1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
50 struct ib_usrq_object;
54 struct hw_stats_device_data;
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
128 __printf(2, 3) __cold
130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
136 __be64 subnet_prefix;
141 extern union ib_gid zgid;
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
150 #define ROCE_V2_UDP_DPORT 4791
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
155 enum ib_gid_type gid_type;
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
165 enum rdma_transport_type {
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
173 enum rdma_protocol_type {
177 RDMA_PROTOCOL_USNIC_UDP
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
183 enum rdma_network_type {
185 RDMA_NETWORK_ROCE_V1,
190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
198 return IB_GID_TYPE_IB;
201 static inline enum rdma_network_type
202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
213 return RDMA_NETWORK_IPV6;
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
279 enum ib_kernel_cap_flags {
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
301 /* iopib will use the device ops:
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
319 enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
324 enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
334 uint64_t general_caps;
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
353 enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
363 /* From enum ib_tm_cap_flags */
365 /* Max number of outstanding list operations */
367 /* Max number of SGE in tag matching entry */
371 struct ib_cq_init_attr {
377 enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
386 struct ib_dm_mr_attr {
392 struct ib_dm_alloc_attr {
398 struct ib_device_attr {
400 __be64 sys_image_guid;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
439 u8 local_ca_ack_delay;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
451 /* Max entries for sgl for optimized performance per READ */
468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
484 else if (mtu >= 2048)
486 else if (mtu >= 1024)
494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
522 IB_PORT_ACTIVE_DEFER = 5
525 enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
543 static inline int ib_width_enum_to_int(enum ib_port_width width)
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
568 IB_STAT_FLAG_OPTIONAL = 1 << 0,
572 * struct rdma_stat_desc
573 * @name - The name of the counter
574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575 * @priv - Driver private information; Core code should not use
577 struct rdma_stat_desc {
584 * struct rdma_hw_stats
585 * @lock - Mutex to protect parallel write access to lifespan and values
586 * of counters, which are 64bits and not guaranteed to be written
587 * atomicaly on 32bits systems.
588 * @timestamp - Used by the core code to track when the last update was
589 * @lifespan - Used by the core code to determine how old the counters
590 * should be before being updated again. Stored in jiffies, defaults
591 * to 10 milliseconds, drivers can override the default be specifying
592 * their own value during their allocation routine.
593 * @descs - Array of pointers to static descriptors used for the counters
595 * @is_disabled - A bitmap to indicate each counter is currently disabled
597 * @num_counters - How many hardware counters there are. If name is
598 * shorter than this number, a kernel oops will result. Driver authors
599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600 * in their code to prevent this.
601 * @value - Array of u64 counters that are accessed by the sysfs code and
602 * filled in by the drivers get_stats routine
604 struct rdma_hw_stats {
605 struct mutex lock; /* Protect lifespan and values[] */
606 unsigned long timestamp;
607 unsigned long lifespan;
608 const struct rdma_stat_desc *descs;
609 unsigned long *is_disabled;
611 u64 value[] __counted_by(num_counters);
614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617 const struct rdma_stat_desc *descs, int num_counters,
618 unsigned long lifespan);
620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
622 /* Define bits for the various functionality this port needs to be supported by
625 /* Management 0x00000FFF */
626 #define RDMA_CORE_CAP_IB_MAD 0x00000001
627 #define RDMA_CORE_CAP_IB_SMI 0x00000002
628 #define RDMA_CORE_CAP_IB_CM 0x00000004
629 #define RDMA_CORE_CAP_IW_CM 0x00000008
630 #define RDMA_CORE_CAP_IB_SA 0x00000010
631 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
633 /* Address format 0x000FF000 */
634 #define RDMA_CORE_CAP_AF_IB 0x00001000
635 #define RDMA_CORE_CAP_ETH_AH 0x00002000
636 #define RDMA_CORE_CAP_OPA_AH 0x00004000
637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
639 /* Protocol 0xFFF00000 */
640 #define RDMA_CORE_CAP_PROT_IB 0x00100000
641 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
642 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
645 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 | RDMA_CORE_CAP_PROT_ROCE \
649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
651 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
652 | RDMA_CORE_CAP_IB_MAD \
653 | RDMA_CORE_CAP_IB_SMI \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_IB_SA \
656 | RDMA_CORE_CAP_AF_IB)
657 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
658 | RDMA_CORE_CAP_IB_MAD \
659 | RDMA_CORE_CAP_IB_CM \
660 | RDMA_CORE_CAP_AF_IB \
661 | RDMA_CORE_CAP_ETH_AH)
662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 | RDMA_CORE_CAP_IB_MAD \
665 | RDMA_CORE_CAP_IB_CM \
666 | RDMA_CORE_CAP_AF_IB \
667 | RDMA_CORE_CAP_ETH_AH)
668 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
669 | RDMA_CORE_CAP_IW_CM)
670 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
671 | RDMA_CORE_CAP_OPA_MAD)
673 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
675 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
677 struct ib_port_attr {
679 enum ib_port_state state;
681 enum ib_mtu active_mtu;
684 unsigned int ip_gids:1;
685 /* This is the value from PortInfo CapabilityMask, defined by IBA */
704 enum ib_device_modify_flags {
705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
709 #define IB_DEVICE_NODE_DESC_MAX 64
711 struct ib_device_modify {
713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
716 enum ib_port_modify_flags {
717 IB_PORT_SHUTDOWN = 1,
718 IB_PORT_INIT_TYPE = (1<<2),
719 IB_PORT_RESET_QKEY_CNTR = (1<<3),
720 IB_PORT_OPA_MASK_CHG = (1<<4)
723 struct ib_port_modify {
724 u32 set_port_cap_mask;
725 u32 clr_port_cap_mask;
733 IB_EVENT_QP_ACCESS_ERR,
737 IB_EVENT_PATH_MIG_ERR,
738 IB_EVENT_DEVICE_FATAL,
739 IB_EVENT_PORT_ACTIVE,
742 IB_EVENT_PKEY_CHANGE,
745 IB_EVENT_SRQ_LIMIT_REACHED,
746 IB_EVENT_QP_LAST_WQE_REACHED,
747 IB_EVENT_CLIENT_REREGISTER,
752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
755 struct ib_device *device;
763 enum ib_event_type event;
766 struct ib_event_handler {
767 struct ib_device *device;
768 void (*handler)(struct ib_event_handler *, struct ib_event *);
769 struct list_head list;
772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
774 (_ptr)->device = _device; \
775 (_ptr)->handler = _handler; \
776 INIT_LIST_HEAD(&(_ptr)->list); \
779 struct ib_global_route {
780 const struct ib_gid_attr *sgid_attr;
789 __be32 version_tclass_flow;
797 union rdma_network_hdr {
800 /* The IB spec states that if it's IPv4, the header
801 * is located in the last 20 bytes of the header.
804 struct iphdr roce4grh;
808 #define IB_QPN_MASK 0xFFFFFF
811 IB_MULTICAST_QPN = 0xffffff
814 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
815 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
822 IB_RATE_PORT_CURRENT = 0,
823 IB_RATE_2_5_GBPS = 2,
831 IB_RATE_120_GBPS = 10,
832 IB_RATE_14_GBPS = 11,
833 IB_RATE_56_GBPS = 12,
834 IB_RATE_112_GBPS = 13,
835 IB_RATE_168_GBPS = 14,
836 IB_RATE_25_GBPS = 15,
837 IB_RATE_100_GBPS = 16,
838 IB_RATE_200_GBPS = 17,
839 IB_RATE_300_GBPS = 18,
840 IB_RATE_28_GBPS = 19,
841 IB_RATE_50_GBPS = 20,
842 IB_RATE_400_GBPS = 21,
843 IB_RATE_600_GBPS = 22,
844 IB_RATE_800_GBPS = 23,
848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851 * @rate: rate to convert.
853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858 * @rate: rate to convert.
860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
864 * enum ib_mr_type - memory region type
865 * @IB_MR_TYPE_MEM_REG: memory region that is used for
866 * normal registration
867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
868 * register any arbitrary sg lists (without
869 * the normal mr constraints - see
871 * @IB_MR_TYPE_DM: memory region that is used for device
872 * memory registration
873 * @IB_MR_TYPE_USER: memory region that is used for the user-space
875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
876 * without address translations (VA=PA)
877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
878 * data integrity operations
886 IB_MR_TYPE_INTEGRITY,
889 enum ib_mr_status_check {
890 IB_MR_CHECK_SIG_STATUS = 1,
894 * struct ib_mr_status - Memory region status container
896 * @fail_status: Bitmask of MR checks status. For each
897 * failed check a corresponding status bit is set.
898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
901 struct ib_mr_status {
903 struct ib_sig_err sig_err;
907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
909 * @mult: multiple to convert.
911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
913 struct rdma_ah_init_attr {
914 struct rdma_ah_attr *ah_attr;
916 struct net_device *xmit_slave;
919 enum rdma_ah_attr_type {
920 RDMA_AH_ATTR_TYPE_UNDEFINED,
921 RDMA_AH_ATTR_TYPE_IB,
922 RDMA_AH_ATTR_TYPE_ROCE,
923 RDMA_AH_ATTR_TYPE_OPA,
931 struct roce_ah_attr {
941 struct rdma_ah_attr {
942 struct ib_global_route grh;
947 enum rdma_ah_attr_type type;
949 struct ib_ah_attr ib;
950 struct roce_ah_attr roce;
951 struct opa_ah_attr opa;
959 IB_WC_LOC_EEC_OP_ERR,
964 IB_WC_LOC_ACCESS_ERR,
965 IB_WC_REM_INV_REQ_ERR,
966 IB_WC_REM_ACCESS_ERR,
969 IB_WC_RNR_RETRY_EXC_ERR,
970 IB_WC_LOC_RDD_VIOL_ERR,
971 IB_WC_REM_INV_RD_REQ_ERR,
974 IB_WC_INV_EEC_STATE_ERR,
976 IB_WC_RESP_TIMEOUT_ERR,
980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
983 IB_WC_SEND = IB_UVERBS_WC_SEND,
984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990 IB_WC_LSO = IB_UVERBS_WC_TSO,
991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
993 IB_WC_MASKED_COMP_SWAP,
994 IB_WC_MASKED_FETCH_ADD,
995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
997 * Set value of IB_WC_RECV so consumers can test if a completion is a
998 * receive by testing (opcode & IB_WC_RECV).
1000 IB_WC_RECV = 1 << 7,
1001 IB_WC_RECV_RDMA_WITH_IMM
1006 IB_WC_WITH_IMM = (1<<1),
1007 IB_WC_WITH_INVALIDATE = (1<<2),
1008 IB_WC_IP_CSUM_OK = (1<<3),
1009 IB_WC_WITH_SMAC = (1<<4),
1010 IB_WC_WITH_VLAN = (1<<5),
1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1017 struct ib_cqe *wr_cqe;
1019 enum ib_wc_status status;
1020 enum ib_wc_opcode opcode;
1026 u32 invalidate_rkey;
1034 u32 port_num; /* valid only for DR SMPs on switches */
1037 u8 network_hdr_type;
1040 enum ib_cq_notify_flags {
1041 IB_CQ_SOLICITED = 1 << 0,
1042 IB_CQ_NEXT_COMP = 1 << 1,
1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1055 return srq_type == IB_SRQT_XRC ||
1056 srq_type == IB_SRQT_TM;
1059 enum ib_srq_attr_mask {
1060 IB_SRQ_MAX_WR = 1 << 0,
1061 IB_SRQ_LIMIT = 1 << 1,
1064 struct ib_srq_attr {
1070 struct ib_srq_init_attr {
1071 void (*event_handler)(struct ib_event *, void *);
1073 struct ib_srq_attr attr;
1074 enum ib_srq_type srq_type;
1080 struct ib_xrcd *xrcd;
1095 u32 max_inline_data;
1098 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099 * ib_create_qp() will calculate the right amount of needed WRs
1100 * and MRs based on this.
1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113 * here (and in that order) since the MAD layer uses them as
1114 * indices into a 2-entry table.
1119 IB_QPT_RC = IB_UVERBS_QPT_RC,
1120 IB_QPT_UC = IB_UVERBS_QPT_UC,
1121 IB_QPT_UD = IB_UVERBS_QPT_UD,
1123 IB_QPT_RAW_ETHERTYPE,
1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129 /* Reserve a range for qp types internal to the low level driver.
1130 * These qp types will not be visible at the IB core layer, so the
1131 * IB_QPT_MAX usages should not be affected in the core layer
1133 IB_QPT_RESERVED1 = 0x1000,
1145 enum ib_qp_create_flags {
1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1152 IB_QP_CREATE_NETIF_QP = 1 << 5,
1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1154 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1155 IB_QP_CREATE_SCATTER_FCS =
1156 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157 IB_QP_CREATE_CVLAN_STRIPPING =
1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1160 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162 /* reserve bits 26-31 for low level drivers' internal use */
1163 IB_QP_CREATE_RESERVED_START = 1 << 26,
1164 IB_QP_CREATE_RESERVED_END = 1 << 31,
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1172 struct ib_qp_init_attr {
1173 /* This callback occurs in workqueue context */
1174 void (*event_handler)(struct ib_event *, void *);
1177 struct ib_cq *send_cq;
1178 struct ib_cq *recv_cq;
1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1181 struct ib_qp_cap cap;
1182 enum ib_sig_type sq_sig_type;
1183 enum ib_qp_type qp_type;
1187 * Only needed for special QP types, or when using the RW API.
1190 struct ib_rwq_ind_table *rwq_ind_tbl;
1194 struct ib_qp_open_attr {
1195 void (*event_handler)(struct ib_event *, void *);
1198 enum ib_qp_type qp_type;
1201 enum ib_rnr_timeout {
1202 IB_RNR_TIMER_655_36 = 0,
1203 IB_RNR_TIMER_000_01 = 1,
1204 IB_RNR_TIMER_000_02 = 2,
1205 IB_RNR_TIMER_000_03 = 3,
1206 IB_RNR_TIMER_000_04 = 4,
1207 IB_RNR_TIMER_000_06 = 5,
1208 IB_RNR_TIMER_000_08 = 6,
1209 IB_RNR_TIMER_000_12 = 7,
1210 IB_RNR_TIMER_000_16 = 8,
1211 IB_RNR_TIMER_000_24 = 9,
1212 IB_RNR_TIMER_000_32 = 10,
1213 IB_RNR_TIMER_000_48 = 11,
1214 IB_RNR_TIMER_000_64 = 12,
1215 IB_RNR_TIMER_000_96 = 13,
1216 IB_RNR_TIMER_001_28 = 14,
1217 IB_RNR_TIMER_001_92 = 15,
1218 IB_RNR_TIMER_002_56 = 16,
1219 IB_RNR_TIMER_003_84 = 17,
1220 IB_RNR_TIMER_005_12 = 18,
1221 IB_RNR_TIMER_007_68 = 19,
1222 IB_RNR_TIMER_010_24 = 20,
1223 IB_RNR_TIMER_015_36 = 21,
1224 IB_RNR_TIMER_020_48 = 22,
1225 IB_RNR_TIMER_030_72 = 23,
1226 IB_RNR_TIMER_040_96 = 24,
1227 IB_RNR_TIMER_061_44 = 25,
1228 IB_RNR_TIMER_081_92 = 26,
1229 IB_RNR_TIMER_122_88 = 27,
1230 IB_RNR_TIMER_163_84 = 28,
1231 IB_RNR_TIMER_245_76 = 29,
1232 IB_RNR_TIMER_327_68 = 30,
1233 IB_RNR_TIMER_491_52 = 31
1236 enum ib_qp_attr_mask {
1238 IB_QP_CUR_STATE = (1<<1),
1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1240 IB_QP_ACCESS_FLAGS = (1<<3),
1241 IB_QP_PKEY_INDEX = (1<<4),
1242 IB_QP_PORT = (1<<5),
1243 IB_QP_QKEY = (1<<6),
1245 IB_QP_PATH_MTU = (1<<8),
1246 IB_QP_TIMEOUT = (1<<9),
1247 IB_QP_RETRY_CNT = (1<<10),
1248 IB_QP_RNR_RETRY = (1<<11),
1249 IB_QP_RQ_PSN = (1<<12),
1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1251 IB_QP_ALT_PATH = (1<<14),
1252 IB_QP_MIN_RNR_TIMER = (1<<15),
1253 IB_QP_SQ_PSN = (1<<16),
1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1255 IB_QP_PATH_MIG_STATE = (1<<18),
1256 IB_QP_CAP = (1<<19),
1257 IB_QP_DEST_QPN = (1<<20),
1258 IB_QP_RESERVED1 = (1<<21),
1259 IB_QP_RESERVED2 = (1<<22),
1260 IB_QP_RESERVED3 = (1<<23),
1261 IB_QP_RESERVED4 = (1<<24),
1262 IB_QP_RATE_LIMIT = (1<<25),
1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1289 enum ib_qp_state qp_state;
1290 enum ib_qp_state cur_qp_state;
1291 enum ib_mtu path_mtu;
1292 enum ib_mig_state path_mig_state;
1297 int qp_access_flags;
1298 struct ib_qp_cap cap;
1299 struct rdma_ah_attr ah_attr;
1300 struct rdma_ah_attr alt_ah_attr;
1303 u8 en_sqd_async_notify;
1306 u8 max_dest_rd_atomic;
1315 struct net_device *xmit_slave;
1319 /* These are shared with userspace */
1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322 IB_WR_SEND = IB_UVERBS_WR_SEND,
1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328 IB_WR_LSO = IB_UVERBS_WR_TSO,
1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1339 /* These are kernel only and can not be issued by userspace */
1340 IB_WR_REG_MR = 0x20,
1341 IB_WR_REG_MR_INTEGRITY,
1343 /* reserve values for low level drivers' internal use.
1344 * These values will not be used at all in the ib core layer.
1346 IB_WR_RESERVED1 = 0xf0,
1358 enum ib_send_flags {
1360 IB_SEND_SIGNALED = (1<<1),
1361 IB_SEND_SOLICITED = (1<<2),
1362 IB_SEND_INLINE = (1<<3),
1363 IB_SEND_IP_CSUM = (1<<4),
1365 /* reserve bits 26-31 for low level drivers' internal use */
1366 IB_SEND_RESERVED_START = (1 << 26),
1367 IB_SEND_RESERVED_END = (1 << 31),
1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1381 struct ib_send_wr *next;
1384 struct ib_cqe *wr_cqe;
1386 struct ib_sge *sg_list;
1388 enum ib_wr_opcode opcode;
1392 u32 invalidate_rkey;
1397 struct ib_send_wr wr;
1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1404 return container_of(wr, struct ib_rdma_wr, wr);
1407 struct ib_atomic_wr {
1408 struct ib_send_wr wr;
1412 u64 compare_add_mask;
1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1419 return container_of(wr, struct ib_atomic_wr, wr);
1423 struct ib_send_wr wr;
1430 u16 pkey_index; /* valid for GSI only */
1431 u32 port_num; /* valid for DR SMPs on switch only */
1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1436 return container_of(wr, struct ib_ud_wr, wr);
1440 struct ib_send_wr wr;
1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1448 return container_of(wr, struct ib_reg_wr, wr);
1452 struct ib_recv_wr *next;
1455 struct ib_cqe *wr_cqe;
1457 struct ib_sge *sg_list;
1461 enum ib_access_flags {
1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475 IB_ACCESS_SUPPORTED =
1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1483 enum ib_mr_rereg_flags {
1484 IB_MR_REREG_TRANS = 1,
1485 IB_MR_REREG_PD = (1<<1),
1486 IB_MR_REREG_ACCESS = (1<<2),
1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1492 enum rdma_remove_reason {
1494 * Userspace requested uobject deletion or initial try
1495 * to remove uobject via cleanup. Call could fail
1497 RDMA_REMOVE_DESTROY,
1498 /* Context deletion. This call should delete the actual object itself */
1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1501 RDMA_REMOVE_DRIVER_REMOVE,
1502 /* uobj is being cleaned-up before being committed */
1504 /* The driver failed to destroy the uobject and is being disconnected */
1505 RDMA_REMOVE_DRIVER_FAILURE,
1508 struct ib_rdmacg_object {
1509 #ifdef CONFIG_CGROUP_RDMA
1510 struct rdma_cgroup *cg; /* owner rdma cgroup */
1514 struct ib_ucontext {
1515 struct ib_device *device;
1516 struct ib_uverbs_file *ufile;
1518 struct ib_rdmacg_object cg_obj;
1520 * Implementation details of the RDMA core, don't use in drivers:
1522 struct rdma_restrack_entry res;
1523 struct xarray mmap_xa;
1527 u64 user_handle; /* handle given to us by userspace */
1528 /* ufile & ucontext owning this object */
1529 struct ib_uverbs_file *ufile;
1530 /* FIXME, save memory: ufile->context == context */
1531 struct ib_ucontext *context; /* associated user context */
1532 void *object; /* containing object */
1533 struct list_head list; /* link to context's list */
1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1535 int id; /* index into kernel idr */
1537 atomic_t usecnt; /* protects exclusive access */
1538 struct rcu_head rcu; /* kfree_rcu() overhead */
1540 const struct uverbs_api_object *uapi_object;
1544 const void __user *inbuf;
1545 void __user *outbuf;
1553 struct ib_device *device;
1554 struct ib_uobject *uobject;
1555 atomic_t usecnt; /* count all resources */
1557 u32 unsafe_global_rkey;
1560 * Implementation details of the RDMA core, don't use in drivers:
1562 struct ib_mr *__internal_mr;
1563 struct rdma_restrack_entry res;
1567 struct ib_device *device;
1568 atomic_t usecnt; /* count all exposed resources */
1569 struct inode *inode;
1570 struct rw_semaphore tgt_qps_rwsem;
1571 struct xarray tgt_qps;
1575 struct ib_device *device;
1577 struct ib_uobject *uobject;
1578 const struct ib_gid_attr *sgid_attr;
1579 enum rdma_ah_attr_type type;
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1584 enum ib_poll_context {
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
1594 struct ib_device *device;
1595 struct ib_ucq_object *uobject;
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
1600 unsigned int cqe_used;
1601 atomic_t usecnt; /* count number of work queues */
1602 enum ib_poll_context poll_ctx;
1604 struct list_head pool_entry;
1606 struct irq_poll iop;
1607 struct work_struct work;
1609 struct workqueue_struct *comp_wq;
1612 /* updated only by trace points */
1616 unsigned int comp_vector;
1619 * Implementation details of the RDMA core, don't use in drivers:
1621 struct rdma_restrack_entry res;
1625 struct ib_device *device;
1627 struct ib_usrq_object *uobject;
1628 void (*event_handler)(struct ib_event *, void *);
1630 enum ib_srq_type srq_type;
1637 struct ib_xrcd *xrcd;
1644 * Implementation details of the RDMA core, don't use in drivers:
1646 struct rdma_restrack_entry res;
1649 enum ib_raw_packet_caps {
1651 * Strip cvlan from incoming packet and report it in the matching work
1652 * completion is supported.
1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1657 * Scatter FCS field of an incoming packet to host memory is supported.
1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660 /* Checksum offloads are supported (for both send and receive). */
1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1663 * When a packet is received for an RQ with no receive WQEs, the
1664 * packet processing is delayed.
1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1680 struct ib_device *device;
1681 struct ib_uwq_object *uobject;
1683 void (*event_handler)(struct ib_event *, void *);
1687 enum ib_wq_state state;
1688 enum ib_wq_type wq_type;
1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1700 struct ib_wq_init_attr {
1702 enum ib_wq_type wq_type;
1706 void (*event_handler)(struct ib_event *, void *);
1707 u32 create_flags; /* Use enum ib_wq_flags */
1710 enum ib_wq_attr_mask {
1711 IB_WQ_STATE = 1 << 0,
1712 IB_WQ_CUR_STATE = 1 << 1,
1713 IB_WQ_FLAGS = 1 << 2,
1717 enum ib_wq_state wq_state;
1718 enum ib_wq_state curr_wq_state;
1719 u32 flags; /* Use enum ib_wq_flags */
1720 u32 flags_mask; /* Use enum ib_wq_flags */
1723 struct ib_rwq_ind_table {
1724 struct ib_device *device;
1725 struct ib_uobject *uobject;
1728 u32 log_ind_tbl_size;
1729 struct ib_wq **ind_tbl;
1732 struct ib_rwq_ind_table_init_attr {
1733 u32 log_ind_tbl_size;
1734 /* Each entry is a pointer to Receive Work Queue */
1735 struct ib_wq **ind_tbl;
1738 enum port_pkey_state {
1739 IB_PORT_PKEY_NOT_VALID = 0,
1740 IB_PORT_PKEY_VALID = 1,
1741 IB_PORT_PKEY_LISTED = 2,
1744 struct ib_qp_security;
1746 struct ib_port_pkey {
1747 enum port_pkey_state state;
1750 struct list_head qp_list;
1751 struct list_head to_error_list;
1752 struct ib_qp_security *sec;
1755 struct ib_ports_pkeys {
1756 struct ib_port_pkey main;
1757 struct ib_port_pkey alt;
1760 struct ib_qp_security {
1762 struct ib_device *dev;
1763 /* Hold this mutex when changing port and pkey settings. */
1765 struct ib_ports_pkeys *ports_pkeys;
1766 /* A list of all open shared QP handles. Required to enforce security
1767 * properly for all users of a shared QP.
1769 struct list_head shared_qp_list;
1772 atomic_t error_list_count;
1773 struct completion error_complete;
1774 int error_comps_pending;
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1782 struct ib_device *device;
1784 struct ib_cq *send_cq;
1785 struct ib_cq *recv_cq;
1788 struct list_head rdma_mrs;
1789 struct list_head sig_mrs;
1791 struct completion srq_completion;
1792 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1793 struct list_head xrcd_list;
1795 /* count times opened, mcast attaches, flow attaches */
1797 struct list_head open_list;
1798 struct ib_qp *real_qp;
1799 struct ib_uqp_object *uobject;
1800 void (*event_handler)(struct ib_event *, void *);
1801 void (*registered_event_handler)(struct ib_event *, void *);
1803 /* sgid_attrs associated with the AV's */
1804 const struct ib_gid_attr *av_sgid_attr;
1805 const struct ib_gid_attr *alt_path_sgid_attr;
1809 enum ib_qp_type qp_type;
1810 struct ib_rwq_ind_table *rwq_ind_tbl;
1811 struct ib_qp_security *qp_sec;
1816 * Implementation details of the RDMA core, don't use in drivers:
1818 struct rdma_restrack_entry res;
1820 /* The counter the qp is bind to */
1821 struct rdma_counter *counter;
1825 struct ib_device *device;
1828 struct ib_uobject *uobject;
1833 struct ib_device *device;
1839 unsigned int page_size;
1840 enum ib_mr_type type;
1843 struct ib_uobject *uobject; /* user */
1844 struct list_head qp_entry; /* FR */
1848 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1850 * Implementation details of the RDMA core, don't use in drivers:
1852 struct rdma_restrack_entry res;
1856 struct ib_device *device;
1858 struct ib_uobject *uobject;
1860 enum ib_mw_type type;
1863 /* Supported steering options */
1864 enum ib_flow_attr_type {
1865 /* steering according to rule specifications */
1866 IB_FLOW_ATTR_NORMAL = 0x0,
1867 /* default unicast and multicast rule -
1868 * receive all Eth traffic which isn't steered to any QP
1870 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1871 /* default multicast rule -
1872 * receive all Eth multicast traffic which isn't steered to any QP
1874 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1875 /* sniffer rule - receive all port traffic */
1876 IB_FLOW_ATTR_SNIFFER = 0x3
1879 /* Supported steering header types */
1880 enum ib_flow_spec_type {
1882 IB_FLOW_SPEC_ETH = 0x20,
1883 IB_FLOW_SPEC_IB = 0x22,
1885 IB_FLOW_SPEC_IPV4 = 0x30,
1886 IB_FLOW_SPEC_IPV6 = 0x31,
1887 IB_FLOW_SPEC_ESP = 0x34,
1889 IB_FLOW_SPEC_TCP = 0x40,
1890 IB_FLOW_SPEC_UDP = 0x41,
1891 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1892 IB_FLOW_SPEC_GRE = 0x51,
1893 IB_FLOW_SPEC_MPLS = 0x60,
1894 IB_FLOW_SPEC_INNER = 0x100,
1896 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1897 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1898 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1899 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1901 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1904 enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1910 struct ib_flow_eth_filter {
1917 struct ib_flow_spec_eth {
1920 struct ib_flow_eth_filter val;
1921 struct ib_flow_eth_filter mask;
1924 struct ib_flow_ib_filter {
1929 struct ib_flow_spec_ib {
1932 struct ib_flow_ib_filter val;
1933 struct ib_flow_ib_filter mask;
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1940 last have this flag set */
1943 struct ib_flow_ipv4_filter {
1952 struct ib_flow_spec_ipv4 {
1955 struct ib_flow_ipv4_filter val;
1956 struct ib_flow_ipv4_filter mask;
1959 struct ib_flow_ipv6_filter {
1968 struct ib_flow_spec_ipv6 {
1971 struct ib_flow_ipv6_filter val;
1972 struct ib_flow_ipv6_filter mask;
1975 struct ib_flow_tcp_udp_filter {
1980 struct ib_flow_spec_tcp_udp {
1983 struct ib_flow_tcp_udp_filter val;
1984 struct ib_flow_tcp_udp_filter mask;
1987 struct ib_flow_tunnel_filter {
1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992 * the tunnel_id from val has the vni value
1994 struct ib_flow_spec_tunnel {
1997 struct ib_flow_tunnel_filter val;
1998 struct ib_flow_tunnel_filter mask;
2001 struct ib_flow_esp_filter {
2006 struct ib_flow_spec_esp {
2009 struct ib_flow_esp_filter val;
2010 struct ib_flow_esp_filter mask;
2013 struct ib_flow_gre_filter {
2014 __be16 c_ks_res0_ver;
2019 struct ib_flow_spec_gre {
2022 struct ib_flow_gre_filter val;
2023 struct ib_flow_gre_filter mask;
2026 struct ib_flow_mpls_filter {
2030 struct ib_flow_spec_mpls {
2033 struct ib_flow_mpls_filter val;
2034 struct ib_flow_mpls_filter mask;
2037 struct ib_flow_spec_action_tag {
2038 enum ib_flow_spec_type type;
2043 struct ib_flow_spec_action_drop {
2044 enum ib_flow_spec_type type;
2048 struct ib_flow_spec_action_handle {
2049 enum ib_flow_spec_type type;
2051 struct ib_flow_action *act;
2054 enum ib_counters_description {
2059 struct ib_flow_spec_action_count {
2060 enum ib_flow_spec_type type;
2062 struct ib_counters *counters;
2065 union ib_flow_spec {
2070 struct ib_flow_spec_eth eth;
2071 struct ib_flow_spec_ib ib;
2072 struct ib_flow_spec_ipv4 ipv4;
2073 struct ib_flow_spec_tcp_udp tcp_udp;
2074 struct ib_flow_spec_ipv6 ipv6;
2075 struct ib_flow_spec_tunnel tunnel;
2076 struct ib_flow_spec_esp esp;
2077 struct ib_flow_spec_gre gre;
2078 struct ib_flow_spec_mpls mpls;
2079 struct ib_flow_spec_action_tag flow_tag;
2080 struct ib_flow_spec_action_drop drop;
2081 struct ib_flow_spec_action_handle action;
2082 struct ib_flow_spec_action_count flow_count;
2085 struct ib_flow_attr {
2086 enum ib_flow_attr_type type;
2092 union ib_flow_spec flows[];
2097 struct ib_device *device;
2098 struct ib_uobject *uobject;
2101 enum ib_flow_action_type {
2102 IB_FLOW_ACTION_UNSPECIFIED,
2103 IB_FLOW_ACTION_ESP = 1,
2106 struct ib_flow_action_attrs_esp_keymats {
2107 enum ib_uverbs_flow_action_esp_keymat protocol;
2109 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2113 struct ib_flow_action_attrs_esp_replays {
2114 enum ib_uverbs_flow_action_esp_replay protocol;
2116 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2120 enum ib_flow_action_attrs_esp_flags {
2121 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122 * This is done in order to share the same flags between user-space and
2123 * kernel and spare an unnecessary translation.
2127 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2128 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2131 struct ib_flow_spec_list {
2132 struct ib_flow_spec_list *next;
2133 union ib_flow_spec spec;
2136 struct ib_flow_action_attrs_esp {
2137 struct ib_flow_action_attrs_esp_keymats *keymat;
2138 struct ib_flow_action_attrs_esp_replays *replay;
2139 struct ib_flow_spec_list *encap;
2140 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141 * Value of 0 is a valid value.
2147 /* Use enum ib_flow_action_attrs_esp_flags */
2149 u64 hard_limit_pkts;
2152 struct ib_flow_action {
2153 struct ib_device *device;
2154 struct ib_uobject *uobject;
2155 enum ib_flow_action_type type;
2161 enum ib_process_mad_flags {
2162 IB_MAD_IGNORE_MKEY = 1,
2163 IB_MAD_IGNORE_BKEY = 2,
2164 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2167 enum ib_mad_result {
2168 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2169 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2170 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2171 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2174 struct ib_port_cache {
2176 struct ib_pkey_cache *pkey;
2177 struct ib_gid_table *gid;
2179 enum ib_port_state port_state;
2182 struct ib_port_immutable {
2189 struct ib_port_data {
2190 struct ib_device *ib_dev;
2192 struct ib_port_immutable immutable;
2194 spinlock_t pkey_list_lock;
2196 spinlock_t netdev_lock;
2198 struct list_head pkey_list;
2200 struct ib_port_cache cache;
2202 struct net_device __rcu *netdev;
2203 netdevice_tracker netdev_tracker;
2204 struct hlist_node ndev_hash_link;
2205 struct rdma_port_counter port_counter;
2206 struct ib_port *sysfs;
2209 /* rdma netdev type - specifies protocol type */
2210 enum rdma_netdev_t {
2211 RDMA_NETDEV_OPA_VNIC,
2216 * struct rdma_netdev - rdma netdev
2217 * For cases where netstack interfacing is required.
2219 struct rdma_netdev {
2221 struct ib_device *hca;
2226 * cleanup function must be specified.
2227 * FIXME: This is only used for OPA_VNIC and that usage should be
2230 void (*free_rdma_netdev)(struct net_device *netdev);
2232 /* control functions */
2233 void (*set_id)(struct net_device *netdev, int id);
2235 int (*send)(struct net_device *dev, struct sk_buff *skb,
2236 struct ib_ah *address, u32 dqpn);
2238 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239 union ib_gid *gid, u16 mlid,
2240 int set_qkey, u32 qkey);
2241 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242 union ib_gid *gid, u16 mlid);
2244 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2247 struct rdma_netdev_alloc_params {
2253 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254 struct net_device *netdev, void *param);
2257 struct ib_odp_counters {
2259 atomic64_t invalidations;
2260 atomic64_t prefetch;
2263 struct ib_counters {
2264 struct ib_device *device;
2265 struct ib_uobject *uobject;
2266 /* num of objects attached */
2270 struct ib_counters_read_attr {
2273 u32 flags; /* use enum ib_read_counters_flags */
2276 struct uverbs_attr_bundle;
2278 struct iw_cm_conn_param;
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2281 .size_##ib_struct = \
2282 (sizeof(struct drv_struct) + \
2283 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2284 BUILD_BUG_ON_ZERO( \
2285 !__same_type(((struct drv_struct *)NULL)->member, \
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2289 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2293 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2297 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2301 struct rdma_user_mmap_entry {
2303 struct ib_ucontext *ucontext;
2304 unsigned long start_pgoff;
2306 bool driver_removed;
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2313 return (u64)entry->start_pgoff << PAGE_SHIFT;
2317 * struct ib_device_ops - InfiniBand device operations
2318 * This structure defines all the InfiniBand device operations, providers will
2319 * need to define the supported operations, otherwise they will be set to null.
2321 struct ib_device_ops {
2322 struct module *owner;
2323 enum rdma_driver_id driver_id;
2325 unsigned int uverbs_no_driver_id_binding:1;
2328 * NOTE: New drivers should not make use of device_group; instead new
2329 * device parameter should be exposed via netlink command. This
2330 * mechanism exists only for existing drivers.
2332 const struct attribute_group *device_group;
2333 const struct attribute_group **port_groups;
2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 const struct ib_send_wr **bad_send_wr);
2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 const struct ib_recv_wr **bad_recv_wr);
2339 void (*drain_rq)(struct ib_qp *qp);
2340 void (*drain_sq)(struct ib_qp *qp);
2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u32 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2360 int (*query_port)(struct ib_device *device, u32 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u32 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2371 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2383 struct net_device *(*get_netdev)(struct ib_device *device,
2386 * rdma netdev operation
2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 * must return -EOPNOTSUPP if it doesn't support the specified type.
2391 struct net_device *(*alloc_rdma_netdev)(
2392 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393 const char *name, unsigned char name_assign_type,
2394 void (*setup)(struct net_device *));
2396 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397 enum rdma_netdev_t type,
2398 struct rdma_netdev_alloc_params *params);
2400 * query_gid should be return GID value for @device, when @port_num
2401 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 * is RoCE link layer.
2404 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2407 * When calling add_gid, the HW vendor's driver should add the gid
2408 * of device of port at gid index available at @attr. Meta-info of
2409 * that gid (for example, the network device related to this gid) is
2410 * available at @attr. @context allows the HW vendor driver to store
2411 * extra information together with a GID entry. The HW vendor driver may
2412 * allocate memory to contain this information and store it in @context
2413 * when a new GID entry is written to. Params are consistent until the
2414 * next call of add_gid or delete_gid. The function should return 0 on
2415 * success or error otherwise. The function could be called
2416 * concurrently for different ports. This function is only called when
2417 * roce_gid_table is used.
2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2421 * When calling del_gid, the HW vendor's driver should delete the
2422 * gid of device @device at gid index gid_index of port port_num
2423 * available in @attr.
2424 * Upon the deletion of a GID entry, the HW vendor must free any
2425 * allocated memory. The caller will clear @context afterwards.
2426 * This function is only called when roce_gid_table is used.
2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2431 int (*alloc_ucontext)(struct ib_ucontext *context,
2432 struct ib_udata *udata);
2433 void (*dealloc_ucontext)(struct ib_ucontext *context);
2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2436 * This will be called once refcount of an entry in mmap_xa reaches
2437 * zero. The type of the memory that was mapped may differ between
2438 * entries and is opaque to the rdma_user_mmap interface.
2439 * Therefore needs to be implemented by the driver in mmap_free.
2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 struct ib_udata *udata);
2447 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 struct ib_udata *udata);
2449 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452 int (*create_srq)(struct ib_srq *srq,
2453 struct ib_srq_init_attr *srq_init_attr,
2454 struct ib_udata *udata);
2455 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456 enum ib_srq_attr_mask srq_attr_mask,
2457 struct ib_udata *udata);
2458 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461 struct ib_udata *udata);
2462 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_udata *udata);
2464 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474 u64 virt_addr, int mr_access_flags,
2475 struct ib_udata *udata);
2476 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477 u64 length, u64 virt_addr, int fd,
2478 int mr_access_flags,
2479 struct ib_udata *udata);
2480 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481 u64 length, u64 virt_addr,
2482 int mr_access_flags, struct ib_pd *pd,
2483 struct ib_udata *udata);
2484 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2487 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488 u32 max_num_data_sg,
2489 u32 max_num_meta_sg);
2490 int (*advise_mr)(struct ib_pd *pd,
2491 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492 struct ib_sge *sg_list, u32 num_sge,
2493 struct uverbs_attr_bundle *attrs);
2496 * Kernel users should universally support relaxed ordering (RO), as
2497 * they are designed to read data only after observing the CQE and use
2498 * the DMA API correctly.
2500 * Some drivers implicitly enable RO if platform supports it.
2502 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503 unsigned int *sg_offset);
2504 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505 struct ib_mr_status *mr_status);
2506 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507 int (*dealloc_mw)(struct ib_mw *mw);
2508 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513 struct ib_flow_attr *flow_attr,
2514 struct ib_udata *udata);
2515 int (*destroy_flow)(struct ib_flow *flow_id);
2516 int (*destroy_flow_action)(struct ib_flow_action *action);
2517 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2519 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520 struct ifla_vf_info *ivf);
2521 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522 struct ifla_vf_stats *stats);
2523 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524 struct ifla_vf_guid *node_guid,
2525 struct ifla_vf_guid *port_guid);
2526 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2528 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529 struct ib_wq_init_attr *init_attr,
2530 struct ib_udata *udata);
2531 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533 u32 wq_attr_mask, struct ib_udata *udata);
2534 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535 struct ib_rwq_ind_table_init_attr *init_attr,
2536 struct ib_udata *udata);
2537 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539 struct ib_ucontext *context,
2540 struct ib_dm_alloc_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544 struct ib_dm_mr_attr *attr,
2545 struct uverbs_attr_bundle *attrs);
2546 int (*create_counters)(struct ib_counters *counters,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*destroy_counters)(struct ib_counters *counters);
2549 int (*read_counters)(struct ib_counters *counters,
2550 struct ib_counters_read_attr *counters_read_attr,
2551 struct uverbs_attr_bundle *attrs);
2552 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553 int data_sg_nents, unsigned int *data_sg_offset,
2554 struct scatterlist *meta_sg, int meta_sg_nents,
2555 unsigned int *meta_sg_offset);
2558 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559 * fill in the driver initialized data. The struct is kfree()'ed by
2560 * the sysfs core when the device is removed. A lifespan of -1 in the
2561 * return struct tells the core to set a default lifespan.
2563 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2567 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568 * @index - The index in the value array we wish to have updated, or
2569 * num_counters if we want all stats updated
2571 * < 0 - Error, no counters updated
2572 * index - Updated the single counter pointed to by index
2573 * num_counters - Updated all counters (will reset the timestamp
2574 * and prevent further calls for lifespan milliseconds)
2575 * Drivers are allowed to update all counters in leiu of just the
2576 * one given in index at their option
2578 int (*get_hw_stats)(struct ib_device *device,
2579 struct rdma_hw_stats *stats, u32 port, int index);
2582 * modify_hw_stat - Modify the counter configuration
2583 * @enable: true/false when enable/disable a counter
2584 * Return codes - 0 on success or error code otherwise.
2586 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587 unsigned int counter_index, bool enable);
2589 * Allows rdma drivers to add their own restrack attributes.
2591 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2601 /* Device lifecycle callbacks */
2603 * Called after the device becomes registered, before clients are
2606 int (*enable_driver)(struct ib_device *dev);
2608 * This is called as part of ib_dealloc_device().
2610 void (*dealloc_driver)(struct ib_device *dev);
2612 /* iWarp CM callbacks */
2613 void (*iw_add_ref)(struct ib_qp *qp);
2614 void (*iw_rem_ref)(struct ib_qp *qp);
2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 int (*iw_connect)(struct iw_cm_id *cm_id,
2617 struct iw_cm_conn_param *conn_param);
2618 int (*iw_accept)(struct iw_cm_id *cm_id,
2619 struct iw_cm_conn_param *conn_param);
2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2625 * counter_bind_qp - Bind a QP to a counter.
2626 * @counter - The counter to be bound. If counter->id is zero then
2627 * the driver needs to allocate a new counter and set counter->id
2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 * counter and bind it onto the default one
2634 int (*counter_unbind_qp)(struct ib_qp *qp);
2636 * counter_dealloc -De-allocate the hw counter
2638 int (*counter_dealloc)(struct rdma_counter *counter);
2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 * the driver initialized data.
2643 struct rdma_hw_stats *(*counter_alloc_stats)(
2644 struct rdma_counter *counter);
2646 * counter_update_stats - Query the stats value of this counter
2648 int (*counter_update_stats)(struct rdma_counter *counter);
2651 * Allows rdma drivers to add their own restrack attributes
2652 * dumped via 'rdma stat' iproute2 command.
2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2656 /* query driver for its ucontext properties */
2657 int (*query_ucontext)(struct ib_ucontext *context,
2658 struct uverbs_attr_bundle *attrs);
2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 * Everyone else relies on Linux memory management model.
2664 int (*get_numa_node)(struct ib_device *dev);
2667 * add_sub_dev - Add a sub IB device
2669 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670 enum rdma_nl_dev_type type,
2674 * del_sub_dev - Delete a sub IB device
2676 void (*del_sub_dev)(struct ib_device *sub_dev);
2678 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2679 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2680 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2681 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2682 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2683 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2684 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2685 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2686 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2687 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2690 struct ib_core_device {
2691 /* device must be the first element in structure until,
2692 * union of ib_core_device and device exists in ib_device.
2695 possible_net_t rdma_net;
2696 struct kobject *ports_kobj;
2697 struct list_head port_list;
2698 struct ib_device *owner; /* reach back to owner ib_device */
2701 struct rdma_restrack_root;
2703 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2704 struct device *dma_device;
2705 struct ib_device_ops ops;
2706 char name[IB_DEVICE_NAME_MAX];
2707 struct rcu_head rcu_head;
2709 struct list_head event_handler_list;
2710 /* Protects event_handler_list */
2711 struct rw_semaphore event_handler_rwsem;
2713 /* Protects QP's event_handler calls and open_qp list */
2714 spinlock_t qp_open_list_lock;
2716 struct rw_semaphore client_data_rwsem;
2717 struct xarray client_data;
2718 struct mutex unregistration_lock;
2720 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2721 rwlock_t cache_lock;
2723 * port_data is indexed by port number
2725 struct ib_port_data *port_data;
2727 int num_comp_vectors;
2731 struct ib_core_device coredev;
2734 /* First group is for device attributes,
2735 * Second group is for driver provided attributes (optional).
2736 * Third group is for the hw_stats
2737 * It is a NULL terminated array.
2739 const struct attribute_group *groups[4];
2741 u64 uverbs_cmd_mask;
2743 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2747 /* Indicates kernel verbs support, should not be used in drivers */
2748 u16 kverbs_provider:1;
2749 /* CQ adaptive moderation (RDMA DIM) */
2753 struct ib_device_attr attrs;
2754 struct hw_stats_device_data *hw_stats_data;
2756 #ifdef CONFIG_CGROUP_RDMA
2757 struct rdmacg_device cg_device;
2762 spinlock_t cq_pools_lock;
2763 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2765 struct rdma_restrack_root *res;
2767 const struct uapi_definition *driver_def;
2770 * Positive refcount indicates that the device is currently
2771 * registered and cannot be unregistered.
2773 refcount_t refcount;
2774 struct completion unreg_completion;
2775 struct work_struct unregistration_work;
2777 const struct rdma_link_ops *link_ops;
2779 /* Protects compat_devs xarray modifications */
2780 struct mutex compat_devs_mutex;
2781 /* Maintains compat devices for each net namespace */
2782 struct xarray compat_devs;
2784 /* Used by iWarp CM */
2785 char iw_ifname[IFNAMSIZ];
2786 u32 iw_driver_flags;
2789 /* A parent device has a list of sub-devices */
2790 struct mutex subdev_lock;
2791 struct list_head subdev_list_head;
2793 /* A sub device has a type and a parent */
2794 enum rdma_nl_dev_type type;
2795 struct ib_device *parent;
2796 struct list_head subdev_list;
2798 enum rdma_nl_name_assign_type name_assign_type;
2801 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2802 gfp_t gfp, bool is_numa_aware)
2804 if (is_numa_aware && dev->ops.get_numa_node)
2805 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2807 return kzalloc(size, gfp);
2810 struct ib_client_nl_info;
2813 int (*add)(struct ib_device *ibdev);
2814 void (*remove)(struct ib_device *, void *client_data);
2815 void (*rename)(struct ib_device *dev, void *client_data);
2816 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2817 struct ib_client_nl_info *res);
2818 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2820 /* Returns the net_dev belonging to this ib_client and matching the
2822 * @dev: An RDMA device that the net_dev use for communication.
2823 * @port: A physical port number on the RDMA device.
2824 * @pkey: P_Key that the net_dev uses if applicable.
2825 * @gid: A GID that the net_dev uses to communicate.
2826 * @addr: An IP address the net_dev is configured with.
2827 * @client_data: The device's client data set by ib_set_client_data().
2829 * An ib_client that implements a net_dev on top of RDMA devices
2830 * (such as IP over IB) should implement this callback, allowing the
2831 * rdma_cm module to find the right net_dev for a given request.
2833 * The caller is responsible for calling dev_put on the returned
2835 struct net_device *(*get_net_dev_by_params)(
2836 struct ib_device *dev,
2839 const union ib_gid *gid,
2840 const struct sockaddr *addr,
2844 struct completion uses_zero;
2847 /* kverbs are not required by the client */
2852 * IB block DMA iterator
2854 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2855 * to a HW supported page size.
2857 struct ib_block_iter {
2858 /* internal states */
2859 struct scatterlist *__sg; /* sg holding the current aligned block */
2860 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2861 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2862 unsigned int __sg_nents; /* number of SG entries */
2863 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2864 unsigned int __pg_bit; /* alignment of current block */
2867 struct ib_device *_ib_alloc_device(size_t size);
2868 #define ib_alloc_device(drv_struct, member) \
2869 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2870 BUILD_BUG_ON_ZERO(offsetof( \
2871 struct drv_struct, member))), \
2872 struct drv_struct, member)
2874 void ib_dealloc_device(struct ib_device *device);
2876 void ib_get_device_fw_str(struct ib_device *device, char *str);
2878 int ib_register_device(struct ib_device *device, const char *name,
2879 struct device *dma_device);
2880 void ib_unregister_device(struct ib_device *device);
2881 void ib_unregister_driver(enum rdma_driver_id driver_id);
2882 void ib_unregister_device_and_put(struct ib_device *device);
2883 void ib_unregister_device_queued(struct ib_device *ib_dev);
2885 int ib_register_client (struct ib_client *client);
2886 void ib_unregister_client(struct ib_client *client);
2888 void __rdma_block_iter_start(struct ib_block_iter *biter,
2889 struct scatterlist *sglist,
2891 unsigned long pgsz);
2892 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2895 * rdma_block_iter_dma_address - get the aligned dma address of the current
2896 * block held by the block iterator.
2897 * @biter: block iterator holding the memory block
2899 static inline dma_addr_t
2900 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2902 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2906 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2907 * @sglist: sglist to iterate over
2908 * @biter: block iterator holding the memory block
2909 * @nents: maximum number of sg entries to iterate over
2910 * @pgsz: best HW supported page size to use
2912 * Callers may use rdma_block_iter_dma_address() to get each
2913 * blocks aligned DMA address.
2915 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2916 for (__rdma_block_iter_start(biter, sglist, nents, \
2918 __rdma_block_iter_next(biter);)
2921 * ib_get_client_data - Get IB client context
2922 * @device:Device to get context for
2923 * @client:Client to get context for
2925 * ib_get_client_data() returns the client context data set with
2926 * ib_set_client_data(). This can only be called while the client is
2927 * registered to the device, once the ib_client remove() callback returns this
2930 static inline void *ib_get_client_data(struct ib_device *device,
2931 struct ib_client *client)
2933 return xa_load(&device->client_data, client->client_id);
2935 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2937 void ib_set_device_ops(struct ib_device *device,
2938 const struct ib_device_ops *ops);
2940 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2941 unsigned long pfn, unsigned long size, pgprot_t prot,
2942 struct rdma_user_mmap_entry *entry);
2943 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2944 struct rdma_user_mmap_entry *entry,
2946 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2947 struct rdma_user_mmap_entry *entry,
2948 size_t length, u32 min_pgoff,
2952 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2953 struct rdma_user_mmap_entry *entry,
2954 size_t length, u32 pgoff)
2956 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2960 struct rdma_user_mmap_entry *
2961 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2962 unsigned long pgoff);
2963 struct rdma_user_mmap_entry *
2964 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2965 struct vm_area_struct *vma);
2966 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2968 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2970 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2972 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2975 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2977 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2980 static inline bool ib_is_buffer_cleared(const void __user *p,
2986 if (len > USHRT_MAX)
2989 buf = memdup_user(p, len);
2993 ret = !memchr_inv(buf, 0, len);
2998 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3002 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3006 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3007 * contains all required attributes and no attributes not allowed for
3008 * the given QP state transition.
3009 * @cur_state: Current QP state
3010 * @next_state: Next QP state
3012 * @mask: Mask of supplied QP attributes
3014 * This function is a helper function that a low-level driver's
3015 * modify_qp method can use to validate the consumer's input. It
3016 * checks that cur_state and next_state are valid QP states, that a
3017 * transition from cur_state to next_state is allowed by the IB spec,
3018 * and that the attribute mask supplied is allowed for the transition.
3020 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3021 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3023 void ib_register_event_handler(struct ib_event_handler *event_handler);
3024 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3025 void ib_dispatch_event(const struct ib_event *event);
3027 int ib_query_port(struct ib_device *device,
3028 u32 port_num, struct ib_port_attr *port_attr);
3030 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3034 * rdma_cap_ib_switch - Check if the device is IB switch
3035 * @device: Device to check
3037 * Device driver is responsible for setting is_switch bit on
3038 * in ib_device structure at init time.
3040 * Return: true if the device is IB switch.
3042 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3044 return device->is_switch;
3048 * rdma_start_port - Return the first valid port number for the device
3051 * @device: Device to be checked
3053 * Return start port number
3055 static inline u32 rdma_start_port(const struct ib_device *device)
3057 return rdma_cap_ib_switch(device) ? 0 : 1;
3061 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3062 * @device - The struct ib_device * to iterate over
3063 * @iter - The unsigned int to store the port number
3065 #define rdma_for_each_port(device, iter) \
3066 for (iter = rdma_start_port(device + \
3067 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3069 iter <= rdma_end_port(device); iter++)
3072 * rdma_end_port - Return the last valid port number for the device
3075 * @device: Device to be checked
3077 * Return last port number
3079 static inline u32 rdma_end_port(const struct ib_device *device)
3081 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3084 static inline int rdma_is_port_valid(const struct ib_device *device,
3087 return (port >= rdma_start_port(device) &&
3088 port <= rdma_end_port(device));
3091 static inline bool rdma_is_grh_required(const struct ib_device *device,
3094 return device->port_data[port_num].immutable.core_cap_flags &
3095 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3098 static inline bool rdma_protocol_ib(const struct ib_device *device,
3101 return device->port_data[port_num].immutable.core_cap_flags &
3102 RDMA_CORE_CAP_PROT_IB;
3105 static inline bool rdma_protocol_roce(const struct ib_device *device,
3108 return device->port_data[port_num].immutable.core_cap_flags &
3109 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3112 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3115 return device->port_data[port_num].immutable.core_cap_flags &
3116 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3119 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3122 return device->port_data[port_num].immutable.core_cap_flags &
3123 RDMA_CORE_CAP_PROT_ROCE;
3126 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3129 return device->port_data[port_num].immutable.core_cap_flags &
3130 RDMA_CORE_CAP_PROT_IWARP;
3133 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3136 return rdma_protocol_ib(device, port_num) ||
3137 rdma_protocol_roce(device, port_num);
3140 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3143 return device->port_data[port_num].immutable.core_cap_flags &
3144 RDMA_CORE_CAP_PROT_RAW_PACKET;
3147 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3150 return device->port_data[port_num].immutable.core_cap_flags &
3151 RDMA_CORE_CAP_PROT_USNIC;
3155 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3156 * Management Datagrams.
3157 * @device: Device to check
3158 * @port_num: Port number to check
3160 * Management Datagrams (MAD) are a required part of the InfiniBand
3161 * specification and are supported on all InfiniBand devices. A slightly
3162 * extended version are also supported on OPA interfaces.
3164 * Return: true if the port supports sending/receiving of MAD packets.
3166 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3168 return device->port_data[port_num].immutable.core_cap_flags &
3169 RDMA_CORE_CAP_IB_MAD;
3173 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3174 * Management Datagrams.
3175 * @device: Device to check
3176 * @port_num: Port number to check
3178 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3179 * datagrams with their own versions. These OPA MADs share many but not all of
3180 * the characteristics of InfiniBand MADs.
3182 * OPA MADs differ in the following ways:
3184 * 1) MADs are variable size up to 2K
3185 * IBTA defined MADs remain fixed at 256 bytes
3186 * 2) OPA SMPs must carry valid PKeys
3187 * 3) OPA SMP packets are a different format
3189 * Return: true if the port supports OPA MAD packet formats.
3191 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3193 return device->port_data[port_num].immutable.core_cap_flags &
3194 RDMA_CORE_CAP_OPA_MAD;
3198 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3199 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3200 * @device: Device to check
3201 * @port_num: Port number to check
3203 * Each InfiniBand node is required to provide a Subnet Management Agent
3204 * that the subnet manager can access. Prior to the fabric being fully
3205 * configured by the subnet manager, the SMA is accessed via a well known
3206 * interface called the Subnet Management Interface (SMI). This interface
3207 * uses directed route packets to communicate with the SM to get around the
3208 * chicken and egg problem of the SM needing to know what's on the fabric
3209 * in order to configure the fabric, and needing to configure the fabric in
3210 * order to send packets to the devices on the fabric. These directed
3211 * route packets do not need the fabric fully configured in order to reach
3212 * their destination. The SMI is the only method allowed to send
3213 * directed route packets on an InfiniBand fabric.
3215 * Return: true if the port provides an SMI.
3217 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3219 return device->port_data[port_num].immutable.core_cap_flags &
3220 RDMA_CORE_CAP_IB_SMI;
3224 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3225 * Communication Manager.
3226 * @device: Device to check
3227 * @port_num: Port number to check
3229 * The InfiniBand Communication Manager is one of many pre-defined General
3230 * Service Agents (GSA) that are accessed via the General Service
3231 * Interface (GSI). It's role is to facilitate establishment of connections
3232 * between nodes as well as other management related tasks for established
3235 * Return: true if the port supports an IB CM (this does not guarantee that
3236 * a CM is actually running however).
3238 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3240 return device->port_data[port_num].immutable.core_cap_flags &
3241 RDMA_CORE_CAP_IB_CM;
3245 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3246 * Communication Manager.
3247 * @device: Device to check
3248 * @port_num: Port number to check
3250 * Similar to above, but specific to iWARP connections which have a different
3251 * managment protocol than InfiniBand.
3253 * Return: true if the port supports an iWARP CM (this does not guarantee that
3254 * a CM is actually running however).
3256 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3258 return device->port_data[port_num].immutable.core_cap_flags &
3259 RDMA_CORE_CAP_IW_CM;
3263 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3264 * Subnet Administration.
3265 * @device: Device to check
3266 * @port_num: Port number to check
3268 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3269 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3270 * fabrics, devices should resolve routes to other hosts by contacting the
3271 * SA to query the proper route.
3273 * Return: true if the port should act as a client to the fabric Subnet
3274 * Administration interface. This does not imply that the SA service is
3277 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3279 return device->port_data[port_num].immutable.core_cap_flags &
3280 RDMA_CORE_CAP_IB_SA;
3284 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3286 * @device: Device to check
3287 * @port_num: Port number to check
3289 * InfiniBand multicast registration is more complex than normal IPv4 or
3290 * IPv6 multicast registration. Each Host Channel Adapter must register
3291 * with the Subnet Manager when it wishes to join a multicast group. It
3292 * should do so only once regardless of how many queue pairs it subscribes
3293 * to this group. And it should leave the group only after all queue pairs
3294 * attached to the group have been detached.
3296 * Return: true if the port must undertake the additional adminstrative
3297 * overhead of registering/unregistering with the SM and tracking of the
3298 * total number of queue pairs attached to the multicast group.
3300 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3303 return rdma_cap_ib_sa(device, port_num);
3307 * rdma_cap_af_ib - Check if the port of device has the capability
3308 * Native Infiniband Address.
3309 * @device: Device to check
3310 * @port_num: Port number to check
3312 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3313 * GID. RoCE uses a different mechanism, but still generates a GID via
3314 * a prescribed mechanism and port specific data.
3316 * Return: true if the port uses a GID address to identify devices on the
3319 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3321 return device->port_data[port_num].immutable.core_cap_flags &
3322 RDMA_CORE_CAP_AF_IB;
3326 * rdma_cap_eth_ah - Check if the port of device has the capability
3327 * Ethernet Address Handle.
3328 * @device: Device to check
3329 * @port_num: Port number to check
3331 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3332 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3333 * port. Normally, packet headers are generated by the sending host
3334 * adapter, but when sending connectionless datagrams, we must manually
3335 * inject the proper headers for the fabric we are communicating over.
3337 * Return: true if we are running as a RoCE port and must force the
3338 * addition of a Global Route Header built from our Ethernet Address
3339 * Handle into our header list for connectionless packets.
3341 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3343 return device->port_data[port_num].immutable.core_cap_flags &
3344 RDMA_CORE_CAP_ETH_AH;
3348 * rdma_cap_opa_ah - Check if the port of device supports
3349 * OPA Address handles
3350 * @device: Device to check
3351 * @port_num: Port number to check
3353 * Return: true if we are running on an OPA device which supports
3354 * the extended OPA addressing.
3356 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3358 return (device->port_data[port_num].immutable.core_cap_flags &
3359 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3363 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3366 * @port_num: Port number
3368 * This MAD size includes the MAD headers and MAD payload. No other headers
3371 * Return the max MAD size required by the Port. Will return 0 if the port
3372 * does not support MADs
3374 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3377 return device->port_data[port_num].immutable.max_mad_size;
3381 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3382 * @device: Device to check
3383 * @port_num: Port number to check
3385 * RoCE GID table mechanism manages the various GIDs for a device.
3387 * NOTE: if allocating the port's GID table has failed, this call will still
3388 * return true, but any RoCE GID table API will fail.
3390 * Return: true if the port uses RoCE GID table mechanism in order to manage
3393 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3396 return rdma_protocol_roce(device, port_num) &&
3397 device->ops.add_gid && device->ops.del_gid;
3401 * Check if the device supports READ W/ INVALIDATE.
3403 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3406 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3407 * has support for it yet.
3409 return rdma_protocol_iwarp(dev, port_num);
3413 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3415 * @port_num: 1 based Port number
3417 * Return true if port is an Intel OPA port , false if not
3419 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3422 return (device->port_data[port_num].immutable.core_cap_flags &
3423 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3427 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3429 * @port_num: Port number
3430 * @mtu: enum value of MTU
3432 * Return the MTU size supported by the port as an integer value. Will return
3433 * -1 if enum value of mtu is not supported.
3435 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3438 if (rdma_core_cap_opa_port(device, port))
3439 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3441 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3445 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3447 * @port_num: Port number
3448 * @attr: port attribute
3450 * Return the MTU size supported by the port as an integer value.
3452 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3453 struct ib_port_attr *attr)
3455 if (rdma_core_cap_opa_port(device, port))
3456 return attr->phys_mtu;
3458 return ib_mtu_enum_to_int(attr->max_mtu);
3461 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3463 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3464 struct ifla_vf_info *info);
3465 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3466 struct ifla_vf_stats *stats);
3467 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3468 struct ifla_vf_guid *node_guid,
3469 struct ifla_vf_guid *port_guid);
3470 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3473 int ib_query_pkey(struct ib_device *device,
3474 u32 port_num, u16 index, u16 *pkey);
3476 int ib_modify_device(struct ib_device *device,
3477 int device_modify_mask,
3478 struct ib_device_modify *device_modify);
3480 int ib_modify_port(struct ib_device *device,
3481 u32 port_num, int port_modify_mask,
3482 struct ib_port_modify *port_modify);
3484 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3485 u32 *port_num, u16 *index);
3487 int ib_find_pkey(struct ib_device *device,
3488 u32 port_num, u16 pkey, u16 *index);
3492 * Create a memory registration for all memory in the system and place
3493 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3494 * ULPs to avoid the overhead of dynamic MRs.
3496 * This flag is generally considered unsafe and must only be used in
3497 * extremly trusted environments. Every use of it will log a warning
3498 * in the kernel log.
3500 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3503 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3504 const char *caller);
3507 * ib_alloc_pd - Allocates an unused protection domain.
3508 * @device: The device on which to allocate the protection domain.
3509 * @flags: protection domain flags
3511 * A protection domain object provides an association between QPs, shared
3512 * receive queues, address handles, memory regions, and memory windows.
3514 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3515 * memory operations.
3517 #define ib_alloc_pd(device, flags) \
3518 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3520 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3523 * ib_dealloc_pd - Deallocate kernel PD
3524 * @pd: The protection domain
3526 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3528 static inline void ib_dealloc_pd(struct ib_pd *pd)
3530 int ret = ib_dealloc_pd_user(pd, NULL);
3532 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3535 enum rdma_create_ah_flags {
3536 /* In a sleepable context */
3537 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3541 * rdma_create_ah - Creates an address handle for the given address vector.
3542 * @pd: The protection domain associated with the address handle.
3543 * @ah_attr: The attributes of the address vector.
3544 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3546 * The address handle is used to reference a local or global destination
3547 * in all UD QP post sends.
3549 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3553 * rdma_create_user_ah - Creates an address handle for the given address vector.
3554 * It resolves destination mac address for ah attribute of RoCE type.
3555 * @pd: The protection domain associated with the address handle.
3556 * @ah_attr: The attributes of the address vector.
3557 * @udata: pointer to user's input output buffer information need by
3560 * It returns 0 on success and returns appropriate error code on error.
3561 * The address handle is used to reference a local or global destination
3562 * in all UD QP post sends.
3564 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3565 struct rdma_ah_attr *ah_attr,
3566 struct ib_udata *udata);
3568 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3570 * @hdr: the L3 header to parse
3571 * @net_type: type of header to parse
3572 * @sgid: place to store source gid
3573 * @dgid: place to store destination gid
3575 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3576 enum rdma_network_type net_type,
3577 union ib_gid *sgid, union ib_gid *dgid);
3580 * ib_get_rdma_header_version - Get the header version
3581 * @hdr: the L3 header to parse
3583 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3586 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3588 * @device: Device on which the received message arrived.
3589 * @port_num: Port on which the received message arrived.
3590 * @wc: Work completion associated with the received message.
3591 * @grh: References the received global route header. This parameter is
3592 * ignored unless the work completion indicates that the GRH is valid.
3593 * @ah_attr: Returned attributes that can be used when creating an address
3594 * handle for replying to the message.
3595 * When ib_init_ah_attr_from_wc() returns success,
3596 * (a) for IB link layer it optionally contains a reference to SGID attribute
3597 * when GRH is present for IB link layer.
3598 * (b) for RoCE link layer it contains a reference to SGID attribute.
3599 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3600 * attributes which are initialized using ib_init_ah_attr_from_wc().
3603 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3604 const struct ib_wc *wc, const struct ib_grh *grh,
3605 struct rdma_ah_attr *ah_attr);
3608 * ib_create_ah_from_wc - Creates an address handle associated with the
3609 * sender of the specified work completion.
3610 * @pd: The protection domain associated with the address handle.
3611 * @wc: Work completion information associated with a received message.
3612 * @grh: References the received global route header. This parameter is
3613 * ignored unless the work completion indicates that the GRH is valid.
3614 * @port_num: The outbound port number to associate with the address.
3616 * The address handle is used to reference a local or global destination
3617 * in all UD QP post sends.
3619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3620 const struct ib_grh *grh, u32 port_num);
3623 * rdma_modify_ah - Modifies the address vector associated with an address
3625 * @ah: The address handle to modify.
3626 * @ah_attr: The new address vector attributes to associate with the
3629 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3632 * rdma_query_ah - Queries the address vector associated with an address
3634 * @ah: The address handle to query.
3635 * @ah_attr: The address vector attributes associated with the address
3638 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3640 enum rdma_destroy_ah_flags {
3641 /* In a sleepable context */
3642 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3646 * rdma_destroy_ah_user - Destroys an address handle.
3647 * @ah: The address handle to destroy.
3648 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3649 * @udata: Valid user data or NULL for kernel objects
3651 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3654 * rdma_destroy_ah - Destroys an kernel address handle.
3655 * @ah: The address handle to destroy.
3656 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3658 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3660 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3662 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3664 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3667 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3668 struct ib_srq_init_attr *srq_init_attr,
3669 struct ib_usrq_object *uobject,
3670 struct ib_udata *udata);
3671 static inline struct ib_srq *
3672 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3674 if (!pd->device->ops.create_srq)
3675 return ERR_PTR(-EOPNOTSUPP);
3677 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3681 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3682 * @srq: The SRQ to modify.
3683 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3684 * the current values of selected SRQ attributes are returned.
3685 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3686 * are being modified.
3688 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3689 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3690 * the number of receives queued drops below the limit.
3692 int ib_modify_srq(struct ib_srq *srq,
3693 struct ib_srq_attr *srq_attr,
3694 enum ib_srq_attr_mask srq_attr_mask);
3697 * ib_query_srq - Returns the attribute list and current values for the
3699 * @srq: The SRQ to query.
3700 * @srq_attr: The attributes of the specified SRQ.
3702 int ib_query_srq(struct ib_srq *srq,
3703 struct ib_srq_attr *srq_attr);
3706 * ib_destroy_srq_user - Destroys the specified SRQ.
3707 * @srq: The SRQ to destroy.
3708 * @udata: Valid user data or NULL for kernel objects
3710 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3713 * ib_destroy_srq - Destroys the specified kernel SRQ.
3714 * @srq: The SRQ to destroy.
3716 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3718 static inline void ib_destroy_srq(struct ib_srq *srq)
3720 int ret = ib_destroy_srq_user(srq, NULL);
3722 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3726 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3727 * @srq: The SRQ to post the work request on.
3728 * @recv_wr: A list of work requests to post on the receive queue.
3729 * @bad_recv_wr: On an immediate failure, this parameter will reference
3730 * the work request that failed to be posted on the QP.
3732 static inline int ib_post_srq_recv(struct ib_srq *srq,
3733 const struct ib_recv_wr *recv_wr,
3734 const struct ib_recv_wr **bad_recv_wr)
3736 const struct ib_recv_wr *dummy;
3738 return srq->device->ops.post_srq_recv(srq, recv_wr,
3739 bad_recv_wr ? : &dummy);
3742 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3743 struct ib_qp_init_attr *qp_init_attr,
3744 const char *caller);
3746 * ib_create_qp - Creates a kernel QP associated with the specific protection
3748 * @pd: The protection domain associated with the QP.
3749 * @init_attr: A list of initial attributes required to create the
3750 * QP. If QP creation succeeds, then the attributes are updated to
3751 * the actual capabilities of the created QP.
3753 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3754 struct ib_qp_init_attr *init_attr)
3756 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3760 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3761 * @qp: The QP to modify.
3762 * @attr: On input, specifies the QP attributes to modify. On output,
3763 * the current values of selected QP attributes are returned.
3764 * @attr_mask: A bit-mask used to specify which attributes of the QP
3765 * are being modified.
3766 * @udata: pointer to user's input output buffer information
3767 * are being modified.
3768 * It returns 0 on success and returns appropriate error code on error.
3770 int ib_modify_qp_with_udata(struct ib_qp *qp,
3771 struct ib_qp_attr *attr,
3773 struct ib_udata *udata);
3776 * ib_modify_qp - Modifies the attributes for the specified QP and then
3777 * transitions the QP to the given state.
3778 * @qp: The QP to modify.
3779 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3780 * the current values of selected QP attributes are returned.
3781 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3782 * are being modified.
3784 int ib_modify_qp(struct ib_qp *qp,
3785 struct ib_qp_attr *qp_attr,
3789 * ib_query_qp - Returns the attribute list and current values for the
3791 * @qp: The QP to query.
3792 * @qp_attr: The attributes of the specified QP.
3793 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3794 * @qp_init_attr: Additional attributes of the selected QP.
3796 * The qp_attr_mask may be used to limit the query to gathering only the
3797 * selected attributes.
3799 int ib_query_qp(struct ib_qp *qp,
3800 struct ib_qp_attr *qp_attr,
3802 struct ib_qp_init_attr *qp_init_attr);
3805 * ib_destroy_qp - Destroys the specified QP.
3806 * @qp: The QP to destroy.
3807 * @udata: Valid udata or NULL for kernel objects
3809 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3812 * ib_destroy_qp - Destroys the specified kernel QP.
3813 * @qp: The QP to destroy.
3815 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3817 static inline int ib_destroy_qp(struct ib_qp *qp)
3819 return ib_destroy_qp_user(qp, NULL);
3823 * ib_open_qp - Obtain a reference to an existing sharable QP.
3824 * @xrcd - XRC domain
3825 * @qp_open_attr: Attributes identifying the QP to open.
3827 * Returns a reference to a sharable QP.
3829 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3830 struct ib_qp_open_attr *qp_open_attr);
3833 * ib_close_qp - Release an external reference to a QP.
3834 * @qp: The QP handle to release
3836 * The opened QP handle is released by the caller. The underlying
3837 * shared QP is not destroyed until all internal references are released.
3839 int ib_close_qp(struct ib_qp *qp);
3842 * ib_post_send - Posts a list of work requests to the send queue of
3844 * @qp: The QP to post the work request on.
3845 * @send_wr: A list of work requests to post on the send queue.
3846 * @bad_send_wr: On an immediate failure, this parameter will reference
3847 * the work request that failed to be posted on the QP.
3849 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3850 * error is returned, the QP state shall not be affected,
3851 * ib_post_send() will return an immediate error after queueing any
3852 * earlier work requests in the list.
3854 static inline int ib_post_send(struct ib_qp *qp,
3855 const struct ib_send_wr *send_wr,
3856 const struct ib_send_wr **bad_send_wr)
3858 const struct ib_send_wr *dummy;
3860 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3864 * ib_post_recv - Posts a list of work requests to the receive queue of
3866 * @qp: The QP to post the work request on.
3867 * @recv_wr: A list of work requests to post on the receive queue.
3868 * @bad_recv_wr: On an immediate failure, this parameter will reference
3869 * the work request that failed to be posted on the QP.
3871 static inline int ib_post_recv(struct ib_qp *qp,
3872 const struct ib_recv_wr *recv_wr,
3873 const struct ib_recv_wr **bad_recv_wr)
3875 const struct ib_recv_wr *dummy;
3877 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3880 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3881 int comp_vector, enum ib_poll_context poll_ctx,
3882 const char *caller);
3883 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3884 int nr_cqe, int comp_vector,
3885 enum ib_poll_context poll_ctx)
3887 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3891 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3892 int nr_cqe, enum ib_poll_context poll_ctx,
3893 const char *caller);
3896 * ib_alloc_cq_any: Allocate kernel CQ
3897 * @dev: The IB device
3898 * @private: Private data attached to the CQE
3899 * @nr_cqe: Number of CQEs in the CQ
3900 * @poll_ctx: Context used for polling the CQ
3902 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3903 void *private, int nr_cqe,
3904 enum ib_poll_context poll_ctx)
3906 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3910 void ib_free_cq(struct ib_cq *cq);
3911 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3914 * ib_create_cq - Creates a CQ on the specified device.
3915 * @device: The device on which to create the CQ.
3916 * @comp_handler: A user-specified callback that is invoked when a
3917 * completion event occurs on the CQ.
3918 * @event_handler: A user-specified callback that is invoked when an
3919 * asynchronous event not associated with a completion occurs on the CQ.
3920 * @cq_context: Context associated with the CQ returned to the user via
3921 * the associated completion and event handlers.
3922 * @cq_attr: The attributes the CQ should be created upon.
3924 * Users can examine the cq structure to determine the actual CQ size.
3926 struct ib_cq *__ib_create_cq(struct ib_device *device,
3927 ib_comp_handler comp_handler,
3928 void (*event_handler)(struct ib_event *, void *),
3930 const struct ib_cq_init_attr *cq_attr,
3931 const char *caller);
3932 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3933 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3936 * ib_resize_cq - Modifies the capacity of the CQ.
3937 * @cq: The CQ to resize.
3938 * @cqe: The minimum size of the CQ.
3940 * Users can examine the cq structure to determine the actual CQ size.
3942 int ib_resize_cq(struct ib_cq *cq, int cqe);
3945 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3946 * @cq: The CQ to modify.
3947 * @cq_count: number of CQEs that will trigger an event
3948 * @cq_period: max period of time in usec before triggering an event
3951 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3954 * ib_destroy_cq_user - Destroys the specified CQ.
3955 * @cq: The CQ to destroy.
3956 * @udata: Valid user data or NULL for kernel objects
3958 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3961 * ib_destroy_cq - Destroys the specified kernel CQ.
3962 * @cq: The CQ to destroy.
3964 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3966 static inline void ib_destroy_cq(struct ib_cq *cq)
3968 int ret = ib_destroy_cq_user(cq, NULL);
3970 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3974 * ib_poll_cq - poll a CQ for completion(s)
3975 * @cq:the CQ being polled
3976 * @num_entries:maximum number of completions to return
3977 * @wc:array of at least @num_entries &struct ib_wc where completions
3980 * Poll a CQ for (possibly multiple) completions. If the return value
3981 * is < 0, an error occurred. If the return value is >= 0, it is the
3982 * number of completions returned. If the return value is
3983 * non-negative and < num_entries, then the CQ was emptied.
3985 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3988 return cq->device->ops.poll_cq(cq, num_entries, wc);
3992 * ib_req_notify_cq - Request completion notification on a CQ.
3993 * @cq: The CQ to generate an event for.
3995 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3996 * to request an event on the next solicited event or next work
3997 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3998 * may also be |ed in to request a hint about missed events, as
4002 * < 0 means an error occurred while requesting notification
4003 * == 0 means notification was requested successfully, and if
4004 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4005 * were missed and it is safe to wait for another event. In
4006 * this case is it guaranteed that any work completions added
4007 * to the CQ since the last CQ poll will trigger a completion
4008 * notification event.
4009 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4010 * in. It means that the consumer must poll the CQ again to
4011 * make sure it is empty to avoid missing an event because of a
4012 * race between requesting notification and an entry being
4013 * added to the CQ. This return value means it is possible
4014 * (but not guaranteed) that a work completion has been added
4015 * to the CQ since the last poll without triggering a
4016 * completion notification event.
4018 static inline int ib_req_notify_cq(struct ib_cq *cq,
4019 enum ib_cq_notify_flags flags)
4021 return cq->device->ops.req_notify_cq(cq, flags);
4024 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4025 int comp_vector_hint,
4026 enum ib_poll_context poll_ctx);
4028 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4031 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4032 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4033 * address into the dma address.
4035 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4037 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4041 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4043 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4045 if (ib_uses_virt_dma(dev))
4048 return dma_pci_p2pdma_supported(dev->dma_device);
4052 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4053 * @dma_addr: The DMA address
4055 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4056 * going through the dma_addr marshalling.
4058 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4060 /* virt_dma mode maps the kvs's directly into the dma addr */
4061 return (void *)(uintptr_t)dma_addr;
4065 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4066 * @dma_addr: The DMA address
4068 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4069 * through the dma_addr marshalling.
4071 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4073 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4077 * ib_dma_mapping_error - check a DMA addr for error
4078 * @dev: The device for which the dma_addr was created
4079 * @dma_addr: The DMA address to check
4081 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4083 if (ib_uses_virt_dma(dev))
4085 return dma_mapping_error(dev->dma_device, dma_addr);
4089 * ib_dma_map_single - Map a kernel virtual address to DMA address
4090 * @dev: The device for which the dma_addr is to be created
4091 * @cpu_addr: The kernel virtual address
4092 * @size: The size of the region in bytes
4093 * @direction: The direction of the DMA
4095 static inline u64 ib_dma_map_single(struct ib_device *dev,
4096 void *cpu_addr, size_t size,
4097 enum dma_data_direction direction)
4099 if (ib_uses_virt_dma(dev))
4100 return (uintptr_t)cpu_addr;
4101 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4105 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4106 * @dev: The device for which the DMA address was created
4107 * @addr: The DMA address
4108 * @size: The size of the region in bytes
4109 * @direction: The direction of the DMA
4111 static inline void ib_dma_unmap_single(struct ib_device *dev,
4112 u64 addr, size_t size,
4113 enum dma_data_direction direction)
4115 if (!ib_uses_virt_dma(dev))
4116 dma_unmap_single(dev->dma_device, addr, size, direction);
4120 * ib_dma_map_page - Map a physical page to DMA address
4121 * @dev: The device for which the dma_addr is to be created
4122 * @page: The page to be mapped
4123 * @offset: The offset within the page
4124 * @size: The size of the region in bytes
4125 * @direction: The direction of the DMA
4127 static inline u64 ib_dma_map_page(struct ib_device *dev,
4129 unsigned long offset,
4131 enum dma_data_direction direction)
4133 if (ib_uses_virt_dma(dev))
4134 return (uintptr_t)(page_address(page) + offset);
4135 return dma_map_page(dev->dma_device, page, offset, size, direction);
4139 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4140 * @dev: The device for which the DMA address was created
4141 * @addr: The DMA address
4142 * @size: The size of the region in bytes
4143 * @direction: The direction of the DMA
4145 static inline void ib_dma_unmap_page(struct ib_device *dev,
4146 u64 addr, size_t size,
4147 enum dma_data_direction direction)
4149 if (!ib_uses_virt_dma(dev))
4150 dma_unmap_page(dev->dma_device, addr, size, direction);
4153 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4154 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4155 struct scatterlist *sg, int nents,
4156 enum dma_data_direction direction,
4157 unsigned long dma_attrs)
4159 if (ib_uses_virt_dma(dev))
4160 return ib_dma_virt_map_sg(dev, sg, nents);
4161 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4165 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4166 struct scatterlist *sg, int nents,
4167 enum dma_data_direction direction,
4168 unsigned long dma_attrs)
4170 if (!ib_uses_virt_dma(dev))
4171 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4176 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4177 * @dev: The device for which the DMA addresses are to be created
4178 * @sg: The sg_table object describing the buffer
4179 * @direction: The direction of the DMA
4180 * @attrs: Optional DMA attributes for the map operation
4182 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4183 struct sg_table *sgt,
4184 enum dma_data_direction direction,
4185 unsigned long dma_attrs)
4189 if (ib_uses_virt_dma(dev)) {
4190 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4196 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4199 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4200 struct sg_table *sgt,
4201 enum dma_data_direction direction,
4202 unsigned long dma_attrs)
4204 if (!ib_uses_virt_dma(dev))
4205 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4209 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4210 * @dev: The device for which the DMA addresses are to be created
4211 * @sg: The array of scatter/gather entries
4212 * @nents: The number of scatter/gather entries
4213 * @direction: The direction of the DMA
4215 static inline int ib_dma_map_sg(struct ib_device *dev,
4216 struct scatterlist *sg, int nents,
4217 enum dma_data_direction direction)
4219 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4223 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4224 * @dev: The device for which the DMA addresses were created
4225 * @sg: The array of scatter/gather entries
4226 * @nents: The number of scatter/gather entries
4227 * @direction: The direction of the DMA
4229 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4230 struct scatterlist *sg, int nents,
4231 enum dma_data_direction direction)
4233 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4237 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4238 * @dev: The device to query
4240 * The returned value represents a size in bytes.
4242 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4244 if (ib_uses_virt_dma(dev))
4246 return dma_get_max_seg_size(dev->dma_device);
4250 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4251 * @dev: The device for which the DMA address was created
4252 * @addr: The DMA address
4253 * @size: The size of the region in bytes
4254 * @dir: The direction of the DMA
4256 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4259 enum dma_data_direction dir)
4261 if (!ib_uses_virt_dma(dev))
4262 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4266 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4267 * @dev: The device for which the DMA address was created
4268 * @addr: The DMA address
4269 * @size: The size of the region in bytes
4270 * @dir: The direction of the DMA
4272 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4275 enum dma_data_direction dir)
4277 if (!ib_uses_virt_dma(dev))
4278 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4281 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4282 * space. This function should be called when 'current' is the owning MM.
4284 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4285 u64 virt_addr, int mr_access_flags);
4287 /* ib_advise_mr - give an advice about an address range in a memory region */
4288 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4289 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4291 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4292 * HCA translation table.
4293 * @mr: The memory region to deregister.
4294 * @udata: Valid user data or NULL for kernel object
4296 * This function can fail, if the memory region has memory windows bound to it.
4298 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4301 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4302 * HCA translation table.
4303 * @mr: The memory region to deregister.
4305 * This function can fail, if the memory region has memory windows bound to it.
4307 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4309 static inline int ib_dereg_mr(struct ib_mr *mr)
4311 return ib_dereg_mr_user(mr, NULL);
4314 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4317 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4318 u32 max_num_data_sg,
4319 u32 max_num_meta_sg);
4322 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4324 * @mr - struct ib_mr pointer to be updated.
4325 * @newkey - new key to be used.
4327 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4329 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4330 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4334 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4335 * for calculating a new rkey for type 2 memory windows.
4336 * @rkey - the rkey to increment.
4338 static inline u32 ib_inc_rkey(u32 rkey)
4340 const u32 mask = 0x000000ff;
4341 return ((rkey + 1) & mask) | (rkey & ~mask);
4345 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4346 * @qp: QP to attach to the multicast group. The QP must be type
4348 * @gid: Multicast group GID.
4349 * @lid: Multicast group LID in host byte order.
4351 * In order to send and receive multicast packets, subnet
4352 * administration must have created the multicast group and configured
4353 * the fabric appropriately. The port associated with the specified
4354 * QP must also be a member of the multicast group.
4356 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4359 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4360 * @qp: QP to detach from the multicast group.
4361 * @gid: Multicast group GID.
4362 * @lid: Multicast group LID in host byte order.
4364 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4366 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4367 struct inode *inode, struct ib_udata *udata);
4368 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4370 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4373 u64 device_cap = ib_dev->attrs.device_cap_flags;
4376 * Local write permission is required if remote write or
4377 * remote atomic permission is also requested.
4379 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4380 !(flags & IB_ACCESS_LOCAL_WRITE))
4383 if (flags & ~IB_ACCESS_SUPPORTED)
4386 if (flags & IB_ACCESS_ON_DEMAND &&
4387 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4390 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4391 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4392 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4393 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4399 static inline bool ib_access_writable(int access_flags)
4402 * We have writable memory backing the MR if any of the following
4403 * access flags are set. "Local write" and "remote write" obviously
4404 * require write access. "Remote atomic" can do things like fetch and
4405 * add, which will modify memory, and "MW bind" can change permissions
4406 * by binding a window.
4408 return access_flags &
4409 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4410 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4414 * ib_check_mr_status: lightweight check of MR status.
4415 * This routine may provide status checks on a selected
4416 * ib_mr. first use is for signature status check.
4418 * @mr: A memory region.
4419 * @check_mask: Bitmask of which checks to perform from
4420 * ib_mr_status_check enumeration.
4421 * @mr_status: The container of relevant status checks.
4422 * failed checks will be indicated in the status bitmask
4423 * and the relevant info shall be in the error item.
4425 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4426 struct ib_mr_status *mr_status);
4429 * ib_device_try_get: Hold a registration lock
4430 * device: The device to lock
4432 * A device under an active registration lock cannot become unregistered. It
4433 * is only possible to obtain a registration lock on a device that is fully
4434 * registered, otherwise this function returns false.
4436 * The registration lock is only necessary for actions which require the
4437 * device to still be registered. Uses that only require the device pointer to
4438 * be valid should use get_device(&ibdev->dev) to hold the memory.
4441 static inline bool ib_device_try_get(struct ib_device *dev)
4443 return refcount_inc_not_zero(&dev->refcount);
4446 void ib_device_put(struct ib_device *device);
4447 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4448 enum rdma_driver_id driver_id);
4449 struct ib_device *ib_device_get_by_name(const char *name,
4450 enum rdma_driver_id driver_id);
4451 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4452 u16 pkey, const union ib_gid *gid,
4453 const struct sockaddr *addr);
4454 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4456 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4457 struct ib_wq_init_attr *init_attr);
4458 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4460 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4461 unsigned int *sg_offset, unsigned int page_size);
4462 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4463 int data_sg_nents, unsigned int *data_sg_offset,
4464 struct scatterlist *meta_sg, int meta_sg_nents,
4465 unsigned int *meta_sg_offset, unsigned int page_size);
4468 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4469 unsigned int *sg_offset, unsigned int page_size)
4473 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4479 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4480 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4482 void ib_drain_rq(struct ib_qp *qp);
4483 void ib_drain_sq(struct ib_qp *qp);
4484 void ib_drain_qp(struct ib_qp *qp);
4486 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4489 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4491 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4492 return attr->roce.dmac;
4496 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4498 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4499 attr->ib.dlid = (u16)dlid;
4500 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4501 attr->opa.dlid = dlid;
4504 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4506 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4507 return attr->ib.dlid;
4508 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4509 return attr->opa.dlid;
4513 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4518 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4523 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4526 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4527 attr->ib.src_path_bits = src_path_bits;
4528 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4529 attr->opa.src_path_bits = src_path_bits;
4532 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4534 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4535 return attr->ib.src_path_bits;
4536 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4537 return attr->opa.src_path_bits;
4541 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4544 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4545 attr->opa.make_grd = make_grd;
4548 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4550 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4551 return attr->opa.make_grd;
4555 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4557 attr->port_num = port_num;
4560 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4562 return attr->port_num;
4565 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4568 attr->static_rate = static_rate;
4571 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4573 return attr->static_rate;
4576 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4577 enum ib_ah_flags flag)
4579 attr->ah_flags = flag;
4582 static inline enum ib_ah_flags
4583 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4585 return attr->ah_flags;
4588 static inline const struct ib_global_route
4589 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4594 /*To retrieve and modify the grh */
4595 static inline struct ib_global_route
4596 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4601 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4603 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4605 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4608 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4611 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4613 grh->dgid.global.subnet_prefix = prefix;
4616 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4619 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4621 grh->dgid.global.interface_id = if_id;
4624 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4625 union ib_gid *dgid, u32 flow_label,
4626 u8 sgid_index, u8 hop_limit,
4629 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4631 attr->ah_flags = IB_AH_GRH;
4634 grh->flow_label = flow_label;
4635 grh->sgid_index = sgid_index;
4636 grh->hop_limit = hop_limit;
4637 grh->traffic_class = traffic_class;
4638 grh->sgid_attr = NULL;
4641 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4642 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4643 u32 flow_label, u8 hop_limit, u8 traffic_class,
4644 const struct ib_gid_attr *sgid_attr);
4645 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4646 const struct rdma_ah_attr *src);
4647 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4648 const struct rdma_ah_attr *new);
4649 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4652 * rdma_ah_find_type - Return address handle type.
4654 * @dev: Device to be checked
4655 * @port_num: Port number
4657 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4660 if (rdma_protocol_roce(dev, port_num))
4661 return RDMA_AH_ATTR_TYPE_ROCE;
4662 if (rdma_protocol_ib(dev, port_num)) {
4663 if (rdma_cap_opa_ah(dev, port_num))
4664 return RDMA_AH_ATTR_TYPE_OPA;
4665 return RDMA_AH_ATTR_TYPE_IB;
4667 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4668 return RDMA_AH_ATTR_TYPE_IB;
4670 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4674 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4675 * In the current implementation the only way to
4676 * get the 32bit lid is from other sources for OPA.
4677 * For IB, lids will always be 16bits so cast the
4678 * value accordingly.
4682 static inline u16 ib_lid_cpu16(u32 lid)
4684 WARN_ON_ONCE(lid & 0xFFFF0000);
4689 * ib_lid_be16 - Return lid in 16bit BE encoding.
4693 static inline __be16 ib_lid_be16(u32 lid)
4695 WARN_ON_ONCE(lid & 0xFFFF0000);
4696 return cpu_to_be16((u16)lid);
4700 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4702 * @device: the rdma device
4703 * @comp_vector: index of completion vector
4705 * Returns NULL on failure, otherwise a corresponding cpu map of the
4706 * completion vector (returns all-cpus map if the device driver doesn't
4707 * implement get_vector_affinity).
4709 static inline const struct cpumask *
4710 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4712 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4713 !device->ops.get_vector_affinity)
4716 return device->ops.get_vector_affinity(device, comp_vector);
4721 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4722 * and add their gids, as needed, to the relevant RoCE devices.
4724 * @device: the rdma device
4726 void rdma_roce_rescan_device(struct ib_device *ibdev);
4728 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4730 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4732 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4733 enum rdma_netdev_t type, const char *name,
4734 unsigned char name_assign_type,
4735 void (*setup)(struct net_device *));
4737 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4738 enum rdma_netdev_t type, const char *name,
4739 unsigned char name_assign_type,
4740 void (*setup)(struct net_device *),
4741 struct net_device *netdev);
4744 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4746 * @device: device pointer for which ib_device pointer to retrieve
4748 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4751 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4753 struct ib_core_device *coredev =
4754 container_of(device, struct ib_core_device, dev);
4756 return coredev->owner;
4760 * ibdev_to_node - return the NUMA node for a given ib_device
4761 * @dev: device to get the NUMA node for.
4763 static inline int ibdev_to_node(struct ib_device *ibdev)
4765 struct device *parent = ibdev->dev.parent;
4768 return NUMA_NO_NODE;
4769 return dev_to_node(parent);
4773 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4774 * ib_device holder structure from device pointer.
4776 * NOTE: New drivers should not make use of this API; This API is only for
4777 * existing drivers who have exposed sysfs entries using
4778 * ops->device_group.
4780 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4781 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4783 bool rdma_dev_access_netns(const struct ib_device *device,
4784 const struct net *net);
4786 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4787 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4788 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4791 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4794 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4795 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4798 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4800 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4802 fl_low ^= fl_high >> 14;
4803 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4807 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4808 * local and remote qpn values
4810 * This function folded the multiplication results of two qpns, 24 bit each,
4811 * fields, and converts it to a 20 bit results.
4813 * This function will create symmetric flow_label value based on the local
4814 * and remote qpn values. this will allow both the requester and responder
4815 * to calculate the same flow_label for a given connection.
4817 * This helper function should be used by driver in case the upper layer
4818 * provide a zero flow_label value. This is to improve entropy of RDMA
4819 * traffic in the network.
4821 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4823 u64 v = (u64)lqpn * rqpn;
4828 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4832 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4833 * label. If flow label is not defined in GRH then
4834 * calculate it based on lqpn/rqpn.
4836 * @fl: flow label from GRH
4837 * @lqpn: local qp number
4838 * @rqpn: remote qp number
4840 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4843 fl = rdma_calc_flow_label(lqpn, rqpn);
4845 return rdma_flow_label_to_udp_sport(fl);
4848 const struct ib_port_immutable*
4849 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4851 /** ib_add_sub_device - Add a sub IB device on an existing one
4853 * @parent: The IB device that needs to add a sub device
4854 * @type: The type of the new sub device
4855 * @name: The name of the new sub device
4858 * Return 0 on success, an error code otherwise
4860 int ib_add_sub_device(struct ib_device *parent,
4861 enum rdma_nl_dev_type type,
4865 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4867 * @sub: The sub device that is going to be deleted
4869 * Return 0 on success, an error code otherwise
4871 int ib_del_sub_device_and_put(struct ib_device *sub);
4873 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4875 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4878 #endif /* IB_VERBS_H */