]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_chardev.c
Merge tag 'vfio-ccw-20190717-2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_chardev.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_mmap(struct file *, struct vm_area_struct *);
46
47 static const char kfd_dev_name[] = "kfd";
48
49 static const struct file_operations kfd_fops = {
50         .owner = THIS_MODULE,
51         .unlocked_ioctl = kfd_ioctl,
52         .compat_ioctl = kfd_ioctl,
53         .open = kfd_open,
54         .mmap = kfd_mmap,
55 };
56
57 static int kfd_char_dev_major = -1;
58 static struct class *kfd_class;
59 struct device *kfd_device;
60
61 int kfd_chardev_init(void)
62 {
63         int err = 0;
64
65         kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
66         err = kfd_char_dev_major;
67         if (err < 0)
68                 goto err_register_chrdev;
69
70         kfd_class = class_create(THIS_MODULE, kfd_dev_name);
71         err = PTR_ERR(kfd_class);
72         if (IS_ERR(kfd_class))
73                 goto err_class_create;
74
75         kfd_device = device_create(kfd_class, NULL,
76                                         MKDEV(kfd_char_dev_major, 0),
77                                         NULL, kfd_dev_name);
78         err = PTR_ERR(kfd_device);
79         if (IS_ERR(kfd_device))
80                 goto err_device_create;
81
82         return 0;
83
84 err_device_create:
85         class_destroy(kfd_class);
86 err_class_create:
87         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
88 err_register_chrdev:
89         return err;
90 }
91
92 void kfd_chardev_exit(void)
93 {
94         device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
95         class_destroy(kfd_class);
96         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
97 }
98
99 struct device *kfd_chardev(void)
100 {
101         return kfd_device;
102 }
103
104
105 static int kfd_open(struct inode *inode, struct file *filep)
106 {
107         struct kfd_process *process;
108         bool is_32bit_user_mode;
109
110         if (iminor(inode) != 0)
111                 return -ENODEV;
112
113         is_32bit_user_mode = in_compat_syscall();
114
115         if (is_32bit_user_mode) {
116                 dev_warn(kfd_device,
117                         "Process %d (32-bit) failed to open /dev/kfd\n"
118                         "32-bit processes are not supported by amdkfd\n",
119                         current->pid);
120                 return -EPERM;
121         }
122
123         process = kfd_create_process(filep);
124         if (IS_ERR(process))
125                 return PTR_ERR(process);
126
127         if (kfd_is_locked())
128                 return -EAGAIN;
129
130         dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
131                 process->pasid, process->is_32bit_user_mode);
132
133         return 0;
134 }
135
136 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
137                                         void *data)
138 {
139         struct kfd_ioctl_get_version_args *args = data;
140
141         args->major_version = KFD_IOCTL_MAJOR_VERSION;
142         args->minor_version = KFD_IOCTL_MINOR_VERSION;
143
144         return 0;
145 }
146
147 static int set_queue_properties_from_user(struct queue_properties *q_properties,
148                                 struct kfd_ioctl_create_queue_args *args)
149 {
150         if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
151                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
152                 return -EINVAL;
153         }
154
155         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
156                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
157                 return -EINVAL;
158         }
159
160         if ((args->ring_base_address) &&
161                 (!access_ok((const void __user *) args->ring_base_address,
162                         sizeof(uint64_t)))) {
163                 pr_err("Can't access ring base address\n");
164                 return -EFAULT;
165         }
166
167         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
168                 pr_err("Ring size must be a power of 2 or 0\n");
169                 return -EINVAL;
170         }
171
172         if (!access_ok((const void __user *) args->read_pointer_address,
173                         sizeof(uint32_t))) {
174                 pr_err("Can't access read pointer\n");
175                 return -EFAULT;
176         }
177
178         if (!access_ok((const void __user *) args->write_pointer_address,
179                         sizeof(uint32_t))) {
180                 pr_err("Can't access write pointer\n");
181                 return -EFAULT;
182         }
183
184         if (args->eop_buffer_address &&
185                 !access_ok((const void __user *) args->eop_buffer_address,
186                         sizeof(uint32_t))) {
187                 pr_debug("Can't access eop buffer");
188                 return -EFAULT;
189         }
190
191         if (args->ctx_save_restore_address &&
192                 !access_ok((const void __user *) args->ctx_save_restore_address,
193                         sizeof(uint32_t))) {
194                 pr_debug("Can't access ctx save restore buffer");
195                 return -EFAULT;
196         }
197
198         q_properties->is_interop = false;
199         q_properties->queue_percent = args->queue_percentage;
200         q_properties->priority = args->queue_priority;
201         q_properties->queue_address = args->ring_base_address;
202         q_properties->queue_size = args->ring_size;
203         q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
204         q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
205         q_properties->eop_ring_buffer_address = args->eop_buffer_address;
206         q_properties->eop_ring_buffer_size = args->eop_buffer_size;
207         q_properties->ctx_save_restore_area_address =
208                         args->ctx_save_restore_address;
209         q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
210         q_properties->ctl_stack_size = args->ctl_stack_size;
211         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
212                 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
213                 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
214         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
215                 q_properties->type = KFD_QUEUE_TYPE_SDMA;
216         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
217                 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
218         else
219                 return -ENOTSUPP;
220
221         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
222                 q_properties->format = KFD_QUEUE_FORMAT_AQL;
223         else
224                 q_properties->format = KFD_QUEUE_FORMAT_PM4;
225
226         pr_debug("Queue Percentage: %d, %d\n",
227                         q_properties->queue_percent, args->queue_percentage);
228
229         pr_debug("Queue Priority: %d, %d\n",
230                         q_properties->priority, args->queue_priority);
231
232         pr_debug("Queue Address: 0x%llX, 0x%llX\n",
233                         q_properties->queue_address, args->ring_base_address);
234
235         pr_debug("Queue Size: 0x%llX, %u\n",
236                         q_properties->queue_size, args->ring_size);
237
238         pr_debug("Queue r/w Pointers: %px, %px\n",
239                         q_properties->read_ptr,
240                         q_properties->write_ptr);
241
242         pr_debug("Queue Format: %d\n", q_properties->format);
243
244         pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
245
246         pr_debug("Queue CTX save area: 0x%llX\n",
247                         q_properties->ctx_save_restore_area_address);
248
249         return 0;
250 }
251
252 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
253                                         void *data)
254 {
255         struct kfd_ioctl_create_queue_args *args = data;
256         struct kfd_dev *dev;
257         int err = 0;
258         unsigned int queue_id;
259         struct kfd_process_device *pdd;
260         struct queue_properties q_properties;
261
262         memset(&q_properties, 0, sizeof(struct queue_properties));
263
264         pr_debug("Creating queue ioctl\n");
265
266         err = set_queue_properties_from_user(&q_properties, args);
267         if (err)
268                 return err;
269
270         pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
271         dev = kfd_device_by_id(args->gpu_id);
272         if (!dev) {
273                 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
274                 return -EINVAL;
275         }
276
277         mutex_lock(&p->mutex);
278
279         pdd = kfd_bind_process_to_device(dev, p);
280         if (IS_ERR(pdd)) {
281                 err = -ESRCH;
282                 goto err_bind_process;
283         }
284
285         pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
286                         p->pasid,
287                         dev->id);
288
289         err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
290         if (err != 0)
291                 goto err_create_queue;
292
293         args->queue_id = queue_id;
294
295
296         /* Return gpu_id as doorbell offset for mmap usage */
297         args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
298         args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
299         args->doorbell_offset <<= PAGE_SHIFT;
300         if (KFD_IS_SOC15(dev->device_info->asic_family))
301                 /* On SOC15 ASICs, doorbell allocation must be
302                  * per-device, and independent from the per-process
303                  * queue_id. Return the doorbell offset within the
304                  * doorbell aperture to user mode.
305                  */
306                 args->doorbell_offset |= q_properties.doorbell_off;
307
308         mutex_unlock(&p->mutex);
309
310         pr_debug("Queue id %d was created successfully\n", args->queue_id);
311
312         pr_debug("Ring buffer address == 0x%016llX\n",
313                         args->ring_base_address);
314
315         pr_debug("Read ptr address    == 0x%016llX\n",
316                         args->read_pointer_address);
317
318         pr_debug("Write ptr address   == 0x%016llX\n",
319                         args->write_pointer_address);
320
321         return 0;
322
323 err_create_queue:
324 err_bind_process:
325         mutex_unlock(&p->mutex);
326         return err;
327 }
328
329 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
330                                         void *data)
331 {
332         int retval;
333         struct kfd_ioctl_destroy_queue_args *args = data;
334
335         pr_debug("Destroying queue id %d for pasid %d\n",
336                                 args->queue_id,
337                                 p->pasid);
338
339         mutex_lock(&p->mutex);
340
341         retval = pqm_destroy_queue(&p->pqm, args->queue_id);
342
343         mutex_unlock(&p->mutex);
344         return retval;
345 }
346
347 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
348                                         void *data)
349 {
350         int retval;
351         struct kfd_ioctl_update_queue_args *args = data;
352         struct queue_properties properties;
353
354         if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
355                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
356                 return -EINVAL;
357         }
358
359         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
360                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
361                 return -EINVAL;
362         }
363
364         if ((args->ring_base_address) &&
365                 (!access_ok((const void __user *) args->ring_base_address,
366                         sizeof(uint64_t)))) {
367                 pr_err("Can't access ring base address\n");
368                 return -EFAULT;
369         }
370
371         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
372                 pr_err("Ring size must be a power of 2 or 0\n");
373                 return -EINVAL;
374         }
375
376         properties.queue_address = args->ring_base_address;
377         properties.queue_size = args->ring_size;
378         properties.queue_percent = args->queue_percentage;
379         properties.priority = args->queue_priority;
380
381         pr_debug("Updating queue id %d for pasid %d\n",
382                         args->queue_id, p->pasid);
383
384         mutex_lock(&p->mutex);
385
386         retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
387
388         mutex_unlock(&p->mutex);
389
390         return retval;
391 }
392
393 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
394                                         void *data)
395 {
396         int retval;
397         const int max_num_cus = 1024;
398         struct kfd_ioctl_set_cu_mask_args *args = data;
399         struct queue_properties properties;
400         uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
401         size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
402
403         if ((args->num_cu_mask % 32) != 0) {
404                 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
405                                 args->num_cu_mask);
406                 return -EINVAL;
407         }
408
409         properties.cu_mask_count = args->num_cu_mask;
410         if (properties.cu_mask_count == 0) {
411                 pr_debug("CU mask cannot be 0");
412                 return -EINVAL;
413         }
414
415         /* To prevent an unreasonably large CU mask size, set an arbitrary
416          * limit of max_num_cus bits.  We can then just drop any CU mask bits
417          * past max_num_cus bits and just use the first max_num_cus bits.
418          */
419         if (properties.cu_mask_count > max_num_cus) {
420                 pr_debug("CU mask cannot be greater than 1024 bits");
421                 properties.cu_mask_count = max_num_cus;
422                 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
423         }
424
425         properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
426         if (!properties.cu_mask)
427                 return -ENOMEM;
428
429         retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
430         if (retval) {
431                 pr_debug("Could not copy CU mask from userspace");
432                 kfree(properties.cu_mask);
433                 return -EFAULT;
434         }
435
436         mutex_lock(&p->mutex);
437
438         retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
439
440         mutex_unlock(&p->mutex);
441
442         if (retval)
443                 kfree(properties.cu_mask);
444
445         return retval;
446 }
447
448 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
449                                           struct kfd_process *p, void *data)
450 {
451         struct kfd_ioctl_get_queue_wave_state_args *args = data;
452         int r;
453
454         mutex_lock(&p->mutex);
455
456         r = pqm_get_wave_state(&p->pqm, args->queue_id,
457                                (void __user *)args->ctl_stack_address,
458                                &args->ctl_stack_used_size,
459                                &args->save_area_used_size);
460
461         mutex_unlock(&p->mutex);
462
463         return r;
464 }
465
466 static int kfd_ioctl_set_memory_policy(struct file *filep,
467                                         struct kfd_process *p, void *data)
468 {
469         struct kfd_ioctl_set_memory_policy_args *args = data;
470         struct kfd_dev *dev;
471         int err = 0;
472         struct kfd_process_device *pdd;
473         enum cache_policy default_policy, alternate_policy;
474
475         if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
476             && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
477                 return -EINVAL;
478         }
479
480         if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
481             && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
482                 return -EINVAL;
483         }
484
485         dev = kfd_device_by_id(args->gpu_id);
486         if (!dev)
487                 return -EINVAL;
488
489         mutex_lock(&p->mutex);
490
491         pdd = kfd_bind_process_to_device(dev, p);
492         if (IS_ERR(pdd)) {
493                 err = -ESRCH;
494                 goto out;
495         }
496
497         default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
498                          ? cache_policy_coherent : cache_policy_noncoherent;
499
500         alternate_policy =
501                 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
502                    ? cache_policy_coherent : cache_policy_noncoherent;
503
504         if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
505                                 &pdd->qpd,
506                                 default_policy,
507                                 alternate_policy,
508                                 (void __user *)args->alternate_aperture_base,
509                                 args->alternate_aperture_size))
510                 err = -EINVAL;
511
512 out:
513         mutex_unlock(&p->mutex);
514
515         return err;
516 }
517
518 static int kfd_ioctl_set_trap_handler(struct file *filep,
519                                         struct kfd_process *p, void *data)
520 {
521         struct kfd_ioctl_set_trap_handler_args *args = data;
522         struct kfd_dev *dev;
523         int err = 0;
524         struct kfd_process_device *pdd;
525
526         dev = kfd_device_by_id(args->gpu_id);
527         if (!dev)
528                 return -EINVAL;
529
530         mutex_lock(&p->mutex);
531
532         pdd = kfd_bind_process_to_device(dev, p);
533         if (IS_ERR(pdd)) {
534                 err = -ESRCH;
535                 goto out;
536         }
537
538         if (dev->dqm->ops.set_trap_handler(dev->dqm,
539                                         &pdd->qpd,
540                                         args->tba_addr,
541                                         args->tma_addr))
542                 err = -EINVAL;
543
544 out:
545         mutex_unlock(&p->mutex);
546
547         return err;
548 }
549
550 static int kfd_ioctl_dbg_register(struct file *filep,
551                                 struct kfd_process *p, void *data)
552 {
553         struct kfd_ioctl_dbg_register_args *args = data;
554         struct kfd_dev *dev;
555         struct kfd_dbgmgr *dbgmgr_ptr;
556         struct kfd_process_device *pdd;
557         bool create_ok;
558         long status = 0;
559
560         dev = kfd_device_by_id(args->gpu_id);
561         if (!dev)
562                 return -EINVAL;
563
564         if (dev->device_info->asic_family == CHIP_CARRIZO) {
565                 pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
566                 return -EINVAL;
567         }
568
569         mutex_lock(&p->mutex);
570         mutex_lock(kfd_get_dbgmgr_mutex());
571
572         /*
573          * make sure that we have pdd, if this the first queue created for
574          * this process
575          */
576         pdd = kfd_bind_process_to_device(dev, p);
577         if (IS_ERR(pdd)) {
578                 status = PTR_ERR(pdd);
579                 goto out;
580         }
581
582         if (!dev->dbgmgr) {
583                 /* In case of a legal call, we have no dbgmgr yet */
584                 create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
585                 if (create_ok) {
586                         status = kfd_dbgmgr_register(dbgmgr_ptr, p);
587                         if (status != 0)
588                                 kfd_dbgmgr_destroy(dbgmgr_ptr);
589                         else
590                                 dev->dbgmgr = dbgmgr_ptr;
591                 }
592         } else {
593                 pr_debug("debugger already registered\n");
594                 status = -EINVAL;
595         }
596
597 out:
598         mutex_unlock(kfd_get_dbgmgr_mutex());
599         mutex_unlock(&p->mutex);
600
601         return status;
602 }
603
604 static int kfd_ioctl_dbg_unregister(struct file *filep,
605                                 struct kfd_process *p, void *data)
606 {
607         struct kfd_ioctl_dbg_unregister_args *args = data;
608         struct kfd_dev *dev;
609         long status;
610
611         dev = kfd_device_by_id(args->gpu_id);
612         if (!dev || !dev->dbgmgr)
613                 return -EINVAL;
614
615         if (dev->device_info->asic_family == CHIP_CARRIZO) {
616                 pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
617                 return -EINVAL;
618         }
619
620         mutex_lock(kfd_get_dbgmgr_mutex());
621
622         status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
623         if (!status) {
624                 kfd_dbgmgr_destroy(dev->dbgmgr);
625                 dev->dbgmgr = NULL;
626         }
627
628         mutex_unlock(kfd_get_dbgmgr_mutex());
629
630         return status;
631 }
632
633 /*
634  * Parse and generate variable size data structure for address watch.
635  * Total size of the buffer and # watch points is limited in order
636  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
637  * which is enforced by dbgdev module)
638  * please also note that the watch address itself are not "copied from user",
639  * since it be set into the HW in user mode values.
640  *
641  */
642 static int kfd_ioctl_dbg_address_watch(struct file *filep,
643                                         struct kfd_process *p, void *data)
644 {
645         struct kfd_ioctl_dbg_address_watch_args *args = data;
646         struct kfd_dev *dev;
647         struct dbg_address_watch_info aw_info;
648         unsigned char *args_buff;
649         long status;
650         void __user *cmd_from_user;
651         uint64_t watch_mask_value = 0;
652         unsigned int args_idx = 0;
653
654         memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
655
656         dev = kfd_device_by_id(args->gpu_id);
657         if (!dev)
658                 return -EINVAL;
659
660         if (dev->device_info->asic_family == CHIP_CARRIZO) {
661                 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
662                 return -EINVAL;
663         }
664
665         cmd_from_user = (void __user *) args->content_ptr;
666
667         /* Validate arguments */
668
669         if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
670                 (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
671                 (cmd_from_user == NULL))
672                 return -EINVAL;
673
674         /* this is the actual buffer to work with */
675         args_buff = memdup_user(cmd_from_user,
676                                 args->buf_size_in_bytes - sizeof(*args));
677         if (IS_ERR(args_buff))
678                 return PTR_ERR(args_buff);
679
680         aw_info.process = p;
681
682         aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
683         args_idx += sizeof(aw_info.num_watch_points);
684
685         aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
686         args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
687
688         /*
689          * set watch address base pointer to point on the array base
690          * within args_buff
691          */
692         aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
693
694         /* skip over the addresses buffer */
695         args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
696
697         if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
698                 status = -EINVAL;
699                 goto out;
700         }
701
702         watch_mask_value = (uint64_t) args_buff[args_idx];
703
704         if (watch_mask_value > 0) {
705                 /*
706                  * There is an array of masks.
707                  * set watch mask base pointer to point on the array base
708                  * within args_buff
709                  */
710                 aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
711
712                 /* skip over the masks buffer */
713                 args_idx += sizeof(aw_info.watch_mask) *
714                                 aw_info.num_watch_points;
715         } else {
716                 /* just the NULL mask, set to NULL and skip over it */
717                 aw_info.watch_mask = NULL;
718                 args_idx += sizeof(aw_info.watch_mask);
719         }
720
721         if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
722                 status = -EINVAL;
723                 goto out;
724         }
725
726         /* Currently HSA Event is not supported for DBG */
727         aw_info.watch_event = NULL;
728
729         mutex_lock(kfd_get_dbgmgr_mutex());
730
731         status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
732
733         mutex_unlock(kfd_get_dbgmgr_mutex());
734
735 out:
736         kfree(args_buff);
737
738         return status;
739 }
740
741 /* Parse and generate fixed size data structure for wave control */
742 static int kfd_ioctl_dbg_wave_control(struct file *filep,
743                                         struct kfd_process *p, void *data)
744 {
745         struct kfd_ioctl_dbg_wave_control_args *args = data;
746         struct kfd_dev *dev;
747         struct dbg_wave_control_info wac_info;
748         unsigned char *args_buff;
749         uint32_t computed_buff_size;
750         long status;
751         void __user *cmd_from_user;
752         unsigned int args_idx = 0;
753
754         memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
755
756         /* we use compact form, independent of the packing attribute value */
757         computed_buff_size = sizeof(*args) +
758                                 sizeof(wac_info.mode) +
759                                 sizeof(wac_info.operand) +
760                                 sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
761                                 sizeof(wac_info.dbgWave_msg.MemoryVA) +
762                                 sizeof(wac_info.trapId);
763
764         dev = kfd_device_by_id(args->gpu_id);
765         if (!dev)
766                 return -EINVAL;
767
768         if (dev->device_info->asic_family == CHIP_CARRIZO) {
769                 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
770                 return -EINVAL;
771         }
772
773         /* input size must match the computed "compact" size */
774         if (args->buf_size_in_bytes != computed_buff_size) {
775                 pr_debug("size mismatch, computed : actual %u : %u\n",
776                                 args->buf_size_in_bytes, computed_buff_size);
777                 return -EINVAL;
778         }
779
780         cmd_from_user = (void __user *) args->content_ptr;
781
782         if (cmd_from_user == NULL)
783                 return -EINVAL;
784
785         /* copy the entire buffer from user */
786
787         args_buff = memdup_user(cmd_from_user,
788                                 args->buf_size_in_bytes - sizeof(*args));
789         if (IS_ERR(args_buff))
790                 return PTR_ERR(args_buff);
791
792         /* move ptr to the start of the "pay-load" area */
793         wac_info.process = p;
794
795         wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
796         args_idx += sizeof(wac_info.operand);
797
798         wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
799         args_idx += sizeof(wac_info.mode);
800
801         wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
802         args_idx += sizeof(wac_info.trapId);
803
804         wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
805                                         *((uint32_t *)(&args_buff[args_idx]));
806         wac_info.dbgWave_msg.MemoryVA = NULL;
807
808         mutex_lock(kfd_get_dbgmgr_mutex());
809
810         pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
811                         wac_info.process, wac_info.operand,
812                         wac_info.mode, wac_info.trapId,
813                         wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
814
815         status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
816
817         pr_debug("Returned status of dbg manager is %ld\n", status);
818
819         mutex_unlock(kfd_get_dbgmgr_mutex());
820
821         kfree(args_buff);
822
823         return status;
824 }
825
826 static int kfd_ioctl_get_clock_counters(struct file *filep,
827                                 struct kfd_process *p, void *data)
828 {
829         struct kfd_ioctl_get_clock_counters_args *args = data;
830         struct kfd_dev *dev;
831
832         dev = kfd_device_by_id(args->gpu_id);
833         if (dev)
834                 /* Reading GPU clock counter from KGD */
835                 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
836         else
837                 /* Node without GPU resource */
838                 args->gpu_clock_counter = 0;
839
840         /* No access to rdtsc. Using raw monotonic time */
841         args->cpu_clock_counter = ktime_get_raw_ns();
842         args->system_clock_counter = ktime_get_boottime_ns();
843
844         /* Since the counter is in nano-seconds we use 1GHz frequency */
845         args->system_clock_freq = 1000000000;
846
847         return 0;
848 }
849
850
851 static int kfd_ioctl_get_process_apertures(struct file *filp,
852                                 struct kfd_process *p, void *data)
853 {
854         struct kfd_ioctl_get_process_apertures_args *args = data;
855         struct kfd_process_device_apertures *pAperture;
856         struct kfd_process_device *pdd;
857
858         dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
859
860         args->num_of_nodes = 0;
861
862         mutex_lock(&p->mutex);
863
864         /*if the process-device list isn't empty*/
865         if (kfd_has_process_device_data(p)) {
866                 /* Run over all pdd of the process */
867                 pdd = kfd_get_first_process_device_data(p);
868                 do {
869                         pAperture =
870                                 &args->process_apertures[args->num_of_nodes];
871                         pAperture->gpu_id = pdd->dev->id;
872                         pAperture->lds_base = pdd->lds_base;
873                         pAperture->lds_limit = pdd->lds_limit;
874                         pAperture->gpuvm_base = pdd->gpuvm_base;
875                         pAperture->gpuvm_limit = pdd->gpuvm_limit;
876                         pAperture->scratch_base = pdd->scratch_base;
877                         pAperture->scratch_limit = pdd->scratch_limit;
878
879                         dev_dbg(kfd_device,
880                                 "node id %u\n", args->num_of_nodes);
881                         dev_dbg(kfd_device,
882                                 "gpu id %u\n", pdd->dev->id);
883                         dev_dbg(kfd_device,
884                                 "lds_base %llX\n", pdd->lds_base);
885                         dev_dbg(kfd_device,
886                                 "lds_limit %llX\n", pdd->lds_limit);
887                         dev_dbg(kfd_device,
888                                 "gpuvm_base %llX\n", pdd->gpuvm_base);
889                         dev_dbg(kfd_device,
890                                 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
891                         dev_dbg(kfd_device,
892                                 "scratch_base %llX\n", pdd->scratch_base);
893                         dev_dbg(kfd_device,
894                                 "scratch_limit %llX\n", pdd->scratch_limit);
895
896                         args->num_of_nodes++;
897
898                         pdd = kfd_get_next_process_device_data(p, pdd);
899                 } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
900         }
901
902         mutex_unlock(&p->mutex);
903
904         return 0;
905 }
906
907 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
908                                 struct kfd_process *p, void *data)
909 {
910         struct kfd_ioctl_get_process_apertures_new_args *args = data;
911         struct kfd_process_device_apertures *pa;
912         struct kfd_process_device *pdd;
913         uint32_t nodes = 0;
914         int ret;
915
916         dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
917
918         if (args->num_of_nodes == 0) {
919                 /* Return number of nodes, so that user space can alloacate
920                  * sufficient memory
921                  */
922                 mutex_lock(&p->mutex);
923
924                 if (!kfd_has_process_device_data(p))
925                         goto out_unlock;
926
927                 /* Run over all pdd of the process */
928                 pdd = kfd_get_first_process_device_data(p);
929                 do {
930                         args->num_of_nodes++;
931                         pdd = kfd_get_next_process_device_data(p, pdd);
932                 } while (pdd);
933
934                 goto out_unlock;
935         }
936
937         /* Fill in process-aperture information for all available
938          * nodes, but not more than args->num_of_nodes as that is
939          * the amount of memory allocated by user
940          */
941         pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
942                                 args->num_of_nodes), GFP_KERNEL);
943         if (!pa)
944                 return -ENOMEM;
945
946         mutex_lock(&p->mutex);
947
948         if (!kfd_has_process_device_data(p)) {
949                 args->num_of_nodes = 0;
950                 kfree(pa);
951                 goto out_unlock;
952         }
953
954         /* Run over all pdd of the process */
955         pdd = kfd_get_first_process_device_data(p);
956         do {
957                 pa[nodes].gpu_id = pdd->dev->id;
958                 pa[nodes].lds_base = pdd->lds_base;
959                 pa[nodes].lds_limit = pdd->lds_limit;
960                 pa[nodes].gpuvm_base = pdd->gpuvm_base;
961                 pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
962                 pa[nodes].scratch_base = pdd->scratch_base;
963                 pa[nodes].scratch_limit = pdd->scratch_limit;
964
965                 dev_dbg(kfd_device,
966                         "gpu id %u\n", pdd->dev->id);
967                 dev_dbg(kfd_device,
968                         "lds_base %llX\n", pdd->lds_base);
969                 dev_dbg(kfd_device,
970                         "lds_limit %llX\n", pdd->lds_limit);
971                 dev_dbg(kfd_device,
972                         "gpuvm_base %llX\n", pdd->gpuvm_base);
973                 dev_dbg(kfd_device,
974                         "gpuvm_limit %llX\n", pdd->gpuvm_limit);
975                 dev_dbg(kfd_device,
976                         "scratch_base %llX\n", pdd->scratch_base);
977                 dev_dbg(kfd_device,
978                         "scratch_limit %llX\n", pdd->scratch_limit);
979                 nodes++;
980
981                 pdd = kfd_get_next_process_device_data(p, pdd);
982         } while (pdd && (nodes < args->num_of_nodes));
983         mutex_unlock(&p->mutex);
984
985         args->num_of_nodes = nodes;
986         ret = copy_to_user(
987                         (void __user *)args->kfd_process_device_apertures_ptr,
988                         pa,
989                         (nodes * sizeof(struct kfd_process_device_apertures)));
990         kfree(pa);
991         return ret ? -EFAULT : 0;
992
993 out_unlock:
994         mutex_unlock(&p->mutex);
995         return 0;
996 }
997
998 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
999                                         void *data)
1000 {
1001         struct kfd_ioctl_create_event_args *args = data;
1002         int err;
1003
1004         /* For dGPUs the event page is allocated in user mode. The
1005          * handle is passed to KFD with the first call to this IOCTL
1006          * through the event_page_offset field.
1007          */
1008         if (args->event_page_offset) {
1009                 struct kfd_dev *kfd;
1010                 struct kfd_process_device *pdd;
1011                 void *mem, *kern_addr;
1012                 uint64_t size;
1013
1014                 if (p->signal_page) {
1015                         pr_err("Event page is already set\n");
1016                         return -EINVAL;
1017                 }
1018
1019                 kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020                 if (!kfd) {
1021                         pr_err("Getting device by id failed in %s\n", __func__);
1022                         return -EINVAL;
1023                 }
1024
1025                 mutex_lock(&p->mutex);
1026                 pdd = kfd_bind_process_to_device(kfd, p);
1027                 if (IS_ERR(pdd)) {
1028                         err = PTR_ERR(pdd);
1029                         goto out_unlock;
1030                 }
1031
1032                 mem = kfd_process_device_translate_handle(pdd,
1033                                 GET_IDR_HANDLE(args->event_page_offset));
1034                 if (!mem) {
1035                         pr_err("Can't find BO, offset is 0x%llx\n",
1036                                args->event_page_offset);
1037                         err = -EINVAL;
1038                         goto out_unlock;
1039                 }
1040                 mutex_unlock(&p->mutex);
1041
1042                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043                                                 mem, &kern_addr, &size);
1044                 if (err) {
1045                         pr_err("Failed to map event page to kernel\n");
1046                         return err;
1047                 }
1048
1049                 err = kfd_event_page_set(p, kern_addr, size);
1050                 if (err) {
1051                         pr_err("Failed to set event page\n");
1052                         return err;
1053                 }
1054         }
1055
1056         err = kfd_event_create(filp, p, args->event_type,
1057                                 args->auto_reset != 0, args->node_id,
1058                                 &args->event_id, &args->event_trigger_data,
1059                                 &args->event_page_offset,
1060                                 &args->event_slot_index);
1061
1062         return err;
1063
1064 out_unlock:
1065         mutex_unlock(&p->mutex);
1066         return err;
1067 }
1068
1069 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070                                         void *data)
1071 {
1072         struct kfd_ioctl_destroy_event_args *args = data;
1073
1074         return kfd_event_destroy(p, args->event_id);
1075 }
1076
1077 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078                                 void *data)
1079 {
1080         struct kfd_ioctl_set_event_args *args = data;
1081
1082         return kfd_set_event(p, args->event_id);
1083 }
1084
1085 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086                                 void *data)
1087 {
1088         struct kfd_ioctl_reset_event_args *args = data;
1089
1090         return kfd_reset_event(p, args->event_id);
1091 }
1092
1093 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094                                 void *data)
1095 {
1096         struct kfd_ioctl_wait_events_args *args = data;
1097         int err;
1098
1099         err = kfd_wait_on_events(p, args->num_events,
1100                         (void __user *)args->events_ptr,
1101                         (args->wait_for_all != 0),
1102                         args->timeout, &args->wait_result);
1103
1104         return err;
1105 }
1106 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107                                         struct kfd_process *p, void *data)
1108 {
1109         struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110         struct kfd_process_device *pdd;
1111         struct kfd_dev *dev;
1112         long err;
1113
1114         dev = kfd_device_by_id(args->gpu_id);
1115         if (!dev)
1116                 return -EINVAL;
1117
1118         mutex_lock(&p->mutex);
1119
1120         pdd = kfd_bind_process_to_device(dev, p);
1121         if (IS_ERR(pdd)) {
1122                 err = PTR_ERR(pdd);
1123                 goto bind_process_to_device_fail;
1124         }
1125
1126         pdd->qpd.sh_hidden_private_base = args->va_addr;
1127
1128         mutex_unlock(&p->mutex);
1129
1130         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131             pdd->qpd.vmid != 0)
1132                 dev->kfd2kgd->set_scratch_backing_va(
1133                         dev->kgd, args->va_addr, pdd->qpd.vmid);
1134
1135         return 0;
1136
1137 bind_process_to_device_fail:
1138         mutex_unlock(&p->mutex);
1139         return err;
1140 }
1141
1142 static int kfd_ioctl_get_tile_config(struct file *filep,
1143                 struct kfd_process *p, void *data)
1144 {
1145         struct kfd_ioctl_get_tile_config_args *args = data;
1146         struct kfd_dev *dev;
1147         struct tile_config config;
1148         int err = 0;
1149
1150         dev = kfd_device_by_id(args->gpu_id);
1151         if (!dev)
1152                 return -EINVAL;
1153
1154         dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1155
1156         args->gb_addr_config = config.gb_addr_config;
1157         args->num_banks = config.num_banks;
1158         args->num_ranks = config.num_ranks;
1159
1160         if (args->num_tile_configs > config.num_tile_configs)
1161                 args->num_tile_configs = config.num_tile_configs;
1162         err = copy_to_user((void __user *)args->tile_config_ptr,
1163                         config.tile_config_ptr,
1164                         args->num_tile_configs * sizeof(uint32_t));
1165         if (err) {
1166                 args->num_tile_configs = 0;
1167                 return -EFAULT;
1168         }
1169
1170         if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171                 args->num_macro_tile_configs =
1172                                 config.num_macro_tile_configs;
1173         err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174                         config.macro_tile_config_ptr,
1175                         args->num_macro_tile_configs * sizeof(uint32_t));
1176         if (err) {
1177                 args->num_macro_tile_configs = 0;
1178                 return -EFAULT;
1179         }
1180
1181         return 0;
1182 }
1183
1184 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185                                 void *data)
1186 {
1187         struct kfd_ioctl_acquire_vm_args *args = data;
1188         struct kfd_process_device *pdd;
1189         struct kfd_dev *dev;
1190         struct file *drm_file;
1191         int ret;
1192
1193         dev = kfd_device_by_id(args->gpu_id);
1194         if (!dev)
1195                 return -EINVAL;
1196
1197         drm_file = fget(args->drm_fd);
1198         if (!drm_file)
1199                 return -EINVAL;
1200
1201         mutex_lock(&p->mutex);
1202
1203         pdd = kfd_get_process_device_data(dev, p);
1204         if (!pdd) {
1205                 ret = -EINVAL;
1206                 goto err_unlock;
1207         }
1208
1209         if (pdd->drm_file) {
1210                 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211                 goto err_unlock;
1212         }
1213
1214         ret = kfd_process_device_init_vm(pdd, drm_file);
1215         if (ret)
1216                 goto err_unlock;
1217         /* On success, the PDD keeps the drm_file reference */
1218         mutex_unlock(&p->mutex);
1219
1220         return 0;
1221
1222 err_unlock:
1223         mutex_unlock(&p->mutex);
1224         fput(drm_file);
1225         return ret;
1226 }
1227
1228 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229 {
1230         struct kfd_local_mem_info mem_info;
1231
1232         if (debug_largebar) {
1233                 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234                 return true;
1235         }
1236
1237         if (dev->device_info->needs_iommu_device)
1238                 return false;
1239
1240         amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241         if (mem_info.local_mem_size_private == 0 &&
1242                         mem_info.local_mem_size_public > 0)
1243                 return true;
1244         return false;
1245 }
1246
1247 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248                                         struct kfd_process *p, void *data)
1249 {
1250         struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251         struct kfd_process_device *pdd;
1252         void *mem;
1253         struct kfd_dev *dev;
1254         int idr_handle;
1255         long err;
1256         uint64_t offset = args->mmap_offset;
1257         uint32_t flags = args->flags;
1258
1259         if (args->size == 0)
1260                 return -EINVAL;
1261
1262         dev = kfd_device_by_id(args->gpu_id);
1263         if (!dev)
1264                 return -EINVAL;
1265
1266         if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267                 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268                 !kfd_dev_is_large_bar(dev)) {
1269                 pr_err("Alloc host visible vram on small bar is not allowed\n");
1270                 return -EINVAL;
1271         }
1272
1273         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1274                 if (args->size != kfd_doorbell_process_slice(dev))
1275                         return -EINVAL;
1276                 offset = kfd_get_process_doorbells(dev, p);
1277         } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1278                 if (args->size != PAGE_SIZE)
1279                         return -EINVAL;
1280                 offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1281                 if (!offset)
1282                         return -ENOMEM;
1283         }
1284
1285         mutex_lock(&p->mutex);
1286
1287         pdd = kfd_bind_process_to_device(dev, p);
1288         if (IS_ERR(pdd)) {
1289                 err = PTR_ERR(pdd);
1290                 goto err_unlock;
1291         }
1292
1293         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1294                 dev->kgd, args->va_addr, args->size,
1295                 pdd->vm, (struct kgd_mem **) &mem, &offset,
1296                 flags);
1297
1298         if (err)
1299                 goto err_unlock;
1300
1301         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1302         if (idr_handle < 0) {
1303                 err = -EFAULT;
1304                 goto err_free;
1305         }
1306
1307         mutex_unlock(&p->mutex);
1308
1309         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1310         args->mmap_offset = offset;
1311
1312         /* MMIO is mapped through kfd device
1313          * Generate a kfd mmap offset
1314          */
1315         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1316                 args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id);
1317                 args->mmap_offset <<= PAGE_SHIFT;
1318         }
1319
1320         return 0;
1321
1322 err_free:
1323         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1324 err_unlock:
1325         mutex_unlock(&p->mutex);
1326         return err;
1327 }
1328
1329 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1330                                         struct kfd_process *p, void *data)
1331 {
1332         struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1333         struct kfd_process_device *pdd;
1334         void *mem;
1335         struct kfd_dev *dev;
1336         int ret;
1337
1338         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1339         if (!dev)
1340                 return -EINVAL;
1341
1342         mutex_lock(&p->mutex);
1343
1344         pdd = kfd_get_process_device_data(dev, p);
1345         if (!pdd) {
1346                 pr_err("Process device data doesn't exist\n");
1347                 ret = -EINVAL;
1348                 goto err_unlock;
1349         }
1350
1351         mem = kfd_process_device_translate_handle(
1352                 pdd, GET_IDR_HANDLE(args->handle));
1353         if (!mem) {
1354                 ret = -EINVAL;
1355                 goto err_unlock;
1356         }
1357
1358         ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1359                                                 (struct kgd_mem *)mem);
1360
1361         /* If freeing the buffer failed, leave the handle in place for
1362          * clean-up during process tear-down.
1363          */
1364         if (!ret)
1365                 kfd_process_device_remove_obj_handle(
1366                         pdd, GET_IDR_HANDLE(args->handle));
1367
1368 err_unlock:
1369         mutex_unlock(&p->mutex);
1370         return ret;
1371 }
1372
1373 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1374                                         struct kfd_process *p, void *data)
1375 {
1376         struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1377         struct kfd_process_device *pdd, *peer_pdd;
1378         void *mem;
1379         struct kfd_dev *dev, *peer;
1380         long err = 0;
1381         int i;
1382         uint32_t *devices_arr = NULL;
1383
1384         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1385         if (!dev)
1386                 return -EINVAL;
1387
1388         if (!args->n_devices) {
1389                 pr_debug("Device IDs array empty\n");
1390                 return -EINVAL;
1391         }
1392         if (args->n_success > args->n_devices) {
1393                 pr_debug("n_success exceeds n_devices\n");
1394                 return -EINVAL;
1395         }
1396
1397         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1398                                     GFP_KERNEL);
1399         if (!devices_arr)
1400                 return -ENOMEM;
1401
1402         err = copy_from_user(devices_arr,
1403                              (void __user *)args->device_ids_array_ptr,
1404                              args->n_devices * sizeof(*devices_arr));
1405         if (err != 0) {
1406                 err = -EFAULT;
1407                 goto copy_from_user_failed;
1408         }
1409
1410         mutex_lock(&p->mutex);
1411
1412         pdd = kfd_bind_process_to_device(dev, p);
1413         if (IS_ERR(pdd)) {
1414                 err = PTR_ERR(pdd);
1415                 goto bind_process_to_device_failed;
1416         }
1417
1418         mem = kfd_process_device_translate_handle(pdd,
1419                                                 GET_IDR_HANDLE(args->handle));
1420         if (!mem) {
1421                 err = -ENOMEM;
1422                 goto get_mem_obj_from_handle_failed;
1423         }
1424
1425         for (i = args->n_success; i < args->n_devices; i++) {
1426                 peer = kfd_device_by_id(devices_arr[i]);
1427                 if (!peer) {
1428                         pr_debug("Getting device by id failed for 0x%x\n",
1429                                  devices_arr[i]);
1430                         err = -EINVAL;
1431                         goto get_mem_obj_from_handle_failed;
1432                 }
1433
1434                 peer_pdd = kfd_bind_process_to_device(peer, p);
1435                 if (IS_ERR(peer_pdd)) {
1436                         err = PTR_ERR(peer_pdd);
1437                         goto get_mem_obj_from_handle_failed;
1438                 }
1439                 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1440                         peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1441                 if (err) {
1442                         pr_err("Failed to map to gpu %d/%d\n",
1443                                i, args->n_devices);
1444                         goto map_memory_to_gpu_failed;
1445                 }
1446                 args->n_success = i+1;
1447         }
1448
1449         mutex_unlock(&p->mutex);
1450
1451         err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1452         if (err) {
1453                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1454                 goto sync_memory_failed;
1455         }
1456
1457         /* Flush TLBs after waiting for the page table updates to complete */
1458         for (i = 0; i < args->n_devices; i++) {
1459                 peer = kfd_device_by_id(devices_arr[i]);
1460                 if (WARN_ON_ONCE(!peer))
1461                         continue;
1462                 peer_pdd = kfd_get_process_device_data(peer, p);
1463                 if (WARN_ON_ONCE(!peer_pdd))
1464                         continue;
1465                 kfd_flush_tlb(peer_pdd);
1466         }
1467
1468         kfree(devices_arr);
1469
1470         return err;
1471
1472 bind_process_to_device_failed:
1473 get_mem_obj_from_handle_failed:
1474 map_memory_to_gpu_failed:
1475         mutex_unlock(&p->mutex);
1476 copy_from_user_failed:
1477 sync_memory_failed:
1478         kfree(devices_arr);
1479
1480         return err;
1481 }
1482
1483 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1484                                         struct kfd_process *p, void *data)
1485 {
1486         struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1487         struct kfd_process_device *pdd, *peer_pdd;
1488         void *mem;
1489         struct kfd_dev *dev, *peer;
1490         long err = 0;
1491         uint32_t *devices_arr = NULL, i;
1492
1493         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1494         if (!dev)
1495                 return -EINVAL;
1496
1497         if (!args->n_devices) {
1498                 pr_debug("Device IDs array empty\n");
1499                 return -EINVAL;
1500         }
1501         if (args->n_success > args->n_devices) {
1502                 pr_debug("n_success exceeds n_devices\n");
1503                 return -EINVAL;
1504         }
1505
1506         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1507                                     GFP_KERNEL);
1508         if (!devices_arr)
1509                 return -ENOMEM;
1510
1511         err = copy_from_user(devices_arr,
1512                              (void __user *)args->device_ids_array_ptr,
1513                              args->n_devices * sizeof(*devices_arr));
1514         if (err != 0) {
1515                 err = -EFAULT;
1516                 goto copy_from_user_failed;
1517         }
1518
1519         mutex_lock(&p->mutex);
1520
1521         pdd = kfd_get_process_device_data(dev, p);
1522         if (!pdd) {
1523                 err = -EINVAL;
1524                 goto bind_process_to_device_failed;
1525         }
1526
1527         mem = kfd_process_device_translate_handle(pdd,
1528                                                 GET_IDR_HANDLE(args->handle));
1529         if (!mem) {
1530                 err = -ENOMEM;
1531                 goto get_mem_obj_from_handle_failed;
1532         }
1533
1534         for (i = args->n_success; i < args->n_devices; i++) {
1535                 peer = kfd_device_by_id(devices_arr[i]);
1536                 if (!peer) {
1537                         err = -EINVAL;
1538                         goto get_mem_obj_from_handle_failed;
1539                 }
1540
1541                 peer_pdd = kfd_get_process_device_data(peer, p);
1542                 if (!peer_pdd) {
1543                         err = -ENODEV;
1544                         goto get_mem_obj_from_handle_failed;
1545                 }
1546                 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1547                         peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1548                 if (err) {
1549                         pr_err("Failed to unmap from gpu %d/%d\n",
1550                                i, args->n_devices);
1551                         goto unmap_memory_from_gpu_failed;
1552                 }
1553                 args->n_success = i+1;
1554         }
1555         kfree(devices_arr);
1556
1557         mutex_unlock(&p->mutex);
1558
1559         return 0;
1560
1561 bind_process_to_device_failed:
1562 get_mem_obj_from_handle_failed:
1563 unmap_memory_from_gpu_failed:
1564         mutex_unlock(&p->mutex);
1565 copy_from_user_failed:
1566         kfree(devices_arr);
1567         return err;
1568 }
1569
1570 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1571                 struct kfd_process *p, void *data)
1572 {
1573         int retval;
1574         struct kfd_ioctl_alloc_queue_gws_args *args = data;
1575         struct kfd_dev *dev;
1576
1577         if (!hws_gws_support)
1578                 return -ENODEV;
1579
1580         dev = kfd_device_by_id(args->gpu_id);
1581         if (!dev) {
1582                 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
1583                 return -ENODEV;
1584         }
1585         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
1586                 return -ENODEV;
1587
1588         mutex_lock(&p->mutex);
1589         retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1590         mutex_unlock(&p->mutex);
1591
1592         args->first_gws = 0;
1593         return retval;
1594 }
1595
1596 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1597                 struct kfd_process *p, void *data)
1598 {
1599         struct kfd_ioctl_get_dmabuf_info_args *args = data;
1600         struct kfd_dev *dev = NULL;
1601         struct kgd_dev *dma_buf_kgd;
1602         void *metadata_buffer = NULL;
1603         uint32_t flags;
1604         unsigned int i;
1605         int r;
1606
1607         /* Find a KFD GPU device that supports the get_dmabuf_info query */
1608         for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1609                 if (dev)
1610                         break;
1611         if (!dev)
1612                 return -EINVAL;
1613
1614         if (args->metadata_ptr) {
1615                 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1616                 if (!metadata_buffer)
1617                         return -ENOMEM;
1618         }
1619
1620         /* Get dmabuf info from KGD */
1621         r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1622                                           &dma_buf_kgd, &args->size,
1623                                           metadata_buffer, args->metadata_size,
1624                                           &args->metadata_size, &flags);
1625         if (r)
1626                 goto exit;
1627
1628         /* Reverse-lookup gpu_id from kgd pointer */
1629         dev = kfd_device_by_kgd(dma_buf_kgd);
1630         if (!dev) {
1631                 r = -EINVAL;
1632                 goto exit;
1633         }
1634         args->gpu_id = dev->id;
1635         args->flags = flags;
1636
1637         /* Copy metadata buffer to user mode */
1638         if (metadata_buffer) {
1639                 r = copy_to_user((void __user *)args->metadata_ptr,
1640                                  metadata_buffer, args->metadata_size);
1641                 if (r != 0)
1642                         r = -EFAULT;
1643         }
1644
1645 exit:
1646         kfree(metadata_buffer);
1647
1648         return r;
1649 }
1650
1651 static int kfd_ioctl_import_dmabuf(struct file *filep,
1652                                    struct kfd_process *p, void *data)
1653 {
1654         struct kfd_ioctl_import_dmabuf_args *args = data;
1655         struct kfd_process_device *pdd;
1656         struct dma_buf *dmabuf;
1657         struct kfd_dev *dev;
1658         int idr_handle;
1659         uint64_t size;
1660         void *mem;
1661         int r;
1662
1663         dev = kfd_device_by_id(args->gpu_id);
1664         if (!dev)
1665                 return -EINVAL;
1666
1667         dmabuf = dma_buf_get(args->dmabuf_fd);
1668         if (IS_ERR(dmabuf))
1669                 return PTR_ERR(dmabuf);
1670
1671         mutex_lock(&p->mutex);
1672
1673         pdd = kfd_bind_process_to_device(dev, p);
1674         if (IS_ERR(pdd)) {
1675                 r = PTR_ERR(pdd);
1676                 goto err_unlock;
1677         }
1678
1679         r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1680                                               args->va_addr, pdd->vm,
1681                                               (struct kgd_mem **)&mem, &size,
1682                                               NULL);
1683         if (r)
1684                 goto err_unlock;
1685
1686         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1687         if (idr_handle < 0) {
1688                 r = -EFAULT;
1689                 goto err_free;
1690         }
1691
1692         mutex_unlock(&p->mutex);
1693
1694         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1695
1696         return 0;
1697
1698 err_free:
1699         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1700 err_unlock:
1701         mutex_unlock(&p->mutex);
1702         return r;
1703 }
1704
1705 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1706         [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1707                             .cmd_drv = 0, .name = #ioctl}
1708
1709 /** Ioctl table */
1710 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1711         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1712                         kfd_ioctl_get_version, 0),
1713
1714         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1715                         kfd_ioctl_create_queue, 0),
1716
1717         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1718                         kfd_ioctl_destroy_queue, 0),
1719
1720         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1721                         kfd_ioctl_set_memory_policy, 0),
1722
1723         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1724                         kfd_ioctl_get_clock_counters, 0),
1725
1726         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1727                         kfd_ioctl_get_process_apertures, 0),
1728
1729         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1730                         kfd_ioctl_update_queue, 0),
1731
1732         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1733                         kfd_ioctl_create_event, 0),
1734
1735         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1736                         kfd_ioctl_destroy_event, 0),
1737
1738         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1739                         kfd_ioctl_set_event, 0),
1740
1741         AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1742                         kfd_ioctl_reset_event, 0),
1743
1744         AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1745                         kfd_ioctl_wait_events, 0),
1746
1747         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1748                         kfd_ioctl_dbg_register, 0),
1749
1750         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1751                         kfd_ioctl_dbg_unregister, 0),
1752
1753         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1754                         kfd_ioctl_dbg_address_watch, 0),
1755
1756         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1757                         kfd_ioctl_dbg_wave_control, 0),
1758
1759         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1760                         kfd_ioctl_set_scratch_backing_va, 0),
1761
1762         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1763                         kfd_ioctl_get_tile_config, 0),
1764
1765         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1766                         kfd_ioctl_set_trap_handler, 0),
1767
1768         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1769                         kfd_ioctl_get_process_apertures_new, 0),
1770
1771         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1772                         kfd_ioctl_acquire_vm, 0),
1773
1774         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1775                         kfd_ioctl_alloc_memory_of_gpu, 0),
1776
1777         AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1778                         kfd_ioctl_free_memory_of_gpu, 0),
1779
1780         AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1781                         kfd_ioctl_map_memory_to_gpu, 0),
1782
1783         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1784                         kfd_ioctl_unmap_memory_from_gpu, 0),
1785
1786         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1787                         kfd_ioctl_set_cu_mask, 0),
1788
1789         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1790                         kfd_ioctl_get_queue_wave_state, 0),
1791
1792         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1793                                 kfd_ioctl_get_dmabuf_info, 0),
1794
1795         AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1796                                 kfd_ioctl_import_dmabuf, 0),
1797
1798         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1799                         kfd_ioctl_alloc_queue_gws, 0),
1800 };
1801
1802 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
1803
1804 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1805 {
1806         struct kfd_process *process;
1807         amdkfd_ioctl_t *func;
1808         const struct amdkfd_ioctl_desc *ioctl = NULL;
1809         unsigned int nr = _IOC_NR(cmd);
1810         char stack_kdata[128];
1811         char *kdata = NULL;
1812         unsigned int usize, asize;
1813         int retcode = -EINVAL;
1814
1815         if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1816                 goto err_i1;
1817
1818         if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1819                 u32 amdkfd_size;
1820
1821                 ioctl = &amdkfd_ioctls[nr];
1822
1823                 amdkfd_size = _IOC_SIZE(ioctl->cmd);
1824                 usize = asize = _IOC_SIZE(cmd);
1825                 if (amdkfd_size > asize)
1826                         asize = amdkfd_size;
1827
1828                 cmd = ioctl->cmd;
1829         } else
1830                 goto err_i1;
1831
1832         dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1833
1834         process = kfd_get_process(current);
1835         if (IS_ERR(process)) {
1836                 dev_dbg(kfd_device, "no process\n");
1837                 goto err_i1;
1838         }
1839
1840         /* Do not trust userspace, use our own definition */
1841         func = ioctl->func;
1842
1843         if (unlikely(!func)) {
1844                 dev_dbg(kfd_device, "no function\n");
1845                 retcode = -EINVAL;
1846                 goto err_i1;
1847         }
1848
1849         if (cmd & (IOC_IN | IOC_OUT)) {
1850                 if (asize <= sizeof(stack_kdata)) {
1851                         kdata = stack_kdata;
1852                 } else {
1853                         kdata = kmalloc(asize, GFP_KERNEL);
1854                         if (!kdata) {
1855                                 retcode = -ENOMEM;
1856                                 goto err_i1;
1857                         }
1858                 }
1859                 if (asize > usize)
1860                         memset(kdata + usize, 0, asize - usize);
1861         }
1862
1863         if (cmd & IOC_IN) {
1864                 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1865                         retcode = -EFAULT;
1866                         goto err_i1;
1867                 }
1868         } else if (cmd & IOC_OUT) {
1869                 memset(kdata, 0, usize);
1870         }
1871
1872         retcode = func(filep, process, kdata);
1873
1874         if (cmd & IOC_OUT)
1875                 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1876                         retcode = -EFAULT;
1877
1878 err_i1:
1879         if (!ioctl)
1880                 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1881                           task_pid_nr(current), cmd, nr);
1882
1883         if (kdata != stack_kdata)
1884                 kfree(kdata);
1885
1886         if (retcode)
1887                 dev_dbg(kfd_device, "ret = %d\n", retcode);
1888
1889         return retcode;
1890 }
1891
1892 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1893                       struct vm_area_struct *vma)
1894 {
1895         phys_addr_t address;
1896         int ret;
1897
1898         if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1899                 return -EINVAL;
1900
1901         address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1902
1903         vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1904                                 VM_DONTDUMP | VM_PFNMAP;
1905
1906         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1907
1908         pr_debug("Process %d mapping mmio page\n"
1909                  "     target user address == 0x%08llX\n"
1910                  "     physical address    == 0x%08llX\n"
1911                  "     vm_flags            == 0x%04lX\n"
1912                  "     size                == 0x%04lX\n",
1913                  process->pasid, (unsigned long long) vma->vm_start,
1914                  address, vma->vm_flags, PAGE_SIZE);
1915
1916         ret = io_remap_pfn_range(vma,
1917                                 vma->vm_start,
1918                                 address >> PAGE_SHIFT,
1919                                 PAGE_SIZE,
1920                                 vma->vm_page_prot);
1921         return ret;
1922 }
1923
1924
1925 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1926 {
1927         struct kfd_process *process;
1928         struct kfd_dev *dev = NULL;
1929         unsigned long vm_pgoff;
1930         unsigned int gpu_id;
1931
1932         process = kfd_get_process(current);
1933         if (IS_ERR(process))
1934                 return PTR_ERR(process);
1935
1936         vm_pgoff = vma->vm_pgoff;
1937         vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1938         gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1939         if (gpu_id)
1940                 dev = kfd_device_by_id(gpu_id);
1941
1942         switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1943         case KFD_MMAP_TYPE_DOORBELL:
1944                 if (!dev)
1945                         return -ENODEV;
1946                 return kfd_doorbell_mmap(dev, process, vma);
1947
1948         case KFD_MMAP_TYPE_EVENTS:
1949                 return kfd_event_mmap(process, vma);
1950
1951         case KFD_MMAP_TYPE_RESERVED_MEM:
1952                 if (!dev)
1953                         return -ENODEV;
1954                 return kfd_reserved_mem_mmap(dev, process, vma);
1955         case KFD_MMAP_TYPE_MMIO:
1956                 if (!dev)
1957                         return -ENODEV;
1958                 return kfd_mmio_mmap(dev, process, vma);
1959         }
1960
1961         return -EFAULT;
1962 }
This page took 0.151383 seconds and 4 git commands to generate.