2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/kthread.h>
27 #include <asm/div64.h>
30 #include "extent_map.h"
32 #include "transaction.h"
33 #include "print-tree.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
38 static int init_first_rw_device(struct btrfs_trans_handle *trans,
39 struct btrfs_root *root,
40 struct btrfs_device *device);
41 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
43 static DEFINE_MUTEX(uuid_mutex);
44 static LIST_HEAD(fs_uuids);
46 static void lock_chunks(struct btrfs_root *root)
48 mutex_lock(&root->fs_info->chunk_mutex);
51 static void unlock_chunks(struct btrfs_root *root)
53 mutex_unlock(&root->fs_info->chunk_mutex);
56 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
58 struct btrfs_device *device;
59 WARN_ON(fs_devices->opened);
60 while (!list_empty(&fs_devices->devices)) {
61 device = list_entry(fs_devices->devices.next,
62 struct btrfs_device, dev_list);
63 list_del(&device->dev_list);
70 int btrfs_cleanup_fs_uuids(void)
72 struct btrfs_fs_devices *fs_devices;
74 while (!list_empty(&fs_uuids)) {
75 fs_devices = list_entry(fs_uuids.next,
76 struct btrfs_fs_devices, list);
77 list_del(&fs_devices->list);
78 free_fs_devices(fs_devices);
83 static noinline struct btrfs_device *__find_device(struct list_head *head,
86 struct btrfs_device *dev;
88 list_for_each_entry(dev, head, dev_list) {
89 if (dev->devid == devid &&
90 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
97 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
99 struct btrfs_fs_devices *fs_devices;
101 list_for_each_entry(fs_devices, &fs_uuids, list) {
102 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
108 static void requeue_list(struct btrfs_pending_bios *pending_bios,
109 struct bio *head, struct bio *tail)
112 struct bio *old_head;
114 old_head = pending_bios->head;
115 pending_bios->head = head;
116 if (pending_bios->tail)
117 tail->bi_next = old_head;
119 pending_bios->tail = tail;
123 * we try to collect pending bios for a device so we don't get a large
124 * number of procs sending bios down to the same device. This greatly
125 * improves the schedulers ability to collect and merge the bios.
127 * But, it also turns into a long list of bios to process and that is sure
128 * to eventually make the worker thread block. The solution here is to
129 * make some progress and then put this work struct back at the end of
130 * the list if the block device is congested. This way, multiple devices
131 * can make progress from a single worker thread.
133 static noinline int run_scheduled_bios(struct btrfs_device *device)
136 struct backing_dev_info *bdi;
137 struct btrfs_fs_info *fs_info;
138 struct btrfs_pending_bios *pending_bios;
142 unsigned long num_run;
143 unsigned long batch_run = 0;
145 unsigned long last_waited = 0;
147 int sync_pending = 0;
148 struct blk_plug plug;
151 * this function runs all the bios we've collected for
152 * a particular device. We don't want to wander off to
153 * another device without first sending all of these down.
154 * So, setup a plug here and finish it off before we return
156 blk_start_plug(&plug);
158 bdi = blk_get_backing_dev_info(device->bdev);
159 fs_info = device->dev_root->fs_info;
160 limit = btrfs_async_submit_limit(fs_info);
161 limit = limit * 2 / 3;
164 spin_lock(&device->io_lock);
169 /* take all the bios off the list at once and process them
170 * later on (without the lock held). But, remember the
171 * tail and other pointers so the bios can be properly reinserted
172 * into the list if we hit congestion
174 if (!force_reg && device->pending_sync_bios.head) {
175 pending_bios = &device->pending_sync_bios;
178 pending_bios = &device->pending_bios;
182 pending = pending_bios->head;
183 tail = pending_bios->tail;
184 WARN_ON(pending && !tail);
187 * if pending was null this time around, no bios need processing
188 * at all and we can stop. Otherwise it'll loop back up again
189 * and do an additional check so no bios are missed.
191 * device->running_pending is used to synchronize with the
194 if (device->pending_sync_bios.head == NULL &&
195 device->pending_bios.head == NULL) {
197 device->running_pending = 0;
200 device->running_pending = 1;
203 pending_bios->head = NULL;
204 pending_bios->tail = NULL;
206 spin_unlock(&device->io_lock);
211 /* we want to work on both lists, but do more bios on the
212 * sync list than the regular list
215 pending_bios != &device->pending_sync_bios &&
216 device->pending_sync_bios.head) ||
217 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218 device->pending_bios.head)) {
219 spin_lock(&device->io_lock);
220 requeue_list(pending_bios, pending, tail);
225 pending = pending->bi_next;
227 atomic_dec(&fs_info->nr_async_bios);
229 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230 waitqueue_active(&fs_info->async_submit_wait))
231 wake_up(&fs_info->async_submit_wait);
233 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
236 * if we're doing the sync list, record that our
237 * plug has some sync requests on it
239 * If we're doing the regular list and there are
240 * sync requests sitting around, unplug before
243 if (pending_bios == &device->pending_sync_bios) {
245 } else if (sync_pending) {
246 blk_finish_plug(&plug);
247 blk_start_plug(&plug);
251 btrfsic_submit_bio(cur->bi_rw, cur);
258 * we made progress, there is more work to do and the bdi
259 * is now congested. Back off and let other work structs
262 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
263 fs_info->fs_devices->open_devices > 1) {
264 struct io_context *ioc;
266 ioc = current->io_context;
269 * the main goal here is that we don't want to
270 * block if we're going to be able to submit
271 * more requests without blocking.
273 * This code does two great things, it pokes into
274 * the elevator code from a filesystem _and_
275 * it makes assumptions about how batching works.
277 if (ioc && ioc->nr_batch_requests > 0 &&
278 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
280 ioc->last_waited == last_waited)) {
282 * we want to go through our batch of
283 * requests and stop. So, we copy out
284 * the ioc->last_waited time and test
285 * against it before looping
287 last_waited = ioc->last_waited;
292 spin_lock(&device->io_lock);
293 requeue_list(pending_bios, pending, tail);
294 device->running_pending = 1;
296 spin_unlock(&device->io_lock);
297 btrfs_requeue_work(&device->work);
300 /* unplug every 64 requests just for good measure */
301 if (batch_run % 64 == 0) {
302 blk_finish_plug(&plug);
303 blk_start_plug(&plug);
312 spin_lock(&device->io_lock);
313 if (device->pending_bios.head || device->pending_sync_bios.head)
315 spin_unlock(&device->io_lock);
318 blk_finish_plug(&plug);
322 static void pending_bios_fn(struct btrfs_work *work)
324 struct btrfs_device *device;
326 device = container_of(work, struct btrfs_device, work);
327 run_scheduled_bios(device);
330 static noinline int device_list_add(const char *path,
331 struct btrfs_super_block *disk_super,
332 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
334 struct btrfs_device *device;
335 struct btrfs_fs_devices *fs_devices;
336 u64 found_transid = btrfs_super_generation(disk_super);
339 fs_devices = find_fsid(disk_super->fsid);
341 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
344 INIT_LIST_HEAD(&fs_devices->devices);
345 INIT_LIST_HEAD(&fs_devices->alloc_list);
346 list_add(&fs_devices->list, &fs_uuids);
347 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348 fs_devices->latest_devid = devid;
349 fs_devices->latest_trans = found_transid;
350 mutex_init(&fs_devices->device_list_mutex);
353 device = __find_device(&fs_devices->devices, devid,
354 disk_super->dev_item.uuid);
357 if (fs_devices->opened)
360 device = kzalloc(sizeof(*device), GFP_NOFS);
362 /* we can safely leave the fs_devices entry around */
365 device->devid = devid;
366 device->work.func = pending_bios_fn;
367 memcpy(device->uuid, disk_super->dev_item.uuid,
369 spin_lock_init(&device->io_lock);
370 device->name = kstrdup(path, GFP_NOFS);
375 INIT_LIST_HEAD(&device->dev_alloc_list);
377 /* init readahead state */
378 spin_lock_init(&device->reada_lock);
379 device->reada_curr_zone = NULL;
380 atomic_set(&device->reada_in_flight, 0);
381 device->reada_next = 0;
382 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
385 mutex_lock(&fs_devices->device_list_mutex);
386 list_add_rcu(&device->dev_list, &fs_devices->devices);
387 mutex_unlock(&fs_devices->device_list_mutex);
389 device->fs_devices = fs_devices;
390 fs_devices->num_devices++;
391 } else if (!device->name || strcmp(device->name, path)) {
392 name = kstrdup(path, GFP_NOFS);
397 if (device->missing) {
398 fs_devices->missing_devices--;
403 if (found_transid > fs_devices->latest_trans) {
404 fs_devices->latest_devid = devid;
405 fs_devices->latest_trans = found_transid;
407 *fs_devices_ret = fs_devices;
411 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
413 struct btrfs_fs_devices *fs_devices;
414 struct btrfs_device *device;
415 struct btrfs_device *orig_dev;
417 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
419 return ERR_PTR(-ENOMEM);
421 INIT_LIST_HEAD(&fs_devices->devices);
422 INIT_LIST_HEAD(&fs_devices->alloc_list);
423 INIT_LIST_HEAD(&fs_devices->list);
424 mutex_init(&fs_devices->device_list_mutex);
425 fs_devices->latest_devid = orig->latest_devid;
426 fs_devices->latest_trans = orig->latest_trans;
427 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
429 /* We have held the volume lock, it is safe to get the devices. */
430 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431 device = kzalloc(sizeof(*device), GFP_NOFS);
435 device->name = kstrdup(orig_dev->name, GFP_NOFS);
441 device->devid = orig_dev->devid;
442 device->work.func = pending_bios_fn;
443 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
444 spin_lock_init(&device->io_lock);
445 INIT_LIST_HEAD(&device->dev_list);
446 INIT_LIST_HEAD(&device->dev_alloc_list);
448 list_add(&device->dev_list, &fs_devices->devices);
449 device->fs_devices = fs_devices;
450 fs_devices->num_devices++;
454 free_fs_devices(fs_devices);
455 return ERR_PTR(-ENOMEM);
458 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
460 struct btrfs_device *device, *next;
462 struct block_device *latest_bdev = NULL;
463 u64 latest_devid = 0;
464 u64 latest_transid = 0;
466 mutex_lock(&uuid_mutex);
468 /* This is the initialized path, it is safe to release the devices. */
469 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
470 if (device->in_fs_metadata) {
471 if (!latest_transid ||
472 device->generation > latest_transid) {
473 latest_devid = device->devid;
474 latest_transid = device->generation;
475 latest_bdev = device->bdev;
481 blkdev_put(device->bdev, device->mode);
483 fs_devices->open_devices--;
485 if (device->writeable) {
486 list_del_init(&device->dev_alloc_list);
487 device->writeable = 0;
488 fs_devices->rw_devices--;
490 list_del_init(&device->dev_list);
491 fs_devices->num_devices--;
496 if (fs_devices->seed) {
497 fs_devices = fs_devices->seed;
501 fs_devices->latest_bdev = latest_bdev;
502 fs_devices->latest_devid = latest_devid;
503 fs_devices->latest_trans = latest_transid;
505 mutex_unlock(&uuid_mutex);
509 static void __free_device(struct work_struct *work)
511 struct btrfs_device *device;
513 device = container_of(work, struct btrfs_device, rcu_work);
516 blkdev_put(device->bdev, device->mode);
522 static void free_device(struct rcu_head *head)
524 struct btrfs_device *device;
526 device = container_of(head, struct btrfs_device, rcu);
528 INIT_WORK(&device->rcu_work, __free_device);
529 schedule_work(&device->rcu_work);
532 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
534 struct btrfs_device *device;
536 if (--fs_devices->opened > 0)
539 mutex_lock(&fs_devices->device_list_mutex);
540 list_for_each_entry(device, &fs_devices->devices, dev_list) {
541 struct btrfs_device *new_device;
544 fs_devices->open_devices--;
546 if (device->writeable) {
547 list_del_init(&device->dev_alloc_list);
548 fs_devices->rw_devices--;
551 if (device->can_discard)
552 fs_devices->num_can_discard--;
554 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
556 memcpy(new_device, device, sizeof(*new_device));
557 new_device->name = kstrdup(device->name, GFP_NOFS);
558 BUG_ON(device->name && !new_device->name);
559 new_device->bdev = NULL;
560 new_device->writeable = 0;
561 new_device->in_fs_metadata = 0;
562 new_device->can_discard = 0;
563 list_replace_rcu(&device->dev_list, &new_device->dev_list);
565 call_rcu(&device->rcu, free_device);
567 mutex_unlock(&fs_devices->device_list_mutex);
569 WARN_ON(fs_devices->open_devices);
570 WARN_ON(fs_devices->rw_devices);
571 fs_devices->opened = 0;
572 fs_devices->seeding = 0;
577 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
579 struct btrfs_fs_devices *seed_devices = NULL;
582 mutex_lock(&uuid_mutex);
583 ret = __btrfs_close_devices(fs_devices);
584 if (!fs_devices->opened) {
585 seed_devices = fs_devices->seed;
586 fs_devices->seed = NULL;
588 mutex_unlock(&uuid_mutex);
590 while (seed_devices) {
591 fs_devices = seed_devices;
592 seed_devices = fs_devices->seed;
593 __btrfs_close_devices(fs_devices);
594 free_fs_devices(fs_devices);
599 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
600 fmode_t flags, void *holder)
602 struct request_queue *q;
603 struct block_device *bdev;
604 struct list_head *head = &fs_devices->devices;
605 struct btrfs_device *device;
606 struct block_device *latest_bdev = NULL;
607 struct buffer_head *bh;
608 struct btrfs_super_block *disk_super;
609 u64 latest_devid = 0;
610 u64 latest_transid = 0;
617 list_for_each_entry(device, head, dev_list) {
623 bdev = blkdev_get_by_path(device->name, flags, holder);
625 printk(KERN_INFO "open %s failed\n", device->name);
628 set_blocksize(bdev, 4096);
630 bh = btrfs_read_dev_super(bdev);
634 disk_super = (struct btrfs_super_block *)bh->b_data;
635 devid = btrfs_stack_device_id(&disk_super->dev_item);
636 if (devid != device->devid)
639 if (memcmp(device->uuid, disk_super->dev_item.uuid,
643 device->generation = btrfs_super_generation(disk_super);
644 if (!latest_transid || device->generation > latest_transid) {
645 latest_devid = devid;
646 latest_transid = device->generation;
650 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651 device->writeable = 0;
653 device->writeable = !bdev_read_only(bdev);
657 q = bdev_get_queue(bdev);
658 if (blk_queue_discard(q)) {
659 device->can_discard = 1;
660 fs_devices->num_can_discard++;
664 device->in_fs_metadata = 0;
665 device->mode = flags;
667 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668 fs_devices->rotating = 1;
670 fs_devices->open_devices++;
671 if (device->writeable) {
672 fs_devices->rw_devices++;
673 list_add(&device->dev_alloc_list,
674 &fs_devices->alloc_list);
682 blkdev_put(bdev, flags);
686 if (fs_devices->open_devices == 0) {
690 fs_devices->seeding = seeding;
691 fs_devices->opened = 1;
692 fs_devices->latest_bdev = latest_bdev;
693 fs_devices->latest_devid = latest_devid;
694 fs_devices->latest_trans = latest_transid;
695 fs_devices->total_rw_bytes = 0;
700 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
701 fmode_t flags, void *holder)
705 mutex_lock(&uuid_mutex);
706 if (fs_devices->opened) {
707 fs_devices->opened++;
710 ret = __btrfs_open_devices(fs_devices, flags, holder);
712 mutex_unlock(&uuid_mutex);
716 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
717 struct btrfs_fs_devices **fs_devices_ret)
719 struct btrfs_super_block *disk_super;
720 struct block_device *bdev;
721 struct buffer_head *bh;
727 bdev = blkdev_get_by_path(path, flags, holder);
734 mutex_lock(&uuid_mutex);
735 ret = set_blocksize(bdev, 4096);
738 bh = btrfs_read_dev_super(bdev);
743 disk_super = (struct btrfs_super_block *)bh->b_data;
744 devid = btrfs_stack_device_id(&disk_super->dev_item);
745 transid = btrfs_super_generation(disk_super);
746 if (disk_super->label[0])
747 printk(KERN_INFO "device label %s ", disk_super->label);
749 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
750 printk(KERN_CONT "devid %llu transid %llu %s\n",
751 (unsigned long long)devid, (unsigned long long)transid, path);
752 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
756 mutex_unlock(&uuid_mutex);
757 blkdev_put(bdev, flags);
762 /* helper to account the used device space in the range */
763 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764 u64 end, u64 *length)
766 struct btrfs_key key;
767 struct btrfs_root *root = device->dev_root;
768 struct btrfs_dev_extent *dev_extent;
769 struct btrfs_path *path;
773 struct extent_buffer *l;
777 if (start >= device->total_bytes)
780 path = btrfs_alloc_path();
785 key.objectid = device->devid;
787 key.type = BTRFS_DEV_EXTENT_KEY;
789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
793 ret = btrfs_previous_item(root, path, key.objectid, key.type);
800 slot = path->slots[0];
801 if (slot >= btrfs_header_nritems(l)) {
802 ret = btrfs_next_leaf(root, path);
810 btrfs_item_key_to_cpu(l, &key, slot);
812 if (key.objectid < device->devid)
815 if (key.objectid > device->devid)
818 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
821 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822 extent_end = key.offset + btrfs_dev_extent_length(l,
824 if (key.offset <= start && extent_end > end) {
825 *length = end - start + 1;
827 } else if (key.offset <= start && extent_end > start)
828 *length += extent_end - start;
829 else if (key.offset > start && extent_end <= end)
830 *length += extent_end - key.offset;
831 else if (key.offset > start && key.offset <= end) {
832 *length += end - key.offset + 1;
834 } else if (key.offset > end)
842 btrfs_free_path(path);
847 * find_free_dev_extent - find free space in the specified device
848 * @device: the device which we search the free space in
849 * @num_bytes: the size of the free space that we need
850 * @start: store the start of the free space.
851 * @len: the size of the free space. that we find, or the size of the max
852 * free space if we don't find suitable free space
854 * this uses a pretty simple search, the expectation is that it is
855 * called very infrequently and that a given device has a small number
858 * @start is used to store the start of the free space if we find. But if we
859 * don't find suitable free space, it will be used to store the start position
860 * of the max free space.
862 * @len is used to store the size of the free space that we find.
863 * But if we don't find suitable free space, it is used to store the size of
864 * the max free space.
866 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
867 u64 *start, u64 *len)
869 struct btrfs_key key;
870 struct btrfs_root *root = device->dev_root;
871 struct btrfs_dev_extent *dev_extent;
872 struct btrfs_path *path;
878 u64 search_end = device->total_bytes;
881 struct extent_buffer *l;
883 /* FIXME use last free of some kind */
885 /* we don't want to overwrite the superblock on the drive,
886 * so we make sure to start at an offset of at least 1MB
888 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
890 max_hole_start = search_start;
894 if (search_start >= search_end) {
899 path = btrfs_alloc_path();
906 key.objectid = device->devid;
907 key.offset = search_start;
908 key.type = BTRFS_DEV_EXTENT_KEY;
910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
914 ret = btrfs_previous_item(root, path, key.objectid, key.type);
921 slot = path->slots[0];
922 if (slot >= btrfs_header_nritems(l)) {
923 ret = btrfs_next_leaf(root, path);
931 btrfs_item_key_to_cpu(l, &key, slot);
933 if (key.objectid < device->devid)
936 if (key.objectid > device->devid)
939 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
942 if (key.offset > search_start) {
943 hole_size = key.offset - search_start;
945 if (hole_size > max_hole_size) {
946 max_hole_start = search_start;
947 max_hole_size = hole_size;
951 * If this free space is greater than which we need,
952 * it must be the max free space that we have found
953 * until now, so max_hole_start must point to the start
954 * of this free space and the length of this free space
955 * is stored in max_hole_size. Thus, we return
956 * max_hole_start and max_hole_size and go back to the
959 if (hole_size >= num_bytes) {
965 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
966 extent_end = key.offset + btrfs_dev_extent_length(l,
968 if (extent_end > search_start)
969 search_start = extent_end;
976 * At this point, search_start should be the end of
977 * allocated dev extents, and when shrinking the device,
978 * search_end may be smaller than search_start.
980 if (search_end > search_start)
981 hole_size = search_end - search_start;
983 if (hole_size > max_hole_size) {
984 max_hole_start = search_start;
985 max_hole_size = hole_size;
989 if (hole_size < num_bytes)
995 btrfs_free_path(path);
997 *start = max_hole_start;
999 *len = max_hole_size;
1003 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1004 struct btrfs_device *device,
1008 struct btrfs_path *path;
1009 struct btrfs_root *root = device->dev_root;
1010 struct btrfs_key key;
1011 struct btrfs_key found_key;
1012 struct extent_buffer *leaf = NULL;
1013 struct btrfs_dev_extent *extent = NULL;
1015 path = btrfs_alloc_path();
1019 key.objectid = device->devid;
1021 key.type = BTRFS_DEV_EXTENT_KEY;
1023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1025 ret = btrfs_previous_item(root, path, key.objectid,
1026 BTRFS_DEV_EXTENT_KEY);
1029 leaf = path->nodes[0];
1030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031 extent = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_dev_extent);
1033 BUG_ON(found_key.offset > start || found_key.offset +
1034 btrfs_dev_extent_length(leaf, extent) < start);
1036 btrfs_release_path(path);
1038 } else if (ret == 0) {
1039 leaf = path->nodes[0];
1040 extent = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_dev_extent);
1045 if (device->bytes_used > 0) {
1046 u64 len = btrfs_dev_extent_length(leaf, extent);
1047 device->bytes_used -= len;
1048 spin_lock(&root->fs_info->free_chunk_lock);
1049 root->fs_info->free_chunk_space += len;
1050 spin_unlock(&root->fs_info->free_chunk_lock);
1052 ret = btrfs_del_item(trans, root, path);
1055 btrfs_free_path(path);
1059 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1060 struct btrfs_device *device,
1061 u64 chunk_tree, u64 chunk_objectid,
1062 u64 chunk_offset, u64 start, u64 num_bytes)
1065 struct btrfs_path *path;
1066 struct btrfs_root *root = device->dev_root;
1067 struct btrfs_dev_extent *extent;
1068 struct extent_buffer *leaf;
1069 struct btrfs_key key;
1071 WARN_ON(!device->in_fs_metadata);
1072 path = btrfs_alloc_path();
1076 key.objectid = device->devid;
1078 key.type = BTRFS_DEV_EXTENT_KEY;
1079 ret = btrfs_insert_empty_item(trans, root, path, &key,
1083 leaf = path->nodes[0];
1084 extent = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_dev_extent);
1086 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1087 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1088 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1090 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1091 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1094 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1095 btrfs_mark_buffer_dirty(leaf);
1096 btrfs_free_path(path);
1100 static noinline int find_next_chunk(struct btrfs_root *root,
1101 u64 objectid, u64 *offset)
1103 struct btrfs_path *path;
1105 struct btrfs_key key;
1106 struct btrfs_chunk *chunk;
1107 struct btrfs_key found_key;
1109 path = btrfs_alloc_path();
1113 key.objectid = objectid;
1114 key.offset = (u64)-1;
1115 key.type = BTRFS_CHUNK_ITEM_KEY;
1117 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1127 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1129 if (found_key.objectid != objectid)
1132 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1133 struct btrfs_chunk);
1134 *offset = found_key.offset +
1135 btrfs_chunk_length(path->nodes[0], chunk);
1140 btrfs_free_path(path);
1144 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1147 struct btrfs_key key;
1148 struct btrfs_key found_key;
1149 struct btrfs_path *path;
1151 root = root->fs_info->chunk_root;
1153 path = btrfs_alloc_path();
1157 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1158 key.type = BTRFS_DEV_ITEM_KEY;
1159 key.offset = (u64)-1;
1161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1167 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1168 BTRFS_DEV_ITEM_KEY);
1172 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1174 *objectid = found_key.offset + 1;
1178 btrfs_free_path(path);
1183 * the device information is stored in the chunk root
1184 * the btrfs_device struct should be fully filled in
1186 int btrfs_add_device(struct btrfs_trans_handle *trans,
1187 struct btrfs_root *root,
1188 struct btrfs_device *device)
1191 struct btrfs_path *path;
1192 struct btrfs_dev_item *dev_item;
1193 struct extent_buffer *leaf;
1194 struct btrfs_key key;
1197 root = root->fs_info->chunk_root;
1199 path = btrfs_alloc_path();
1203 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1204 key.type = BTRFS_DEV_ITEM_KEY;
1205 key.offset = device->devid;
1207 ret = btrfs_insert_empty_item(trans, root, path, &key,
1212 leaf = path->nodes[0];
1213 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1215 btrfs_set_device_id(leaf, dev_item, device->devid);
1216 btrfs_set_device_generation(leaf, dev_item, 0);
1217 btrfs_set_device_type(leaf, dev_item, device->type);
1218 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1219 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1220 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1221 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1222 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1223 btrfs_set_device_group(leaf, dev_item, 0);
1224 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1225 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1226 btrfs_set_device_start_offset(leaf, dev_item, 0);
1228 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1229 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1230 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1231 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1232 btrfs_mark_buffer_dirty(leaf);
1236 btrfs_free_path(path);
1240 static int btrfs_rm_dev_item(struct btrfs_root *root,
1241 struct btrfs_device *device)
1244 struct btrfs_path *path;
1245 struct btrfs_key key;
1246 struct btrfs_trans_handle *trans;
1248 root = root->fs_info->chunk_root;
1250 path = btrfs_alloc_path();
1254 trans = btrfs_start_transaction(root, 0);
1255 if (IS_ERR(trans)) {
1256 btrfs_free_path(path);
1257 return PTR_ERR(trans);
1259 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1260 key.type = BTRFS_DEV_ITEM_KEY;
1261 key.offset = device->devid;
1264 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1273 ret = btrfs_del_item(trans, root, path);
1277 btrfs_free_path(path);
1278 unlock_chunks(root);
1279 btrfs_commit_transaction(trans, root);
1283 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1285 struct btrfs_device *device;
1286 struct btrfs_device *next_device;
1287 struct block_device *bdev;
1288 struct buffer_head *bh = NULL;
1289 struct btrfs_super_block *disk_super;
1290 struct btrfs_fs_devices *cur_devices;
1296 bool clear_super = false;
1298 mutex_lock(&uuid_mutex);
1300 all_avail = root->fs_info->avail_data_alloc_bits |
1301 root->fs_info->avail_system_alloc_bits |
1302 root->fs_info->avail_metadata_alloc_bits;
1304 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1305 root->fs_info->fs_devices->num_devices <= 4) {
1306 printk(KERN_ERR "btrfs: unable to go below four devices "
1312 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1313 root->fs_info->fs_devices->num_devices <= 2) {
1314 printk(KERN_ERR "btrfs: unable to go below two "
1315 "devices on raid1\n");
1320 if (strcmp(device_path, "missing") == 0) {
1321 struct list_head *devices;
1322 struct btrfs_device *tmp;
1325 devices = &root->fs_info->fs_devices->devices;
1327 * It is safe to read the devices since the volume_mutex
1330 list_for_each_entry(tmp, devices, dev_list) {
1331 if (tmp->in_fs_metadata && !tmp->bdev) {
1340 printk(KERN_ERR "btrfs: no missing devices found to "
1345 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1346 root->fs_info->bdev_holder);
1348 ret = PTR_ERR(bdev);
1352 set_blocksize(bdev, 4096);
1353 bh = btrfs_read_dev_super(bdev);
1358 disk_super = (struct btrfs_super_block *)bh->b_data;
1359 devid = btrfs_stack_device_id(&disk_super->dev_item);
1360 dev_uuid = disk_super->dev_item.uuid;
1361 device = btrfs_find_device(root, devid, dev_uuid,
1369 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1370 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1376 if (device->writeable) {
1378 list_del_init(&device->dev_alloc_list);
1379 unlock_chunks(root);
1380 root->fs_info->fs_devices->rw_devices--;
1384 ret = btrfs_shrink_device(device, 0);
1388 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1392 spin_lock(&root->fs_info->free_chunk_lock);
1393 root->fs_info->free_chunk_space = device->total_bytes -
1395 spin_unlock(&root->fs_info->free_chunk_lock);
1397 device->in_fs_metadata = 0;
1398 btrfs_scrub_cancel_dev(root, device);
1401 * the device list mutex makes sure that we don't change
1402 * the device list while someone else is writing out all
1403 * the device supers.
1406 cur_devices = device->fs_devices;
1407 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1408 list_del_rcu(&device->dev_list);
1410 device->fs_devices->num_devices--;
1412 if (device->missing)
1413 root->fs_info->fs_devices->missing_devices--;
1415 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1416 struct btrfs_device, dev_list);
1417 if (device->bdev == root->fs_info->sb->s_bdev)
1418 root->fs_info->sb->s_bdev = next_device->bdev;
1419 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1420 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1423 device->fs_devices->open_devices--;
1425 call_rcu(&device->rcu, free_device);
1426 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1428 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1429 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1431 if (cur_devices->open_devices == 0) {
1432 struct btrfs_fs_devices *fs_devices;
1433 fs_devices = root->fs_info->fs_devices;
1434 while (fs_devices) {
1435 if (fs_devices->seed == cur_devices)
1437 fs_devices = fs_devices->seed;
1439 fs_devices->seed = cur_devices->seed;
1440 cur_devices->seed = NULL;
1442 __btrfs_close_devices(cur_devices);
1443 unlock_chunks(root);
1444 free_fs_devices(cur_devices);
1448 * at this point, the device is zero sized. We want to
1449 * remove it from the devices list and zero out the old super
1452 /* make sure this device isn't detected as part of
1455 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1456 set_buffer_dirty(bh);
1457 sync_dirty_buffer(bh);
1466 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1468 mutex_unlock(&uuid_mutex);
1471 if (device->writeable) {
1473 list_add(&device->dev_alloc_list,
1474 &root->fs_info->fs_devices->alloc_list);
1475 unlock_chunks(root);
1476 root->fs_info->fs_devices->rw_devices++;
1482 * does all the dirty work required for changing file system's UUID.
1484 static int btrfs_prepare_sprout(struct btrfs_root *root)
1486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1487 struct btrfs_fs_devices *old_devices;
1488 struct btrfs_fs_devices *seed_devices;
1489 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1490 struct btrfs_device *device;
1493 BUG_ON(!mutex_is_locked(&uuid_mutex));
1494 if (!fs_devices->seeding)
1497 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1501 old_devices = clone_fs_devices(fs_devices);
1502 if (IS_ERR(old_devices)) {
1503 kfree(seed_devices);
1504 return PTR_ERR(old_devices);
1507 list_add(&old_devices->list, &fs_uuids);
1509 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1510 seed_devices->opened = 1;
1511 INIT_LIST_HEAD(&seed_devices->devices);
1512 INIT_LIST_HEAD(&seed_devices->alloc_list);
1513 mutex_init(&seed_devices->device_list_mutex);
1515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1516 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1518 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1520 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1521 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1522 device->fs_devices = seed_devices;
1525 fs_devices->seeding = 0;
1526 fs_devices->num_devices = 0;
1527 fs_devices->open_devices = 0;
1528 fs_devices->seed = seed_devices;
1530 generate_random_uuid(fs_devices->fsid);
1531 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1532 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1533 super_flags = btrfs_super_flags(disk_super) &
1534 ~BTRFS_SUPER_FLAG_SEEDING;
1535 btrfs_set_super_flags(disk_super, super_flags);
1541 * strore the expected generation for seed devices in device items.
1543 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root)
1546 struct btrfs_path *path;
1547 struct extent_buffer *leaf;
1548 struct btrfs_dev_item *dev_item;
1549 struct btrfs_device *device;
1550 struct btrfs_key key;
1551 u8 fs_uuid[BTRFS_UUID_SIZE];
1552 u8 dev_uuid[BTRFS_UUID_SIZE];
1556 path = btrfs_alloc_path();
1560 root = root->fs_info->chunk_root;
1561 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1563 key.type = BTRFS_DEV_ITEM_KEY;
1566 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1570 leaf = path->nodes[0];
1572 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1573 ret = btrfs_next_leaf(root, path);
1578 leaf = path->nodes[0];
1579 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1580 btrfs_release_path(path);
1584 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1585 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1586 key.type != BTRFS_DEV_ITEM_KEY)
1589 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1590 struct btrfs_dev_item);
1591 devid = btrfs_device_id(leaf, dev_item);
1592 read_extent_buffer(leaf, dev_uuid,
1593 (unsigned long)btrfs_device_uuid(dev_item),
1595 read_extent_buffer(leaf, fs_uuid,
1596 (unsigned long)btrfs_device_fsid(dev_item),
1598 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1601 if (device->fs_devices->seeding) {
1602 btrfs_set_device_generation(leaf, dev_item,
1603 device->generation);
1604 btrfs_mark_buffer_dirty(leaf);
1612 btrfs_free_path(path);
1616 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1618 struct request_queue *q;
1619 struct btrfs_trans_handle *trans;
1620 struct btrfs_device *device;
1621 struct block_device *bdev;
1622 struct list_head *devices;
1623 struct super_block *sb = root->fs_info->sb;
1625 int seeding_dev = 0;
1628 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1631 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1632 root->fs_info->bdev_holder);
1634 return PTR_ERR(bdev);
1636 if (root->fs_info->fs_devices->seeding) {
1638 down_write(&sb->s_umount);
1639 mutex_lock(&uuid_mutex);
1642 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1644 devices = &root->fs_info->fs_devices->devices;
1646 * we have the volume lock, so we don't need the extra
1647 * device list mutex while reading the list here.
1649 list_for_each_entry(device, devices, dev_list) {
1650 if (device->bdev == bdev) {
1656 device = kzalloc(sizeof(*device), GFP_NOFS);
1658 /* we can safely leave the fs_devices entry around */
1663 device->name = kstrdup(device_path, GFP_NOFS);
1664 if (!device->name) {
1670 ret = find_next_devid(root, &device->devid);
1672 kfree(device->name);
1677 trans = btrfs_start_transaction(root, 0);
1678 if (IS_ERR(trans)) {
1679 kfree(device->name);
1681 ret = PTR_ERR(trans);
1687 q = bdev_get_queue(bdev);
1688 if (blk_queue_discard(q))
1689 device->can_discard = 1;
1690 device->writeable = 1;
1691 device->work.func = pending_bios_fn;
1692 generate_random_uuid(device->uuid);
1693 spin_lock_init(&device->io_lock);
1694 device->generation = trans->transid;
1695 device->io_width = root->sectorsize;
1696 device->io_align = root->sectorsize;
1697 device->sector_size = root->sectorsize;
1698 device->total_bytes = i_size_read(bdev->bd_inode);
1699 device->disk_total_bytes = device->total_bytes;
1700 device->dev_root = root->fs_info->dev_root;
1701 device->bdev = bdev;
1702 device->in_fs_metadata = 1;
1703 device->mode = FMODE_EXCL;
1704 set_blocksize(device->bdev, 4096);
1707 sb->s_flags &= ~MS_RDONLY;
1708 ret = btrfs_prepare_sprout(root);
1712 device->fs_devices = root->fs_info->fs_devices;
1715 * we don't want write_supers to jump in here with our device
1718 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1719 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1720 list_add(&device->dev_alloc_list,
1721 &root->fs_info->fs_devices->alloc_list);
1722 root->fs_info->fs_devices->num_devices++;
1723 root->fs_info->fs_devices->open_devices++;
1724 root->fs_info->fs_devices->rw_devices++;
1725 if (device->can_discard)
1726 root->fs_info->fs_devices->num_can_discard++;
1727 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1729 spin_lock(&root->fs_info->free_chunk_lock);
1730 root->fs_info->free_chunk_space += device->total_bytes;
1731 spin_unlock(&root->fs_info->free_chunk_lock);
1733 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1734 root->fs_info->fs_devices->rotating = 1;
1736 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1737 btrfs_set_super_total_bytes(root->fs_info->super_copy,
1738 total_bytes + device->total_bytes);
1740 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1741 btrfs_set_super_num_devices(root->fs_info->super_copy,
1743 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1746 ret = init_first_rw_device(trans, root, device);
1748 ret = btrfs_finish_sprout(trans, root);
1751 ret = btrfs_add_device(trans, root, device);
1755 * we've got more storage, clear any full flags on the space
1758 btrfs_clear_space_info_full(root->fs_info);
1760 unlock_chunks(root);
1761 btrfs_commit_transaction(trans, root);
1764 mutex_unlock(&uuid_mutex);
1765 up_write(&sb->s_umount);
1767 ret = btrfs_relocate_sys_chunks(root);
1773 blkdev_put(bdev, FMODE_EXCL);
1775 mutex_unlock(&uuid_mutex);
1776 up_write(&sb->s_umount);
1781 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1782 struct btrfs_device *device)
1785 struct btrfs_path *path;
1786 struct btrfs_root *root;
1787 struct btrfs_dev_item *dev_item;
1788 struct extent_buffer *leaf;
1789 struct btrfs_key key;
1791 root = device->dev_root->fs_info->chunk_root;
1793 path = btrfs_alloc_path();
1797 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1798 key.type = BTRFS_DEV_ITEM_KEY;
1799 key.offset = device->devid;
1801 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1810 leaf = path->nodes[0];
1811 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1813 btrfs_set_device_id(leaf, dev_item, device->devid);
1814 btrfs_set_device_type(leaf, dev_item, device->type);
1815 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1816 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1817 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1818 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1819 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1820 btrfs_mark_buffer_dirty(leaf);
1823 btrfs_free_path(path);
1827 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1828 struct btrfs_device *device, u64 new_size)
1830 struct btrfs_super_block *super_copy =
1831 device->dev_root->fs_info->super_copy;
1832 u64 old_total = btrfs_super_total_bytes(super_copy);
1833 u64 diff = new_size - device->total_bytes;
1835 if (!device->writeable)
1837 if (new_size <= device->total_bytes)
1840 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1841 device->fs_devices->total_rw_bytes += diff;
1843 device->total_bytes = new_size;
1844 device->disk_total_bytes = new_size;
1845 btrfs_clear_space_info_full(device->dev_root->fs_info);
1847 return btrfs_update_device(trans, device);
1850 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1851 struct btrfs_device *device, u64 new_size)
1854 lock_chunks(device->dev_root);
1855 ret = __btrfs_grow_device(trans, device, new_size);
1856 unlock_chunks(device->dev_root);
1860 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1861 struct btrfs_root *root,
1862 u64 chunk_tree, u64 chunk_objectid,
1866 struct btrfs_path *path;
1867 struct btrfs_key key;
1869 root = root->fs_info->chunk_root;
1870 path = btrfs_alloc_path();
1874 key.objectid = chunk_objectid;
1875 key.offset = chunk_offset;
1876 key.type = BTRFS_CHUNK_ITEM_KEY;
1878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1881 ret = btrfs_del_item(trans, root, path);
1883 btrfs_free_path(path);
1887 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1890 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1891 struct btrfs_disk_key *disk_key;
1892 struct btrfs_chunk *chunk;
1899 struct btrfs_key key;
1901 array_size = btrfs_super_sys_array_size(super_copy);
1903 ptr = super_copy->sys_chunk_array;
1906 while (cur < array_size) {
1907 disk_key = (struct btrfs_disk_key *)ptr;
1908 btrfs_disk_key_to_cpu(&key, disk_key);
1910 len = sizeof(*disk_key);
1912 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1913 chunk = (struct btrfs_chunk *)(ptr + len);
1914 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1915 len += btrfs_chunk_item_size(num_stripes);
1920 if (key.objectid == chunk_objectid &&
1921 key.offset == chunk_offset) {
1922 memmove(ptr, ptr + len, array_size - (cur + len));
1924 btrfs_set_super_sys_array_size(super_copy, array_size);
1933 static int btrfs_relocate_chunk(struct btrfs_root *root,
1934 u64 chunk_tree, u64 chunk_objectid,
1937 struct extent_map_tree *em_tree;
1938 struct btrfs_root *extent_root;
1939 struct btrfs_trans_handle *trans;
1940 struct extent_map *em;
1941 struct map_lookup *map;
1945 root = root->fs_info->chunk_root;
1946 extent_root = root->fs_info->extent_root;
1947 em_tree = &root->fs_info->mapping_tree.map_tree;
1949 ret = btrfs_can_relocate(extent_root, chunk_offset);
1953 /* step one, relocate all the extents inside this chunk */
1954 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1958 trans = btrfs_start_transaction(root, 0);
1959 BUG_ON(IS_ERR(trans));
1964 * step two, delete the device extents and the
1965 * chunk tree entries
1967 read_lock(&em_tree->lock);
1968 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1969 read_unlock(&em_tree->lock);
1971 BUG_ON(!em || em->start > chunk_offset ||
1972 em->start + em->len < chunk_offset);
1973 map = (struct map_lookup *)em->bdev;
1975 for (i = 0; i < map->num_stripes; i++) {
1976 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1977 map->stripes[i].physical);
1980 if (map->stripes[i].dev) {
1981 ret = btrfs_update_device(trans, map->stripes[i].dev);
1985 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1990 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1992 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1993 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1997 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2000 write_lock(&em_tree->lock);
2001 remove_extent_mapping(em_tree, em);
2002 write_unlock(&em_tree->lock);
2007 /* once for the tree */
2008 free_extent_map(em);
2010 free_extent_map(em);
2012 unlock_chunks(root);
2013 btrfs_end_transaction(trans, root);
2017 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2019 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2020 struct btrfs_path *path;
2021 struct extent_buffer *leaf;
2022 struct btrfs_chunk *chunk;
2023 struct btrfs_key key;
2024 struct btrfs_key found_key;
2025 u64 chunk_tree = chunk_root->root_key.objectid;
2027 bool retried = false;
2031 path = btrfs_alloc_path();
2036 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2037 key.offset = (u64)-1;
2038 key.type = BTRFS_CHUNK_ITEM_KEY;
2041 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2046 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2053 leaf = path->nodes[0];
2054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2056 chunk = btrfs_item_ptr(leaf, path->slots[0],
2057 struct btrfs_chunk);
2058 chunk_type = btrfs_chunk_type(leaf, chunk);
2059 btrfs_release_path(path);
2061 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2071 if (found_key.offset == 0)
2073 key.offset = found_key.offset - 1;
2076 if (failed && !retried) {
2080 } else if (failed && retried) {
2085 btrfs_free_path(path);
2089 static int insert_balance_item(struct btrfs_root *root,
2090 struct btrfs_balance_control *bctl)
2092 struct btrfs_trans_handle *trans;
2093 struct btrfs_balance_item *item;
2094 struct btrfs_disk_balance_args disk_bargs;
2095 struct btrfs_path *path;
2096 struct extent_buffer *leaf;
2097 struct btrfs_key key;
2100 path = btrfs_alloc_path();
2104 trans = btrfs_start_transaction(root, 0);
2105 if (IS_ERR(trans)) {
2106 btrfs_free_path(path);
2107 return PTR_ERR(trans);
2110 key.objectid = BTRFS_BALANCE_OBJECTID;
2111 key.type = BTRFS_BALANCE_ITEM_KEY;
2114 ret = btrfs_insert_empty_item(trans, root, path, &key,
2119 leaf = path->nodes[0];
2120 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2122 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2124 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2125 btrfs_set_balance_data(leaf, item, &disk_bargs);
2126 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2127 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2128 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2129 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2131 btrfs_set_balance_flags(leaf, item, bctl->flags);
2133 btrfs_mark_buffer_dirty(leaf);
2135 btrfs_free_path(path);
2136 err = btrfs_commit_transaction(trans, root);
2142 static int del_balance_item(struct btrfs_root *root)
2144 struct btrfs_trans_handle *trans;
2145 struct btrfs_path *path;
2146 struct btrfs_key key;
2149 path = btrfs_alloc_path();
2153 trans = btrfs_start_transaction(root, 0);
2154 if (IS_ERR(trans)) {
2155 btrfs_free_path(path);
2156 return PTR_ERR(trans);
2159 key.objectid = BTRFS_BALANCE_OBJECTID;
2160 key.type = BTRFS_BALANCE_ITEM_KEY;
2163 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2171 ret = btrfs_del_item(trans, root, path);
2173 btrfs_free_path(path);
2174 err = btrfs_commit_transaction(trans, root);
2181 * This is a heuristic used to reduce the number of chunks balanced on
2182 * resume after balance was interrupted.
2184 static void update_balance_args(struct btrfs_balance_control *bctl)
2187 * Turn on soft mode for chunk types that were being converted.
2189 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2190 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2191 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2192 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2193 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2194 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2197 * Turn on usage filter if is not already used. The idea is
2198 * that chunks that we have already balanced should be
2199 * reasonably full. Don't do it for chunks that are being
2200 * converted - that will keep us from relocating unconverted
2201 * (albeit full) chunks.
2203 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2204 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2205 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2206 bctl->data.usage = 90;
2208 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2209 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2210 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2211 bctl->sys.usage = 90;
2213 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2214 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2215 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2216 bctl->meta.usage = 90;
2221 * Should be called with both balance and volume mutexes held to
2222 * serialize other volume operations (add_dev/rm_dev/resize) with
2223 * restriper. Same goes for unset_balance_control.
2225 static void set_balance_control(struct btrfs_balance_control *bctl)
2227 struct btrfs_fs_info *fs_info = bctl->fs_info;
2229 BUG_ON(fs_info->balance_ctl);
2231 spin_lock(&fs_info->balance_lock);
2232 fs_info->balance_ctl = bctl;
2233 spin_unlock(&fs_info->balance_lock);
2236 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2238 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2240 BUG_ON(!fs_info->balance_ctl);
2242 spin_lock(&fs_info->balance_lock);
2243 fs_info->balance_ctl = NULL;
2244 spin_unlock(&fs_info->balance_lock);
2250 * Balance filters. Return 1 if chunk should be filtered out
2251 * (should not be balanced).
2253 static int chunk_profiles_filter(u64 chunk_profile,
2254 struct btrfs_balance_args *bargs)
2256 chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2258 if (chunk_profile == 0)
2259 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2261 if (bargs->profiles & chunk_profile)
2267 static u64 div_factor_fine(u64 num, int factor)
2279 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2280 struct btrfs_balance_args *bargs)
2282 struct btrfs_block_group_cache *cache;
2283 u64 chunk_used, user_thresh;
2286 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2287 chunk_used = btrfs_block_group_used(&cache->item);
2289 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2290 if (chunk_used < user_thresh)
2293 btrfs_put_block_group(cache);
2297 static int chunk_devid_filter(struct extent_buffer *leaf,
2298 struct btrfs_chunk *chunk,
2299 struct btrfs_balance_args *bargs)
2301 struct btrfs_stripe *stripe;
2302 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2305 for (i = 0; i < num_stripes; i++) {
2306 stripe = btrfs_stripe_nr(chunk, i);
2307 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2314 /* [pstart, pend) */
2315 static int chunk_drange_filter(struct extent_buffer *leaf,
2316 struct btrfs_chunk *chunk,
2318 struct btrfs_balance_args *bargs)
2320 struct btrfs_stripe *stripe;
2321 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2327 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2330 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2331 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2335 factor = num_stripes / factor;
2337 for (i = 0; i < num_stripes; i++) {
2338 stripe = btrfs_stripe_nr(chunk, i);
2339 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2342 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2343 stripe_length = btrfs_chunk_length(leaf, chunk);
2344 do_div(stripe_length, factor);
2346 if (stripe_offset < bargs->pend &&
2347 stripe_offset + stripe_length > bargs->pstart)
2354 /* [vstart, vend) */
2355 static int chunk_vrange_filter(struct extent_buffer *leaf,
2356 struct btrfs_chunk *chunk,
2358 struct btrfs_balance_args *bargs)
2360 if (chunk_offset < bargs->vend &&
2361 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2362 /* at least part of the chunk is inside this vrange */
2368 static int chunk_soft_convert_filter(u64 chunk_profile,
2369 struct btrfs_balance_args *bargs)
2371 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2374 chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2376 if (chunk_profile == 0)
2377 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2379 if (bargs->target & chunk_profile)
2385 static int should_balance_chunk(struct btrfs_root *root,
2386 struct extent_buffer *leaf,
2387 struct btrfs_chunk *chunk, u64 chunk_offset)
2389 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2390 struct btrfs_balance_args *bargs = NULL;
2391 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2394 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2395 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2399 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2400 bargs = &bctl->data;
2401 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2403 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2404 bargs = &bctl->meta;
2406 /* profiles filter */
2407 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2408 chunk_profiles_filter(chunk_type, bargs)) {
2413 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2414 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2419 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2420 chunk_devid_filter(leaf, chunk, bargs)) {
2424 /* drange filter, makes sense only with devid filter */
2425 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2426 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2431 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2432 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2436 /* soft profile changing mode */
2437 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2438 chunk_soft_convert_filter(chunk_type, bargs)) {
2445 static u64 div_factor(u64 num, int factor)
2454 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2456 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2457 struct btrfs_root *chunk_root = fs_info->chunk_root;
2458 struct btrfs_root *dev_root = fs_info->dev_root;
2459 struct list_head *devices;
2460 struct btrfs_device *device;
2463 struct btrfs_chunk *chunk;
2464 struct btrfs_path *path;
2465 struct btrfs_key key;
2466 struct btrfs_key found_key;
2467 struct btrfs_trans_handle *trans;
2468 struct extent_buffer *leaf;
2471 int enospc_errors = 0;
2472 bool counting = true;
2474 /* step one make some room on all the devices */
2475 devices = &fs_info->fs_devices->devices;
2476 list_for_each_entry(device, devices, dev_list) {
2477 old_size = device->total_bytes;
2478 size_to_free = div_factor(old_size, 1);
2479 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2480 if (!device->writeable ||
2481 device->total_bytes - device->bytes_used > size_to_free)
2484 ret = btrfs_shrink_device(device, old_size - size_to_free);
2489 trans = btrfs_start_transaction(dev_root, 0);
2490 BUG_ON(IS_ERR(trans));
2492 ret = btrfs_grow_device(trans, device, old_size);
2495 btrfs_end_transaction(trans, dev_root);
2498 /* step two, relocate all the chunks */
2499 path = btrfs_alloc_path();
2505 /* zero out stat counters */
2506 spin_lock(&fs_info->balance_lock);
2507 memset(&bctl->stat, 0, sizeof(bctl->stat));
2508 spin_unlock(&fs_info->balance_lock);
2510 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2511 key.offset = (u64)-1;
2512 key.type = BTRFS_CHUNK_ITEM_KEY;
2515 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2516 atomic_read(&fs_info->balance_cancel_req)) {
2521 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2526 * this shouldn't happen, it means the last relocate
2530 BUG(); /* FIXME break ? */
2532 ret = btrfs_previous_item(chunk_root, path, 0,
2533 BTRFS_CHUNK_ITEM_KEY);
2539 leaf = path->nodes[0];
2540 slot = path->slots[0];
2541 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2543 if (found_key.objectid != key.objectid)
2546 /* chunk zero is special */
2547 if (found_key.offset == 0)
2550 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2553 spin_lock(&fs_info->balance_lock);
2554 bctl->stat.considered++;
2555 spin_unlock(&fs_info->balance_lock);
2558 ret = should_balance_chunk(chunk_root, leaf, chunk,
2560 btrfs_release_path(path);
2565 spin_lock(&fs_info->balance_lock);
2566 bctl->stat.expected++;
2567 spin_unlock(&fs_info->balance_lock);
2571 ret = btrfs_relocate_chunk(chunk_root,
2572 chunk_root->root_key.objectid,
2575 if (ret && ret != -ENOSPC)
2577 if (ret == -ENOSPC) {
2580 spin_lock(&fs_info->balance_lock);
2581 bctl->stat.completed++;
2582 spin_unlock(&fs_info->balance_lock);
2585 key.offset = found_key.offset - 1;
2589 btrfs_release_path(path);
2594 btrfs_free_path(path);
2595 if (enospc_errors) {
2596 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2605 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2607 /* cancel requested || normal exit path */
2608 return atomic_read(&fs_info->balance_cancel_req) ||
2609 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2610 atomic_read(&fs_info->balance_cancel_req) == 0);
2613 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2617 unset_balance_control(fs_info);
2618 ret = del_balance_item(fs_info->tree_root);
2622 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2623 struct btrfs_ioctl_balance_args *bargs);
2626 * Should be called with both balance and volume mutexes held
2628 int btrfs_balance(struct btrfs_balance_control *bctl,
2629 struct btrfs_ioctl_balance_args *bargs)
2631 struct btrfs_fs_info *fs_info = bctl->fs_info;
2635 if (btrfs_fs_closing(fs_info) ||
2636 atomic_read(&fs_info->balance_pause_req) ||
2637 atomic_read(&fs_info->balance_cancel_req)) {
2643 * In case of mixed groups both data and meta should be picked,
2644 * and identical options should be given for both of them.
2646 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2647 if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2648 (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) {
2649 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2650 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2651 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2652 printk(KERN_ERR "btrfs: with mixed groups data and "
2653 "metadata balance options must be the same\n");
2660 * Profile changing sanity checks. Skip them if a simple
2661 * balance is requested.
2663 if (!((bctl->data.flags | bctl->sys.flags | bctl->meta.flags) &
2664 BTRFS_BALANCE_ARGS_CONVERT))
2667 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2668 if (fs_info->fs_devices->num_devices == 1)
2669 allowed |= BTRFS_BLOCK_GROUP_DUP;
2670 else if (fs_info->fs_devices->num_devices < 4)
2671 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2673 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2674 BTRFS_BLOCK_GROUP_RAID10);
2676 if (!profile_is_valid(bctl->data.target, 1) ||
2677 bctl->data.target & ~allowed) {
2678 printk(KERN_ERR "btrfs: unable to start balance with target "
2679 "data profile %llu\n",
2680 (unsigned long long)bctl->data.target);
2684 if (!profile_is_valid(bctl->meta.target, 1) ||
2685 bctl->meta.target & ~allowed) {
2686 printk(KERN_ERR "btrfs: unable to start balance with target "
2687 "metadata profile %llu\n",
2688 (unsigned long long)bctl->meta.target);
2692 if (!profile_is_valid(bctl->sys.target, 1) ||
2693 bctl->sys.target & ~allowed) {
2694 printk(KERN_ERR "btrfs: unable to start balance with target "
2695 "system profile %llu\n",
2696 (unsigned long long)bctl->sys.target);
2701 if (bctl->data.target & BTRFS_BLOCK_GROUP_DUP) {
2702 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2707 /* allow to reduce meta or sys integrity only if force set */
2708 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2709 BTRFS_BLOCK_GROUP_RAID10;
2710 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2711 (fs_info->avail_system_alloc_bits & allowed) &&
2712 !(bctl->sys.target & allowed)) ||
2713 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2714 (fs_info->avail_metadata_alloc_bits & allowed) &&
2715 !(bctl->meta.target & allowed))) {
2716 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2717 printk(KERN_INFO "btrfs: force reducing metadata "
2720 printk(KERN_ERR "btrfs: balance will reduce metadata "
2721 "integrity, use force if you want this\n");
2728 ret = insert_balance_item(fs_info->tree_root, bctl);
2729 if (ret && ret != -EEXIST)
2732 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2733 BUG_ON(ret == -EEXIST);
2734 set_balance_control(bctl);
2736 BUG_ON(ret != -EEXIST);
2737 spin_lock(&fs_info->balance_lock);
2738 update_balance_args(bctl);
2739 spin_unlock(&fs_info->balance_lock);
2742 atomic_inc(&fs_info->balance_running);
2743 mutex_unlock(&fs_info->balance_mutex);
2745 ret = __btrfs_balance(fs_info);
2747 mutex_lock(&fs_info->balance_mutex);
2748 atomic_dec(&fs_info->balance_running);
2751 memset(bargs, 0, sizeof(*bargs));
2752 update_ioctl_balance_args(fs_info, 0, bargs);
2755 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2756 balance_need_close(fs_info)) {
2757 __cancel_balance(fs_info);
2760 wake_up(&fs_info->balance_wait_q);
2764 if (bctl->flags & BTRFS_BALANCE_RESUME)
2765 __cancel_balance(fs_info);
2771 static int balance_kthread(void *data)
2773 struct btrfs_balance_control *bctl =
2774 (struct btrfs_balance_control *)data;
2775 struct btrfs_fs_info *fs_info = bctl->fs_info;
2778 mutex_lock(&fs_info->volume_mutex);
2779 mutex_lock(&fs_info->balance_mutex);
2781 set_balance_control(bctl);
2783 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2784 printk(KERN_INFO "btrfs: force skipping balance\n");
2786 printk(KERN_INFO "btrfs: continuing balance\n");
2787 ret = btrfs_balance(bctl, NULL);
2790 mutex_unlock(&fs_info->balance_mutex);
2791 mutex_unlock(&fs_info->volume_mutex);
2795 int btrfs_recover_balance(struct btrfs_root *tree_root)
2797 struct task_struct *tsk;
2798 struct btrfs_balance_control *bctl;
2799 struct btrfs_balance_item *item;
2800 struct btrfs_disk_balance_args disk_bargs;
2801 struct btrfs_path *path;
2802 struct extent_buffer *leaf;
2803 struct btrfs_key key;
2806 path = btrfs_alloc_path();
2810 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2816 key.objectid = BTRFS_BALANCE_OBJECTID;
2817 key.type = BTRFS_BALANCE_ITEM_KEY;
2820 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2823 if (ret > 0) { /* ret = -ENOENT; */
2828 leaf = path->nodes[0];
2829 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2831 bctl->fs_info = tree_root->fs_info;
2832 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2834 btrfs_balance_data(leaf, item, &disk_bargs);
2835 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2836 btrfs_balance_meta(leaf, item, &disk_bargs);
2837 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2838 btrfs_balance_sys(leaf, item, &disk_bargs);
2839 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2841 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2850 btrfs_free_path(path);
2854 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2858 mutex_lock(&fs_info->balance_mutex);
2859 if (!fs_info->balance_ctl) {
2860 mutex_unlock(&fs_info->balance_mutex);
2864 if (atomic_read(&fs_info->balance_running)) {
2865 atomic_inc(&fs_info->balance_pause_req);
2866 mutex_unlock(&fs_info->balance_mutex);
2868 wait_event(fs_info->balance_wait_q,
2869 atomic_read(&fs_info->balance_running) == 0);
2871 mutex_lock(&fs_info->balance_mutex);
2872 /* we are good with balance_ctl ripped off from under us */
2873 BUG_ON(atomic_read(&fs_info->balance_running));
2874 atomic_dec(&fs_info->balance_pause_req);
2879 mutex_unlock(&fs_info->balance_mutex);
2883 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2885 mutex_lock(&fs_info->balance_mutex);
2886 if (!fs_info->balance_ctl) {
2887 mutex_unlock(&fs_info->balance_mutex);
2891 atomic_inc(&fs_info->balance_cancel_req);
2893 * if we are running just wait and return, balance item is
2894 * deleted in btrfs_balance in this case
2896 if (atomic_read(&fs_info->balance_running)) {
2897 mutex_unlock(&fs_info->balance_mutex);
2898 wait_event(fs_info->balance_wait_q,
2899 atomic_read(&fs_info->balance_running) == 0);
2900 mutex_lock(&fs_info->balance_mutex);
2902 /* __cancel_balance needs volume_mutex */
2903 mutex_unlock(&fs_info->balance_mutex);
2904 mutex_lock(&fs_info->volume_mutex);
2905 mutex_lock(&fs_info->balance_mutex);
2907 if (fs_info->balance_ctl)
2908 __cancel_balance(fs_info);
2910 mutex_unlock(&fs_info->volume_mutex);
2913 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2914 atomic_dec(&fs_info->balance_cancel_req);
2915 mutex_unlock(&fs_info->balance_mutex);
2920 * shrinking a device means finding all of the device extents past
2921 * the new size, and then following the back refs to the chunks.
2922 * The chunk relocation code actually frees the device extent
2924 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2926 struct btrfs_trans_handle *trans;
2927 struct btrfs_root *root = device->dev_root;
2928 struct btrfs_dev_extent *dev_extent = NULL;
2929 struct btrfs_path *path;
2937 bool retried = false;
2938 struct extent_buffer *l;
2939 struct btrfs_key key;
2940 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2941 u64 old_total = btrfs_super_total_bytes(super_copy);
2942 u64 old_size = device->total_bytes;
2943 u64 diff = device->total_bytes - new_size;
2945 if (new_size >= device->total_bytes)
2948 path = btrfs_alloc_path();
2956 device->total_bytes = new_size;
2957 if (device->writeable) {
2958 device->fs_devices->total_rw_bytes -= diff;
2959 spin_lock(&root->fs_info->free_chunk_lock);
2960 root->fs_info->free_chunk_space -= diff;
2961 spin_unlock(&root->fs_info->free_chunk_lock);
2963 unlock_chunks(root);
2966 key.objectid = device->devid;
2967 key.offset = (u64)-1;
2968 key.type = BTRFS_DEV_EXTENT_KEY;
2971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2975 ret = btrfs_previous_item(root, path, 0, key.type);
2980 btrfs_release_path(path);
2985 slot = path->slots[0];
2986 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2988 if (key.objectid != device->devid) {
2989 btrfs_release_path(path);
2993 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2994 length = btrfs_dev_extent_length(l, dev_extent);
2996 if (key.offset + length <= new_size) {
2997 btrfs_release_path(path);
3001 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3002 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3003 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3004 btrfs_release_path(path);
3006 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3008 if (ret && ret != -ENOSPC)
3015 if (failed && !retried) {
3019 } else if (failed && retried) {
3023 device->total_bytes = old_size;
3024 if (device->writeable)
3025 device->fs_devices->total_rw_bytes += diff;
3026 spin_lock(&root->fs_info->free_chunk_lock);
3027 root->fs_info->free_chunk_space += diff;
3028 spin_unlock(&root->fs_info->free_chunk_lock);
3029 unlock_chunks(root);
3033 /* Shrinking succeeded, else we would be at "done". */
3034 trans = btrfs_start_transaction(root, 0);
3035 if (IS_ERR(trans)) {
3036 ret = PTR_ERR(trans);
3042 device->disk_total_bytes = new_size;
3043 /* Now btrfs_update_device() will change the on-disk size. */
3044 ret = btrfs_update_device(trans, device);
3046 unlock_chunks(root);
3047 btrfs_end_transaction(trans, root);
3050 WARN_ON(diff > old_total);
3051 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3052 unlock_chunks(root);
3053 btrfs_end_transaction(trans, root);
3055 btrfs_free_path(path);
3059 static int btrfs_add_system_chunk(struct btrfs_root *root,
3060 struct btrfs_key *key,
3061 struct btrfs_chunk *chunk, int item_size)
3063 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3064 struct btrfs_disk_key disk_key;
3068 array_size = btrfs_super_sys_array_size(super_copy);
3069 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3072 ptr = super_copy->sys_chunk_array + array_size;
3073 btrfs_cpu_key_to_disk(&disk_key, key);
3074 memcpy(ptr, &disk_key, sizeof(disk_key));
3075 ptr += sizeof(disk_key);
3076 memcpy(ptr, chunk, item_size);
3077 item_size += sizeof(disk_key);
3078 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3083 * sort the devices in descending order by max_avail, total_avail
3085 static int btrfs_cmp_device_info(const void *a, const void *b)
3087 const struct btrfs_device_info *di_a = a;
3088 const struct btrfs_device_info *di_b = b;
3090 if (di_a->max_avail > di_b->max_avail)
3092 if (di_a->max_avail < di_b->max_avail)
3094 if (di_a->total_avail > di_b->total_avail)
3096 if (di_a->total_avail < di_b->total_avail)
3101 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *extent_root,
3103 struct map_lookup **map_ret,
3104 u64 *num_bytes_out, u64 *stripe_size_out,
3105 u64 start, u64 type)
3107 struct btrfs_fs_info *info = extent_root->fs_info;
3108 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3109 struct list_head *cur;
3110 struct map_lookup *map = NULL;
3111 struct extent_map_tree *em_tree;
3112 struct extent_map *em;
3113 struct btrfs_device_info *devices_info = NULL;
3115 int num_stripes; /* total number of stripes to allocate */
3116 int sub_stripes; /* sub_stripes info for map */
3117 int dev_stripes; /* stripes per dev */
3118 int devs_max; /* max devs to use */
3119 int devs_min; /* min devs needed */
3120 int devs_increment; /* ndevs has to be a multiple of this */
3121 int ncopies; /* how many copies to data has */
3123 u64 max_stripe_size;
3131 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
3132 (type & BTRFS_BLOCK_GROUP_DUP)) {
3134 type &= ~BTRFS_BLOCK_GROUP_DUP;
3137 if (list_empty(&fs_devices->alloc_list))
3144 devs_max = 0; /* 0 == as many as possible */
3148 * define the properties of each RAID type.
3149 * FIXME: move this to a global table and use it in all RAID
3152 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3156 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3158 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3163 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3172 if (type & BTRFS_BLOCK_GROUP_DATA) {
3173 max_stripe_size = 1024 * 1024 * 1024;
3174 max_chunk_size = 10 * max_stripe_size;
3175 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3176 /* for larger filesystems, use larger metadata chunks */
3177 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3178 max_stripe_size = 1024 * 1024 * 1024;
3180 max_stripe_size = 256 * 1024 * 1024;
3181 max_chunk_size = max_stripe_size;
3182 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3183 max_stripe_size = 32 * 1024 * 1024;
3184 max_chunk_size = 2 * max_stripe_size;
3186 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3191 /* we don't want a chunk larger than 10% of writeable space */
3192 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3195 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3200 cur = fs_devices->alloc_list.next;
3203 * in the first pass through the devices list, we gather information
3204 * about the available holes on each device.
3207 while (cur != &fs_devices->alloc_list) {
3208 struct btrfs_device *device;
3212 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3216 if (!device->writeable) {
3218 "btrfs: read-only device in alloc_list\n");
3223 if (!device->in_fs_metadata)
3226 if (device->total_bytes > device->bytes_used)
3227 total_avail = device->total_bytes - device->bytes_used;
3231 /* If there is no space on this device, skip it. */
3232 if (total_avail == 0)
3235 ret = find_free_dev_extent(device,
3236 max_stripe_size * dev_stripes,
3237 &dev_offset, &max_avail);
3238 if (ret && ret != -ENOSPC)
3242 max_avail = max_stripe_size * dev_stripes;
3244 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3247 devices_info[ndevs].dev_offset = dev_offset;
3248 devices_info[ndevs].max_avail = max_avail;
3249 devices_info[ndevs].total_avail = total_avail;
3250 devices_info[ndevs].dev = device;
3255 * now sort the devices by hole size / available space
3257 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3258 btrfs_cmp_device_info, NULL);
3260 /* round down to number of usable stripes */
3261 ndevs -= ndevs % devs_increment;
3263 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3268 if (devs_max && ndevs > devs_max)
3271 * the primary goal is to maximize the number of stripes, so use as many
3272 * devices as possible, even if the stripes are not maximum sized.
3274 stripe_size = devices_info[ndevs-1].max_avail;
3275 num_stripes = ndevs * dev_stripes;
3277 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3278 stripe_size = max_chunk_size * ncopies;
3279 do_div(stripe_size, num_stripes);
3282 do_div(stripe_size, dev_stripes);
3283 do_div(stripe_size, BTRFS_STRIPE_LEN);
3284 stripe_size *= BTRFS_STRIPE_LEN;
3286 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3291 map->num_stripes = num_stripes;
3293 for (i = 0; i < ndevs; ++i) {
3294 for (j = 0; j < dev_stripes; ++j) {
3295 int s = i * dev_stripes + j;
3296 map->stripes[s].dev = devices_info[i].dev;
3297 map->stripes[s].physical = devices_info[i].dev_offset +
3301 map->sector_size = extent_root->sectorsize;
3302 map->stripe_len = BTRFS_STRIPE_LEN;
3303 map->io_align = BTRFS_STRIPE_LEN;
3304 map->io_width = BTRFS_STRIPE_LEN;
3306 map->sub_stripes = sub_stripes;
3309 num_bytes = stripe_size * (num_stripes / ncopies);
3311 *stripe_size_out = stripe_size;
3312 *num_bytes_out = num_bytes;
3314 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3316 em = alloc_extent_map();
3321 em->bdev = (struct block_device *)map;
3323 em->len = num_bytes;
3324 em->block_start = 0;
3325 em->block_len = em->len;
3327 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3328 write_lock(&em_tree->lock);
3329 ret = add_extent_mapping(em_tree, em);
3330 write_unlock(&em_tree->lock);
3332 free_extent_map(em);
3334 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3335 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3339 for (i = 0; i < map->num_stripes; ++i) {
3340 struct btrfs_device *device;
3343 device = map->stripes[i].dev;
3344 dev_offset = map->stripes[i].physical;
3346 ret = btrfs_alloc_dev_extent(trans, device,
3347 info->chunk_root->root_key.objectid,
3348 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3349 start, dev_offset, stripe_size);
3353 kfree(devices_info);
3358 kfree(devices_info);
3362 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3363 struct btrfs_root *extent_root,
3364 struct map_lookup *map, u64 chunk_offset,
3365 u64 chunk_size, u64 stripe_size)
3368 struct btrfs_key key;
3369 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3370 struct btrfs_device *device;
3371 struct btrfs_chunk *chunk;
3372 struct btrfs_stripe *stripe;
3373 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3377 chunk = kzalloc(item_size, GFP_NOFS);
3382 while (index < map->num_stripes) {
3383 device = map->stripes[index].dev;
3384 device->bytes_used += stripe_size;
3385 ret = btrfs_update_device(trans, device);
3390 spin_lock(&extent_root->fs_info->free_chunk_lock);
3391 extent_root->fs_info->free_chunk_space -= (stripe_size *
3393 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3396 stripe = &chunk->stripe;
3397 while (index < map->num_stripes) {
3398 device = map->stripes[index].dev;
3399 dev_offset = map->stripes[index].physical;
3401 btrfs_set_stack_stripe_devid(stripe, device->devid);
3402 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3403 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3408 btrfs_set_stack_chunk_length(chunk, chunk_size);
3409 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3410 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3411 btrfs_set_stack_chunk_type(chunk, map->type);
3412 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3413 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3414 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3415 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3416 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3418 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3419 key.type = BTRFS_CHUNK_ITEM_KEY;
3420 key.offset = chunk_offset;
3422 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3425 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3426 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3436 * Chunk allocation falls into two parts. The first part does works
3437 * that make the new allocated chunk useable, but not do any operation
3438 * that modifies the chunk tree. The second part does the works that
3439 * require modifying the chunk tree. This division is important for the
3440 * bootstrap process of adding storage to a seed btrfs.
3442 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3443 struct btrfs_root *extent_root, u64 type)
3448 struct map_lookup *map;
3449 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3452 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3457 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3458 &stripe_size, chunk_offset, type);
3462 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3463 chunk_size, stripe_size);
3468 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3469 struct btrfs_root *root,
3470 struct btrfs_device *device)
3473 u64 sys_chunk_offset;
3477 u64 sys_stripe_size;
3479 struct map_lookup *map;
3480 struct map_lookup *sys_map;
3481 struct btrfs_fs_info *fs_info = root->fs_info;
3482 struct btrfs_root *extent_root = fs_info->extent_root;
3485 ret = find_next_chunk(fs_info->chunk_root,
3486 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3490 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3491 fs_info->avail_metadata_alloc_bits;
3492 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3494 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3495 &stripe_size, chunk_offset, alloc_profile);
3498 sys_chunk_offset = chunk_offset + chunk_size;
3500 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3501 fs_info->avail_system_alloc_bits;
3502 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3504 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3505 &sys_chunk_size, &sys_stripe_size,
3506 sys_chunk_offset, alloc_profile);
3509 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3513 * Modifying chunk tree needs allocating new blocks from both
3514 * system block group and metadata block group. So we only can
3515 * do operations require modifying the chunk tree after both
3516 * block groups were created.
3518 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3519 chunk_size, stripe_size);
3522 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3523 sys_chunk_offset, sys_chunk_size,
3529 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3531 struct extent_map *em;
3532 struct map_lookup *map;
3533 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3537 read_lock(&map_tree->map_tree.lock);
3538 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3539 read_unlock(&map_tree->map_tree.lock);
3543 if (btrfs_test_opt(root, DEGRADED)) {
3544 free_extent_map(em);
3548 map = (struct map_lookup *)em->bdev;
3549 for (i = 0; i < map->num_stripes; i++) {
3550 if (!map->stripes[i].dev->writeable) {
3555 free_extent_map(em);
3559 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3561 extent_map_tree_init(&tree->map_tree);
3564 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3566 struct extent_map *em;
3569 write_lock(&tree->map_tree.lock);
3570 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3572 remove_extent_mapping(&tree->map_tree, em);
3573 write_unlock(&tree->map_tree.lock);
3578 free_extent_map(em);
3579 /* once for the tree */
3580 free_extent_map(em);
3584 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3586 struct extent_map *em;
3587 struct map_lookup *map;
3588 struct extent_map_tree *em_tree = &map_tree->map_tree;
3591 read_lock(&em_tree->lock);
3592 em = lookup_extent_mapping(em_tree, logical, len);
3593 read_unlock(&em_tree->lock);
3596 BUG_ON(em->start > logical || em->start + em->len < logical);
3597 map = (struct map_lookup *)em->bdev;
3598 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3599 ret = map->num_stripes;
3600 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3601 ret = map->sub_stripes;
3604 free_extent_map(em);
3608 static int find_live_mirror(struct map_lookup *map, int first, int num,
3612 if (map->stripes[optimal].dev->bdev)
3614 for (i = first; i < first + num; i++) {
3615 if (map->stripes[i].dev->bdev)
3618 /* we couldn't find one that doesn't fail. Just return something
3619 * and the io error handling code will clean up eventually
3624 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3625 u64 logical, u64 *length,
3626 struct btrfs_bio **bbio_ret,
3629 struct extent_map *em;
3630 struct map_lookup *map;
3631 struct extent_map_tree *em_tree = &map_tree->map_tree;
3634 u64 stripe_end_offset;
3643 struct btrfs_bio *bbio = NULL;
3645 read_lock(&em_tree->lock);
3646 em = lookup_extent_mapping(em_tree, logical, *length);
3647 read_unlock(&em_tree->lock);
3650 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3651 (unsigned long long)logical,
3652 (unsigned long long)*length);
3656 BUG_ON(em->start > logical || em->start + em->len < logical);
3657 map = (struct map_lookup *)em->bdev;
3658 offset = logical - em->start;
3660 if (mirror_num > map->num_stripes)
3665 * stripe_nr counts the total number of stripes we have to stride
3666 * to get to this block
3668 do_div(stripe_nr, map->stripe_len);
3670 stripe_offset = stripe_nr * map->stripe_len;
3671 BUG_ON(offset < stripe_offset);
3673 /* stripe_offset is the offset of this block in its stripe*/
3674 stripe_offset = offset - stripe_offset;
3676 if (rw & REQ_DISCARD)
3677 *length = min_t(u64, em->len - offset, *length);
3678 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3679 /* we limit the length of each bio to what fits in a stripe */
3680 *length = min_t(u64, em->len - offset,
3681 map->stripe_len - stripe_offset);
3683 *length = em->len - offset;
3691 stripe_nr_orig = stripe_nr;
3692 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3693 (~(map->stripe_len - 1));
3694 do_div(stripe_nr_end, map->stripe_len);
3695 stripe_end_offset = stripe_nr_end * map->stripe_len -
3697 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3698 if (rw & REQ_DISCARD)
3699 num_stripes = min_t(u64, map->num_stripes,
3700 stripe_nr_end - stripe_nr_orig);
3701 stripe_index = do_div(stripe_nr, map->num_stripes);
3702 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3703 if (rw & (REQ_WRITE | REQ_DISCARD))
3704 num_stripes = map->num_stripes;
3705 else if (mirror_num)
3706 stripe_index = mirror_num - 1;
3708 stripe_index = find_live_mirror(map, 0,
3710 current->pid % map->num_stripes);
3711 mirror_num = stripe_index + 1;
3714 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3715 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3716 num_stripes = map->num_stripes;
3717 } else if (mirror_num) {
3718 stripe_index = mirror_num - 1;
3723 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3724 int factor = map->num_stripes / map->sub_stripes;
3726 stripe_index = do_div(stripe_nr, factor);
3727 stripe_index *= map->sub_stripes;
3730 num_stripes = map->sub_stripes;
3731 else if (rw & REQ_DISCARD)
3732 num_stripes = min_t(u64, map->sub_stripes *
3733 (stripe_nr_end - stripe_nr_orig),
3735 else if (mirror_num)
3736 stripe_index += mirror_num - 1;
3738 stripe_index = find_live_mirror(map, stripe_index,
3739 map->sub_stripes, stripe_index +
3740 current->pid % map->sub_stripes);
3741 mirror_num = stripe_index + 1;
3745 * after this do_div call, stripe_nr is the number of stripes
3746 * on this device we have to walk to find the data, and
3747 * stripe_index is the number of our device in the stripe array
3749 stripe_index = do_div(stripe_nr, map->num_stripes);
3750 mirror_num = stripe_index + 1;
3752 BUG_ON(stripe_index >= map->num_stripes);
3754 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3759 atomic_set(&bbio->error, 0);
3761 if (rw & REQ_DISCARD) {
3763 int sub_stripes = 0;
3764 u64 stripes_per_dev = 0;
3765 u32 remaining_stripes = 0;
3768 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3769 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3772 sub_stripes = map->sub_stripes;
3774 factor = map->num_stripes / sub_stripes;
3775 stripes_per_dev = div_u64_rem(stripe_nr_end -
3778 &remaining_stripes);
3781 for (i = 0; i < num_stripes; i++) {
3782 bbio->stripes[i].physical =
3783 map->stripes[stripe_index].physical +
3784 stripe_offset + stripe_nr * map->stripe_len;
3785 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3787 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3788 BTRFS_BLOCK_GROUP_RAID10)) {
3789 bbio->stripes[i].length = stripes_per_dev *
3791 if (i / sub_stripes < remaining_stripes)
3792 bbio->stripes[i].length +=
3794 if (i < sub_stripes)
3795 bbio->stripes[i].length -=
3797 if ((i / sub_stripes + 1) %
3798 sub_stripes == remaining_stripes)
3799 bbio->stripes[i].length -=
3801 if (i == sub_stripes - 1)
3804 bbio->stripes[i].length = *length;
3807 if (stripe_index == map->num_stripes) {
3808 /* This could only happen for RAID0/10 */
3814 for (i = 0; i < num_stripes; i++) {
3815 bbio->stripes[i].physical =
3816 map->stripes[stripe_index].physical +
3818 stripe_nr * map->stripe_len;
3819 bbio->stripes[i].dev =
3820 map->stripes[stripe_index].dev;
3825 if (rw & REQ_WRITE) {
3826 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3827 BTRFS_BLOCK_GROUP_RAID10 |
3828 BTRFS_BLOCK_GROUP_DUP)) {
3834 bbio->num_stripes = num_stripes;
3835 bbio->max_errors = max_errors;
3836 bbio->mirror_num = mirror_num;
3838 free_extent_map(em);
3842 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3843 u64 logical, u64 *length,
3844 struct btrfs_bio **bbio_ret, int mirror_num)
3846 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3850 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3851 u64 chunk_start, u64 physical, u64 devid,
3852 u64 **logical, int *naddrs, int *stripe_len)
3854 struct extent_map_tree *em_tree = &map_tree->map_tree;
3855 struct extent_map *em;
3856 struct map_lookup *map;
3863 read_lock(&em_tree->lock);
3864 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3865 read_unlock(&em_tree->lock);
3867 BUG_ON(!em || em->start != chunk_start);
3868 map = (struct map_lookup *)em->bdev;
3871 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3872 do_div(length, map->num_stripes / map->sub_stripes);
3873 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3874 do_div(length, map->num_stripes);
3876 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3879 for (i = 0; i < map->num_stripes; i++) {
3880 if (devid && map->stripes[i].dev->devid != devid)
3882 if (map->stripes[i].physical > physical ||
3883 map->stripes[i].physical + length <= physical)
3886 stripe_nr = physical - map->stripes[i].physical;
3887 do_div(stripe_nr, map->stripe_len);
3889 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3890 stripe_nr = stripe_nr * map->num_stripes + i;
3891 do_div(stripe_nr, map->sub_stripes);
3892 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3893 stripe_nr = stripe_nr * map->num_stripes + i;
3895 bytenr = chunk_start + stripe_nr * map->stripe_len;
3896 WARN_ON(nr >= map->num_stripes);
3897 for (j = 0; j < nr; j++) {
3898 if (buf[j] == bytenr)
3902 WARN_ON(nr >= map->num_stripes);
3909 *stripe_len = map->stripe_len;
3911 free_extent_map(em);
3915 static void btrfs_end_bio(struct bio *bio, int err)
3917 struct btrfs_bio *bbio = bio->bi_private;
3918 int is_orig_bio = 0;
3921 atomic_inc(&bbio->error);
3923 if (bio == bbio->orig_bio)
3926 if (atomic_dec_and_test(&bbio->stripes_pending)) {
3929 bio = bbio->orig_bio;
3931 bio->bi_private = bbio->private;
3932 bio->bi_end_io = bbio->end_io;
3933 bio->bi_bdev = (struct block_device *)
3934 (unsigned long)bbio->mirror_num;
3935 /* only send an error to the higher layers if it is
3936 * beyond the tolerance of the multi-bio
3938 if (atomic_read(&bbio->error) > bbio->max_errors) {
3942 * this bio is actually up to date, we didn't
3943 * go over the max number of errors
3945 set_bit(BIO_UPTODATE, &bio->bi_flags);
3950 bio_endio(bio, err);
3951 } else if (!is_orig_bio) {
3956 struct async_sched {
3959 struct btrfs_fs_info *info;
3960 struct btrfs_work work;
3964 * see run_scheduled_bios for a description of why bios are collected for
3967 * This will add one bio to the pending list for a device and make sure
3968 * the work struct is scheduled.
3970 static noinline int schedule_bio(struct btrfs_root *root,
3971 struct btrfs_device *device,
3972 int rw, struct bio *bio)
3974 int should_queue = 1;
3975 struct btrfs_pending_bios *pending_bios;
3977 /* don't bother with additional async steps for reads, right now */
3978 if (!(rw & REQ_WRITE)) {
3980 btrfsic_submit_bio(rw, bio);
3986 * nr_async_bios allows us to reliably return congestion to the
3987 * higher layers. Otherwise, the async bio makes it appear we have
3988 * made progress against dirty pages when we've really just put it
3989 * on a queue for later
3991 atomic_inc(&root->fs_info->nr_async_bios);
3992 WARN_ON(bio->bi_next);
3993 bio->bi_next = NULL;
3996 spin_lock(&device->io_lock);
3997 if (bio->bi_rw & REQ_SYNC)
3998 pending_bios = &device->pending_sync_bios;
4000 pending_bios = &device->pending_bios;
4002 if (pending_bios->tail)
4003 pending_bios->tail->bi_next = bio;
4005 pending_bios->tail = bio;
4006 if (!pending_bios->head)
4007 pending_bios->head = bio;
4008 if (device->running_pending)
4011 spin_unlock(&device->io_lock);
4014 btrfs_queue_worker(&root->fs_info->submit_workers,
4019 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4020 int mirror_num, int async_submit)
4022 struct btrfs_mapping_tree *map_tree;
4023 struct btrfs_device *dev;
4024 struct bio *first_bio = bio;
4025 u64 logical = (u64)bio->bi_sector << 9;
4031 struct btrfs_bio *bbio = NULL;
4033 length = bio->bi_size;
4034 map_tree = &root->fs_info->mapping_tree;
4035 map_length = length;
4037 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4041 total_devs = bbio->num_stripes;
4042 if (map_length < length) {
4043 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4044 "len %llu\n", (unsigned long long)logical,
4045 (unsigned long long)length,
4046 (unsigned long long)map_length);
4050 bbio->orig_bio = first_bio;
4051 bbio->private = first_bio->bi_private;
4052 bbio->end_io = first_bio->bi_end_io;
4053 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4055 while (dev_nr < total_devs) {
4056 if (dev_nr < total_devs - 1) {
4057 bio = bio_clone(first_bio, GFP_NOFS);
4062 bio->bi_private = bbio;
4063 bio->bi_end_io = btrfs_end_bio;
4064 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4065 dev = bbio->stripes[dev_nr].dev;
4066 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4067 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4068 "(%s id %llu), size=%u\n", rw,
4069 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4070 dev->name, dev->devid, bio->bi_size);
4071 bio->bi_bdev = dev->bdev;
4073 schedule_bio(root, dev, rw, bio);
4075 btrfsic_submit_bio(rw, bio);
4077 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4078 bio->bi_sector = logical >> 9;
4079 bio_endio(bio, -EIO);
4086 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4089 struct btrfs_device *device;
4090 struct btrfs_fs_devices *cur_devices;
4092 cur_devices = root->fs_info->fs_devices;
4093 while (cur_devices) {
4095 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4096 device = __find_device(&cur_devices->devices,
4101 cur_devices = cur_devices->seed;
4106 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4107 u64 devid, u8 *dev_uuid)
4109 struct btrfs_device *device;
4110 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4112 device = kzalloc(sizeof(*device), GFP_NOFS);
4115 list_add(&device->dev_list,
4116 &fs_devices->devices);
4117 device->dev_root = root->fs_info->dev_root;
4118 device->devid = devid;
4119 device->work.func = pending_bios_fn;
4120 device->fs_devices = fs_devices;
4121 device->missing = 1;
4122 fs_devices->num_devices++;
4123 fs_devices->missing_devices++;
4124 spin_lock_init(&device->io_lock);
4125 INIT_LIST_HEAD(&device->dev_alloc_list);
4126 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4130 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4131 struct extent_buffer *leaf,
4132 struct btrfs_chunk *chunk)
4134 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4135 struct map_lookup *map;
4136 struct extent_map *em;
4140 u8 uuid[BTRFS_UUID_SIZE];
4145 logical = key->offset;
4146 length = btrfs_chunk_length(leaf, chunk);
4148 read_lock(&map_tree->map_tree.lock);
4149 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4150 read_unlock(&map_tree->map_tree.lock);
4152 /* already mapped? */
4153 if (em && em->start <= logical && em->start + em->len > logical) {
4154 free_extent_map(em);
4157 free_extent_map(em);
4160 em = alloc_extent_map();
4163 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4164 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4166 free_extent_map(em);
4170 em->bdev = (struct block_device *)map;
4171 em->start = logical;
4173 em->block_start = 0;
4174 em->block_len = em->len;
4176 map->num_stripes = num_stripes;
4177 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4178 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4179 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4180 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4181 map->type = btrfs_chunk_type(leaf, chunk);
4182 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4183 for (i = 0; i < num_stripes; i++) {
4184 map->stripes[i].physical =
4185 btrfs_stripe_offset_nr(leaf, chunk, i);
4186 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4187 read_extent_buffer(leaf, uuid, (unsigned long)
4188 btrfs_stripe_dev_uuid_nr(chunk, i),
4190 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4192 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4194 free_extent_map(em);
4197 if (!map->stripes[i].dev) {
4198 map->stripes[i].dev =
4199 add_missing_dev(root, devid, uuid);
4200 if (!map->stripes[i].dev) {
4202 free_extent_map(em);
4206 map->stripes[i].dev->in_fs_metadata = 1;
4209 write_lock(&map_tree->map_tree.lock);
4210 ret = add_extent_mapping(&map_tree->map_tree, em);
4211 write_unlock(&map_tree->map_tree.lock);
4213 free_extent_map(em);
4218 static int fill_device_from_item(struct extent_buffer *leaf,
4219 struct btrfs_dev_item *dev_item,
4220 struct btrfs_device *device)
4224 device->devid = btrfs_device_id(leaf, dev_item);
4225 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4226 device->total_bytes = device->disk_total_bytes;
4227 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4228 device->type = btrfs_device_type(leaf, dev_item);
4229 device->io_align = btrfs_device_io_align(leaf, dev_item);
4230 device->io_width = btrfs_device_io_width(leaf, dev_item);
4231 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4233 ptr = (unsigned long)btrfs_device_uuid(dev_item);
4234 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4239 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4241 struct btrfs_fs_devices *fs_devices;
4244 BUG_ON(!mutex_is_locked(&uuid_mutex));
4246 fs_devices = root->fs_info->fs_devices->seed;
4247 while (fs_devices) {
4248 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4252 fs_devices = fs_devices->seed;
4255 fs_devices = find_fsid(fsid);
4261 fs_devices = clone_fs_devices(fs_devices);
4262 if (IS_ERR(fs_devices)) {
4263 ret = PTR_ERR(fs_devices);
4267 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4268 root->fs_info->bdev_holder);
4272 if (!fs_devices->seeding) {
4273 __btrfs_close_devices(fs_devices);
4274 free_fs_devices(fs_devices);
4279 fs_devices->seed = root->fs_info->fs_devices->seed;
4280 root->fs_info->fs_devices->seed = fs_devices;
4285 static int read_one_dev(struct btrfs_root *root,
4286 struct extent_buffer *leaf,
4287 struct btrfs_dev_item *dev_item)
4289 struct btrfs_device *device;
4292 u8 fs_uuid[BTRFS_UUID_SIZE];
4293 u8 dev_uuid[BTRFS_UUID_SIZE];
4295 devid = btrfs_device_id(leaf, dev_item);
4296 read_extent_buffer(leaf, dev_uuid,
4297 (unsigned long)btrfs_device_uuid(dev_item),
4299 read_extent_buffer(leaf, fs_uuid,
4300 (unsigned long)btrfs_device_fsid(dev_item),
4303 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4304 ret = open_seed_devices(root, fs_uuid);
4305 if (ret && !btrfs_test_opt(root, DEGRADED))
4309 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4310 if (!device || !device->bdev) {
4311 if (!btrfs_test_opt(root, DEGRADED))
4315 printk(KERN_WARNING "warning devid %llu missing\n",
4316 (unsigned long long)devid);
4317 device = add_missing_dev(root, devid, dev_uuid);
4320 } else if (!device->missing) {
4322 * this happens when a device that was properly setup
4323 * in the device info lists suddenly goes bad.
4324 * device->bdev is NULL, and so we have to set
4325 * device->missing to one here
4327 root->fs_info->fs_devices->missing_devices++;
4328 device->missing = 1;
4332 if (device->fs_devices != root->fs_info->fs_devices) {
4333 BUG_ON(device->writeable);
4334 if (device->generation !=
4335 btrfs_device_generation(leaf, dev_item))
4339 fill_device_from_item(leaf, dev_item, device);
4340 device->dev_root = root->fs_info->dev_root;
4341 device->in_fs_metadata = 1;
4342 if (device->writeable) {
4343 device->fs_devices->total_rw_bytes += device->total_bytes;
4344 spin_lock(&root->fs_info->free_chunk_lock);
4345 root->fs_info->free_chunk_space += device->total_bytes -
4347 spin_unlock(&root->fs_info->free_chunk_lock);
4353 int btrfs_read_sys_array(struct btrfs_root *root)
4355 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4356 struct extent_buffer *sb;
4357 struct btrfs_disk_key *disk_key;
4358 struct btrfs_chunk *chunk;
4360 unsigned long sb_ptr;
4366 struct btrfs_key key;
4368 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4369 BTRFS_SUPER_INFO_SIZE);
4372 btrfs_set_buffer_uptodate(sb);
4373 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4375 * The sb extent buffer is artifical and just used to read the system array.
4376 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4377 * pages up-to-date when the page is larger: extent does not cover the
4378 * whole page and consequently check_page_uptodate does not find all
4379 * the page's extents up-to-date (the hole beyond sb),
4380 * write_extent_buffer then triggers a WARN_ON.
4382 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4383 * but sb spans only this function. Add an explicit SetPageUptodate call
4384 * to silence the warning eg. on PowerPC 64.
4386 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4387 SetPageUptodate(sb->first_page);
4389 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4390 array_size = btrfs_super_sys_array_size(super_copy);
4392 ptr = super_copy->sys_chunk_array;
4393 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4396 while (cur < array_size) {
4397 disk_key = (struct btrfs_disk_key *)ptr;
4398 btrfs_disk_key_to_cpu(&key, disk_key);
4400 len = sizeof(*disk_key); ptr += len;
4404 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4405 chunk = (struct btrfs_chunk *)sb_ptr;
4406 ret = read_one_chunk(root, &key, sb, chunk);
4409 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4410 len = btrfs_chunk_item_size(num_stripes);
4419 free_extent_buffer(sb);
4423 int btrfs_read_chunk_tree(struct btrfs_root *root)
4425 struct btrfs_path *path;
4426 struct extent_buffer *leaf;
4427 struct btrfs_key key;
4428 struct btrfs_key found_key;
4432 root = root->fs_info->chunk_root;
4434 path = btrfs_alloc_path();
4438 mutex_lock(&uuid_mutex);
4441 /* first we search for all of the device items, and then we
4442 * read in all of the chunk items. This way we can create chunk
4443 * mappings that reference all of the devices that are afound
4445 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4453 leaf = path->nodes[0];
4454 slot = path->slots[0];
4455 if (slot >= btrfs_header_nritems(leaf)) {
4456 ret = btrfs_next_leaf(root, path);
4463 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4464 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4465 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4467 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4468 struct btrfs_dev_item *dev_item;
4469 dev_item = btrfs_item_ptr(leaf, slot,
4470 struct btrfs_dev_item);
4471 ret = read_one_dev(root, leaf, dev_item);
4475 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4476 struct btrfs_chunk *chunk;
4477 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4478 ret = read_one_chunk(root, &found_key, leaf, chunk);
4484 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4486 btrfs_release_path(path);
4491 unlock_chunks(root);
4492 mutex_unlock(&uuid_mutex);
4494 btrfs_free_path(path);