->clk_rate >> PWM_DUTY_WIDTH;
162 /* Consider precision in PWM_SCALE_WIDTH rate calculation */
163 hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
164 rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
167 * Since the actual PWM divider is the register's frequency divider
168 * field plus 1, we need to decrement to get the correct value to
169 * write to the register.
175 * Make sure that the rate will fit in the register's frequency
178 if (rate >> PWM_SCALE_WIDTH)
181 val |= rate << PWM_SCALE_SHIFT;
184 * If the PWM channel is disabled, make sure to turn on the clock
185 * before writing the register. Otherwise, keep it enabled.
187 if (!pwm_is_enabled(pwm)) {
188 err = pm_runtime_resume_and_get(pc->dev);
194 pwm_writel(pc, pwm->hwpwm, val);
197 * If the PWM is not enabled, turn the clock off again to save power.
199 if (!pwm_is_enabled(pwm))
200 pm_runtime_put(pc->dev);
205 static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
207 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
211 rc = pm_runtime_resume_and_get(pc->dev);
215 val = pwm_readl(pc, pwm->hwpwm);
217 pwm_writel(pc, pwm->hwpwm, val);
222 static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
224 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
227 val = pwm_readl(pc, pwm->hwpwm);
229 pwm_writel(pc, pwm->hwpwm, val);
231 pm_runtime_put_sync(pc->dev);
234 static const struct pwm_ops tegra_pwm_ops = {
235 .config = tegra_pwm_config,
236 .enable = tegra_pwm_enable,
237 .disable = tegra_pwm_disable,
238 .owner = THIS_MODULE,
241 static int tegra_pwm_probe(struct platform_device *pdev)
243 struct tegra_pwm_chip *pwm;
246 pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
250 pwm->soc = of_device_get_match_data(&pdev->dev);
251 pwm->dev = &pdev->dev;
253 pwm->regs = devm_platform_ioremap_resource(pdev, 0);
254 if (IS_ERR(pwm->regs))
255 return PTR_ERR(pwm->regs);
257 platform_set_drvdata(pdev, pwm);
259 pwm->clk = devm_clk_get(&pdev->dev, NULL);
260 if (IS_ERR(pwm->clk))
261 return PTR_ERR(pwm->clk);
263 ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
267 pm_runtime_enable(&pdev->dev);
268 ret = pm_runtime_resume_and_get(&pdev->dev);
272 /* Set maximum frequency of the IP */
273 ret = dev_pm_opp_set_rate(pwm->dev, pwm->soc->max_frequency);
275 dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
280 * The requested and configured frequency may differ due to
281 * clock register resolutions. Get the configured frequency
282 * so that PWM period can be calculated more accurately.
284 pwm->clk_rate = clk_get_rate(pwm->clk);
286 /* Set minimum limit of PWM period for the IP */
288 (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
290 pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
291 if (IS_ERR(pwm->rst)) {
292 ret = PTR_ERR(pwm->rst);
293 dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
297 reset_control_deassert(pwm->rst);
299 pwm->chip.dev = &pdev->dev;
300 pwm->chip.ops = &tegra_pwm_ops;
301 pwm->chip.npwm = pwm->soc->num_channels;
303 ret = pwmchip_add(&pwm->chip);
305 dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
306 reset_control_assert(pwm->rst);
310 pm_runtime_put(&pdev->dev);
314 pm_runtime_put_sync_suspend(&pdev->dev);
315 pm_runtime_force_suspend(&pdev->dev);
319 static int tegra_pwm_remove(struct platform_device *pdev)
321 struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
323 pwmchip_remove(&pc->chip);
325 reset_control_assert(pc->rst);
327 pm_runtime_force_suspend(&pdev->dev);
332 static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
334 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
337 clk_disable_unprepare(pc->clk);
339 err = pinctrl_pm_select_sleep_state(dev);
341 clk_prepare_enable(pc->clk);
348 static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
350 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
353 err = pinctrl_pm_select_default_state(dev);
357 err = clk_prepare_enable(pc->clk);
359 pinctrl_pm_select_sleep_state(dev);
366 static const struct tegra_pwm_soc tegra20_pwm_soc = {
368 .max_frequency = 48000000UL,
371 static const struct tegra_pwm_soc tegra186_pwm_soc = {
373 .max_frequency = 102000000UL,
376 static const struct tegra_pwm_soc tegra194_pwm_soc = {
378 .max_frequency = 408000000UL,
381 static const struct of_device_id tegra_pwm_of_match[] = {
382 { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
383 { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
384 { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
387 MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
389 static const struct dev_pm_ops tegra_pwm_pm_ops = {
390 SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
392 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
393 pm_runtime_force_resume)
396 static struct platform_driver tegra_pwm_driver = {
399 .of_match_table = tegra_pwm_of_match,
400 .pm = &tegra_pwm_pm_ops,
402 .probe = tegra_pwm_probe,
403 .remove = tegra_pwm_remove,
406 module_platform_driver(tegra_pwm_driver);
408 MODULE_LICENSE("GPL");
410 MODULE_DESCRIPTION("Tegra PWM controller driver");
411 MODULE_ALIAS("platform:tegra-pwm");