2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
106 * Array of node states.
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page *page)
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 page->index = migratetype;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
162 static gfp_t saved_gfp_mask;
164 void pm_restore_gfp_mask(void)
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
173 void pm_restrict_gfp_mask(void)
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 bool pm_suspended_storage(void)
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 #endif /* CONFIG_PM_SLEEP */
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
193 static void __free_pages_ok(struct page *page, unsigned int order);
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
210 #ifdef CONFIG_ZONE_DMA32
213 #ifdef CONFIG_HIGHMEM
219 EXPORT_SYMBOL(totalram_pages);
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
225 #ifdef CONFIG_ZONE_DMA32
229 #ifdef CONFIG_HIGHMEM
233 #ifdef CONFIG_ZONE_DEVICE
238 char * const migratetype_names[MIGRATE_TYPES] = {
246 #ifdef CONFIG_MEMORY_ISOLATION
251 compound_page_dtor * const compound_page_dtors[] = {
254 #ifdef CONFIG_HUGETLB_PAGE
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
290 int page_group_by_mobility_disabled __read_mostly;
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
295 pgdat->first_deferred_pfn = ULONG_MAX;
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
301 int nid = early_pfn_to_nid(pfn);
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
317 unsigned long max_initialise;
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
330 if ((*nr_initialised > max_initialise) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
343 static inline bool early_page_uninitialised(unsigned long pfn)
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
363 return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369 #ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
385 * Return: pageblock_bits flags
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long end_bitidx,
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long end_bitidx,
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
448 word = READ_ONCE(bitmap[word_bitidx]);
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
457 void set_pageblock_migratetype(struct page *page, int migratetype)
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
461 migratetype = MIGRATE_UNMOVABLE;
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
472 unsigned long pfn = page_to_pfn(page);
473 unsigned long sp, start_pfn;
476 seq = zone_span_seqbegin(zone);
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
479 if (!zone_spans_pfn(zone, pfn))
481 } while (zone_span_seqretry(zone, seq));
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
491 static int page_is_consistent(struct zone *zone, struct page *page)
493 if (!pfn_valid_within(page_to_pfn(page)))
495 if (zone != page_zone(page))
501 * Temporary debugging check for pages not lying within a given zone.
503 static int bad_range(struct zone *zone, struct page *page)
505 if (page_outside_zone_boundaries(zone, page))
507 if (!page_is_consistent(zone, page))
513 static inline int bad_range(struct zone *zone, struct page *page)
519 static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
537 "BUG: Bad page state: %lu messages suppressed\n",
544 resume = jiffies + 60 * HZ;
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current->comm, page_to_pfn(page));
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
553 dump_page_owner(page);
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
564 * Higher-order pages are called "compound pages". They are structured thusly:
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
578 void free_compound_page(struct page *page)
580 __free_pages_ok(page, compound_order(page));
583 void prep_compound_page(struct page *page, unsigned int order)
586 int nr_pages = 1 << order;
588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 set_compound_order(page, order);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
593 set_page_count(p, 0);
594 p->mapping = TAIL_MAPPING;
595 set_compound_head(p, page);
597 atomic_set(compound_mapcount_ptr(page), -1);
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
607 static int __init early_debug_pagealloc(char *buf)
611 return kstrtobool(buf, &_debug_pagealloc_enabled);
613 early_param("debug_pagealloc", early_debug_pagealloc);
615 static bool need_debug_guardpage(void)
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
621 if (!debug_guardpage_minorder())
627 static void init_debug_guardpage(void)
629 if (!debug_pagealloc_enabled())
632 if (!debug_guardpage_minorder())
635 _debug_guardpage_enabled = true;
638 struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
643 static int __init debug_guardpage_minorder_setup(char *buf)
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
651 _debug_guardpage_minorder = res;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 unsigned int order, int migratetype)
660 struct page_ext *page_ext;
662 if (!debug_guardpage_enabled())
665 if (order >= debug_guardpage_minorder())
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
685 struct page_ext *page_ext;
687 if (!debug_guardpage_enabled())
690 page_ext = lookup_page_ext(page);
691 if (unlikely(!page_ext))
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
708 static inline void set_page_order(struct page *page, unsigned int order)
710 set_page_private(page, order);
711 __SetPageBuddy(page);
714 static inline void rmv_page_order(struct page *page)
716 __ClearPageBuddy(page);
717 set_page_private(page, 0);
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
733 * For recording page's order, we use page_private(page).
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
738 if (page_is_guard(buddy) && page_order(buddy) == order) {
739 if (page_zone_id(page) != page_zone_id(buddy))
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
747 if (PageBuddy(buddy) && page_order(buddy) == order) {
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
753 if (page_zone_id(page) != page_zone_id(buddy))
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764 * Freeing function for a buddy system allocator.
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
788 static inline void __free_one_page(struct page *page,
790 struct zone *zone, unsigned int order,
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
796 unsigned int max_order;
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
800 VM_BUG_ON(!zone_is_initialized(zone));
801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
803 VM_BUG_ON(migratetype == -1);
804 if (likely(!is_migrate_isolate(migratetype)))
805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
811 while (order < max_order - 1) {
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
815 if (!pfn_valid_within(buddy_pfn))
817 if (!page_is_buddy(page, buddy, order))
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
823 if (page_is_guard(buddy)) {
824 clear_page_guard(zone, buddy, order, migratetype);
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
841 * We don't want to hit this code for the more frequent
844 if (unlikely(has_isolate_pageblock(zone))) {
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
849 buddy_mt = get_pageblock_migratetype(buddy);
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
857 goto continue_merging;
861 set_page_order(page, order);
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 struct page *higher_page, *higher_buddy;
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
887 zone->free_area[order].nr_free++;
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
895 static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
904 (unsigned long)page->mem_cgroup |
906 (page->flags & check_flags)))
912 static void free_pages_check_bad(struct page *page)
914 const char *bad_reason;
915 unsigned long bad_flags;
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
924 if (unlikely(page_ref_count(page) != 0))
925 bad_reason = "nonzero _refcount";
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
934 bad_page(page, bad_reason, bad_flags);
937 static inline int free_pages_check(struct page *page)
939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
961 switch (page - head_page) {
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
992 page->mapping = NULL;
993 clear_compound_head(page);
997 static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1018 ClearPageDoubleMap(page);
1019 for (i = 1; i < (1 << order); i++) {
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 if (PageMappingFlags(page))
1030 page->mapping = NULL;
1031 if (memcg_kmem_enabled() && PageKmemcg(page))
1032 memcg_kmem_uncharge(page, order);
1034 bad += free_pages_check(page);
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
1044 PAGE_SIZE << order);
1045 debug_check_no_obj_freed(page_address(page),
1046 PAGE_SIZE << order);
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
1051 kasan_free_pages(page, order);
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1059 return free_pages_prepare(page, 0, true);
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1067 static bool free_pcp_prepare(struct page *page)
1069 return free_pages_prepare(page, 0, false);
1072 static bool bulkfree_pcp_prepare(struct page *page)
1074 return free_pages_check(page);
1076 #endif /* CONFIG_DEBUG_VM */
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1092 int migratetype = 0;
1094 unsigned long nr_scanned, flags;
1095 bool isolated_pageblocks;
1097 spin_lock_irqsave(&zone->lock, flags);
1098 isolated_pageblocks = has_isolate_pageblock(zone);
1099 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1101 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1105 struct list_head *list;
1108 * Remove pages from lists in a round-robin fashion. A
1109 * batch_free count is maintained that is incremented when an
1110 * empty list is encountered. This is so more pages are freed
1111 * off fuller lists instead of spinning excessively around empty
1116 if (++migratetype == MIGRATE_PCPTYPES)
1118 list = &pcp->lists[migratetype];
1119 } while (list_empty(list));
1121 /* This is the only non-empty list. Free them all. */
1122 if (batch_free == MIGRATE_PCPTYPES)
1126 int mt; /* migratetype of the to-be-freed page */
1128 page = list_last_entry(list, struct page, lru);
1129 /* must delete as __free_one_page list manipulates */
1130 list_del(&page->lru);
1132 mt = get_pcppage_migratetype(page);
1133 /* MIGRATE_ISOLATE page should not go to pcplists */
1134 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1135 /* Pageblock could have been isolated meanwhile */
1136 if (unlikely(isolated_pageblocks))
1137 mt = get_pageblock_migratetype(page);
1139 if (bulkfree_pcp_prepare(page))
1142 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1143 trace_mm_page_pcpu_drain(page, 0, mt);
1144 } while (--count && --batch_free && !list_empty(list));
1146 spin_unlock_irqrestore(&zone->lock, flags);
1149 static void free_one_page(struct zone *zone,
1150 struct page *page, unsigned long pfn,
1154 unsigned long nr_scanned, flags;
1155 spin_lock_irqsave(&zone->lock, flags);
1156 __count_vm_events(PGFREE, 1 << order);
1157 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1159 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1161 if (unlikely(has_isolate_pageblock(zone) ||
1162 is_migrate_isolate(migratetype))) {
1163 migratetype = get_pfnblock_migratetype(page, pfn);
1165 __free_one_page(page, pfn, zone, order, migratetype);
1166 spin_unlock_irqrestore(&zone->lock, flags);
1169 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1170 unsigned long zone, int nid)
1172 set_page_links(page, zone, nid, pfn);
1173 init_page_count(page);
1174 page_mapcount_reset(page);
1175 page_cpupid_reset_last(page);
1177 INIT_LIST_HEAD(&page->lru);
1178 #ifdef WANT_PAGE_VIRTUAL
1179 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1180 if (!is_highmem_idx(zone))
1181 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1188 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192 static void init_reserved_page(unsigned long pfn)
1197 if (!early_page_uninitialised(pfn))
1200 nid = early_pfn_to_nid(pfn);
1201 pgdat = NODE_DATA(nid);
1203 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 struct zone *zone = &pgdat->node_zones[zid];
1206 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1209 __init_single_pfn(pfn, zid, nid);
1212 static inline void init_reserved_page(unsigned long pfn)
1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1218 * Initialised pages do not have PageReserved set. This function is
1219 * called for each range allocated by the bootmem allocator and
1220 * marks the pages PageReserved. The remaining valid pages are later
1221 * sent to the buddy page allocator.
1223 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1225 unsigned long start_pfn = PFN_DOWN(start);
1226 unsigned long end_pfn = PFN_UP(end);
1228 for (; start_pfn < end_pfn; start_pfn++) {
1229 if (pfn_valid(start_pfn)) {
1230 struct page *page = pfn_to_page(start_pfn);
1232 init_reserved_page(start_pfn);
1234 /* Avoid false-positive PageTail() */
1235 INIT_LIST_HEAD(&page->lru);
1237 SetPageReserved(page);
1242 static void __free_pages_ok(struct page *page, unsigned int order)
1245 unsigned long pfn = page_to_pfn(page);
1247 if (!free_pages_prepare(page, order, true))
1250 migratetype = get_pfnblock_migratetype(page, pfn);
1251 free_one_page(page_zone(page), page, pfn, order, migratetype);
1254 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1256 unsigned int nr_pages = 1 << order;
1257 struct page *p = page;
1261 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
1266 __ClearPageReserved(p);
1267 set_page_count(p, 0);
1269 page_zone(page)->managed_pages += nr_pages;
1270 set_page_refcounted(page);
1271 __free_pages(page, order);
1274 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1275 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1277 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279 int __meminit early_pfn_to_nid(unsigned long pfn)
1281 static DEFINE_SPINLOCK(early_pfn_lock);
1284 spin_lock(&early_pfn_lock);
1285 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1287 nid = first_online_node;
1288 spin_unlock(&early_pfn_lock);
1294 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1295 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1296 struct mminit_pfnnid_cache *state)
1300 nid = __early_pfn_to_nid(pfn, state);
1301 if (nid >= 0 && nid != node)
1306 /* Only safe to use early in boot when initialisation is single-threaded */
1307 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1318 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1319 struct mminit_pfnnid_cache *state)
1326 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1329 if (early_page_uninitialised(pfn))
1331 return __free_pages_boot_core(page, order);
1335 * Check that the whole (or subset of) a pageblock given by the interval of
1336 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1337 * with the migration of free compaction scanner. The scanners then need to
1338 * use only pfn_valid_within() check for arches that allow holes within
1341 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1343 * It's possible on some configurations to have a setup like node0 node1 node0
1344 * i.e. it's possible that all pages within a zones range of pages do not
1345 * belong to a single zone. We assume that a border between node0 and node1
1346 * can occur within a single pageblock, but not a node0 node1 node0
1347 * interleaving within a single pageblock. It is therefore sufficient to check
1348 * the first and last page of a pageblock and avoid checking each individual
1349 * page in a pageblock.
1351 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1352 unsigned long end_pfn, struct zone *zone)
1354 struct page *start_page;
1355 struct page *end_page;
1357 /* end_pfn is one past the range we are checking */
1360 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1363 start_page = pfn_to_page(start_pfn);
1365 if (page_zone(start_page) != zone)
1368 end_page = pfn_to_page(end_pfn);
1370 /* This gives a shorter code than deriving page_zone(end_page) */
1371 if (page_zone_id(start_page) != page_zone_id(end_page))
1377 void set_zone_contiguous(struct zone *zone)
1379 unsigned long block_start_pfn = zone->zone_start_pfn;
1380 unsigned long block_end_pfn;
1382 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1383 for (; block_start_pfn < zone_end_pfn(zone);
1384 block_start_pfn = block_end_pfn,
1385 block_end_pfn += pageblock_nr_pages) {
1387 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1389 if (!__pageblock_pfn_to_page(block_start_pfn,
1390 block_end_pfn, zone))
1394 /* We confirm that there is no hole */
1395 zone->contiguous = true;
1398 void clear_zone_contiguous(struct zone *zone)
1400 zone->contiguous = false;
1403 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1404 static void __init deferred_free_range(struct page *page,
1405 unsigned long pfn, int nr_pages)
1412 /* Free a large naturally-aligned chunk if possible */
1413 if (nr_pages == pageblock_nr_pages &&
1414 (pfn & (pageblock_nr_pages - 1)) == 0) {
1415 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1416 __free_pages_boot_core(page, pageblock_order);
1420 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1421 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 __free_pages_boot_core(page, 0);
1427 /* Completion tracking for deferred_init_memmap() threads */
1428 static atomic_t pgdat_init_n_undone __initdata;
1429 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1431 static inline void __init pgdat_init_report_one_done(void)
1433 if (atomic_dec_and_test(&pgdat_init_n_undone))
1434 complete(&pgdat_init_all_done_comp);
1437 /* Initialise remaining memory on a node */
1438 static int __init deferred_init_memmap(void *data)
1440 pg_data_t *pgdat = data;
1441 int nid = pgdat->node_id;
1442 struct mminit_pfnnid_cache nid_init_state = { };
1443 unsigned long start = jiffies;
1444 unsigned long nr_pages = 0;
1445 unsigned long walk_start, walk_end;
1448 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1449 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1451 if (first_init_pfn == ULONG_MAX) {
1452 pgdat_init_report_one_done();
1456 /* Bind memory initialisation thread to a local node if possible */
1457 if (!cpumask_empty(cpumask))
1458 set_cpus_allowed_ptr(current, cpumask);
1460 /* Sanity check boundaries */
1461 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1462 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1463 pgdat->first_deferred_pfn = ULONG_MAX;
1465 /* Only the highest zone is deferred so find it */
1466 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1467 zone = pgdat->node_zones + zid;
1468 if (first_init_pfn < zone_end_pfn(zone))
1472 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1473 unsigned long pfn, end_pfn;
1474 struct page *page = NULL;
1475 struct page *free_base_page = NULL;
1476 unsigned long free_base_pfn = 0;
1479 end_pfn = min(walk_end, zone_end_pfn(zone));
1480 pfn = first_init_pfn;
1481 if (pfn < walk_start)
1483 if (pfn < zone->zone_start_pfn)
1484 pfn = zone->zone_start_pfn;
1486 for (; pfn < end_pfn; pfn++) {
1487 if (!pfn_valid_within(pfn))
1491 * Ensure pfn_valid is checked every
1492 * pageblock_nr_pages for memory holes
1494 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1495 if (!pfn_valid(pfn)) {
1501 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1506 /* Minimise pfn page lookups and scheduler checks */
1507 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1510 nr_pages += nr_to_free;
1511 deferred_free_range(free_base_page,
1512 free_base_pfn, nr_to_free);
1513 free_base_page = NULL;
1514 free_base_pfn = nr_to_free = 0;
1516 page = pfn_to_page(pfn);
1521 VM_BUG_ON(page_zone(page) != zone);
1525 __init_single_page(page, pfn, zid, nid);
1526 if (!free_base_page) {
1527 free_base_page = page;
1528 free_base_pfn = pfn;
1533 /* Where possible, batch up pages for a single free */
1536 /* Free the current block of pages to allocator */
1537 nr_pages += nr_to_free;
1538 deferred_free_range(free_base_page, free_base_pfn,
1540 free_base_page = NULL;
1541 free_base_pfn = nr_to_free = 0;
1543 /* Free the last block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1547 first_init_pfn = max(end_pfn, first_init_pfn);
1550 /* Sanity check that the next zone really is unpopulated */
1551 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1553 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1554 jiffies_to_msecs(jiffies - start));
1556 pgdat_init_report_one_done();
1559 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1561 void __init page_alloc_init_late(void)
1565 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1568 /* There will be num_node_state(N_MEMORY) threads */
1569 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1570 for_each_node_state(nid, N_MEMORY) {
1571 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1574 /* Block until all are initialised */
1575 wait_for_completion(&pgdat_init_all_done_comp);
1577 /* Reinit limits that are based on free pages after the kernel is up */
1578 files_maxfiles_init();
1581 for_each_populated_zone(zone)
1582 set_zone_contiguous(zone);
1586 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1587 void __init init_cma_reserved_pageblock(struct page *page)
1589 unsigned i = pageblock_nr_pages;
1590 struct page *p = page;
1593 __ClearPageReserved(p);
1594 set_page_count(p, 0);
1597 set_pageblock_migratetype(page, MIGRATE_CMA);
1599 if (pageblock_order >= MAX_ORDER) {
1600 i = pageblock_nr_pages;
1603 set_page_refcounted(p);
1604 __free_pages(p, MAX_ORDER - 1);
1605 p += MAX_ORDER_NR_PAGES;
1606 } while (i -= MAX_ORDER_NR_PAGES);
1608 set_page_refcounted(page);
1609 __free_pages(page, pageblock_order);
1612 adjust_managed_page_count(page, pageblock_nr_pages);
1617 * The order of subdivision here is critical for the IO subsystem.
1618 * Please do not alter this order without good reasons and regression
1619 * testing. Specifically, as large blocks of memory are subdivided,
1620 * the order in which smaller blocks are delivered depends on the order
1621 * they're subdivided in this function. This is the primary factor
1622 * influencing the order in which pages are delivered to the IO
1623 * subsystem according to empirical testing, and this is also justified
1624 * by considering the behavior of a buddy system containing a single
1625 * large block of memory acted on by a series of small allocations.
1626 * This behavior is a critical factor in sglist merging's success.
1630 static inline void expand(struct zone *zone, struct page *page,
1631 int low, int high, struct free_area *area,
1634 unsigned long size = 1 << high;
1636 while (high > low) {
1640 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1643 * Mark as guard pages (or page), that will allow to
1644 * merge back to allocator when buddy will be freed.
1645 * Corresponding page table entries will not be touched,
1646 * pages will stay not present in virtual address space
1648 if (set_page_guard(zone, &page[size], high, migratetype))
1651 list_add(&page[size].lru, &area->free_list[migratetype]);
1653 set_page_order(&page[size], high);
1657 static void check_new_page_bad(struct page *page)
1659 const char *bad_reason = NULL;
1660 unsigned long bad_flags = 0;
1662 if (unlikely(atomic_read(&page->_mapcount) != -1))
1663 bad_reason = "nonzero mapcount";
1664 if (unlikely(page->mapping != NULL))
1665 bad_reason = "non-NULL mapping";
1666 if (unlikely(page_ref_count(page) != 0))
1667 bad_reason = "nonzero _count";
1668 if (unlikely(page->flags & __PG_HWPOISON)) {
1669 bad_reason = "HWPoisoned (hardware-corrupted)";
1670 bad_flags = __PG_HWPOISON;
1671 /* Don't complain about hwpoisoned pages */
1672 page_mapcount_reset(page); /* remove PageBuddy */
1675 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1676 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1677 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1680 if (unlikely(page->mem_cgroup))
1681 bad_reason = "page still charged to cgroup";
1683 bad_page(page, bad_reason, bad_flags);
1687 * This page is about to be returned from the page allocator
1689 static inline int check_new_page(struct page *page)
1691 if (likely(page_expected_state(page,
1692 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1695 check_new_page_bad(page);
1699 static inline bool free_pages_prezeroed(bool poisoned)
1701 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1702 page_poisoning_enabled() && poisoned;
1705 #ifdef CONFIG_DEBUG_VM
1706 static bool check_pcp_refill(struct page *page)
1711 static bool check_new_pcp(struct page *page)
1713 return check_new_page(page);
1716 static bool check_pcp_refill(struct page *page)
1718 return check_new_page(page);
1720 static bool check_new_pcp(struct page *page)
1724 #endif /* CONFIG_DEBUG_VM */
1726 static bool check_new_pages(struct page *page, unsigned int order)
1729 for (i = 0; i < (1 << order); i++) {
1730 struct page *p = page + i;
1732 if (unlikely(check_new_page(p)))
1739 inline void post_alloc_hook(struct page *page, unsigned int order,
1742 set_page_private(page, 0);
1743 set_page_refcounted(page);
1745 arch_alloc_page(page, order);
1746 kernel_map_pages(page, 1 << order, 1);
1747 kernel_poison_pages(page, 1 << order, 1);
1748 kasan_alloc_pages(page, order);
1749 set_page_owner(page, order, gfp_flags);
1752 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1753 unsigned int alloc_flags)
1756 bool poisoned = true;
1758 for (i = 0; i < (1 << order); i++) {
1759 struct page *p = page + i;
1761 poisoned &= page_is_poisoned(p);
1764 post_alloc_hook(page, order, gfp_flags);
1766 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1767 for (i = 0; i < (1 << order); i++)
1768 clear_highpage(page + i);
1770 if (order && (gfp_flags & __GFP_COMP))
1771 prep_compound_page(page, order);
1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1779 if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 set_page_pfmemalloc(page);
1782 clear_page_pfmemalloc(page);
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1793 unsigned int current_order;
1794 struct free_area *area;
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 area = &(zone->free_area[current_order]);
1800 page = list_first_entry_or_null(&area->free_list[migratetype],
1804 list_del(&page->lru);
1805 rmv_page_order(page);
1807 expand(zone, page, order, current_order, area, migratetype);
1808 set_pcppage_migratetype(page, migratetype);
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1820 static int fallbacks[MIGRATE_TYPES][4] = {
1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1833 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order) { return NULL; }
1844 * Move the free pages in a range to the free lists of the requested type.
1845 * Note that start_page and end_pages are not aligned on a pageblock
1846 * boundary. If alignment is required, use move_freepages_block()
1848 int move_freepages(struct zone *zone,
1849 struct page *start_page, struct page *end_page,
1854 int pages_moved = 0;
1856 #ifndef CONFIG_HOLES_IN_ZONE
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
1862 * grouping pages by mobility
1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1867 for (page = start_page; page <= end_page;) {
1868 if (!pfn_valid_within(page_to_pfn(page))) {
1873 /* Make sure we are not inadvertently changing nodes */
1874 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1876 if (!PageBuddy(page)) {
1881 order = page_order(page);
1882 list_move(&page->lru,
1883 &zone->free_area[order].free_list[migratetype]);
1885 pages_moved += 1 << order;
1891 int move_freepages_block(struct zone *zone, struct page *page,
1894 unsigned long start_pfn, end_pfn;
1895 struct page *start_page, *end_page;
1897 start_pfn = page_to_pfn(page);
1898 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1899 start_page = pfn_to_page(start_pfn);
1900 end_page = start_page + pageblock_nr_pages - 1;
1901 end_pfn = start_pfn + pageblock_nr_pages - 1;
1903 /* Do not cross zone boundaries */
1904 if (!zone_spans_pfn(zone, start_pfn))
1906 if (!zone_spans_pfn(zone, end_pfn))
1909 return move_freepages(zone, start_page, end_page, migratetype);
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 int start_order, int migratetype)
1915 int nr_pageblocks = 1 << (start_order - pageblock_order);
1917 while (nr_pageblocks--) {
1918 set_pageblock_migratetype(pageblock_page, migratetype);
1919 pageblock_page += pageblock_nr_pages;
1924 * When we are falling back to another migratetype during allocation, try to
1925 * steal extra free pages from the same pageblocks to satisfy further
1926 * allocations, instead of polluting multiple pageblocks.
1928 * If we are stealing a relatively large buddy page, it is likely there will
1929 * be more free pages in the pageblock, so try to steal them all. For
1930 * reclaimable and unmovable allocations, we steal regardless of page size,
1931 * as fragmentation caused by those allocations polluting movable pageblocks
1932 * is worse than movable allocations stealing from unmovable and reclaimable
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1938 * Leaving this order check is intended, although there is
1939 * relaxed order check in next check. The reason is that
1940 * we can actually steal whole pageblock if this condition met,
1941 * but, below check doesn't guarantee it and that is just heuristic
1942 * so could be changed anytime.
1944 if (order >= pageblock_order)
1947 if (order >= pageblock_order / 2 ||
1948 start_mt == MIGRATE_RECLAIMABLE ||
1949 start_mt == MIGRATE_UNMOVABLE ||
1950 page_group_by_mobility_disabled)
1957 * This function implements actual steal behaviour. If order is large enough,
1958 * we can steal whole pageblock. If not, we first move freepages in this
1959 * pageblock and check whether half of pages are moved or not. If half of
1960 * pages are moved, we can change migratetype of pageblock and permanently
1961 * use it's pages as requested migratetype in the future.
1963 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1966 unsigned int current_order = page_order(page);
1969 /* Take ownership for orders >= pageblock_order */
1970 if (current_order >= pageblock_order) {
1971 change_pageblock_range(page, current_order, start_type);
1975 pages = move_freepages_block(zone, page, start_type);
1977 /* Claim the whole block if over half of it is free */
1978 if (pages >= (1 << (pageblock_order-1)) ||
1979 page_group_by_mobility_disabled)
1980 set_pageblock_migratetype(page, start_type);
1984 * Check whether there is a suitable fallback freepage with requested order.
1985 * If only_stealable is true, this function returns fallback_mt only if
1986 * we can steal other freepages all together. This would help to reduce
1987 * fragmentation due to mixed migratetype pages in one pageblock.
1989 int find_suitable_fallback(struct free_area *area, unsigned int order,
1990 int migratetype, bool only_stealable, bool *can_steal)
1995 if (area->nr_free == 0)
2000 fallback_mt = fallbacks[migratetype][i];
2001 if (fallback_mt == MIGRATE_TYPES)
2004 if (list_empty(&area->free_list[fallback_mt]))
2007 if (can_steal_fallback(order, migratetype))
2010 if (!only_stealable)
2021 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2022 * there are no empty page blocks that contain a page with a suitable order
2024 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2025 unsigned int alloc_order)
2028 unsigned long max_managed, flags;
2031 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2032 * Check is race-prone but harmless.
2034 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2035 if (zone->nr_reserved_highatomic >= max_managed)
2038 spin_lock_irqsave(&zone->lock, flags);
2040 /* Recheck the nr_reserved_highatomic limit under the lock */
2041 if (zone->nr_reserved_highatomic >= max_managed)
2045 mt = get_pageblock_migratetype(page);
2046 if (mt != MIGRATE_HIGHATOMIC &&
2047 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2048 zone->nr_reserved_highatomic += pageblock_nr_pages;
2049 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2050 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2054 spin_unlock_irqrestore(&zone->lock, flags);
2058 * Used when an allocation is about to fail under memory pressure. This
2059 * potentially hurts the reliability of high-order allocations when under
2060 * intense memory pressure but failed atomic allocations should be easier
2061 * to recover from than an OOM.
2063 * If @force is true, try to unreserve a pageblock even though highatomic
2064 * pageblock is exhausted.
2066 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2069 struct zonelist *zonelist = ac->zonelist;
2070 unsigned long flags;
2077 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2080 * Preserve at least one pageblock unless memory pressure
2083 if (!force && zone->nr_reserved_highatomic <=
2087 spin_lock_irqsave(&zone->lock, flags);
2088 for (order = 0; order < MAX_ORDER; order++) {
2089 struct free_area *area = &(zone->free_area[order]);
2091 page = list_first_entry_or_null(
2092 &area->free_list[MIGRATE_HIGHATOMIC],
2098 * In page freeing path, migratetype change is racy so
2099 * we can counter several free pages in a pageblock
2100 * in this loop althoug we changed the pageblock type
2101 * from highatomic to ac->migratetype. So we should
2102 * adjust the count once.
2104 if (get_pageblock_migratetype(page) ==
2105 MIGRATE_HIGHATOMIC) {
2107 * It should never happen but changes to
2108 * locking could inadvertently allow a per-cpu
2109 * drain to add pages to MIGRATE_HIGHATOMIC
2110 * while unreserving so be safe and watch for
2113 zone->nr_reserved_highatomic -= min(
2115 zone->nr_reserved_highatomic);
2119 * Convert to ac->migratetype and avoid the normal
2120 * pageblock stealing heuristics. Minimally, the caller
2121 * is doing the work and needs the pages. More
2122 * importantly, if the block was always converted to
2123 * MIGRATE_UNMOVABLE or another type then the number
2124 * of pageblocks that cannot be completely freed
2127 set_pageblock_migratetype(page, ac->migratetype);
2128 ret = move_freepages_block(zone, page, ac->migratetype);
2130 spin_unlock_irqrestore(&zone->lock, flags);
2134 spin_unlock_irqrestore(&zone->lock, flags);
2140 /* Remove an element from the buddy allocator from the fallback list */
2141 static inline struct page *
2142 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2144 struct free_area *area;
2145 unsigned int current_order;
2150 /* Find the largest possible block of pages in the other list */
2151 for (current_order = MAX_ORDER-1;
2152 current_order >= order && current_order <= MAX_ORDER-1;
2154 area = &(zone->free_area[current_order]);
2155 fallback_mt = find_suitable_fallback(area, current_order,
2156 start_migratetype, false, &can_steal);
2157 if (fallback_mt == -1)
2160 page = list_first_entry(&area->free_list[fallback_mt],
2163 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2164 steal_suitable_fallback(zone, page, start_migratetype);
2166 /* Remove the page from the freelists */
2168 list_del(&page->lru);
2169 rmv_page_order(page);
2171 expand(zone, page, order, current_order, area,
2174 * The pcppage_migratetype may differ from pageblock's
2175 * migratetype depending on the decisions in
2176 * find_suitable_fallback(). This is OK as long as it does not
2177 * differ for MIGRATE_CMA pageblocks. Those can be used as
2178 * fallback only via special __rmqueue_cma_fallback() function
2180 set_pcppage_migratetype(page, start_migratetype);
2182 trace_mm_page_alloc_extfrag(page, order, current_order,
2183 start_migratetype, fallback_mt);
2192 * Do the hard work of removing an element from the buddy allocator.
2193 * Call me with the zone->lock already held.
2195 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2200 page = __rmqueue_smallest(zone, order, migratetype);
2201 if (unlikely(!page)) {
2202 if (migratetype == MIGRATE_MOVABLE)
2203 page = __rmqueue_cma_fallback(zone, order);
2206 page = __rmqueue_fallback(zone, order, migratetype);
2209 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2214 * Obtain a specified number of elements from the buddy allocator, all under
2215 * a single hold of the lock, for efficiency. Add them to the supplied list.
2216 * Returns the number of new pages which were placed at *list.
2218 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2219 unsigned long count, struct list_head *list,
2220 int migratetype, bool cold)
2223 unsigned long flags;
2225 spin_lock_irqsave(&zone->lock, flags);
2226 for (i = 0; i < count; ++i) {
2227 struct page *page = __rmqueue(zone, order, migratetype);
2228 if (unlikely(page == NULL))
2231 if (unlikely(check_pcp_refill(page)))
2235 * Split buddy pages returned by expand() are received here
2236 * in physical page order. The page is added to the callers and
2237 * list and the list head then moves forward. From the callers
2238 * perspective, the linked list is ordered by page number in
2239 * some conditions. This is useful for IO devices that can
2240 * merge IO requests if the physical pages are ordered
2244 list_add(&page->lru, list);
2246 list_add_tail(&page->lru, list);
2249 if (is_migrate_cma(get_pcppage_migratetype(page)))
2250 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2255 * i pages were removed from the buddy list even if some leak due
2256 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2257 * on i. Do not confuse with 'alloced' which is the number of
2258 * pages added to the pcp list.
2260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2261 spin_unlock_irqrestore(&zone->lock, flags);
2267 * Called from the vmstat counter updater to drain pagesets of this
2268 * currently executing processor on remote nodes after they have
2271 * Note that this function must be called with the thread pinned to
2272 * a single processor.
2274 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2276 unsigned long flags;
2277 int to_drain, batch;
2279 local_irq_save(flags);
2280 batch = READ_ONCE(pcp->batch);
2281 to_drain = min(pcp->count, batch);
2283 free_pcppages_bulk(zone, to_drain, pcp);
2284 pcp->count -= to_drain;
2286 local_irq_restore(flags);
2291 * Drain pcplists of the indicated processor and zone.
2293 * The processor must either be the current processor and the
2294 * thread pinned to the current processor or a processor that
2297 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2299 unsigned long flags;
2300 struct per_cpu_pageset *pset;
2301 struct per_cpu_pages *pcp;
2303 local_irq_save(flags);
2304 pset = per_cpu_ptr(zone->pageset, cpu);
2308 free_pcppages_bulk(zone, pcp->count, pcp);
2311 local_irq_restore(flags);
2315 * Drain pcplists of all zones on the indicated processor.
2317 * The processor must either be the current processor and the
2318 * thread pinned to the current processor or a processor that
2321 static void drain_pages(unsigned int cpu)
2325 for_each_populated_zone(zone) {
2326 drain_pages_zone(cpu, zone);
2331 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2333 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2334 * the single zone's pages.
2336 void drain_local_pages(struct zone *zone)
2338 int cpu = smp_processor_id();
2341 drain_pages_zone(cpu, zone);
2346 static void drain_local_pages_wq(struct work_struct *work)
2349 * drain_all_pages doesn't use proper cpu hotplug protection so
2350 * we can race with cpu offline when the WQ can move this from
2351 * a cpu pinned worker to an unbound one. We can operate on a different
2352 * cpu which is allright but we also have to make sure to not move to
2356 drain_local_pages(NULL);
2361 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2363 * When zone parameter is non-NULL, spill just the single zone's pages.
2365 * Note that this can be extremely slow as the draining happens in a workqueue.
2367 void drain_all_pages(struct zone *zone)
2372 * Allocate in the BSS so we wont require allocation in
2373 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2375 static cpumask_t cpus_with_pcps;
2377 /* Workqueues cannot recurse */
2378 if (current->flags & PF_WQ_WORKER)
2382 * Do not drain if one is already in progress unless it's specific to
2383 * a zone. Such callers are primarily CMA and memory hotplug and need
2384 * the drain to be complete when the call returns.
2386 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2389 mutex_lock(&pcpu_drain_mutex);
2393 * We don't care about racing with CPU hotplug event
2394 * as offline notification will cause the notified
2395 * cpu to drain that CPU pcps and on_each_cpu_mask
2396 * disables preemption as part of its processing
2398 for_each_online_cpu(cpu) {
2399 struct per_cpu_pageset *pcp;
2401 bool has_pcps = false;
2404 pcp = per_cpu_ptr(zone->pageset, cpu);
2408 for_each_populated_zone(z) {
2409 pcp = per_cpu_ptr(z->pageset, cpu);
2410 if (pcp->pcp.count) {
2418 cpumask_set_cpu(cpu, &cpus_with_pcps);
2420 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2423 for_each_cpu(cpu, &cpus_with_pcps) {
2424 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2425 INIT_WORK(work, drain_local_pages_wq);
2426 schedule_work_on(cpu, work);
2428 for_each_cpu(cpu, &cpus_with_pcps)
2429 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2431 mutex_unlock(&pcpu_drain_mutex);
2434 #ifdef CONFIG_HIBERNATION
2436 void mark_free_pages(struct zone *zone)
2438 unsigned long pfn, max_zone_pfn;
2439 unsigned long flags;
2440 unsigned int order, t;
2443 if (zone_is_empty(zone))
2446 spin_lock_irqsave(&zone->lock, flags);
2448 max_zone_pfn = zone_end_pfn(zone);
2449 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2450 if (pfn_valid(pfn)) {
2451 page = pfn_to_page(pfn);
2453 if (page_zone(page) != zone)
2456 if (!swsusp_page_is_forbidden(page))
2457 swsusp_unset_page_free(page);
2460 for_each_migratetype_order(order, t) {
2461 list_for_each_entry(page,
2462 &zone->free_area[order].free_list[t], lru) {
2465 pfn = page_to_pfn(page);
2466 for (i = 0; i < (1UL << order); i++)
2467 swsusp_set_page_free(pfn_to_page(pfn + i));
2470 spin_unlock_irqrestore(&zone->lock, flags);
2472 #endif /* CONFIG_PM */
2475 * Free a 0-order page
2476 * cold == true ? free a cold page : free a hot page
2478 void free_hot_cold_page(struct page *page, bool cold)
2480 struct zone *zone = page_zone(page);
2481 struct per_cpu_pages *pcp;
2482 unsigned long pfn = page_to_pfn(page);
2485 if (in_interrupt()) {
2486 __free_pages_ok(page, 0);
2490 if (!free_pcp_prepare(page))
2493 migratetype = get_pfnblock_migratetype(page, pfn);
2494 set_pcppage_migratetype(page, migratetype);
2498 * We only track unmovable, reclaimable and movable on pcp lists.
2499 * Free ISOLATE pages back to the allocator because they are being
2500 * offlined but treat RESERVE as movable pages so we can get those
2501 * areas back if necessary. Otherwise, we may have to free
2502 * excessively into the page allocator
2504 if (migratetype >= MIGRATE_PCPTYPES) {
2505 if (unlikely(is_migrate_isolate(migratetype))) {
2506 free_one_page(zone, page, pfn, 0, migratetype);
2509 migratetype = MIGRATE_MOVABLE;
2512 __count_vm_event(PGFREE);
2513 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2515 list_add(&page->lru, &pcp->lists[migratetype]);
2517 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2519 if (pcp->count >= pcp->high) {
2520 unsigned long batch = READ_ONCE(pcp->batch);
2521 free_pcppages_bulk(zone, batch, pcp);
2522 pcp->count -= batch;
2530 * Free a list of 0-order pages
2532 void free_hot_cold_page_list(struct list_head *list, bool cold)
2534 struct page *page, *next;
2536 list_for_each_entry_safe(page, next, list, lru) {
2537 trace_mm_page_free_batched(page, cold);
2538 free_hot_cold_page(page, cold);
2543 * split_page takes a non-compound higher-order page, and splits it into
2544 * n (1<<order) sub-pages: page[0..n]
2545 * Each sub-page must be freed individually.
2547 * Note: this is probably too low level an operation for use in drivers.
2548 * Please consult with lkml before using this in your driver.
2550 void split_page(struct page *page, unsigned int order)
2554 VM_BUG_ON_PAGE(PageCompound(page), page);
2555 VM_BUG_ON_PAGE(!page_count(page), page);
2557 #ifdef CONFIG_KMEMCHECK
2559 * Split shadow pages too, because free(page[0]) would
2560 * otherwise free the whole shadow.
2562 if (kmemcheck_page_is_tracked(page))
2563 split_page(virt_to_page(page[0].shadow), order);
2566 for (i = 1; i < (1 << order); i++)
2567 set_page_refcounted(page + i);
2568 split_page_owner(page, order);
2570 EXPORT_SYMBOL_GPL(split_page);
2572 int __isolate_free_page(struct page *page, unsigned int order)
2574 unsigned long watermark;
2578 BUG_ON(!PageBuddy(page));
2580 zone = page_zone(page);
2581 mt = get_pageblock_migratetype(page);
2583 if (!is_migrate_isolate(mt)) {
2585 * Obey watermarks as if the page was being allocated. We can
2586 * emulate a high-order watermark check with a raised order-0
2587 * watermark, because we already know our high-order page
2590 watermark = min_wmark_pages(zone) + (1UL << order);
2591 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2594 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2597 /* Remove page from free list */
2598 list_del(&page->lru);
2599 zone->free_area[order].nr_free--;
2600 rmv_page_order(page);
2603 * Set the pageblock if the isolated page is at least half of a
2606 if (order >= pageblock_order - 1) {
2607 struct page *endpage = page + (1 << order) - 1;
2608 for (; page < endpage; page += pageblock_nr_pages) {
2609 int mt = get_pageblock_migratetype(page);
2610 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2611 && mt != MIGRATE_HIGHATOMIC)
2612 set_pageblock_migratetype(page,
2618 return 1UL << order;
2622 * Update NUMA hit/miss statistics
2624 * Must be called with interrupts disabled.
2626 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2629 enum zone_stat_item local_stat = NUMA_LOCAL;
2631 if (z->node != numa_node_id())
2632 local_stat = NUMA_OTHER;
2634 if (z->node == preferred_zone->node)
2635 __inc_zone_state(z, NUMA_HIT);
2637 __inc_zone_state(z, NUMA_MISS);
2638 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2640 __inc_zone_state(z, local_stat);
2644 /* Remove page from the per-cpu list, caller must protect the list */
2645 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2646 bool cold, struct per_cpu_pages *pcp,
2647 struct list_head *list)
2651 VM_BUG_ON(in_interrupt());
2654 if (list_empty(list)) {
2655 pcp->count += rmqueue_bulk(zone, 0,
2658 if (unlikely(list_empty(list)))
2663 page = list_last_entry(list, struct page, lru);
2665 page = list_first_entry(list, struct page, lru);
2667 list_del(&page->lru);
2669 } while (check_new_pcp(page));
2674 /* Lock and remove page from the per-cpu list */
2675 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2676 struct zone *zone, unsigned int order,
2677 gfp_t gfp_flags, int migratetype)
2679 struct per_cpu_pages *pcp;
2680 struct list_head *list;
2681 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2685 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2686 list = &pcp->lists[migratetype];
2687 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2689 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2690 zone_statistics(preferred_zone, zone);
2697 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2700 struct page *rmqueue(struct zone *preferred_zone,
2701 struct zone *zone, unsigned int order,
2702 gfp_t gfp_flags, unsigned int alloc_flags,
2705 unsigned long flags;
2708 if (likely(order == 0) && !in_interrupt()) {
2709 page = rmqueue_pcplist(preferred_zone, zone, order,
2710 gfp_flags, migratetype);
2715 * We most definitely don't want callers attempting to
2716 * allocate greater than order-1 page units with __GFP_NOFAIL.
2718 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2719 spin_lock_irqsave(&zone->lock, flags);
2723 if (alloc_flags & ALLOC_HARDER) {
2724 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2726 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2729 page = __rmqueue(zone, order, migratetype);
2730 } while (page && check_new_pages(page, order));
2731 spin_unlock(&zone->lock);
2734 __mod_zone_freepage_state(zone, -(1 << order),
2735 get_pcppage_migratetype(page));
2737 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2738 zone_statistics(preferred_zone, zone);
2739 local_irq_restore(flags);
2742 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2746 local_irq_restore(flags);
2750 #ifdef CONFIG_FAIL_PAGE_ALLOC
2753 struct fault_attr attr;
2755 bool ignore_gfp_highmem;
2756 bool ignore_gfp_reclaim;
2758 } fail_page_alloc = {
2759 .attr = FAULT_ATTR_INITIALIZER,
2760 .ignore_gfp_reclaim = true,
2761 .ignore_gfp_highmem = true,
2765 static int __init setup_fail_page_alloc(char *str)
2767 return setup_fault_attr(&fail_page_alloc.attr, str);
2769 __setup("fail_page_alloc=", setup_fail_page_alloc);
2771 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2773 if (order < fail_page_alloc.min_order)
2775 if (gfp_mask & __GFP_NOFAIL)
2777 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2779 if (fail_page_alloc.ignore_gfp_reclaim &&
2780 (gfp_mask & __GFP_DIRECT_RECLAIM))
2783 return should_fail(&fail_page_alloc.attr, 1 << order);
2786 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2788 static int __init fail_page_alloc_debugfs(void)
2790 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2793 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2794 &fail_page_alloc.attr);
2796 return PTR_ERR(dir);
2798 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2799 &fail_page_alloc.ignore_gfp_reclaim))
2801 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2802 &fail_page_alloc.ignore_gfp_highmem))
2804 if (!debugfs_create_u32("min-order", mode, dir,
2805 &fail_page_alloc.min_order))
2810 debugfs_remove_recursive(dir);
2815 late_initcall(fail_page_alloc_debugfs);
2817 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2819 #else /* CONFIG_FAIL_PAGE_ALLOC */
2821 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2826 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2829 * Return true if free base pages are above 'mark'. For high-order checks it
2830 * will return true of the order-0 watermark is reached and there is at least
2831 * one free page of a suitable size. Checking now avoids taking the zone lock
2832 * to check in the allocation paths if no pages are free.
2834 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2835 int classzone_idx, unsigned int alloc_flags,
2840 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2842 /* free_pages may go negative - that's OK */
2843 free_pages -= (1 << order) - 1;
2845 if (alloc_flags & ALLOC_HIGH)
2849 * If the caller does not have rights to ALLOC_HARDER then subtract
2850 * the high-atomic reserves. This will over-estimate the size of the
2851 * atomic reserve but it avoids a search.
2853 if (likely(!alloc_harder))
2854 free_pages -= z->nr_reserved_highatomic;
2859 /* If allocation can't use CMA areas don't use free CMA pages */
2860 if (!(alloc_flags & ALLOC_CMA))
2861 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2865 * Check watermarks for an order-0 allocation request. If these
2866 * are not met, then a high-order request also cannot go ahead
2867 * even if a suitable page happened to be free.
2869 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2872 /* If this is an order-0 request then the watermark is fine */
2876 /* For a high-order request, check at least one suitable page is free */
2877 for (o = order; o < MAX_ORDER; o++) {
2878 struct free_area *area = &z->free_area[o];
2887 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2888 if (!list_empty(&area->free_list[mt]))
2893 if ((alloc_flags & ALLOC_CMA) &&
2894 !list_empty(&area->free_list[MIGRATE_CMA])) {
2902 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2903 int classzone_idx, unsigned int alloc_flags)
2905 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2906 zone_page_state(z, NR_FREE_PAGES));
2909 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2910 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2912 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2916 /* If allocation can't use CMA areas don't use free CMA pages */
2917 if (!(alloc_flags & ALLOC_CMA))
2918 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2922 * Fast check for order-0 only. If this fails then the reserves
2923 * need to be calculated. There is a corner case where the check
2924 * passes but only the high-order atomic reserve are free. If
2925 * the caller is !atomic then it'll uselessly search the free
2926 * list. That corner case is then slower but it is harmless.
2928 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2931 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2935 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2936 unsigned long mark, int classzone_idx)
2938 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2940 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2941 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2943 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2948 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2950 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2953 #else /* CONFIG_NUMA */
2954 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2958 #endif /* CONFIG_NUMA */
2961 * get_page_from_freelist goes through the zonelist trying to allocate
2964 static struct page *
2965 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2966 const struct alloc_context *ac)
2968 struct zoneref *z = ac->preferred_zoneref;
2970 struct pglist_data *last_pgdat_dirty_limit = NULL;
2973 * Scan zonelist, looking for a zone with enough free.
2974 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2976 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2981 if (cpusets_enabled() &&
2982 (alloc_flags & ALLOC_CPUSET) &&
2983 !__cpuset_zone_allowed(zone, gfp_mask))
2986 * When allocating a page cache page for writing, we
2987 * want to get it from a node that is within its dirty
2988 * limit, such that no single node holds more than its
2989 * proportional share of globally allowed dirty pages.
2990 * The dirty limits take into account the node's
2991 * lowmem reserves and high watermark so that kswapd
2992 * should be able to balance it without having to
2993 * write pages from its LRU list.
2995 * XXX: For now, allow allocations to potentially
2996 * exceed the per-node dirty limit in the slowpath
2997 * (spread_dirty_pages unset) before going into reclaim,
2998 * which is important when on a NUMA setup the allowed
2999 * nodes are together not big enough to reach the
3000 * global limit. The proper fix for these situations
3001 * will require awareness of nodes in the
3002 * dirty-throttling and the flusher threads.
3004 if (ac->spread_dirty_pages) {
3005 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3008 if (!node_dirty_ok(zone->zone_pgdat)) {
3009 last_pgdat_dirty_limit = zone->zone_pgdat;
3014 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3015 if (!zone_watermark_fast(zone, order, mark,
3016 ac_classzone_idx(ac), alloc_flags)) {
3019 /* Checked here to keep the fast path fast */
3020 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3021 if (alloc_flags & ALLOC_NO_WATERMARKS)
3024 if (node_reclaim_mode == 0 ||
3025 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3028 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3030 case NODE_RECLAIM_NOSCAN:
3033 case NODE_RECLAIM_FULL:
3034 /* scanned but unreclaimable */
3037 /* did we reclaim enough */
3038 if (zone_watermark_ok(zone, order, mark,
3039 ac_classzone_idx(ac), alloc_flags))
3047 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3048 gfp_mask, alloc_flags, ac->migratetype);
3050 prep_new_page(page, order, gfp_mask, alloc_flags);
3053 * If this is a high-order atomic allocation then check
3054 * if the pageblock should be reserved for the future
3056 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3057 reserve_highatomic_pageblock(page, zone, order);
3067 * Large machines with many possible nodes should not always dump per-node
3068 * meminfo in irq context.
3070 static inline bool should_suppress_show_mem(void)
3075 ret = in_interrupt();
3080 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3082 unsigned int filter = SHOW_MEM_FILTER_NODES;
3083 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3085 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3089 * This documents exceptions given to allocations in certain
3090 * contexts that are allowed to allocate outside current's set
3093 if (!(gfp_mask & __GFP_NOMEMALLOC))
3094 if (test_thread_flag(TIF_MEMDIE) ||
3095 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3096 filter &= ~SHOW_MEM_FILTER_NODES;
3097 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3098 filter &= ~SHOW_MEM_FILTER_NODES;
3100 show_mem(filter, nodemask);
3103 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3105 struct va_format vaf;
3107 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3108 DEFAULT_RATELIMIT_BURST);
3110 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3111 debug_guardpage_minorder() > 0)
3114 pr_warn("%s: ", current->comm);
3116 va_start(args, fmt);
3119 pr_cont("%pV", &vaf);
3122 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3124 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3126 pr_cont("(null)\n");
3128 cpuset_print_current_mems_allowed();
3131 warn_alloc_show_mem(gfp_mask, nodemask);
3134 static inline struct page *
3135 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3136 unsigned int alloc_flags,
3137 const struct alloc_context *ac)
3141 page = get_page_from_freelist(gfp_mask, order,
3142 alloc_flags|ALLOC_CPUSET, ac);
3144 * fallback to ignore cpuset restriction if our nodes
3148 page = get_page_from_freelist(gfp_mask, order,
3154 static inline struct page *
3155 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3156 const struct alloc_context *ac, unsigned long *did_some_progress)
3158 struct oom_control oc = {
3159 .zonelist = ac->zonelist,
3160 .nodemask = ac->nodemask,
3162 .gfp_mask = gfp_mask,
3167 *did_some_progress = 0;
3170 * Acquire the oom lock. If that fails, somebody else is
3171 * making progress for us.
3173 if (!mutex_trylock(&oom_lock)) {
3174 *did_some_progress = 1;
3175 schedule_timeout_uninterruptible(1);
3180 * Go through the zonelist yet one more time, keep very high watermark
3181 * here, this is only to catch a parallel oom killing, we must fail if
3182 * we're still under heavy pressure.
3184 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3185 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3189 /* Coredumps can quickly deplete all memory reserves */
3190 if (current->flags & PF_DUMPCORE)
3192 /* The OOM killer will not help higher order allocs */
3193 if (order > PAGE_ALLOC_COSTLY_ORDER)
3195 /* The OOM killer does not needlessly kill tasks for lowmem */
3196 if (ac->high_zoneidx < ZONE_NORMAL)
3198 if (pm_suspended_storage())
3201 * XXX: GFP_NOFS allocations should rather fail than rely on
3202 * other request to make a forward progress.
3203 * We are in an unfortunate situation where out_of_memory cannot
3204 * do much for this context but let's try it to at least get
3205 * access to memory reserved if the current task is killed (see
3206 * out_of_memory). Once filesystems are ready to handle allocation
3207 * failures more gracefully we should just bail out here.
3210 /* The OOM killer may not free memory on a specific node */
3211 if (gfp_mask & __GFP_THISNODE)
3214 /* Exhausted what can be done so it's blamo time */
3215 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3216 *did_some_progress = 1;
3219 * Help non-failing allocations by giving them access to memory
3222 if (gfp_mask & __GFP_NOFAIL)
3223 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3224 ALLOC_NO_WATERMARKS, ac);
3227 mutex_unlock(&oom_lock);
3232 * Maximum number of compaction retries wit a progress before OOM
3233 * killer is consider as the only way to move forward.
3235 #define MAX_COMPACT_RETRIES 16
3237 #ifdef CONFIG_COMPACTION
3238 /* Try memory compaction for high-order allocations before reclaim */
3239 static struct page *
3240 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3241 unsigned int alloc_flags, const struct alloc_context *ac,
3242 enum compact_priority prio, enum compact_result *compact_result)
3249 current->flags |= PF_MEMALLOC;
3250 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3252 current->flags &= ~PF_MEMALLOC;
3254 if (*compact_result <= COMPACT_INACTIVE)
3258 * At least in one zone compaction wasn't deferred or skipped, so let's
3259 * count a compaction stall
3261 count_vm_event(COMPACTSTALL);
3263 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3266 struct zone *zone = page_zone(page);
3268 zone->compact_blockskip_flush = false;
3269 compaction_defer_reset(zone, order, true);
3270 count_vm_event(COMPACTSUCCESS);
3275 * It's bad if compaction run occurs and fails. The most likely reason
3276 * is that pages exist, but not enough to satisfy watermarks.
3278 count_vm_event(COMPACTFAIL);
3286 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3287 enum compact_result compact_result,
3288 enum compact_priority *compact_priority,
3289 int *compaction_retries)
3291 int max_retries = MAX_COMPACT_RETRIES;
3294 int retries = *compaction_retries;
3295 enum compact_priority priority = *compact_priority;
3300 if (compaction_made_progress(compact_result))
3301 (*compaction_retries)++;
3304 * compaction considers all the zone as desperately out of memory
3305 * so it doesn't really make much sense to retry except when the
3306 * failure could be caused by insufficient priority
3308 if (compaction_failed(compact_result))
3309 goto check_priority;
3312 * make sure the compaction wasn't deferred or didn't bail out early
3313 * due to locks contention before we declare that we should give up.
3314 * But do not retry if the given zonelist is not suitable for
3317 if (compaction_withdrawn(compact_result)) {
3318 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3323 * !costly requests are much more important than __GFP_REPEAT
3324 * costly ones because they are de facto nofail and invoke OOM
3325 * killer to move on while costly can fail and users are ready
3326 * to cope with that. 1/4 retries is rather arbitrary but we
3327 * would need much more detailed feedback from compaction to
3328 * make a better decision.
3330 if (order > PAGE_ALLOC_COSTLY_ORDER)
3332 if (*compaction_retries <= max_retries) {
3338 * Make sure there are attempts at the highest priority if we exhausted
3339 * all retries or failed at the lower priorities.
3342 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3343 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3345 if (*compact_priority > min_priority) {
3346 (*compact_priority)--;
3347 *compaction_retries = 0;
3351 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3355 static inline struct page *
3356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3357 unsigned int alloc_flags, const struct alloc_context *ac,
3358 enum compact_priority prio, enum compact_result *compact_result)
3360 *compact_result = COMPACT_SKIPPED;
3365 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3366 enum compact_result compact_result,
3367 enum compact_priority *compact_priority,
3368 int *compaction_retries)
3373 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3377 * There are setups with compaction disabled which would prefer to loop
3378 * inside the allocator rather than hit the oom killer prematurely.
3379 * Let's give them a good hope and keep retrying while the order-0
3380 * watermarks are OK.
3382 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3384 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3385 ac_classzone_idx(ac), alloc_flags))
3390 #endif /* CONFIG_COMPACTION */
3392 /* Perform direct synchronous page reclaim */
3394 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3395 const struct alloc_context *ac)
3397 struct reclaim_state reclaim_state;
3402 /* We now go into synchronous reclaim */
3403 cpuset_memory_pressure_bump();
3404 current->flags |= PF_MEMALLOC;
3405 lockdep_set_current_reclaim_state(gfp_mask);
3406 reclaim_state.reclaimed_slab = 0;
3407 current->reclaim_state = &reclaim_state;
3409 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3412 current->reclaim_state = NULL;
3413 lockdep_clear_current_reclaim_state();
3414 current->flags &= ~PF_MEMALLOC;
3421 /* The really slow allocator path where we enter direct reclaim */
3422 static inline struct page *
3423 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3424 unsigned int alloc_flags, const struct alloc_context *ac,
3425 unsigned long *did_some_progress)
3427 struct page *page = NULL;
3428 bool drained = false;
3430 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3431 if (unlikely(!(*did_some_progress)))
3435 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3438 * If an allocation failed after direct reclaim, it could be because
3439 * pages are pinned on the per-cpu lists or in high alloc reserves.
3440 * Shrink them them and try again
3442 if (!page && !drained) {
3443 unreserve_highatomic_pageblock(ac, false);
3444 drain_all_pages(NULL);
3452 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3456 pg_data_t *last_pgdat = NULL;
3458 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3459 ac->high_zoneidx, ac->nodemask) {
3460 if (last_pgdat != zone->zone_pgdat)
3461 wakeup_kswapd(zone, order, ac->high_zoneidx);
3462 last_pgdat = zone->zone_pgdat;
3466 static inline unsigned int
3467 gfp_to_alloc_flags(gfp_t gfp_mask)
3469 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3471 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3472 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3475 * The caller may dip into page reserves a bit more if the caller
3476 * cannot run direct reclaim, or if the caller has realtime scheduling
3477 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3478 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3480 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3482 if (gfp_mask & __GFP_ATOMIC) {
3484 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3485 * if it can't schedule.
3487 if (!(gfp_mask & __GFP_NOMEMALLOC))
3488 alloc_flags |= ALLOC_HARDER;
3490 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3491 * comment for __cpuset_node_allowed().
3493 alloc_flags &= ~ALLOC_CPUSET;
3494 } else if (unlikely(rt_task(current)) && !in_interrupt())
3495 alloc_flags |= ALLOC_HARDER;
3498 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3499 alloc_flags |= ALLOC_CMA;
3504 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3506 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3509 if (gfp_mask & __GFP_MEMALLOC)
3511 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3513 if (!in_interrupt() &&
3514 ((current->flags & PF_MEMALLOC) ||
3515 unlikely(test_thread_flag(TIF_MEMDIE))))
3522 * Maximum number of reclaim retries without any progress before OOM killer
3523 * is consider as the only way to move forward.
3525 #define MAX_RECLAIM_RETRIES 16
3528 * Checks whether it makes sense to retry the reclaim to make a forward progress
3529 * for the given allocation request.
3530 * The reclaim feedback represented by did_some_progress (any progress during
3531 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3532 * any progress in a row) is considered as well as the reclaimable pages on the
3533 * applicable zone list (with a backoff mechanism which is a function of
3534 * no_progress_loops).
3536 * Returns true if a retry is viable or false to enter the oom path.
3539 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3540 struct alloc_context *ac, int alloc_flags,
3541 bool did_some_progress, int *no_progress_loops)
3547 * Costly allocations might have made a progress but this doesn't mean
3548 * their order will become available due to high fragmentation so
3549 * always increment the no progress counter for them
3551 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3552 *no_progress_loops = 0;
3554 (*no_progress_loops)++;
3557 * Make sure we converge to OOM if we cannot make any progress
3558 * several times in the row.
3560 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3561 /* Before OOM, exhaust highatomic_reserve */
3562 return unreserve_highatomic_pageblock(ac, true);
3566 * Keep reclaiming pages while there is a chance this will lead
3567 * somewhere. If none of the target zones can satisfy our allocation
3568 * request even if all reclaimable pages are considered then we are
3569 * screwed and have to go OOM.
3571 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3573 unsigned long available;
3574 unsigned long reclaimable;
3575 unsigned long min_wmark = min_wmark_pages(zone);
3578 available = reclaimable = zone_reclaimable_pages(zone);
3579 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3580 MAX_RECLAIM_RETRIES);
3581 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3584 * Would the allocation succeed if we reclaimed the whole
3587 wmark = __zone_watermark_ok(zone, order, min_wmark,
3588 ac_classzone_idx(ac), alloc_flags, available);
3589 trace_reclaim_retry_zone(z, order, reclaimable,
3590 available, min_wmark, *no_progress_loops, wmark);
3593 * If we didn't make any progress and have a lot of
3594 * dirty + writeback pages then we should wait for
3595 * an IO to complete to slow down the reclaim and
3596 * prevent from pre mature OOM
3598 if (!did_some_progress) {
3599 unsigned long write_pending;
3601 write_pending = zone_page_state_snapshot(zone,
3602 NR_ZONE_WRITE_PENDING);
3604 if (2 * write_pending > reclaimable) {
3605 congestion_wait(BLK_RW_ASYNC, HZ/10);
3611 * Memory allocation/reclaim might be called from a WQ
3612 * context and the current implementation of the WQ
3613 * concurrency control doesn't recognize that
3614 * a particular WQ is congested if the worker thread is
3615 * looping without ever sleeping. Therefore we have to
3616 * do a short sleep here rather than calling
3619 if (current->flags & PF_WQ_WORKER)
3620 schedule_timeout_uninterruptible(1);
3631 static inline struct page *
3632 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3633 struct alloc_context *ac)
3635 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3636 struct page *page = NULL;
3637 unsigned int alloc_flags;
3638 unsigned long did_some_progress;
3639 enum compact_priority compact_priority;
3640 enum compact_result compact_result;
3641 int compaction_retries;
3642 int no_progress_loops;
3643 unsigned long alloc_start = jiffies;
3644 unsigned int stall_timeout = 10 * HZ;
3645 unsigned int cpuset_mems_cookie;
3648 * In the slowpath, we sanity check order to avoid ever trying to
3649 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3650 * be using allocators in order of preference for an area that is
3653 if (order >= MAX_ORDER) {
3654 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3659 * We also sanity check to catch abuse of atomic reserves being used by
3660 * callers that are not in atomic context.
3662 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3663 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3664 gfp_mask &= ~__GFP_ATOMIC;
3667 compaction_retries = 0;
3668 no_progress_loops = 0;
3669 compact_priority = DEF_COMPACT_PRIORITY;
3670 cpuset_mems_cookie = read_mems_allowed_begin();
3673 * The fast path uses conservative alloc_flags to succeed only until
3674 * kswapd needs to be woken up, and to avoid the cost of setting up
3675 * alloc_flags precisely. So we do that now.
3677 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3680 * We need to recalculate the starting point for the zonelist iterator
3681 * because we might have used different nodemask in the fast path, or
3682 * there was a cpuset modification and we are retrying - otherwise we
3683 * could end up iterating over non-eligible zones endlessly.
3685 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3686 ac->high_zoneidx, ac->nodemask);
3687 if (!ac->preferred_zoneref->zone)
3690 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3691 wake_all_kswapds(order, ac);
3694 * The adjusted alloc_flags might result in immediate success, so try
3697 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3702 * For costly allocations, try direct compaction first, as it's likely
3703 * that we have enough base pages and don't need to reclaim. Don't try
3704 * that for allocations that are allowed to ignore watermarks, as the
3705 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3707 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3708 !gfp_pfmemalloc_allowed(gfp_mask)) {
3709 page = __alloc_pages_direct_compact(gfp_mask, order,
3711 INIT_COMPACT_PRIORITY,
3717 * Checks for costly allocations with __GFP_NORETRY, which
3718 * includes THP page fault allocations
3720 if (gfp_mask & __GFP_NORETRY) {
3722 * If compaction is deferred for high-order allocations,
3723 * it is because sync compaction recently failed. If
3724 * this is the case and the caller requested a THP
3725 * allocation, we do not want to heavily disrupt the
3726 * system, so we fail the allocation instead of entering
3729 if (compact_result == COMPACT_DEFERRED)
3733 * Looks like reclaim/compaction is worth trying, but
3734 * sync compaction could be very expensive, so keep
3735 * using async compaction.
3737 compact_priority = INIT_COMPACT_PRIORITY;
3742 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3743 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3744 wake_all_kswapds(order, ac);
3746 if (gfp_pfmemalloc_allowed(gfp_mask))
3747 alloc_flags = ALLOC_NO_WATERMARKS;
3750 * Reset the zonelist iterators if memory policies can be ignored.
3751 * These allocations are high priority and system rather than user
3754 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3755 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3756 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3757 ac->high_zoneidx, ac->nodemask);
3760 /* Attempt with potentially adjusted zonelist and alloc_flags */
3761 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3765 /* Caller is not willing to reclaim, we can't balance anything */
3766 if (!can_direct_reclaim)
3769 /* Make sure we know about allocations which stall for too long */
3770 if (time_after(jiffies, alloc_start + stall_timeout)) {
3771 warn_alloc(gfp_mask, ac->nodemask,
3772 "page allocation stalls for %ums, order:%u",
3773 jiffies_to_msecs(jiffies-alloc_start), order);
3774 stall_timeout += 10 * HZ;
3777 /* Avoid recursion of direct reclaim */
3778 if (current->flags & PF_MEMALLOC)
3781 /* Try direct reclaim and then allocating */
3782 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3783 &did_some_progress);
3787 /* Try direct compaction and then allocating */
3788 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3789 compact_priority, &compact_result);
3793 /* Do not loop if specifically requested */
3794 if (gfp_mask & __GFP_NORETRY)
3798 * Do not retry costly high order allocations unless they are
3801 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3804 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3805 did_some_progress > 0, &no_progress_loops))
3809 * It doesn't make any sense to retry for the compaction if the order-0
3810 * reclaim is not able to make any progress because the current
3811 * implementation of the compaction depends on the sufficient amount
3812 * of free memory (see __compaction_suitable)
3814 if (did_some_progress > 0 &&
3815 should_compact_retry(ac, order, alloc_flags,
3816 compact_result, &compact_priority,
3817 &compaction_retries))
3821 * It's possible we raced with cpuset update so the OOM would be
3822 * premature (see below the nopage: label for full explanation).
3824 if (read_mems_allowed_retry(cpuset_mems_cookie))
3827 /* Reclaim has failed us, start killing things */
3828 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3832 /* Avoid allocations with no watermarks from looping endlessly */
3833 if (test_thread_flag(TIF_MEMDIE))
3836 /* Retry as long as the OOM killer is making progress */
3837 if (did_some_progress) {
3838 no_progress_loops = 0;
3844 * When updating a task's mems_allowed or mempolicy nodemask, it is
3845 * possible to race with parallel threads in such a way that our
3846 * allocation can fail while the mask is being updated. If we are about
3847 * to fail, check if the cpuset changed during allocation and if so,
3850 if (read_mems_allowed_retry(cpuset_mems_cookie))
3854 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3857 if (gfp_mask & __GFP_NOFAIL) {
3859 * All existing users of the __GFP_NOFAIL are blockable, so warn
3860 * of any new users that actually require GFP_NOWAIT
3862 if (WARN_ON_ONCE(!can_direct_reclaim))
3866 * PF_MEMALLOC request from this context is rather bizarre
3867 * because we cannot reclaim anything and only can loop waiting
3868 * for somebody to do a work for us
3870 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3873 * non failing costly orders are a hard requirement which we
3874 * are not prepared for much so let's warn about these users
3875 * so that we can identify them and convert them to something
3878 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3881 * Help non-failing allocations by giving them access to memory
3882 * reserves but do not use ALLOC_NO_WATERMARKS because this
3883 * could deplete whole memory reserves which would just make
3884 * the situation worse
3886 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3894 warn_alloc(gfp_mask, ac->nodemask,
3895 "page allocation failure: order:%u", order);
3900 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3901 struct zonelist *zonelist, nodemask_t *nodemask,
3902 struct alloc_context *ac, gfp_t *alloc_mask,
3903 unsigned int *alloc_flags)
3905 ac->high_zoneidx = gfp_zone(gfp_mask);
3906 ac->zonelist = zonelist;
3907 ac->nodemask = nodemask;
3908 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3910 if (cpusets_enabled()) {
3911 *alloc_mask |= __GFP_HARDWALL;
3913 ac->nodemask = &cpuset_current_mems_allowed;
3915 *alloc_flags |= ALLOC_CPUSET;
3918 lockdep_trace_alloc(gfp_mask);
3920 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3922 if (should_fail_alloc_page(gfp_mask, order))
3925 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3926 *alloc_flags |= ALLOC_CMA;
3931 /* Determine whether to spread dirty pages and what the first usable zone */
3932 static inline void finalise_ac(gfp_t gfp_mask,
3933 unsigned int order, struct alloc_context *ac)
3935 /* Dirty zone balancing only done in the fast path */
3936 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3939 * The preferred zone is used for statistics but crucially it is
3940 * also used as the starting point for the zonelist iterator. It
3941 * may get reset for allocations that ignore memory policies.
3943 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3944 ac->high_zoneidx, ac->nodemask);
3948 * This is the 'heart' of the zoned buddy allocator.
3951 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3952 struct zonelist *zonelist, nodemask_t *nodemask)
3955 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3956 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3957 struct alloc_context ac = { };
3959 gfp_mask &= gfp_allowed_mask;
3960 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3963 finalise_ac(gfp_mask, order, &ac);
3965 /* First allocation attempt */
3966 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3971 * Runtime PM, block IO and its error handling path can deadlock
3972 * because I/O on the device might not complete.
3974 alloc_mask = memalloc_noio_flags(gfp_mask);
3975 ac.spread_dirty_pages = false;
3978 * Restore the original nodemask if it was potentially replaced with
3979 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3981 if (unlikely(ac.nodemask != nodemask))
3982 ac.nodemask = nodemask;
3984 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3987 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3988 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3989 __free_pages(page, order);
3993 if (kmemcheck_enabled && page)
3994 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3996 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4000 EXPORT_SYMBOL(__alloc_pages_nodemask);
4003 * Common helper functions.
4005 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4010 * __get_free_pages() returns a 32-bit address, which cannot represent
4013 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4015 page = alloc_pages(gfp_mask, order);
4018 return (unsigned long) page_address(page);
4020 EXPORT_SYMBOL(__get_free_pages);
4022 unsigned long get_zeroed_page(gfp_t gfp_mask)
4024 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4026 EXPORT_SYMBOL(get_zeroed_page);
4028 void __free_pages(struct page *page, unsigned int order)
4030 if (put_page_testzero(page)) {
4032 free_hot_cold_page(page, false);
4034 __free_pages_ok(page, order);
4038 EXPORT_SYMBOL(__free_pages);
4040 void free_pages(unsigned long addr, unsigned int order)
4043 VM_BUG_ON(!virt_addr_valid((void *)addr));
4044 __free_pages(virt_to_page((void *)addr), order);
4048 EXPORT_SYMBOL(free_pages);
4052 * An arbitrary-length arbitrary-offset area of memory which resides
4053 * within a 0 or higher order page. Multiple fragments within that page
4054 * are individually refcounted, in the page's reference counter.
4056 * The page_frag functions below provide a simple allocation framework for
4057 * page fragments. This is used by the network stack and network device
4058 * drivers to provide a backing region of memory for use as either an
4059 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4061 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4064 struct page *page = NULL;
4065 gfp_t gfp = gfp_mask;
4067 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4068 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4070 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4071 PAGE_FRAG_CACHE_MAX_ORDER);
4072 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4074 if (unlikely(!page))
4075 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4077 nc->va = page ? page_address(page) : NULL;
4082 void __page_frag_cache_drain(struct page *page, unsigned int count)
4084 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4086 if (page_ref_sub_and_test(page, count)) {
4087 unsigned int order = compound_order(page);
4090 free_hot_cold_page(page, false);
4092 __free_pages_ok(page, order);
4095 EXPORT_SYMBOL(__page_frag_cache_drain);
4097 void *page_frag_alloc(struct page_frag_cache *nc,
4098 unsigned int fragsz, gfp_t gfp_mask)
4100 unsigned int size = PAGE_SIZE;
4104 if (unlikely(!nc->va)) {
4106 page = __page_frag_cache_refill(nc, gfp_mask);
4110 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4111 /* if size can vary use size else just use PAGE_SIZE */
4114 /* Even if we own the page, we do not use atomic_set().
4115 * This would break get_page_unless_zero() users.
4117 page_ref_add(page, size - 1);
4119 /* reset page count bias and offset to start of new frag */
4120 nc->pfmemalloc = page_is_pfmemalloc(page);
4121 nc->pagecnt_bias = size;
4125 offset = nc->offset - fragsz;
4126 if (unlikely(offset < 0)) {
4127 page = virt_to_page(nc->va);
4129 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4132 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4133 /* if size can vary use size else just use PAGE_SIZE */
4136 /* OK, page count is 0, we can safely set it */
4137 set_page_count(page, size);
4139 /* reset page count bias and offset to start of new frag */
4140 nc->pagecnt_bias = size;
4141 offset = size - fragsz;
4145 nc->offset = offset;
4147 return nc->va + offset;
4149 EXPORT_SYMBOL(page_frag_alloc);
4152 * Frees a page fragment allocated out of either a compound or order 0 page.
4154 void page_frag_free(void *addr)
4156 struct page *page = virt_to_head_page(addr);
4158 if (unlikely(put_page_testzero(page)))
4159 __free_pages_ok(page, compound_order(page));
4161 EXPORT_SYMBOL(page_frag_free);
4163 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4167 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4168 unsigned long used = addr + PAGE_ALIGN(size);
4170 split_page(virt_to_page((void *)addr), order);
4171 while (used < alloc_end) {
4176 return (void *)addr;
4180 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4181 * @size: the number of bytes to allocate
4182 * @gfp_mask: GFP flags for the allocation
4184 * This function is similar to alloc_pages(), except that it allocates the
4185 * minimum number of pages to satisfy the request. alloc_pages() can only
4186 * allocate memory in power-of-two pages.
4188 * This function is also limited by MAX_ORDER.
4190 * Memory allocated by this function must be released by free_pages_exact().
4192 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4194 unsigned int order = get_order(size);
4197 addr = __get_free_pages(gfp_mask, order);
4198 return make_alloc_exact(addr, order, size);
4200 EXPORT_SYMBOL(alloc_pages_exact);
4203 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4205 * @nid: the preferred node ID where memory should be allocated
4206 * @size: the number of bytes to allocate
4207 * @gfp_mask: GFP flags for the allocation
4209 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4212 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4214 unsigned int order = get_order(size);
4215 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4218 return make_alloc_exact((unsigned long)page_address(p), order, size);
4222 * free_pages_exact - release memory allocated via alloc_pages_exact()
4223 * @virt: the value returned by alloc_pages_exact.
4224 * @size: size of allocation, same value as passed to alloc_pages_exact().
4226 * Release the memory allocated by a previous call to alloc_pages_exact.
4228 void free_pages_exact(void *virt, size_t size)
4230 unsigned long addr = (unsigned long)virt;
4231 unsigned long end = addr + PAGE_ALIGN(size);
4233 while (addr < end) {
4238 EXPORT_SYMBOL(free_pages_exact);
4241 * nr_free_zone_pages - count number of pages beyond high watermark
4242 * @offset: The zone index of the highest zone
4244 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4245 * high watermark within all zones at or below a given zone index. For each
4246 * zone, the number of pages is calculated as:
4247 * managed_pages - high_pages
4249 static unsigned long nr_free_zone_pages(int offset)
4254 /* Just pick one node, since fallback list is circular */
4255 unsigned long sum = 0;
4257 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4259 for_each_zone_zonelist(zone, z, zonelist, offset) {
4260 unsigned long size = zone->managed_pages;
4261 unsigned long high = high_wmark_pages(zone);
4270 * nr_free_buffer_pages - count number of pages beyond high watermark
4272 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4273 * watermark within ZONE_DMA and ZONE_NORMAL.
4275 unsigned long nr_free_buffer_pages(void)
4277 return nr_free_zone_pages(gfp_zone(GFP_USER));
4279 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4282 * nr_free_pagecache_pages - count number of pages beyond high watermark
4284 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4285 * high watermark within all zones.
4287 unsigned long nr_free_pagecache_pages(void)
4289 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4292 static inline void show_node(struct zone *zone)
4294 if (IS_ENABLED(CONFIG_NUMA))
4295 printk("Node %d ", zone_to_nid(zone));
4298 long si_mem_available(void)
4301 unsigned long pagecache;
4302 unsigned long wmark_low = 0;
4303 unsigned long pages[NR_LRU_LISTS];
4307 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4308 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4311 wmark_low += zone->watermark[WMARK_LOW];
4314 * Estimate the amount of memory available for userspace allocations,
4315 * without causing swapping.
4317 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4320 * Not all the page cache can be freed, otherwise the system will
4321 * start swapping. Assume at least half of the page cache, or the
4322 * low watermark worth of cache, needs to stay.
4324 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4325 pagecache -= min(pagecache / 2, wmark_low);
4326 available += pagecache;
4329 * Part of the reclaimable slab consists of items that are in use,
4330 * and cannot be freed. Cap this estimate at the low watermark.
4332 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4333 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4339 EXPORT_SYMBOL_GPL(si_mem_available);
4341 void si_meminfo(struct sysinfo *val)
4343 val->totalram = totalram_pages;
4344 val->sharedram = global_node_page_state(NR_SHMEM);
4345 val->freeram = global_page_state(NR_FREE_PAGES);
4346 val->bufferram = nr_blockdev_pages();
4347 val->totalhigh = totalhigh_pages;
4348 val->freehigh = nr_free_highpages();
4349 val->mem_unit = PAGE_SIZE;
4352 EXPORT_SYMBOL(si_meminfo);
4355 void si_meminfo_node(struct sysinfo *val, int nid)
4357 int zone_type; /* needs to be signed */
4358 unsigned long managed_pages = 0;
4359 unsigned long managed_highpages = 0;
4360 unsigned long free_highpages = 0;
4361 pg_data_t *pgdat = NODE_DATA(nid);
4363 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4364 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4365 val->totalram = managed_pages;
4366 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4367 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4368 #ifdef CONFIG_HIGHMEM
4369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4370 struct zone *zone = &pgdat->node_zones[zone_type];
4372 if (is_highmem(zone)) {
4373 managed_highpages += zone->managed_pages;
4374 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4377 val->totalhigh = managed_highpages;
4378 val->freehigh = free_highpages;
4380 val->totalhigh = managed_highpages;
4381 val->freehigh = free_highpages;
4383 val->mem_unit = PAGE_SIZE;
4388 * Determine whether the node should be displayed or not, depending on whether
4389 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4391 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4393 if (!(flags & SHOW_MEM_FILTER_NODES))
4397 * no node mask - aka implicit memory numa policy. Do not bother with
4398 * the synchronization - read_mems_allowed_begin - because we do not
4399 * have to be precise here.
4402 nodemask = &cpuset_current_mems_allowed;
4404 return !node_isset(nid, *nodemask);
4407 #define K(x) ((x) << (PAGE_SHIFT-10))
4409 static void show_migration_types(unsigned char type)
4411 static const char types[MIGRATE_TYPES] = {
4412 [MIGRATE_UNMOVABLE] = 'U',
4413 [MIGRATE_MOVABLE] = 'M',
4414 [MIGRATE_RECLAIMABLE] = 'E',
4415 [MIGRATE_HIGHATOMIC] = 'H',
4417 [MIGRATE_CMA] = 'C',
4419 #ifdef CONFIG_MEMORY_ISOLATION
4420 [MIGRATE_ISOLATE] = 'I',
4423 char tmp[MIGRATE_TYPES + 1];
4427 for (i = 0; i < MIGRATE_TYPES; i++) {
4428 if (type & (1 << i))
4433 printk(KERN_CONT "(%s) ", tmp);
4437 * Show free area list (used inside shift_scroll-lock stuff)
4438 * We also calculate the percentage fragmentation. We do this by counting the
4439 * memory on each free list with the exception of the first item on the list.
4442 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4445 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4447 unsigned long free_pcp = 0;
4452 for_each_populated_zone(zone) {
4453 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4456 for_each_online_cpu(cpu)
4457 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4460 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4461 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4462 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4463 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4464 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4465 " free:%lu free_pcp:%lu free_cma:%lu\n",
4466 global_node_page_state(NR_ACTIVE_ANON),
4467 global_node_page_state(NR_INACTIVE_ANON),
4468 global_node_page_state(NR_ISOLATED_ANON),
4469 global_node_page_state(NR_ACTIVE_FILE),
4470 global_node_page_state(NR_INACTIVE_FILE),
4471 global_node_page_state(NR_ISOLATED_FILE),
4472 global_node_page_state(NR_UNEVICTABLE),
4473 global_node_page_state(NR_FILE_DIRTY),
4474 global_node_page_state(NR_WRITEBACK),
4475 global_node_page_state(NR_UNSTABLE_NFS),
4476 global_page_state(NR_SLAB_RECLAIMABLE),
4477 global_page_state(NR_SLAB_UNRECLAIMABLE),
4478 global_node_page_state(NR_FILE_MAPPED),
4479 global_node_page_state(NR_SHMEM),
4480 global_page_state(NR_PAGETABLE),
4481 global_page_state(NR_BOUNCE),
4482 global_page_state(NR_FREE_PAGES),
4484 global_page_state(NR_FREE_CMA_PAGES));
4486 for_each_online_pgdat(pgdat) {
4487 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4491 " active_anon:%lukB"
4492 " inactive_anon:%lukB"
4493 " active_file:%lukB"
4494 " inactive_file:%lukB"
4495 " unevictable:%lukB"
4496 " isolated(anon):%lukB"
4497 " isolated(file):%lukB"
4502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4504 " shmem_pmdmapped: %lukB"
4507 " writeback_tmp:%lukB"
4509 " pages_scanned:%lu"
4510 " all_unreclaimable? %s"
4513 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4514 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4515 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4516 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4517 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4518 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4519 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4520 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4521 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4522 K(node_page_state(pgdat, NR_WRITEBACK)),
4523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4524 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4525 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4527 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4529 K(node_page_state(pgdat, NR_SHMEM)),
4530 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4531 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4532 node_page_state(pgdat, NR_PAGES_SCANNED),
4533 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4536 for_each_populated_zone(zone) {
4539 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4543 for_each_online_cpu(cpu)
4544 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4553 " active_anon:%lukB"
4554 " inactive_anon:%lukB"
4555 " active_file:%lukB"
4556 " inactive_file:%lukB"
4557 " unevictable:%lukB"
4558 " writepending:%lukB"
4562 " slab_reclaimable:%lukB"
4563 " slab_unreclaimable:%lukB"
4564 " kernel_stack:%lukB"
4572 K(zone_page_state(zone, NR_FREE_PAGES)),
4573 K(min_wmark_pages(zone)),
4574 K(low_wmark_pages(zone)),
4575 K(high_wmark_pages(zone)),
4576 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4577 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4578 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4579 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4580 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4581 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4582 K(zone->present_pages),
4583 K(zone->managed_pages),
4584 K(zone_page_state(zone, NR_MLOCK)),
4585 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4586 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4587 zone_page_state(zone, NR_KERNEL_STACK_KB),
4588 K(zone_page_state(zone, NR_PAGETABLE)),
4589 K(zone_page_state(zone, NR_BOUNCE)),
4591 K(this_cpu_read(zone->pageset->pcp.count)),
4592 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4593 printk("lowmem_reserve[]:");
4594 for (i = 0; i < MAX_NR_ZONES; i++)
4595 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4596 printk(KERN_CONT "\n");
4599 for_each_populated_zone(zone) {
4601 unsigned long nr[MAX_ORDER], flags, total = 0;
4602 unsigned char types[MAX_ORDER];
4604 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4607 printk(KERN_CONT "%s: ", zone->name);
4609 spin_lock_irqsave(&zone->lock, flags);
4610 for (order = 0; order < MAX_ORDER; order++) {
4611 struct free_area *area = &zone->free_area[order];
4614 nr[order] = area->nr_free;
4615 total += nr[order] << order;
4618 for (type = 0; type < MIGRATE_TYPES; type++) {
4619 if (!list_empty(&area->free_list[type]))
4620 types[order] |= 1 << type;
4623 spin_unlock_irqrestore(&zone->lock, flags);
4624 for (order = 0; order < MAX_ORDER; order++) {
4625 printk(KERN_CONT "%lu*%lukB ",
4626 nr[order], K(1UL) << order);
4628 show_migration_types(types[order]);
4630 printk(KERN_CONT "= %lukB\n", K(total));
4633 hugetlb_show_meminfo();
4635 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4637 show_swap_cache_info();
4640 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4642 zoneref->zone = zone;
4643 zoneref->zone_idx = zone_idx(zone);
4647 * Builds allocation fallback zone lists.
4649 * Add all populated zones of a node to the zonelist.
4651 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4655 enum zone_type zone_type = MAX_NR_ZONES;
4659 zone = pgdat->node_zones + zone_type;
4660 if (managed_zone(zone)) {
4661 zoneref_set_zone(zone,
4662 &zonelist->_zonerefs[nr_zones++]);
4663 check_highest_zone(zone_type);
4665 } while (zone_type);
4673 * 0 = automatic detection of better ordering.
4674 * 1 = order by ([node] distance, -zonetype)
4675 * 2 = order by (-zonetype, [node] distance)
4677 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4678 * the same zonelist. So only NUMA can configure this param.
4680 #define ZONELIST_ORDER_DEFAULT 0
4681 #define ZONELIST_ORDER_NODE 1
4682 #define ZONELIST_ORDER_ZONE 2
4684 /* zonelist order in the kernel.
4685 * set_zonelist_order() will set this to NODE or ZONE.
4687 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4688 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4692 /* The value user specified ....changed by config */
4693 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4694 /* string for sysctl */
4695 #define NUMA_ZONELIST_ORDER_LEN 16
4696 char numa_zonelist_order[16] = "default";
4699 * interface for configure zonelist ordering.
4700 * command line option "numa_zonelist_order"
4701 * = "[dD]efault - default, automatic configuration.
4702 * = "[nN]ode - order by node locality, then by zone within node
4703 * = "[zZ]one - order by zone, then by locality within zone
4706 static int __parse_numa_zonelist_order(char *s)
4708 if (*s == 'd' || *s == 'D') {
4709 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4710 } else if (*s == 'n' || *s == 'N') {
4711 user_zonelist_order = ZONELIST_ORDER_NODE;
4712 } else if (*s == 'z' || *s == 'Z') {
4713 user_zonelist_order = ZONELIST_ORDER_ZONE;
4715 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4721 static __init int setup_numa_zonelist_order(char *s)
4728 ret = __parse_numa_zonelist_order(s);
4730 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4734 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4737 * sysctl handler for numa_zonelist_order
4739 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4740 void __user *buffer, size_t *length,
4743 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4745 static DEFINE_MUTEX(zl_order_mutex);
4747 mutex_lock(&zl_order_mutex);
4749 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4753 strcpy(saved_string, (char *)table->data);
4755 ret = proc_dostring(table, write, buffer, length, ppos);
4759 int oldval = user_zonelist_order;
4761 ret = __parse_numa_zonelist_order((char *)table->data);
4764 * bogus value. restore saved string
4766 strncpy((char *)table->data, saved_string,
4767 NUMA_ZONELIST_ORDER_LEN);
4768 user_zonelist_order = oldval;
4769 } else if (oldval != user_zonelist_order) {
4770 mutex_lock(&zonelists_mutex);
4771 build_all_zonelists(NULL, NULL);
4772 mutex_unlock(&zonelists_mutex);
4776 mutex_unlock(&zl_order_mutex);
4781 #define MAX_NODE_LOAD (nr_online_nodes)
4782 static int node_load[MAX_NUMNODES];
4785 * find_next_best_node - find the next node that should appear in a given node's fallback list
4786 * @node: node whose fallback list we're appending
4787 * @used_node_mask: nodemask_t of already used nodes
4789 * We use a number of factors to determine which is the next node that should
4790 * appear on a given node's fallback list. The node should not have appeared
4791 * already in @node's fallback list, and it should be the next closest node
4792 * according to the distance array (which contains arbitrary distance values
4793 * from each node to each node in the system), and should also prefer nodes
4794 * with no CPUs, since presumably they'll have very little allocation pressure
4795 * on them otherwise.
4796 * It returns -1 if no node is found.
4798 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4801 int min_val = INT_MAX;
4802 int best_node = NUMA_NO_NODE;
4803 const struct cpumask *tmp = cpumask_of_node(0);
4805 /* Use the local node if we haven't already */
4806 if (!node_isset(node, *used_node_mask)) {
4807 node_set(node, *used_node_mask);
4811 for_each_node_state(n, N_MEMORY) {
4813 /* Don't want a node to appear more than once */
4814 if (node_isset(n, *used_node_mask))
4817 /* Use the distance array to find the distance */
4818 val = node_distance(node, n);
4820 /* Penalize nodes under us ("prefer the next node") */
4823 /* Give preference to headless and unused nodes */
4824 tmp = cpumask_of_node(n);
4825 if (!cpumask_empty(tmp))
4826 val += PENALTY_FOR_NODE_WITH_CPUS;
4828 /* Slight preference for less loaded node */
4829 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4830 val += node_load[n];
4832 if (val < min_val) {
4839 node_set(best_node, *used_node_mask);
4846 * Build zonelists ordered by node and zones within node.
4847 * This results in maximum locality--normal zone overflows into local
4848 * DMA zone, if any--but risks exhausting DMA zone.
4850 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4853 struct zonelist *zonelist;
4855 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4856 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4858 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4859 zonelist->_zonerefs[j].zone = NULL;
4860 zonelist->_zonerefs[j].zone_idx = 0;
4864 * Build gfp_thisnode zonelists
4866 static void build_thisnode_zonelists(pg_data_t *pgdat)
4869 struct zonelist *zonelist;
4871 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4872 j = build_zonelists_node(pgdat, zonelist, 0);
4873 zonelist->_zonerefs[j].zone = NULL;
4874 zonelist->_zonerefs[j].zone_idx = 0;
4878 * Build zonelists ordered by zone and nodes within zones.
4879 * This results in conserving DMA zone[s] until all Normal memory is
4880 * exhausted, but results in overflowing to remote node while memory
4881 * may still exist in local DMA zone.
4883 static int node_order[MAX_NUMNODES];
4885 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4888 int zone_type; /* needs to be signed */
4890 struct zonelist *zonelist;
4892 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4894 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4895 for (j = 0; j < nr_nodes; j++) {
4896 node = node_order[j];
4897 z = &NODE_DATA(node)->node_zones[zone_type];
4898 if (managed_zone(z)) {
4900 &zonelist->_zonerefs[pos++]);
4901 check_highest_zone(zone_type);
4905 zonelist->_zonerefs[pos].zone = NULL;
4906 zonelist->_zonerefs[pos].zone_idx = 0;
4909 #if defined(CONFIG_64BIT)
4911 * Devices that require DMA32/DMA are relatively rare and do not justify a
4912 * penalty to every machine in case the specialised case applies. Default
4913 * to Node-ordering on 64-bit NUMA machines
4915 static int default_zonelist_order(void)
4917 return ZONELIST_ORDER_NODE;
4921 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4922 * by the kernel. If processes running on node 0 deplete the low memory zone
4923 * then reclaim will occur more frequency increasing stalls and potentially
4924 * be easier to OOM if a large percentage of the zone is under writeback or
4925 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4926 * Hence, default to zone ordering on 32-bit.
4928 static int default_zonelist_order(void)
4930 return ZONELIST_ORDER_ZONE;
4932 #endif /* CONFIG_64BIT */
4934 static void set_zonelist_order(void)
4936 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4937 current_zonelist_order = default_zonelist_order();
4939 current_zonelist_order = user_zonelist_order;
4942 static void build_zonelists(pg_data_t *pgdat)
4945 nodemask_t used_mask;
4946 int local_node, prev_node;
4947 struct zonelist *zonelist;
4948 unsigned int order = current_zonelist_order;
4950 /* initialize zonelists */
4951 for (i = 0; i < MAX_ZONELISTS; i++) {
4952 zonelist = pgdat->node_zonelists + i;
4953 zonelist->_zonerefs[0].zone = NULL;
4954 zonelist->_zonerefs[0].zone_idx = 0;
4957 /* NUMA-aware ordering of nodes */
4958 local_node = pgdat->node_id;
4959 load = nr_online_nodes;
4960 prev_node = local_node;
4961 nodes_clear(used_mask);
4963 memset(node_order, 0, sizeof(node_order));
4966 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4968 * We don't want to pressure a particular node.
4969 * So adding penalty to the first node in same
4970 * distance group to make it round-robin.
4972 if (node_distance(local_node, node) !=
4973 node_distance(local_node, prev_node))
4974 node_load[node] = load;
4978 if (order == ZONELIST_ORDER_NODE)
4979 build_zonelists_in_node_order(pgdat, node);
4981 node_order[i++] = node; /* remember order */
4984 if (order == ZONELIST_ORDER_ZONE) {
4985 /* calculate node order -- i.e., DMA last! */
4986 build_zonelists_in_zone_order(pgdat, i);
4989 build_thisnode_zonelists(pgdat);
4992 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4994 * Return node id of node used for "local" allocations.
4995 * I.e., first node id of first zone in arg node's generic zonelist.
4996 * Used for initializing percpu 'numa_mem', which is used primarily
4997 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4999 int local_memory_node(int node)
5003 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5004 gfp_zone(GFP_KERNEL),
5006 return z->zone->node;
5010 static void setup_min_unmapped_ratio(void);
5011 static void setup_min_slab_ratio(void);
5012 #else /* CONFIG_NUMA */
5014 static void set_zonelist_order(void)
5016 current_zonelist_order = ZONELIST_ORDER_ZONE;
5019 static void build_zonelists(pg_data_t *pgdat)
5021 int node, local_node;
5023 struct zonelist *zonelist;
5025 local_node = pgdat->node_id;
5027 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5028 j = build_zonelists_node(pgdat, zonelist, 0);
5031 * Now we build the zonelist so that it contains the zones
5032 * of all the other nodes.
5033 * We don't want to pressure a particular node, so when
5034 * building the zones for node N, we make sure that the
5035 * zones coming right after the local ones are those from
5036 * node N+1 (modulo N)
5038 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5039 if (!node_online(node))
5041 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5043 for (node = 0; node < local_node; node++) {
5044 if (!node_online(node))
5046 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5049 zonelist->_zonerefs[j].zone = NULL;
5050 zonelist->_zonerefs[j].zone_idx = 0;
5053 #endif /* CONFIG_NUMA */
5056 * Boot pageset table. One per cpu which is going to be used for all
5057 * zones and all nodes. The parameters will be set in such a way
5058 * that an item put on a list will immediately be handed over to
5059 * the buddy list. This is safe since pageset manipulation is done
5060 * with interrupts disabled.
5062 * The boot_pagesets must be kept even after bootup is complete for
5063 * unused processors and/or zones. They do play a role for bootstrapping
5064 * hotplugged processors.
5066 * zoneinfo_show() and maybe other functions do
5067 * not check if the processor is online before following the pageset pointer.
5068 * Other parts of the kernel may not check if the zone is available.
5070 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5071 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5072 static void setup_zone_pageset(struct zone *zone);
5075 * Global mutex to protect against size modification of zonelists
5076 * as well as to serialize pageset setup for the new populated zone.
5078 DEFINE_MUTEX(zonelists_mutex);
5080 /* return values int ....just for stop_machine() */
5081 static int __build_all_zonelists(void *data)
5085 pg_data_t *self = data;
5088 memset(node_load, 0, sizeof(node_load));
5091 if (self && !node_online(self->node_id)) {
5092 build_zonelists(self);
5095 for_each_online_node(nid) {
5096 pg_data_t *pgdat = NODE_DATA(nid);
5098 build_zonelists(pgdat);
5102 * Initialize the boot_pagesets that are going to be used
5103 * for bootstrapping processors. The real pagesets for
5104 * each zone will be allocated later when the per cpu
5105 * allocator is available.
5107 * boot_pagesets are used also for bootstrapping offline
5108 * cpus if the system is already booted because the pagesets
5109 * are needed to initialize allocators on a specific cpu too.
5110 * F.e. the percpu allocator needs the page allocator which
5111 * needs the percpu allocator in order to allocate its pagesets
5112 * (a chicken-egg dilemma).
5114 for_each_possible_cpu(cpu) {
5115 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5117 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5119 * We now know the "local memory node" for each node--
5120 * i.e., the node of the first zone in the generic zonelist.
5121 * Set up numa_mem percpu variable for on-line cpus. During
5122 * boot, only the boot cpu should be on-line; we'll init the
5123 * secondary cpus' numa_mem as they come on-line. During
5124 * node/memory hotplug, we'll fixup all on-line cpus.
5126 if (cpu_online(cpu))
5127 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5134 static noinline void __init
5135 build_all_zonelists_init(void)
5137 __build_all_zonelists(NULL);
5138 mminit_verify_zonelist();
5139 cpuset_init_current_mems_allowed();
5143 * Called with zonelists_mutex held always
5144 * unless system_state == SYSTEM_BOOTING.
5146 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5147 * [we're only called with non-NULL zone through __meminit paths] and
5148 * (2) call of __init annotated helper build_all_zonelists_init
5149 * [protected by SYSTEM_BOOTING].
5151 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5153 set_zonelist_order();
5155 if (system_state == SYSTEM_BOOTING) {
5156 build_all_zonelists_init();
5158 #ifdef CONFIG_MEMORY_HOTPLUG
5160 setup_zone_pageset(zone);
5162 /* we have to stop all cpus to guarantee there is no user
5164 stop_machine(__build_all_zonelists, pgdat, NULL);
5165 /* cpuset refresh routine should be here */
5167 vm_total_pages = nr_free_pagecache_pages();
5169 * Disable grouping by mobility if the number of pages in the
5170 * system is too low to allow the mechanism to work. It would be
5171 * more accurate, but expensive to check per-zone. This check is
5172 * made on memory-hotadd so a system can start with mobility
5173 * disabled and enable it later
5175 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5176 page_group_by_mobility_disabled = 1;
5178 page_group_by_mobility_disabled = 0;
5180 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5182 zonelist_order_name[current_zonelist_order],
5183 page_group_by_mobility_disabled ? "off" : "on",
5186 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5191 * Initially all pages are reserved - free ones are freed
5192 * up by free_all_bootmem() once the early boot process is
5193 * done. Non-atomic initialization, single-pass.
5195 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5196 unsigned long start_pfn, enum memmap_context context)
5198 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5199 unsigned long end_pfn = start_pfn + size;
5200 pg_data_t *pgdat = NODE_DATA(nid);
5202 unsigned long nr_initialised = 0;
5203 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5204 struct memblock_region *r = NULL, *tmp;
5207 if (highest_memmap_pfn < end_pfn - 1)
5208 highest_memmap_pfn = end_pfn - 1;
5211 * Honor reservation requested by the driver for this ZONE_DEVICE
5214 if (altmap && start_pfn == altmap->base_pfn)
5215 start_pfn += altmap->reserve;
5217 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5219 * There can be holes in boot-time mem_map[]s handed to this
5220 * function. They do not exist on hotplugged memory.
5222 if (context != MEMMAP_EARLY)
5225 if (!early_pfn_valid(pfn)) {
5226 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5228 * Skip to the pfn preceding the next valid one (or
5229 * end_pfn), such that we hit a valid pfn (or end_pfn)
5230 * on our next iteration of the loop.
5232 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5236 if (!early_pfn_in_nid(pfn, nid))
5238 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5243 * Check given memblock attribute by firmware which can affect
5244 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5245 * mirrored, it's an overlapped memmap init. skip it.
5247 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5248 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5249 for_each_memblock(memory, tmp)
5250 if (pfn < memblock_region_memory_end_pfn(tmp))
5254 if (pfn >= memblock_region_memory_base_pfn(r) &&
5255 memblock_is_mirror(r)) {
5256 /* already initialized as NORMAL */
5257 pfn = memblock_region_memory_end_pfn(r);
5265 * Mark the block movable so that blocks are reserved for
5266 * movable at startup. This will force kernel allocations
5267 * to reserve their blocks rather than leaking throughout
5268 * the address space during boot when many long-lived
5269 * kernel allocations are made.
5271 * bitmap is created for zone's valid pfn range. but memmap
5272 * can be created for invalid pages (for alignment)
5273 * check here not to call set_pageblock_migratetype() against
5276 if (!(pfn & (pageblock_nr_pages - 1))) {
5277 struct page *page = pfn_to_page(pfn);
5279 __init_single_page(page, pfn, zone, nid);
5280 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5282 __init_single_pfn(pfn, zone, nid);
5287 static void __meminit zone_init_free_lists(struct zone *zone)
5289 unsigned int order, t;
5290 for_each_migratetype_order(order, t) {
5291 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5292 zone->free_area[order].nr_free = 0;
5296 #ifndef __HAVE_ARCH_MEMMAP_INIT
5297 #define memmap_init(size, nid, zone, start_pfn) \
5298 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5301 static int zone_batchsize(struct zone *zone)
5307 * The per-cpu-pages pools are set to around 1000th of the
5308 * size of the zone. But no more than 1/2 of a meg.
5310 * OK, so we don't know how big the cache is. So guess.
5312 batch = zone->managed_pages / 1024;
5313 if (batch * PAGE_SIZE > 512 * 1024)
5314 batch = (512 * 1024) / PAGE_SIZE;
5315 batch /= 4; /* We effectively *= 4 below */
5320 * Clamp the batch to a 2^n - 1 value. Having a power
5321 * of 2 value was found to be more likely to have
5322 * suboptimal cache aliasing properties in some cases.
5324 * For example if 2 tasks are alternately allocating
5325 * batches of pages, one task can end up with a lot
5326 * of pages of one half of the possible page colors
5327 * and the other with pages of the other colors.
5329 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5334 /* The deferral and batching of frees should be suppressed under NOMMU
5337 * The problem is that NOMMU needs to be able to allocate large chunks
5338 * of contiguous memory as there's no hardware page translation to
5339 * assemble apparent contiguous memory from discontiguous pages.
5341 * Queueing large contiguous runs of pages for batching, however,
5342 * causes the pages to actually be freed in smaller chunks. As there
5343 * can be a significant delay between the individual batches being
5344 * recycled, this leads to the once large chunks of space being
5345 * fragmented and becoming unavailable for high-order allocations.
5352 * pcp->high and pcp->batch values are related and dependent on one another:
5353 * ->batch must never be higher then ->high.
5354 * The following function updates them in a safe manner without read side
5357 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5358 * those fields changing asynchronously (acording the the above rule).
5360 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5361 * outside of boot time (or some other assurance that no concurrent updaters
5364 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5365 unsigned long batch)
5367 /* start with a fail safe value for batch */
5371 /* Update high, then batch, in order */
5378 /* a companion to pageset_set_high() */
5379 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5381 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5384 static void pageset_init(struct per_cpu_pageset *p)
5386 struct per_cpu_pages *pcp;
5389 memset(p, 0, sizeof(*p));
5393 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5394 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5397 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5400 pageset_set_batch(p, batch);
5404 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5405 * to the value high for the pageset p.
5407 static void pageset_set_high(struct per_cpu_pageset *p,
5410 unsigned long batch = max(1UL, high / 4);
5411 if ((high / 4) > (PAGE_SHIFT * 8))
5412 batch = PAGE_SHIFT * 8;
5414 pageset_update(&p->pcp, high, batch);
5417 static void pageset_set_high_and_batch(struct zone *zone,
5418 struct per_cpu_pageset *pcp)
5420 if (percpu_pagelist_fraction)
5421 pageset_set_high(pcp,
5422 (zone->managed_pages /
5423 percpu_pagelist_fraction));
5425 pageset_set_batch(pcp, zone_batchsize(zone));
5428 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5430 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5433 pageset_set_high_and_batch(zone, pcp);
5436 static void __meminit setup_zone_pageset(struct zone *zone)
5439 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5440 for_each_possible_cpu(cpu)
5441 zone_pageset_init(zone, cpu);
5445 * Allocate per cpu pagesets and initialize them.
5446 * Before this call only boot pagesets were available.
5448 void __init setup_per_cpu_pageset(void)
5450 struct pglist_data *pgdat;
5453 for_each_populated_zone(zone)
5454 setup_zone_pageset(zone);
5456 for_each_online_pgdat(pgdat)
5457 pgdat->per_cpu_nodestats =
5458 alloc_percpu(struct per_cpu_nodestat);
5461 static __meminit void zone_pcp_init(struct zone *zone)
5464 * per cpu subsystem is not up at this point. The following code
5465 * relies on the ability of the linker to provide the
5466 * offset of a (static) per cpu variable into the per cpu area.
5468 zone->pageset = &boot_pageset;
5470 if (populated_zone(zone))
5471 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5472 zone->name, zone->present_pages,
5473 zone_batchsize(zone));
5476 int __meminit init_currently_empty_zone(struct zone *zone,
5477 unsigned long zone_start_pfn,
5480 struct pglist_data *pgdat = zone->zone_pgdat;
5482 pgdat->nr_zones = zone_idx(zone) + 1;
5484 zone->zone_start_pfn = zone_start_pfn;
5486 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5487 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5489 (unsigned long)zone_idx(zone),
5490 zone_start_pfn, (zone_start_pfn + size));
5492 zone_init_free_lists(zone);
5493 zone->initialized = 1;
5498 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5499 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5502 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5504 int __meminit __early_pfn_to_nid(unsigned long pfn,
5505 struct mminit_pfnnid_cache *state)
5507 unsigned long start_pfn, end_pfn;
5510 if (state->last_start <= pfn && pfn < state->last_end)
5511 return state->last_nid;
5513 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5515 state->last_start = start_pfn;
5516 state->last_end = end_pfn;
5517 state->last_nid = nid;
5522 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5525 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5526 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5527 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5529 * If an architecture guarantees that all ranges registered contain no holes
5530 * and may be freed, this this function may be used instead of calling
5531 * memblock_free_early_nid() manually.
5533 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5535 unsigned long start_pfn, end_pfn;
5538 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5539 start_pfn = min(start_pfn, max_low_pfn);
5540 end_pfn = min(end_pfn, max_low_pfn);
5542 if (start_pfn < end_pfn)
5543 memblock_free_early_nid(PFN_PHYS(start_pfn),
5544 (end_pfn - start_pfn) << PAGE_SHIFT,
5550 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5551 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5553 * If an architecture guarantees that all ranges registered contain no holes and may
5554 * be freed, this function may be used instead of calling memory_present() manually.
5556 void __init sparse_memory_present_with_active_regions(int nid)
5558 unsigned long start_pfn, end_pfn;
5561 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5562 memory_present(this_nid, start_pfn, end_pfn);
5566 * get_pfn_range_for_nid - Return the start and end page frames for a node
5567 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5568 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5569 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5571 * It returns the start and end page frame of a node based on information
5572 * provided by memblock_set_node(). If called for a node
5573 * with no available memory, a warning is printed and the start and end
5576 void __meminit get_pfn_range_for_nid(unsigned int nid,
5577 unsigned long *start_pfn, unsigned long *end_pfn)
5579 unsigned long this_start_pfn, this_end_pfn;
5585 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5586 *start_pfn = min(*start_pfn, this_start_pfn);
5587 *end_pfn = max(*end_pfn, this_end_pfn);
5590 if (*start_pfn == -1UL)
5595 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5596 * assumption is made that zones within a node are ordered in monotonic
5597 * increasing memory addresses so that the "highest" populated zone is used
5599 static void __init find_usable_zone_for_movable(void)
5602 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5603 if (zone_index == ZONE_MOVABLE)
5606 if (arch_zone_highest_possible_pfn[zone_index] >
5607 arch_zone_lowest_possible_pfn[zone_index])
5611 VM_BUG_ON(zone_index == -1);
5612 movable_zone = zone_index;
5616 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5617 * because it is sized independent of architecture. Unlike the other zones,
5618 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5619 * in each node depending on the size of each node and how evenly kernelcore
5620 * is distributed. This helper function adjusts the zone ranges
5621 * provided by the architecture for a given node by using the end of the
5622 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5623 * zones within a node are in order of monotonic increases memory addresses
5625 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5626 unsigned long zone_type,
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
5629 unsigned long *zone_start_pfn,
5630 unsigned long *zone_end_pfn)
5632 /* Only adjust if ZONE_MOVABLE is on this node */
5633 if (zone_movable_pfn[nid]) {
5634 /* Size ZONE_MOVABLE */
5635 if (zone_type == ZONE_MOVABLE) {
5636 *zone_start_pfn = zone_movable_pfn[nid];
5637 *zone_end_pfn = min(node_end_pfn,
5638 arch_zone_highest_possible_pfn[movable_zone]);
5640 /* Adjust for ZONE_MOVABLE starting within this range */
5641 } else if (!mirrored_kernelcore &&
5642 *zone_start_pfn < zone_movable_pfn[nid] &&
5643 *zone_end_pfn > zone_movable_pfn[nid]) {
5644 *zone_end_pfn = zone_movable_pfn[nid];
5646 /* Check if this whole range is within ZONE_MOVABLE */
5647 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5648 *zone_start_pfn = *zone_end_pfn;
5653 * Return the number of pages a zone spans in a node, including holes
5654 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5656 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5657 unsigned long zone_type,
5658 unsigned long node_start_pfn,
5659 unsigned long node_end_pfn,
5660 unsigned long *zone_start_pfn,
5661 unsigned long *zone_end_pfn,
5662 unsigned long *ignored)
5664 /* When hotadd a new node from cpu_up(), the node should be empty */
5665 if (!node_start_pfn && !node_end_pfn)
5668 /* Get the start and end of the zone */
5669 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5670 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5671 adjust_zone_range_for_zone_movable(nid, zone_type,
5672 node_start_pfn, node_end_pfn,
5673 zone_start_pfn, zone_end_pfn);
5675 /* Check that this node has pages within the zone's required range */
5676 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5679 /* Move the zone boundaries inside the node if necessary */
5680 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5681 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5683 /* Return the spanned pages */
5684 return *zone_end_pfn - *zone_start_pfn;
5688 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5689 * then all holes in the requested range will be accounted for.
5691 unsigned long __meminit __absent_pages_in_range(int nid,
5692 unsigned long range_start_pfn,
5693 unsigned long range_end_pfn)
5695 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5696 unsigned long start_pfn, end_pfn;
5699 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5700 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5701 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5702 nr_absent -= end_pfn - start_pfn;
5708 * absent_pages_in_range - Return number of page frames in holes within a range
5709 * @start_pfn: The start PFN to start searching for holes
5710 * @end_pfn: The end PFN to stop searching for holes
5712 * It returns the number of pages frames in memory holes within a range.
5714 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5715 unsigned long end_pfn)
5717 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5720 /* Return the number of page frames in holes in a zone on a node */
5721 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5722 unsigned long zone_type,
5723 unsigned long node_start_pfn,
5724 unsigned long node_end_pfn,
5725 unsigned long *ignored)
5727 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5728 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5729 unsigned long zone_start_pfn, zone_end_pfn;
5730 unsigned long nr_absent;
5732 /* When hotadd a new node from cpu_up(), the node should be empty */
5733 if (!node_start_pfn && !node_end_pfn)
5736 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5737 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5739 adjust_zone_range_for_zone_movable(nid, zone_type,
5740 node_start_pfn, node_end_pfn,
5741 &zone_start_pfn, &zone_end_pfn);
5742 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5745 * ZONE_MOVABLE handling.
5746 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5749 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5750 unsigned long start_pfn, end_pfn;
5751 struct memblock_region *r;
5753 for_each_memblock(memory, r) {
5754 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5755 zone_start_pfn, zone_end_pfn);
5756 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5757 zone_start_pfn, zone_end_pfn);
5759 if (zone_type == ZONE_MOVABLE &&
5760 memblock_is_mirror(r))
5761 nr_absent += end_pfn - start_pfn;
5763 if (zone_type == ZONE_NORMAL &&
5764 !memblock_is_mirror(r))
5765 nr_absent += end_pfn - start_pfn;
5772 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5773 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5774 unsigned long zone_type,
5775 unsigned long node_start_pfn,
5776 unsigned long node_end_pfn,
5777 unsigned long *zone_start_pfn,
5778 unsigned long *zone_end_pfn,
5779 unsigned long *zones_size)
5783 *zone_start_pfn = node_start_pfn;
5784 for (zone = 0; zone < zone_type; zone++)
5785 *zone_start_pfn += zones_size[zone];
5787 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5789 return zones_size[zone_type];
5792 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5793 unsigned long zone_type,
5794 unsigned long node_start_pfn,
5795 unsigned long node_end_pfn,
5796 unsigned long *zholes_size)
5801 return zholes_size[zone_type];
5804 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5806 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5807 unsigned long node_start_pfn,
5808 unsigned long node_end_pfn,
5809 unsigned long *zones_size,
5810 unsigned long *zholes_size)
5812 unsigned long realtotalpages = 0, totalpages = 0;
5815 for (i = 0; i < MAX_NR_ZONES; i++) {
5816 struct zone *zone = pgdat->node_zones + i;
5817 unsigned long zone_start_pfn, zone_end_pfn;
5818 unsigned long size, real_size;
5820 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5826 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5827 node_start_pfn, node_end_pfn,
5830 zone->zone_start_pfn = zone_start_pfn;
5832 zone->zone_start_pfn = 0;
5833 zone->spanned_pages = size;
5834 zone->present_pages = real_size;
5837 realtotalpages += real_size;
5840 pgdat->node_spanned_pages = totalpages;
5841 pgdat->node_present_pages = realtotalpages;
5842 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5846 #ifndef CONFIG_SPARSEMEM
5848 * Calculate the size of the zone->blockflags rounded to an unsigned long
5849 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5850 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5851 * round what is now in bits to nearest long in bits, then return it in
5854 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5856 unsigned long usemapsize;
5858 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5859 usemapsize = roundup(zonesize, pageblock_nr_pages);
5860 usemapsize = usemapsize >> pageblock_order;
5861 usemapsize *= NR_PAGEBLOCK_BITS;
5862 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5864 return usemapsize / 8;
5867 static void __init setup_usemap(struct pglist_data *pgdat,
5869 unsigned long zone_start_pfn,
5870 unsigned long zonesize)
5872 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5873 zone->pageblock_flags = NULL;
5875 zone->pageblock_flags =
5876 memblock_virt_alloc_node_nopanic(usemapsize,
5880 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5881 unsigned long zone_start_pfn, unsigned long zonesize) {}
5882 #endif /* CONFIG_SPARSEMEM */
5884 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5886 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5887 void __paginginit set_pageblock_order(void)
5891 /* Check that pageblock_nr_pages has not already been setup */
5892 if (pageblock_order)
5895 if (HPAGE_SHIFT > PAGE_SHIFT)
5896 order = HUGETLB_PAGE_ORDER;
5898 order = MAX_ORDER - 1;
5901 * Assume the largest contiguous order of interest is a huge page.
5902 * This value may be variable depending on boot parameters on IA64 and
5905 pageblock_order = order;
5907 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5910 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5911 * is unused as pageblock_order is set at compile-time. See
5912 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5915 void __paginginit set_pageblock_order(void)
5919 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5921 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5922 unsigned long present_pages)
5924 unsigned long pages = spanned_pages;
5927 * Provide a more accurate estimation if there are holes within
5928 * the zone and SPARSEMEM is in use. If there are holes within the
5929 * zone, each populated memory region may cost us one or two extra
5930 * memmap pages due to alignment because memmap pages for each
5931 * populated regions may not be naturally aligned on page boundary.
5932 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5934 if (spanned_pages > present_pages + (present_pages >> 4) &&
5935 IS_ENABLED(CONFIG_SPARSEMEM))
5936 pages = present_pages;
5938 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5942 * Set up the zone data structures:
5943 * - mark all pages reserved
5944 * - mark all memory queues empty
5945 * - clear the memory bitmaps
5947 * NOTE: pgdat should get zeroed by caller.
5949 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5952 int nid = pgdat->node_id;
5955 pgdat_resize_init(pgdat);
5956 #ifdef CONFIG_NUMA_BALANCING
5957 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5958 pgdat->numabalancing_migrate_nr_pages = 0;
5959 pgdat->numabalancing_migrate_next_window = jiffies;
5961 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5962 spin_lock_init(&pgdat->split_queue_lock);
5963 INIT_LIST_HEAD(&pgdat->split_queue);
5964 pgdat->split_queue_len = 0;
5966 init_waitqueue_head(&pgdat->kswapd_wait);
5967 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5968 #ifdef CONFIG_COMPACTION
5969 init_waitqueue_head(&pgdat->kcompactd_wait);
5971 pgdat_page_ext_init(pgdat);
5972 spin_lock_init(&pgdat->lru_lock);
5973 lruvec_init(node_lruvec(pgdat));
5975 for (j = 0; j < MAX_NR_ZONES; j++) {
5976 struct zone *zone = pgdat->node_zones + j;
5977 unsigned long size, realsize, freesize, memmap_pages;
5978 unsigned long zone_start_pfn = zone->zone_start_pfn;
5980 size = zone->spanned_pages;
5981 realsize = freesize = zone->present_pages;
5984 * Adjust freesize so that it accounts for how much memory
5985 * is used by this zone for memmap. This affects the watermark
5986 * and per-cpu initialisations
5988 memmap_pages = calc_memmap_size(size, realsize);
5989 if (!is_highmem_idx(j)) {
5990 if (freesize >= memmap_pages) {
5991 freesize -= memmap_pages;
5994 " %s zone: %lu pages used for memmap\n",
5995 zone_names[j], memmap_pages);
5997 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5998 zone_names[j], memmap_pages, freesize);
6001 /* Account for reserved pages */
6002 if (j == 0 && freesize > dma_reserve) {
6003 freesize -= dma_reserve;
6004 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6005 zone_names[0], dma_reserve);
6008 if (!is_highmem_idx(j))
6009 nr_kernel_pages += freesize;
6010 /* Charge for highmem memmap if there are enough kernel pages */
6011 else if (nr_kernel_pages > memmap_pages * 2)
6012 nr_kernel_pages -= memmap_pages;
6013 nr_all_pages += freesize;
6016 * Set an approximate value for lowmem here, it will be adjusted
6017 * when the bootmem allocator frees pages into the buddy system.
6018 * And all highmem pages will be managed by the buddy system.
6020 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6024 zone->name = zone_names[j];
6025 zone->zone_pgdat = pgdat;
6026 spin_lock_init(&zone->lock);
6027 zone_seqlock_init(zone);
6028 zone_pcp_init(zone);
6033 set_pageblock_order();
6034 setup_usemap(pgdat, zone, zone_start_pfn, size);
6035 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6037 memmap_init(size, nid, j, zone_start_pfn);
6041 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6043 unsigned long __maybe_unused start = 0;
6044 unsigned long __maybe_unused offset = 0;
6046 /* Skip empty nodes */
6047 if (!pgdat->node_spanned_pages)
6050 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6051 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6052 offset = pgdat->node_start_pfn - start;
6053 /* ia64 gets its own node_mem_map, before this, without bootmem */
6054 if (!pgdat->node_mem_map) {
6055 unsigned long size, end;
6059 * The zone's endpoints aren't required to be MAX_ORDER
6060 * aligned but the node_mem_map endpoints must be in order
6061 * for the buddy allocator to function correctly.
6063 end = pgdat_end_pfn(pgdat);
6064 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6065 size = (end - start) * sizeof(struct page);
6066 map = alloc_remap(pgdat->node_id, size);
6068 map = memblock_virt_alloc_node_nopanic(size,
6070 pgdat->node_mem_map = map + offset;
6072 #ifndef CONFIG_NEED_MULTIPLE_NODES
6074 * With no DISCONTIG, the global mem_map is just set as node 0's
6076 if (pgdat == NODE_DATA(0)) {
6077 mem_map = NODE_DATA(0)->node_mem_map;
6078 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6079 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6081 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6084 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6087 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6088 unsigned long node_start_pfn, unsigned long *zholes_size)
6090 pg_data_t *pgdat = NODE_DATA(nid);
6091 unsigned long start_pfn = 0;
6092 unsigned long end_pfn = 0;
6094 /* pg_data_t should be reset to zero when it's allocated */
6095 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6097 reset_deferred_meminit(pgdat);
6098 pgdat->node_id = nid;
6099 pgdat->node_start_pfn = node_start_pfn;
6100 pgdat->per_cpu_nodestats = NULL;
6101 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6102 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6103 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6104 (u64)start_pfn << PAGE_SHIFT,
6105 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6107 start_pfn = node_start_pfn;
6109 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6110 zones_size, zholes_size);
6112 alloc_node_mem_map(pgdat);
6113 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6114 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6115 nid, (unsigned long)pgdat,
6116 (unsigned long)pgdat->node_mem_map);
6119 free_area_init_core(pgdat);
6122 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6124 #if MAX_NUMNODES > 1
6126 * Figure out the number of possible node ids.
6128 void __init setup_nr_node_ids(void)
6130 unsigned int highest;
6132 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6133 nr_node_ids = highest + 1;
6138 * node_map_pfn_alignment - determine the maximum internode alignment
6140 * This function should be called after node map is populated and sorted.
6141 * It calculates the maximum power of two alignment which can distinguish
6144 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6145 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6146 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6147 * shifted, 1GiB is enough and this function will indicate so.
6149 * This is used to test whether pfn -> nid mapping of the chosen memory
6150 * model has fine enough granularity to avoid incorrect mapping for the
6151 * populated node map.
6153 * Returns the determined alignment in pfn's. 0 if there is no alignment
6154 * requirement (single node).
6156 unsigned long __init node_map_pfn_alignment(void)
6158 unsigned long accl_mask = 0, last_end = 0;
6159 unsigned long start, end, mask;
6163 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6164 if (!start || last_nid < 0 || last_nid == nid) {
6171 * Start with a mask granular enough to pin-point to the
6172 * start pfn and tick off bits one-by-one until it becomes
6173 * too coarse to separate the current node from the last.
6175 mask = ~((1 << __ffs(start)) - 1);
6176 while (mask && last_end <= (start & (mask << 1)))
6179 /* accumulate all internode masks */
6183 /* convert mask to number of pages */
6184 return ~accl_mask + 1;
6187 /* Find the lowest pfn for a node */
6188 static unsigned long __init find_min_pfn_for_node(int nid)
6190 unsigned long min_pfn = ULONG_MAX;
6191 unsigned long start_pfn;
6194 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6195 min_pfn = min(min_pfn, start_pfn);
6197 if (min_pfn == ULONG_MAX) {
6198 pr_warn("Could not find start_pfn for node %d\n", nid);
6206 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6208 * It returns the minimum PFN based on information provided via
6209 * memblock_set_node().
6211 unsigned long __init find_min_pfn_with_active_regions(void)
6213 return find_min_pfn_for_node(MAX_NUMNODES);
6217 * early_calculate_totalpages()
6218 * Sum pages in active regions for movable zone.
6219 * Populate N_MEMORY for calculating usable_nodes.
6221 static unsigned long __init early_calculate_totalpages(void)
6223 unsigned long totalpages = 0;
6224 unsigned long start_pfn, end_pfn;
6227 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6228 unsigned long pages = end_pfn - start_pfn;
6230 totalpages += pages;
6232 node_set_state(nid, N_MEMORY);
6238 * Find the PFN the Movable zone begins in each node. Kernel memory
6239 * is spread evenly between nodes as long as the nodes have enough
6240 * memory. When they don't, some nodes will have more kernelcore than
6243 static void __init find_zone_movable_pfns_for_nodes(void)
6246 unsigned long usable_startpfn;
6247 unsigned long kernelcore_node, kernelcore_remaining;
6248 /* save the state before borrow the nodemask */
6249 nodemask_t saved_node_state = node_states[N_MEMORY];
6250 unsigned long totalpages = early_calculate_totalpages();
6251 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6252 struct memblock_region *r;
6254 /* Need to find movable_zone earlier when movable_node is specified. */
6255 find_usable_zone_for_movable();
6258 * If movable_node is specified, ignore kernelcore and movablecore
6261 if (movable_node_is_enabled()) {
6262 for_each_memblock(memory, r) {
6263 if (!memblock_is_hotpluggable(r))
6268 usable_startpfn = PFN_DOWN(r->base);
6269 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6270 min(usable_startpfn, zone_movable_pfn[nid]) :
6278 * If kernelcore=mirror is specified, ignore movablecore option
6280 if (mirrored_kernelcore) {
6281 bool mem_below_4gb_not_mirrored = false;
6283 for_each_memblock(memory, r) {
6284 if (memblock_is_mirror(r))
6289 usable_startpfn = memblock_region_memory_base_pfn(r);
6291 if (usable_startpfn < 0x100000) {
6292 mem_below_4gb_not_mirrored = true;
6296 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6297 min(usable_startpfn, zone_movable_pfn[nid]) :
6301 if (mem_below_4gb_not_mirrored)
6302 pr_warn("This configuration results in unmirrored kernel memory.");
6308 * If movablecore=nn[KMG] was specified, calculate what size of
6309 * kernelcore that corresponds so that memory usable for
6310 * any allocation type is evenly spread. If both kernelcore
6311 * and movablecore are specified, then the value of kernelcore
6312 * will be used for required_kernelcore if it's greater than
6313 * what movablecore would have allowed.
6315 if (required_movablecore) {
6316 unsigned long corepages;
6319 * Round-up so that ZONE_MOVABLE is at least as large as what
6320 * was requested by the user
6322 required_movablecore =
6323 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6324 required_movablecore = min(totalpages, required_movablecore);
6325 corepages = totalpages - required_movablecore;
6327 required_kernelcore = max(required_kernelcore, corepages);
6331 * If kernelcore was not specified or kernelcore size is larger
6332 * than totalpages, there is no ZONE_MOVABLE.
6334 if (!required_kernelcore || required_kernelcore >= totalpages)
6337 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6338 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6341 /* Spread kernelcore memory as evenly as possible throughout nodes */
6342 kernelcore_node = required_kernelcore / usable_nodes;
6343 for_each_node_state(nid, N_MEMORY) {
6344 unsigned long start_pfn, end_pfn;
6347 * Recalculate kernelcore_node if the division per node
6348 * now exceeds what is necessary to satisfy the requested
6349 * amount of memory for the kernel
6351 if (required_kernelcore < kernelcore_node)
6352 kernelcore_node = required_kernelcore / usable_nodes;
6355 * As the map is walked, we track how much memory is usable
6356 * by the kernel using kernelcore_remaining. When it is
6357 * 0, the rest of the node is usable by ZONE_MOVABLE
6359 kernelcore_remaining = kernelcore_node;
6361 /* Go through each range of PFNs within this node */
6362 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6363 unsigned long size_pages;
6365 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6366 if (start_pfn >= end_pfn)
6369 /* Account for what is only usable for kernelcore */
6370 if (start_pfn < usable_startpfn) {
6371 unsigned long kernel_pages;
6372 kernel_pages = min(end_pfn, usable_startpfn)
6375 kernelcore_remaining -= min(kernel_pages,
6376 kernelcore_remaining);
6377 required_kernelcore -= min(kernel_pages,
6378 required_kernelcore);
6380 /* Continue if range is now fully accounted */
6381 if (end_pfn <= usable_startpfn) {
6384 * Push zone_movable_pfn to the end so
6385 * that if we have to rebalance
6386 * kernelcore across nodes, we will
6387 * not double account here
6389 zone_movable_pfn[nid] = end_pfn;
6392 start_pfn = usable_startpfn;
6396 * The usable PFN range for ZONE_MOVABLE is from
6397 * start_pfn->end_pfn. Calculate size_pages as the
6398 * number of pages used as kernelcore
6400 size_pages = end_pfn - start_pfn;
6401 if (size_pages > kernelcore_remaining)
6402 size_pages = kernelcore_remaining;
6403 zone_movable_pfn[nid] = start_pfn + size_pages;
6406 * Some kernelcore has been met, update counts and
6407 * break if the kernelcore for this node has been
6410 required_kernelcore -= min(required_kernelcore,
6412 kernelcore_remaining -= size_pages;
6413 if (!kernelcore_remaining)
6419 * If there is still required_kernelcore, we do another pass with one
6420 * less node in the count. This will push zone_movable_pfn[nid] further
6421 * along on the nodes that still have memory until kernelcore is
6425 if (usable_nodes && required_kernelcore > usable_nodes)
6429 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6430 for (nid = 0; nid < MAX_NUMNODES; nid++)
6431 zone_movable_pfn[nid] =
6432 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6435 /* restore the node_state */
6436 node_states[N_MEMORY] = saved_node_state;
6439 /* Any regular or high memory on that node ? */
6440 static void check_for_memory(pg_data_t *pgdat, int nid)
6442 enum zone_type zone_type;
6444 if (N_MEMORY == N_NORMAL_MEMORY)
6447 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6448 struct zone *zone = &pgdat->node_zones[zone_type];
6449 if (populated_zone(zone)) {
6450 node_set_state(nid, N_HIGH_MEMORY);
6451 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6452 zone_type <= ZONE_NORMAL)
6453 node_set_state(nid, N_NORMAL_MEMORY);
6460 * free_area_init_nodes - Initialise all pg_data_t and zone data
6461 * @max_zone_pfn: an array of max PFNs for each zone
6463 * This will call free_area_init_node() for each active node in the system.
6464 * Using the page ranges provided by memblock_set_node(), the size of each
6465 * zone in each node and their holes is calculated. If the maximum PFN
6466 * between two adjacent zones match, it is assumed that the zone is empty.
6467 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6468 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6469 * starts where the previous one ended. For example, ZONE_DMA32 starts
6470 * at arch_max_dma_pfn.
6472 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6474 unsigned long start_pfn, end_pfn;
6477 /* Record where the zone boundaries are */
6478 memset(arch_zone_lowest_possible_pfn, 0,
6479 sizeof(arch_zone_lowest_possible_pfn));
6480 memset(arch_zone_highest_possible_pfn, 0,
6481 sizeof(arch_zone_highest_possible_pfn));
6483 start_pfn = find_min_pfn_with_active_regions();
6485 for (i = 0; i < MAX_NR_ZONES; i++) {
6486 if (i == ZONE_MOVABLE)
6489 end_pfn = max(max_zone_pfn[i], start_pfn);
6490 arch_zone_lowest_possible_pfn[i] = start_pfn;
6491 arch_zone_highest_possible_pfn[i] = end_pfn;
6493 start_pfn = end_pfn;
6496 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6497 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6498 find_zone_movable_pfns_for_nodes();
6500 /* Print out the zone ranges */
6501 pr_info("Zone ranges:\n");
6502 for (i = 0; i < MAX_NR_ZONES; i++) {
6503 if (i == ZONE_MOVABLE)
6505 pr_info(" %-8s ", zone_names[i]);
6506 if (arch_zone_lowest_possible_pfn[i] ==
6507 arch_zone_highest_possible_pfn[i])
6510 pr_cont("[mem %#018Lx-%#018Lx]\n",
6511 (u64)arch_zone_lowest_possible_pfn[i]
6513 ((u64)arch_zone_highest_possible_pfn[i]
6514 << PAGE_SHIFT) - 1);
6517 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6518 pr_info("Movable zone start for each node\n");
6519 for (i = 0; i < MAX_NUMNODES; i++) {
6520 if (zone_movable_pfn[i])
6521 pr_info(" Node %d: %#018Lx\n", i,
6522 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6525 /* Print out the early node map */
6526 pr_info("Early memory node ranges\n");
6527 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6528 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6529 (u64)start_pfn << PAGE_SHIFT,
6530 ((u64)end_pfn << PAGE_SHIFT) - 1);
6532 /* Initialise every node */
6533 mminit_verify_pageflags_layout();
6534 setup_nr_node_ids();
6535 for_each_online_node(nid) {
6536 pg_data_t *pgdat = NODE_DATA(nid);
6537 free_area_init_node(nid, NULL,
6538 find_min_pfn_for_node(nid), NULL);
6540 /* Any memory on that node */
6541 if (pgdat->node_present_pages)
6542 node_set_state(nid, N_MEMORY);
6543 check_for_memory(pgdat, nid);
6547 static int __init cmdline_parse_core(char *p, unsigned long *core)
6549 unsigned long long coremem;
6553 coremem = memparse(p, &p);
6554 *core = coremem >> PAGE_SHIFT;
6556 /* Paranoid check that UL is enough for the coremem value */
6557 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6563 * kernelcore=size sets the amount of memory for use for allocations that
6564 * cannot be reclaimed or migrated.
6566 static int __init cmdline_parse_kernelcore(char *p)
6568 /* parse kernelcore=mirror */
6569 if (parse_option_str(p, "mirror")) {
6570 mirrored_kernelcore = true;
6574 return cmdline_parse_core(p, &required_kernelcore);
6578 * movablecore=size sets the amount of memory for use for allocations that
6579 * can be reclaimed or migrated.
6581 static int __init cmdline_parse_movablecore(char *p)
6583 return cmdline_parse_core(p, &required_movablecore);
6586 early_param("kernelcore", cmdline_parse_kernelcore);
6587 early_param("movablecore", cmdline_parse_movablecore);
6589 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6591 void adjust_managed_page_count(struct page *page, long count)
6593 spin_lock(&managed_page_count_lock);
6594 page_zone(page)->managed_pages += count;
6595 totalram_pages += count;
6596 #ifdef CONFIG_HIGHMEM
6597 if (PageHighMem(page))
6598 totalhigh_pages += count;
6600 spin_unlock(&managed_page_count_lock);
6602 EXPORT_SYMBOL(adjust_managed_page_count);
6604 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6607 unsigned long pages = 0;
6609 start = (void *)PAGE_ALIGN((unsigned long)start);
6610 end = (void *)((unsigned long)end & PAGE_MASK);
6611 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6612 if ((unsigned int)poison <= 0xFF)
6613 memset(pos, poison, PAGE_SIZE);
6614 free_reserved_page(virt_to_page(pos));
6618 pr_info("Freeing %s memory: %ldK\n",
6619 s, pages << (PAGE_SHIFT - 10));
6623 EXPORT_SYMBOL(free_reserved_area);
6625 #ifdef CONFIG_HIGHMEM
6626 void free_highmem_page(struct page *page)
6628 __free_reserved_page(page);
6630 page_zone(page)->managed_pages++;
6636 void __init mem_init_print_info(const char *str)
6638 unsigned long physpages, codesize, datasize, rosize, bss_size;
6639 unsigned long init_code_size, init_data_size;
6641 physpages = get_num_physpages();
6642 codesize = _etext - _stext;
6643 datasize = _edata - _sdata;
6644 rosize = __end_rodata - __start_rodata;
6645 bss_size = __bss_stop - __bss_start;
6646 init_data_size = __init_end - __init_begin;
6647 init_code_size = _einittext - _sinittext;
6650 * Detect special cases and adjust section sizes accordingly:
6651 * 1) .init.* may be embedded into .data sections
6652 * 2) .init.text.* may be out of [__init_begin, __init_end],
6653 * please refer to arch/tile/kernel/vmlinux.lds.S.
6654 * 3) .rodata.* may be embedded into .text or .data sections.
6656 #define adj_init_size(start, end, size, pos, adj) \
6658 if (start <= pos && pos < end && size > adj) \
6662 adj_init_size(__init_begin, __init_end, init_data_size,
6663 _sinittext, init_code_size);
6664 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6665 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6666 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6667 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6669 #undef adj_init_size
6671 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6672 #ifdef CONFIG_HIGHMEM
6676 nr_free_pages() << (PAGE_SHIFT - 10),
6677 physpages << (PAGE_SHIFT - 10),
6678 codesize >> 10, datasize >> 10, rosize >> 10,
6679 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6680 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6681 totalcma_pages << (PAGE_SHIFT - 10),
6682 #ifdef CONFIG_HIGHMEM
6683 totalhigh_pages << (PAGE_SHIFT - 10),
6685 str ? ", " : "", str ? str : "");
6689 * set_dma_reserve - set the specified number of pages reserved in the first zone
6690 * @new_dma_reserve: The number of pages to mark reserved
6692 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6693 * In the DMA zone, a significant percentage may be consumed by kernel image
6694 * and other unfreeable allocations which can skew the watermarks badly. This
6695 * function may optionally be used to account for unfreeable pages in the
6696 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6697 * smaller per-cpu batchsize.
6699 void __init set_dma_reserve(unsigned long new_dma_reserve)
6701 dma_reserve = new_dma_reserve;
6704 void __init free_area_init(unsigned long *zones_size)
6706 free_area_init_node(0, zones_size,
6707 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6710 static int page_alloc_cpu_dead(unsigned int cpu)
6713 lru_add_drain_cpu(cpu);
6717 * Spill the event counters of the dead processor
6718 * into the current processors event counters.
6719 * This artificially elevates the count of the current
6722 vm_events_fold_cpu(cpu);
6725 * Zero the differential counters of the dead processor
6726 * so that the vm statistics are consistent.
6728 * This is only okay since the processor is dead and cannot
6729 * race with what we are doing.
6731 cpu_vm_stats_fold(cpu);
6735 void __init page_alloc_init(void)
6739 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6740 "mm/page_alloc:dead", NULL,
6741 page_alloc_cpu_dead);
6746 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6747 * or min_free_kbytes changes.
6749 static void calculate_totalreserve_pages(void)
6751 struct pglist_data *pgdat;
6752 unsigned long reserve_pages = 0;
6753 enum zone_type i, j;
6755 for_each_online_pgdat(pgdat) {
6757 pgdat->totalreserve_pages = 0;
6759 for (i = 0; i < MAX_NR_ZONES; i++) {
6760 struct zone *zone = pgdat->node_zones + i;
6763 /* Find valid and maximum lowmem_reserve in the zone */
6764 for (j = i; j < MAX_NR_ZONES; j++) {
6765 if (zone->lowmem_reserve[j] > max)
6766 max = zone->lowmem_reserve[j];
6769 /* we treat the high watermark as reserved pages. */
6770 max += high_wmark_pages(zone);
6772 if (max > zone->managed_pages)
6773 max = zone->managed_pages;
6775 pgdat->totalreserve_pages += max;
6777 reserve_pages += max;
6780 totalreserve_pages = reserve_pages;
6784 * setup_per_zone_lowmem_reserve - called whenever
6785 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6786 * has a correct pages reserved value, so an adequate number of
6787 * pages are left in the zone after a successful __alloc_pages().
6789 static void setup_per_zone_lowmem_reserve(void)
6791 struct pglist_data *pgdat;
6792 enum zone_type j, idx;
6794 for_each_online_pgdat(pgdat) {
6795 for (j = 0; j < MAX_NR_ZONES; j++) {
6796 struct zone *zone = pgdat->node_zones + j;
6797 unsigned long managed_pages = zone->managed_pages;
6799 zone->lowmem_reserve[j] = 0;
6803 struct zone *lower_zone;
6807 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6808 sysctl_lowmem_reserve_ratio[idx] = 1;
6810 lower_zone = pgdat->node_zones + idx;
6811 lower_zone->lowmem_reserve[j] = managed_pages /
6812 sysctl_lowmem_reserve_ratio[idx];
6813 managed_pages += lower_zone->managed_pages;
6818 /* update totalreserve_pages */
6819 calculate_totalreserve_pages();
6822 static void __setup_per_zone_wmarks(void)
6824 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6825 unsigned long lowmem_pages = 0;
6827 unsigned long flags;
6829 /* Calculate total number of !ZONE_HIGHMEM pages */
6830 for_each_zone(zone) {
6831 if (!is_highmem(zone))
6832 lowmem_pages += zone->managed_pages;
6835 for_each_zone(zone) {
6838 spin_lock_irqsave(&zone->lock, flags);
6839 tmp = (u64)pages_min * zone->managed_pages;
6840 do_div(tmp, lowmem_pages);
6841 if (is_highmem(zone)) {
6843 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6844 * need highmem pages, so cap pages_min to a small
6847 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6848 * deltas control asynch page reclaim, and so should
6849 * not be capped for highmem.
6851 unsigned long min_pages;
6853 min_pages = zone->managed_pages / 1024;
6854 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6855 zone->watermark[WMARK_MIN] = min_pages;
6858 * If it's a lowmem zone, reserve a number of pages
6859 * proportionate to the zone's size.
6861 zone->watermark[WMARK_MIN] = tmp;
6865 * Set the kswapd watermarks distance according to the
6866 * scale factor in proportion to available memory, but
6867 * ensure a minimum size on small systems.
6869 tmp = max_t(u64, tmp >> 2,
6870 mult_frac(zone->managed_pages,
6871 watermark_scale_factor, 10000));
6873 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6874 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6876 spin_unlock_irqrestore(&zone->lock, flags);
6879 /* update totalreserve_pages */
6880 calculate_totalreserve_pages();
6884 * setup_per_zone_wmarks - called when min_free_kbytes changes
6885 * or when memory is hot-{added|removed}
6887 * Ensures that the watermark[min,low,high] values for each zone are set
6888 * correctly with respect to min_free_kbytes.
6890 void setup_per_zone_wmarks(void)
6892 mutex_lock(&zonelists_mutex);
6893 __setup_per_zone_wmarks();
6894 mutex_unlock(&zonelists_mutex);
6898 * Initialise min_free_kbytes.
6900 * For small machines we want it small (128k min). For large machines
6901 * we want it large (64MB max). But it is not linear, because network
6902 * bandwidth does not increase linearly with machine size. We use
6904 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6905 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6921 int __meminit init_per_zone_wmark_min(void)
6923 unsigned long lowmem_kbytes;
6924 int new_min_free_kbytes;
6926 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6927 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6929 if (new_min_free_kbytes > user_min_free_kbytes) {
6930 min_free_kbytes = new_min_free_kbytes;
6931 if (min_free_kbytes < 128)
6932 min_free_kbytes = 128;
6933 if (min_free_kbytes > 65536)
6934 min_free_kbytes = 65536;
6936 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6937 new_min_free_kbytes, user_min_free_kbytes);
6939 setup_per_zone_wmarks();
6940 refresh_zone_stat_thresholds();
6941 setup_per_zone_lowmem_reserve();
6944 setup_min_unmapped_ratio();
6945 setup_min_slab_ratio();
6950 core_initcall(init_per_zone_wmark_min)
6953 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6954 * that we can call two helper functions whenever min_free_kbytes
6957 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6958 void __user *buffer, size_t *length, loff_t *ppos)
6962 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6967 user_min_free_kbytes = min_free_kbytes;
6968 setup_per_zone_wmarks();
6973 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6974 void __user *buffer, size_t *length, loff_t *ppos)
6978 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6983 setup_per_zone_wmarks();
6989 static void setup_min_unmapped_ratio(void)
6994 for_each_online_pgdat(pgdat)
6995 pgdat->min_unmapped_pages = 0;
6998 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6999 sysctl_min_unmapped_ratio) / 100;
7003 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7004 void __user *buffer, size_t *length, loff_t *ppos)
7008 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7012 setup_min_unmapped_ratio();
7017 static void setup_min_slab_ratio(void)
7022 for_each_online_pgdat(pgdat)
7023 pgdat->min_slab_pages = 0;
7026 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7027 sysctl_min_slab_ratio) / 100;
7030 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7031 void __user *buffer, size_t *length, loff_t *ppos)
7035 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7039 setup_min_slab_ratio();
7046 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7047 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7048 * whenever sysctl_lowmem_reserve_ratio changes.
7050 * The reserve ratio obviously has absolutely no relation with the
7051 * minimum watermarks. The lowmem reserve ratio can only make sense
7052 * if in function of the boot time zone sizes.
7054 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7055 void __user *buffer, size_t *length, loff_t *ppos)
7057 proc_dointvec_minmax(table, write, buffer, length, ppos);
7058 setup_per_zone_lowmem_reserve();
7063 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7064 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7065 * pagelist can have before it gets flushed back to buddy allocator.
7067 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7068 void __user *buffer, size_t *length, loff_t *ppos)
7071 int old_percpu_pagelist_fraction;
7074 mutex_lock(&pcp_batch_high_lock);
7075 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7077 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7078 if (!write || ret < 0)
7081 /* Sanity checking to avoid pcp imbalance */
7082 if (percpu_pagelist_fraction &&
7083 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7084 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7090 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7093 for_each_populated_zone(zone) {
7096 for_each_possible_cpu(cpu)
7097 pageset_set_high_and_batch(zone,
7098 per_cpu_ptr(zone->pageset, cpu));
7101 mutex_unlock(&pcp_batch_high_lock);
7106 int hashdist = HASHDIST_DEFAULT;
7108 static int __init set_hashdist(char *str)
7112 hashdist = simple_strtoul(str, &str, 0);
7115 __setup("hashdist=", set_hashdist);
7118 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7120 * Returns the number of pages that arch has reserved but
7121 * is not known to alloc_large_system_hash().
7123 static unsigned long __init arch_reserved_kernel_pages(void)
7130 * allocate a large system hash table from bootmem
7131 * - it is assumed that the hash table must contain an exact power-of-2
7132 * quantity of entries
7133 * - limit is the number of hash buckets, not the total allocation size
7135 void *__init alloc_large_system_hash(const char *tablename,
7136 unsigned long bucketsize,
7137 unsigned long numentries,
7140 unsigned int *_hash_shift,
7141 unsigned int *_hash_mask,
7142 unsigned long low_limit,
7143 unsigned long high_limit)
7145 unsigned long long max = high_limit;
7146 unsigned long log2qty, size;
7149 /* allow the kernel cmdline to have a say */
7151 /* round applicable memory size up to nearest megabyte */
7152 numentries = nr_kernel_pages;
7153 numentries -= arch_reserved_kernel_pages();
7155 /* It isn't necessary when PAGE_SIZE >= 1MB */
7156 if (PAGE_SHIFT < 20)
7157 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7159 /* limit to 1 bucket per 2^scale bytes of low memory */
7160 if (scale > PAGE_SHIFT)
7161 numentries >>= (scale - PAGE_SHIFT);
7163 numentries <<= (PAGE_SHIFT - scale);
7165 /* Make sure we've got at least a 0-order allocation.. */
7166 if (unlikely(flags & HASH_SMALL)) {
7167 /* Makes no sense without HASH_EARLY */
7168 WARN_ON(!(flags & HASH_EARLY));
7169 if (!(numentries >> *_hash_shift)) {
7170 numentries = 1UL << *_hash_shift;
7171 BUG_ON(!numentries);
7173 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7174 numentries = PAGE_SIZE / bucketsize;
7176 numentries = roundup_pow_of_two(numentries);
7178 /* limit allocation size to 1/16 total memory by default */
7180 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7181 do_div(max, bucketsize);
7183 max = min(max, 0x80000000ULL);
7185 if (numentries < low_limit)
7186 numentries = low_limit;
7187 if (numentries > max)
7190 log2qty = ilog2(numentries);
7193 size = bucketsize << log2qty;
7194 if (flags & HASH_EARLY)
7195 table = memblock_virt_alloc_nopanic(size, 0);
7197 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7200 * If bucketsize is not a power-of-two, we may free
7201 * some pages at the end of hash table which
7202 * alloc_pages_exact() automatically does
7204 if (get_order(size) < MAX_ORDER) {
7205 table = alloc_pages_exact(size, GFP_ATOMIC);
7206 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7209 } while (!table && size > PAGE_SIZE && --log2qty);
7212 panic("Failed to allocate %s hash table\n", tablename);
7214 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7215 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7218 *_hash_shift = log2qty;
7220 *_hash_mask = (1 << log2qty) - 1;
7226 * This function checks whether pageblock includes unmovable pages or not.
7227 * If @count is not zero, it is okay to include less @count unmovable pages
7229 * PageLRU check without isolation or lru_lock could race so that
7230 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7231 * check without lock_page also may miss some movable non-lru pages at
7232 * race condition. So you can't expect this function should be exact.
7234 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7235 bool skip_hwpoisoned_pages)
7237 unsigned long pfn, iter, found;
7241 * For avoiding noise data, lru_add_drain_all() should be called
7242 * If ZONE_MOVABLE, the zone never contains unmovable pages
7244 if (zone_idx(zone) == ZONE_MOVABLE)
7246 mt = get_pageblock_migratetype(page);
7247 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7250 pfn = page_to_pfn(page);
7251 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7252 unsigned long check = pfn + iter;
7254 if (!pfn_valid_within(check))
7257 page = pfn_to_page(check);
7260 * Hugepages are not in LRU lists, but they're movable.
7261 * We need not scan over tail pages bacause we don't
7262 * handle each tail page individually in migration.
7264 if (PageHuge(page)) {
7265 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7270 * We can't use page_count without pin a page
7271 * because another CPU can free compound page.
7272 * This check already skips compound tails of THP
7273 * because their page->_refcount is zero at all time.
7275 if (!page_ref_count(page)) {
7276 if (PageBuddy(page))
7277 iter += (1 << page_order(page)) - 1;
7282 * The HWPoisoned page may be not in buddy system, and
7283 * page_count() is not 0.
7285 if (skip_hwpoisoned_pages && PageHWPoison(page))
7288 if (__PageMovable(page))
7294 * If there are RECLAIMABLE pages, we need to check
7295 * it. But now, memory offline itself doesn't call
7296 * shrink_node_slabs() and it still to be fixed.
7299 * If the page is not RAM, page_count()should be 0.
7300 * we don't need more check. This is an _used_ not-movable page.
7302 * The problematic thing here is PG_reserved pages. PG_reserved
7303 * is set to both of a memory hole page and a _used_ kernel
7312 bool is_pageblock_removable_nolock(struct page *page)
7318 * We have to be careful here because we are iterating over memory
7319 * sections which are not zone aware so we might end up outside of
7320 * the zone but still within the section.
7321 * We have to take care about the node as well. If the node is offline
7322 * its NODE_DATA will be NULL - see page_zone.
7324 if (!node_online(page_to_nid(page)))
7327 zone = page_zone(page);
7328 pfn = page_to_pfn(page);
7329 if (!zone_spans_pfn(zone, pfn))
7332 return !has_unmovable_pages(zone, page, 0, true);
7335 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7337 static unsigned long pfn_max_align_down(unsigned long pfn)
7339 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7340 pageblock_nr_pages) - 1);
7343 static unsigned long pfn_max_align_up(unsigned long pfn)
7345 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7346 pageblock_nr_pages));
7349 /* [start, end) must belong to a single zone. */
7350 static int __alloc_contig_migrate_range(struct compact_control *cc,
7351 unsigned long start, unsigned long end)
7353 /* This function is based on compact_zone() from compaction.c. */
7354 unsigned long nr_reclaimed;
7355 unsigned long pfn = start;
7356 unsigned int tries = 0;
7361 while (pfn < end || !list_empty(&cc->migratepages)) {
7362 if (fatal_signal_pending(current)) {
7367 if (list_empty(&cc->migratepages)) {
7368 cc->nr_migratepages = 0;
7369 pfn = isolate_migratepages_range(cc, pfn, end);
7375 } else if (++tries == 5) {
7376 ret = ret < 0 ? ret : -EBUSY;
7380 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7382 cc->nr_migratepages -= nr_reclaimed;
7384 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7385 NULL, 0, cc->mode, MR_CMA);
7388 putback_movable_pages(&cc->migratepages);
7395 * alloc_contig_range() -- tries to allocate given range of pages
7396 * @start: start PFN to allocate
7397 * @end: one-past-the-last PFN to allocate
7398 * @migratetype: migratetype of the underlaying pageblocks (either
7399 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7400 * in range must have the same migratetype and it must
7401 * be either of the two.
7402 * @gfp_mask: GFP mask to use during compaction
7404 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7405 * aligned, however it's the caller's responsibility to guarantee that
7406 * we are the only thread that changes migrate type of pageblocks the
7409 * The PFN range must belong to a single zone.
7411 * Returns zero on success or negative error code. On success all
7412 * pages which PFN is in [start, end) are allocated for the caller and
7413 * need to be freed with free_contig_range().
7415 int alloc_contig_range(unsigned long start, unsigned long end,
7416 unsigned migratetype, gfp_t gfp_mask)
7418 unsigned long outer_start, outer_end;
7422 struct compact_control cc = {
7423 .nr_migratepages = 0,
7425 .zone = page_zone(pfn_to_page(start)),
7426 .mode = MIGRATE_SYNC,
7427 .ignore_skip_hint = true,
7428 .gfp_mask = memalloc_noio_flags(gfp_mask),
7430 INIT_LIST_HEAD(&cc.migratepages);
7433 * What we do here is we mark all pageblocks in range as
7434 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7435 * have different sizes, and due to the way page allocator
7436 * work, we align the range to biggest of the two pages so
7437 * that page allocator won't try to merge buddies from
7438 * different pageblocks and change MIGRATE_ISOLATE to some
7439 * other migration type.
7441 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7442 * migrate the pages from an unaligned range (ie. pages that
7443 * we are interested in). This will put all the pages in
7444 * range back to page allocator as MIGRATE_ISOLATE.
7446 * When this is done, we take the pages in range from page
7447 * allocator removing them from the buddy system. This way
7448 * page allocator will never consider using them.
7450 * This lets us mark the pageblocks back as
7451 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7452 * aligned range but not in the unaligned, original range are
7453 * put back to page allocator so that buddy can use them.
7456 ret = start_isolate_page_range(pfn_max_align_down(start),
7457 pfn_max_align_up(end), migratetype,
7463 * In case of -EBUSY, we'd like to know which page causes problem.
7464 * So, just fall through. We will check it in test_pages_isolated().
7466 ret = __alloc_contig_migrate_range(&cc, start, end);
7467 if (ret && ret != -EBUSY)
7471 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7472 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7473 * more, all pages in [start, end) are free in page allocator.
7474 * What we are going to do is to allocate all pages from
7475 * [start, end) (that is remove them from page allocator).
7477 * The only problem is that pages at the beginning and at the
7478 * end of interesting range may be not aligned with pages that
7479 * page allocator holds, ie. they can be part of higher order
7480 * pages. Because of this, we reserve the bigger range and
7481 * once this is done free the pages we are not interested in.
7483 * We don't have to hold zone->lock here because the pages are
7484 * isolated thus they won't get removed from buddy.
7487 lru_add_drain_all();
7488 drain_all_pages(cc.zone);
7491 outer_start = start;
7492 while (!PageBuddy(pfn_to_page(outer_start))) {
7493 if (++order >= MAX_ORDER) {
7494 outer_start = start;
7497 outer_start &= ~0UL << order;
7500 if (outer_start != start) {
7501 order = page_order(pfn_to_page(outer_start));
7504 * outer_start page could be small order buddy page and
7505 * it doesn't include start page. Adjust outer_start
7506 * in this case to report failed page properly
7507 * on tracepoint in test_pages_isolated()
7509 if (outer_start + (1UL << order) <= start)
7510 outer_start = start;
7513 /* Make sure the range is really isolated. */
7514 if (test_pages_isolated(outer_start, end, false)) {
7515 pr_info("%s: [%lx, %lx) PFNs busy\n",
7516 __func__, outer_start, end);
7521 /* Grab isolated pages from freelists. */
7522 outer_end = isolate_freepages_range(&cc, outer_start, end);
7528 /* Free head and tail (if any) */
7529 if (start != outer_start)
7530 free_contig_range(outer_start, start - outer_start);
7531 if (end != outer_end)
7532 free_contig_range(end, outer_end - end);
7535 undo_isolate_page_range(pfn_max_align_down(start),
7536 pfn_max_align_up(end), migratetype);
7540 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7542 unsigned int count = 0;
7544 for (; nr_pages--; pfn++) {
7545 struct page *page = pfn_to_page(pfn);
7547 count += page_count(page) != 1;
7550 WARN(count != 0, "%d pages are still in use!\n", count);
7554 #ifdef CONFIG_MEMORY_HOTPLUG
7556 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7557 * page high values need to be recalulated.
7559 void __meminit zone_pcp_update(struct zone *zone)
7562 mutex_lock(&pcp_batch_high_lock);
7563 for_each_possible_cpu(cpu)
7564 pageset_set_high_and_batch(zone,
7565 per_cpu_ptr(zone->pageset, cpu));
7566 mutex_unlock(&pcp_batch_high_lock);
7570 void zone_pcp_reset(struct zone *zone)
7572 unsigned long flags;
7574 struct per_cpu_pageset *pset;
7576 /* avoid races with drain_pages() */
7577 local_irq_save(flags);
7578 if (zone->pageset != &boot_pageset) {
7579 for_each_online_cpu(cpu) {
7580 pset = per_cpu_ptr(zone->pageset, cpu);
7581 drain_zonestat(zone, pset);
7583 free_percpu(zone->pageset);
7584 zone->pageset = &boot_pageset;
7586 local_irq_restore(flags);
7589 #ifdef CONFIG_MEMORY_HOTREMOVE
7591 * All pages in the range must be in a single zone and isolated
7592 * before calling this.
7595 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7599 unsigned int order, i;
7601 unsigned long flags;
7602 /* find the first valid pfn */
7603 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7608 zone = page_zone(pfn_to_page(pfn));
7609 spin_lock_irqsave(&zone->lock, flags);
7611 while (pfn < end_pfn) {
7612 if (!pfn_valid(pfn)) {
7616 page = pfn_to_page(pfn);
7618 * The HWPoisoned page may be not in buddy system, and
7619 * page_count() is not 0.
7621 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7623 SetPageReserved(page);
7627 BUG_ON(page_count(page));
7628 BUG_ON(!PageBuddy(page));
7629 order = page_order(page);
7630 #ifdef CONFIG_DEBUG_VM
7631 pr_info("remove from free list %lx %d %lx\n",
7632 pfn, 1 << order, end_pfn);
7634 list_del(&page->lru);
7635 rmv_page_order(page);
7636 zone->free_area[order].nr_free--;
7637 for (i = 0; i < (1 << order); i++)
7638 SetPageReserved((page+i));
7639 pfn += (1 << order);
7641 spin_unlock_irqrestore(&zone->lock, flags);
7645 bool is_free_buddy_page(struct page *page)
7647 struct zone *zone = page_zone(page);
7648 unsigned long pfn = page_to_pfn(page);
7649 unsigned long flags;
7652 spin_lock_irqsave(&zone->lock, flags);
7653 for (order = 0; order < MAX_ORDER; order++) {
7654 struct page *page_head = page - (pfn & ((1 << order) - 1));
7656 if (PageBuddy(page_head) && page_order(page_head) >= order)
7659 spin_unlock_irqrestore(&zone->lock, flags);
7661 return order < MAX_ORDER;