]> Git Repo - linux.git/blob - kernel/bpf/helpers.c
x86/entry: Move PUSH_AND_CLEAR_REGS out of error_entry()
[linux.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/proc_ns.h>
19 #include <linux/security.h>
20 #include <linux/btf_ids.h>
21
22 #include "../../lib/kstrtox.h"
23
24 /* If kernel subsystem is allowing eBPF programs to call this function,
25  * inside its own verifier_ops->get_func_proto() callback it should return
26  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
27  *
28  * Different map implementations will rely on rcu in map methods
29  * lookup/update/delete, therefore eBPF programs must run under rcu lock
30  * if program is allowed to access maps, so check rcu_read_lock_held in
31  * all three functions.
32  */
33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
34 {
35         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
36         return (unsigned long) map->ops->map_lookup_elem(map, key);
37 }
38
39 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
40         .func           = bpf_map_lookup_elem,
41         .gpl_only       = false,
42         .pkt_access     = true,
43         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
44         .arg1_type      = ARG_CONST_MAP_PTR,
45         .arg2_type      = ARG_PTR_TO_MAP_KEY,
46 };
47
48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
49            void *, value, u64, flags)
50 {
51         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
52         return map->ops->map_update_elem(map, key, value, flags);
53 }
54
55 const struct bpf_func_proto bpf_map_update_elem_proto = {
56         .func           = bpf_map_update_elem,
57         .gpl_only       = false,
58         .pkt_access     = true,
59         .ret_type       = RET_INTEGER,
60         .arg1_type      = ARG_CONST_MAP_PTR,
61         .arg2_type      = ARG_PTR_TO_MAP_KEY,
62         .arg3_type      = ARG_PTR_TO_MAP_VALUE,
63         .arg4_type      = ARG_ANYTHING,
64 };
65
66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
67 {
68         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
69         return map->ops->map_delete_elem(map, key);
70 }
71
72 const struct bpf_func_proto bpf_map_delete_elem_proto = {
73         .func           = bpf_map_delete_elem,
74         .gpl_only       = false,
75         .pkt_access     = true,
76         .ret_type       = RET_INTEGER,
77         .arg1_type      = ARG_CONST_MAP_PTR,
78         .arg2_type      = ARG_PTR_TO_MAP_KEY,
79 };
80
81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
82 {
83         return map->ops->map_push_elem(map, value, flags);
84 }
85
86 const struct bpf_func_proto bpf_map_push_elem_proto = {
87         .func           = bpf_map_push_elem,
88         .gpl_only       = false,
89         .pkt_access     = true,
90         .ret_type       = RET_INTEGER,
91         .arg1_type      = ARG_CONST_MAP_PTR,
92         .arg2_type      = ARG_PTR_TO_MAP_VALUE,
93         .arg3_type      = ARG_ANYTHING,
94 };
95
96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
97 {
98         return map->ops->map_pop_elem(map, value);
99 }
100
101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
102         .func           = bpf_map_pop_elem,
103         .gpl_only       = false,
104         .ret_type       = RET_INTEGER,
105         .arg1_type      = ARG_CONST_MAP_PTR,
106         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
107 };
108
109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
110 {
111         return map->ops->map_peek_elem(map, value);
112 }
113
114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
115         .func           = bpf_map_peek_elem,
116         .gpl_only       = false,
117         .ret_type       = RET_INTEGER,
118         .arg1_type      = ARG_CONST_MAP_PTR,
119         .arg2_type      = ARG_PTR_TO_UNINIT_MAP_VALUE,
120 };
121
122 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
123         .func           = bpf_user_rnd_u32,
124         .gpl_only       = false,
125         .ret_type       = RET_INTEGER,
126 };
127
128 BPF_CALL_0(bpf_get_smp_processor_id)
129 {
130         return smp_processor_id();
131 }
132
133 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
134         .func           = bpf_get_smp_processor_id,
135         .gpl_only       = false,
136         .ret_type       = RET_INTEGER,
137 };
138
139 BPF_CALL_0(bpf_get_numa_node_id)
140 {
141         return numa_node_id();
142 }
143
144 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
145         .func           = bpf_get_numa_node_id,
146         .gpl_only       = false,
147         .ret_type       = RET_INTEGER,
148 };
149
150 BPF_CALL_0(bpf_ktime_get_ns)
151 {
152         /* NMI safe access to clock monotonic */
153         return ktime_get_mono_fast_ns();
154 }
155
156 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
157         .func           = bpf_ktime_get_ns,
158         .gpl_only       = false,
159         .ret_type       = RET_INTEGER,
160 };
161
162 BPF_CALL_0(bpf_ktime_get_boot_ns)
163 {
164         /* NMI safe access to clock boottime */
165         return ktime_get_boot_fast_ns();
166 }
167
168 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
169         .func           = bpf_ktime_get_boot_ns,
170         .gpl_only       = false,
171         .ret_type       = RET_INTEGER,
172 };
173
174 BPF_CALL_0(bpf_ktime_get_coarse_ns)
175 {
176         return ktime_get_coarse_ns();
177 }
178
179 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
180         .func           = bpf_ktime_get_coarse_ns,
181         .gpl_only       = false,
182         .ret_type       = RET_INTEGER,
183 };
184
185 BPF_CALL_0(bpf_get_current_pid_tgid)
186 {
187         struct task_struct *task = current;
188
189         if (unlikely(!task))
190                 return -EINVAL;
191
192         return (u64) task->tgid << 32 | task->pid;
193 }
194
195 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
196         .func           = bpf_get_current_pid_tgid,
197         .gpl_only       = false,
198         .ret_type       = RET_INTEGER,
199 };
200
201 BPF_CALL_0(bpf_get_current_uid_gid)
202 {
203         struct task_struct *task = current;
204         kuid_t uid;
205         kgid_t gid;
206
207         if (unlikely(!task))
208                 return -EINVAL;
209
210         current_uid_gid(&uid, &gid);
211         return (u64) from_kgid(&init_user_ns, gid) << 32 |
212                      from_kuid(&init_user_ns, uid);
213 }
214
215 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
216         .func           = bpf_get_current_uid_gid,
217         .gpl_only       = false,
218         .ret_type       = RET_INTEGER,
219 };
220
221 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
222 {
223         struct task_struct *task = current;
224
225         if (unlikely(!task))
226                 goto err_clear;
227
228         /* Verifier guarantees that size > 0 */
229         strscpy(buf, task->comm, size);
230         return 0;
231 err_clear:
232         memset(buf, 0, size);
233         return -EINVAL;
234 }
235
236 const struct bpf_func_proto bpf_get_current_comm_proto = {
237         .func           = bpf_get_current_comm,
238         .gpl_only       = false,
239         .ret_type       = RET_INTEGER,
240         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
241         .arg2_type      = ARG_CONST_SIZE,
242 };
243
244 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
245
246 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
247 {
248         arch_spinlock_t *l = (void *)lock;
249         union {
250                 __u32 val;
251                 arch_spinlock_t lock;
252         } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
253
254         compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
255         BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
256         BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
257         arch_spin_lock(l);
258 }
259
260 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
261 {
262         arch_spinlock_t *l = (void *)lock;
263
264         arch_spin_unlock(l);
265 }
266
267 #else
268
269 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
270 {
271         atomic_t *l = (void *)lock;
272
273         BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
274         do {
275                 atomic_cond_read_relaxed(l, !VAL);
276         } while (atomic_xchg(l, 1));
277 }
278
279 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
280 {
281         atomic_t *l = (void *)lock;
282
283         atomic_set_release(l, 0);
284 }
285
286 #endif
287
288 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
289
290 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
291 {
292         unsigned long flags;
293
294         local_irq_save(flags);
295         __bpf_spin_lock(lock);
296         __this_cpu_write(irqsave_flags, flags);
297 }
298
299 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
300 {
301         __bpf_spin_lock_irqsave(lock);
302         return 0;
303 }
304
305 const struct bpf_func_proto bpf_spin_lock_proto = {
306         .func           = bpf_spin_lock,
307         .gpl_only       = false,
308         .ret_type       = RET_VOID,
309         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
310 };
311
312 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
313 {
314         unsigned long flags;
315
316         flags = __this_cpu_read(irqsave_flags);
317         __bpf_spin_unlock(lock);
318         local_irq_restore(flags);
319 }
320
321 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
322 {
323         __bpf_spin_unlock_irqrestore(lock);
324         return 0;
325 }
326
327 const struct bpf_func_proto bpf_spin_unlock_proto = {
328         .func           = bpf_spin_unlock,
329         .gpl_only       = false,
330         .ret_type       = RET_VOID,
331         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
332 };
333
334 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
335                            bool lock_src)
336 {
337         struct bpf_spin_lock *lock;
338
339         if (lock_src)
340                 lock = src + map->spin_lock_off;
341         else
342                 lock = dst + map->spin_lock_off;
343         preempt_disable();
344         __bpf_spin_lock_irqsave(lock);
345         copy_map_value(map, dst, src);
346         __bpf_spin_unlock_irqrestore(lock);
347         preempt_enable();
348 }
349
350 BPF_CALL_0(bpf_jiffies64)
351 {
352         return get_jiffies_64();
353 }
354
355 const struct bpf_func_proto bpf_jiffies64_proto = {
356         .func           = bpf_jiffies64,
357         .gpl_only       = false,
358         .ret_type       = RET_INTEGER,
359 };
360
361 #ifdef CONFIG_CGROUPS
362 BPF_CALL_0(bpf_get_current_cgroup_id)
363 {
364         struct cgroup *cgrp;
365         u64 cgrp_id;
366
367         rcu_read_lock();
368         cgrp = task_dfl_cgroup(current);
369         cgrp_id = cgroup_id(cgrp);
370         rcu_read_unlock();
371
372         return cgrp_id;
373 }
374
375 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
376         .func           = bpf_get_current_cgroup_id,
377         .gpl_only       = false,
378         .ret_type       = RET_INTEGER,
379 };
380
381 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
382 {
383         struct cgroup *cgrp;
384         struct cgroup *ancestor;
385         u64 cgrp_id;
386
387         rcu_read_lock();
388         cgrp = task_dfl_cgroup(current);
389         ancestor = cgroup_ancestor(cgrp, ancestor_level);
390         cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
391         rcu_read_unlock();
392
393         return cgrp_id;
394 }
395
396 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
397         .func           = bpf_get_current_ancestor_cgroup_id,
398         .gpl_only       = false,
399         .ret_type       = RET_INTEGER,
400         .arg1_type      = ARG_ANYTHING,
401 };
402
403 #ifdef CONFIG_CGROUP_BPF
404
405 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
406 {
407         /* flags argument is not used now,
408          * but provides an ability to extend the API.
409          * verifier checks that its value is correct.
410          */
411         enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
412         struct bpf_cgroup_storage *storage;
413         struct bpf_cg_run_ctx *ctx;
414         void *ptr;
415
416         /* get current cgroup storage from BPF run context */
417         ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
418         storage = ctx->prog_item->cgroup_storage[stype];
419
420         if (stype == BPF_CGROUP_STORAGE_SHARED)
421                 ptr = &READ_ONCE(storage->buf)->data[0];
422         else
423                 ptr = this_cpu_ptr(storage->percpu_buf);
424
425         return (unsigned long)ptr;
426 }
427
428 const struct bpf_func_proto bpf_get_local_storage_proto = {
429         .func           = bpf_get_local_storage,
430         .gpl_only       = false,
431         .ret_type       = RET_PTR_TO_MAP_VALUE,
432         .arg1_type      = ARG_CONST_MAP_PTR,
433         .arg2_type      = ARG_ANYTHING,
434 };
435 #endif
436
437 #define BPF_STRTOX_BASE_MASK 0x1F
438
439 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
440                           unsigned long long *res, bool *is_negative)
441 {
442         unsigned int base = flags & BPF_STRTOX_BASE_MASK;
443         const char *cur_buf = buf;
444         size_t cur_len = buf_len;
445         unsigned int consumed;
446         size_t val_len;
447         char str[64];
448
449         if (!buf || !buf_len || !res || !is_negative)
450                 return -EINVAL;
451
452         if (base != 0 && base != 8 && base != 10 && base != 16)
453                 return -EINVAL;
454
455         if (flags & ~BPF_STRTOX_BASE_MASK)
456                 return -EINVAL;
457
458         while (cur_buf < buf + buf_len && isspace(*cur_buf))
459                 ++cur_buf;
460
461         *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
462         if (*is_negative)
463                 ++cur_buf;
464
465         consumed = cur_buf - buf;
466         cur_len -= consumed;
467         if (!cur_len)
468                 return -EINVAL;
469
470         cur_len = min(cur_len, sizeof(str) - 1);
471         memcpy(str, cur_buf, cur_len);
472         str[cur_len] = '\0';
473         cur_buf = str;
474
475         cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
476         val_len = _parse_integer(cur_buf, base, res);
477
478         if (val_len & KSTRTOX_OVERFLOW)
479                 return -ERANGE;
480
481         if (val_len == 0)
482                 return -EINVAL;
483
484         cur_buf += val_len;
485         consumed += cur_buf - str;
486
487         return consumed;
488 }
489
490 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
491                          long long *res)
492 {
493         unsigned long long _res;
494         bool is_negative;
495         int err;
496
497         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
498         if (err < 0)
499                 return err;
500         if (is_negative) {
501                 if ((long long)-_res > 0)
502                         return -ERANGE;
503                 *res = -_res;
504         } else {
505                 if ((long long)_res < 0)
506                         return -ERANGE;
507                 *res = _res;
508         }
509         return err;
510 }
511
512 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
513            long *, res)
514 {
515         long long _res;
516         int err;
517
518         err = __bpf_strtoll(buf, buf_len, flags, &_res);
519         if (err < 0)
520                 return err;
521         if (_res != (long)_res)
522                 return -ERANGE;
523         *res = _res;
524         return err;
525 }
526
527 const struct bpf_func_proto bpf_strtol_proto = {
528         .func           = bpf_strtol,
529         .gpl_only       = false,
530         .ret_type       = RET_INTEGER,
531         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
532         .arg2_type      = ARG_CONST_SIZE,
533         .arg3_type      = ARG_ANYTHING,
534         .arg4_type      = ARG_PTR_TO_LONG,
535 };
536
537 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
538            unsigned long *, res)
539 {
540         unsigned long long _res;
541         bool is_negative;
542         int err;
543
544         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
545         if (err < 0)
546                 return err;
547         if (is_negative)
548                 return -EINVAL;
549         if (_res != (unsigned long)_res)
550                 return -ERANGE;
551         *res = _res;
552         return err;
553 }
554
555 const struct bpf_func_proto bpf_strtoul_proto = {
556         .func           = bpf_strtoul,
557         .gpl_only       = false,
558         .ret_type       = RET_INTEGER,
559         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
560         .arg2_type      = ARG_CONST_SIZE,
561         .arg3_type      = ARG_ANYTHING,
562         .arg4_type      = ARG_PTR_TO_LONG,
563 };
564 #endif
565
566 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
567 {
568         return strncmp(s1, s2, s1_sz);
569 }
570
571 const struct bpf_func_proto bpf_strncmp_proto = {
572         .func           = bpf_strncmp,
573         .gpl_only       = false,
574         .ret_type       = RET_INTEGER,
575         .arg1_type      = ARG_PTR_TO_MEM,
576         .arg2_type      = ARG_CONST_SIZE,
577         .arg3_type      = ARG_PTR_TO_CONST_STR,
578 };
579
580 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
581            struct bpf_pidns_info *, nsdata, u32, size)
582 {
583         struct task_struct *task = current;
584         struct pid_namespace *pidns;
585         int err = -EINVAL;
586
587         if (unlikely(size != sizeof(struct bpf_pidns_info)))
588                 goto clear;
589
590         if (unlikely((u64)(dev_t)dev != dev))
591                 goto clear;
592
593         if (unlikely(!task))
594                 goto clear;
595
596         pidns = task_active_pid_ns(task);
597         if (unlikely(!pidns)) {
598                 err = -ENOENT;
599                 goto clear;
600         }
601
602         if (!ns_match(&pidns->ns, (dev_t)dev, ino))
603                 goto clear;
604
605         nsdata->pid = task_pid_nr_ns(task, pidns);
606         nsdata->tgid = task_tgid_nr_ns(task, pidns);
607         return 0;
608 clear:
609         memset((void *)nsdata, 0, (size_t) size);
610         return err;
611 }
612
613 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
614         .func           = bpf_get_ns_current_pid_tgid,
615         .gpl_only       = false,
616         .ret_type       = RET_INTEGER,
617         .arg1_type      = ARG_ANYTHING,
618         .arg2_type      = ARG_ANYTHING,
619         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
620         .arg4_type      = ARG_CONST_SIZE,
621 };
622
623 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
624         .func           = bpf_get_raw_cpu_id,
625         .gpl_only       = false,
626         .ret_type       = RET_INTEGER,
627 };
628
629 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
630            u64, flags, void *, data, u64, size)
631 {
632         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
633                 return -EINVAL;
634
635         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
636 }
637
638 const struct bpf_func_proto bpf_event_output_data_proto =  {
639         .func           = bpf_event_output_data,
640         .gpl_only       = true,
641         .ret_type       = RET_INTEGER,
642         .arg1_type      = ARG_PTR_TO_CTX,
643         .arg2_type      = ARG_CONST_MAP_PTR,
644         .arg3_type      = ARG_ANYTHING,
645         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
646         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
647 };
648
649 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
650            const void __user *, user_ptr)
651 {
652         int ret = copy_from_user(dst, user_ptr, size);
653
654         if (unlikely(ret)) {
655                 memset(dst, 0, size);
656                 ret = -EFAULT;
657         }
658
659         return ret;
660 }
661
662 const struct bpf_func_proto bpf_copy_from_user_proto = {
663         .func           = bpf_copy_from_user,
664         .gpl_only       = false,
665         .ret_type       = RET_INTEGER,
666         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
667         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
668         .arg3_type      = ARG_ANYTHING,
669 };
670
671 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
672            const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
673 {
674         int ret;
675
676         /* flags is not used yet */
677         if (unlikely(flags))
678                 return -EINVAL;
679
680         if (unlikely(!size))
681                 return 0;
682
683         ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
684         if (ret == size)
685                 return 0;
686
687         memset(dst, 0, size);
688         /* Return -EFAULT for partial read */
689         return ret < 0 ? ret : -EFAULT;
690 }
691
692 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
693         .func           = bpf_copy_from_user_task,
694         .gpl_only       = true,
695         .ret_type       = RET_INTEGER,
696         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
697         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
698         .arg3_type      = ARG_ANYTHING,
699         .arg4_type      = ARG_PTR_TO_BTF_ID,
700         .arg4_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
701         .arg5_type      = ARG_ANYTHING
702 };
703
704 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
705 {
706         if (cpu >= nr_cpu_ids)
707                 return (unsigned long)NULL;
708
709         return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
710 }
711
712 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
713         .func           = bpf_per_cpu_ptr,
714         .gpl_only       = false,
715         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
716         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
717         .arg2_type      = ARG_ANYTHING,
718 };
719
720 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
721 {
722         return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
723 }
724
725 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
726         .func           = bpf_this_cpu_ptr,
727         .gpl_only       = false,
728         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
729         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
730 };
731
732 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
733                 size_t bufsz)
734 {
735         void __user *user_ptr = (__force void __user *)unsafe_ptr;
736
737         buf[0] = 0;
738
739         switch (fmt_ptype) {
740         case 's':
741 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
742                 if ((unsigned long)unsafe_ptr < TASK_SIZE)
743                         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
744                 fallthrough;
745 #endif
746         case 'k':
747                 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
748         case 'u':
749                 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
750         }
751
752         return -EINVAL;
753 }
754
755 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
756  * arguments representation.
757  */
758 #define MAX_BPRINTF_BUF_LEN     512
759
760 /* Support executing three nested bprintf helper calls on a given CPU */
761 #define MAX_BPRINTF_NEST_LEVEL  3
762 struct bpf_bprintf_buffers {
763         char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
764 };
765 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
766 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
767
768 static int try_get_fmt_tmp_buf(char **tmp_buf)
769 {
770         struct bpf_bprintf_buffers *bufs;
771         int nest_level;
772
773         preempt_disable();
774         nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
775         if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
776                 this_cpu_dec(bpf_bprintf_nest_level);
777                 preempt_enable();
778                 return -EBUSY;
779         }
780         bufs = this_cpu_ptr(&bpf_bprintf_bufs);
781         *tmp_buf = bufs->tmp_bufs[nest_level - 1];
782
783         return 0;
784 }
785
786 void bpf_bprintf_cleanup(void)
787 {
788         if (this_cpu_read(bpf_bprintf_nest_level)) {
789                 this_cpu_dec(bpf_bprintf_nest_level);
790                 preempt_enable();
791         }
792 }
793
794 /*
795  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
796  *
797  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
798  *
799  * This can be used in two ways:
800  * - Format string verification only: when bin_args is NULL
801  * - Arguments preparation: in addition to the above verification, it writes in
802  *   bin_args a binary representation of arguments usable by bstr_printf where
803  *   pointers from BPF have been sanitized.
804  *
805  * In argument preparation mode, if 0 is returned, safe temporary buffers are
806  * allocated and bpf_bprintf_cleanup should be called to free them after use.
807  */
808 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
809                         u32 **bin_args, u32 num_args)
810 {
811         char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
812         size_t sizeof_cur_arg, sizeof_cur_ip;
813         int err, i, num_spec = 0;
814         u64 cur_arg;
815         char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
816
817         fmt_end = strnchr(fmt, fmt_size, 0);
818         if (!fmt_end)
819                 return -EINVAL;
820         fmt_size = fmt_end - fmt;
821
822         if (bin_args) {
823                 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
824                         return -EBUSY;
825
826                 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
827                 *bin_args = (u32 *)tmp_buf;
828         }
829
830         for (i = 0; i < fmt_size; i++) {
831                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
832                         err = -EINVAL;
833                         goto out;
834                 }
835
836                 if (fmt[i] != '%')
837                         continue;
838
839                 if (fmt[i + 1] == '%') {
840                         i++;
841                         continue;
842                 }
843
844                 if (num_spec >= num_args) {
845                         err = -EINVAL;
846                         goto out;
847                 }
848
849                 /* The string is zero-terminated so if fmt[i] != 0, we can
850                  * always access fmt[i + 1], in the worst case it will be a 0
851                  */
852                 i++;
853
854                 /* skip optional "[0 +-][num]" width formatting field */
855                 while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
856                        fmt[i] == ' ')
857                         i++;
858                 if (fmt[i] >= '1' && fmt[i] <= '9') {
859                         i++;
860                         while (fmt[i] >= '0' && fmt[i] <= '9')
861                                 i++;
862                 }
863
864                 if (fmt[i] == 'p') {
865                         sizeof_cur_arg = sizeof(long);
866
867                         if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
868                             fmt[i + 2] == 's') {
869                                 fmt_ptype = fmt[i + 1];
870                                 i += 2;
871                                 goto fmt_str;
872                         }
873
874                         if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
875                             ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
876                             fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
877                             fmt[i + 1] == 'S') {
878                                 /* just kernel pointers */
879                                 if (tmp_buf)
880                                         cur_arg = raw_args[num_spec];
881                                 i++;
882                                 goto nocopy_fmt;
883                         }
884
885                         if (fmt[i + 1] == 'B') {
886                                 if (tmp_buf)  {
887                                         err = snprintf(tmp_buf,
888                                                        (tmp_buf_end - tmp_buf),
889                                                        "%pB",
890                                                        (void *)(long)raw_args[num_spec]);
891                                         tmp_buf += (err + 1);
892                                 }
893
894                                 i++;
895                                 num_spec++;
896                                 continue;
897                         }
898
899                         /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
900                         if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
901                             (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
902                                 err = -EINVAL;
903                                 goto out;
904                         }
905
906                         i += 2;
907                         if (!tmp_buf)
908                                 goto nocopy_fmt;
909
910                         sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
911                         if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
912                                 err = -ENOSPC;
913                                 goto out;
914                         }
915
916                         unsafe_ptr = (char *)(long)raw_args[num_spec];
917                         err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
918                                                        sizeof_cur_ip);
919                         if (err < 0)
920                                 memset(cur_ip, 0, sizeof_cur_ip);
921
922                         /* hack: bstr_printf expects IP addresses to be
923                          * pre-formatted as strings, ironically, the easiest way
924                          * to do that is to call snprintf.
925                          */
926                         ip_spec[2] = fmt[i - 1];
927                         ip_spec[3] = fmt[i];
928                         err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
929                                        ip_spec, &cur_ip);
930
931                         tmp_buf += err + 1;
932                         num_spec++;
933
934                         continue;
935                 } else if (fmt[i] == 's') {
936                         fmt_ptype = fmt[i];
937 fmt_str:
938                         if (fmt[i + 1] != 0 &&
939                             !isspace(fmt[i + 1]) &&
940                             !ispunct(fmt[i + 1])) {
941                                 err = -EINVAL;
942                                 goto out;
943                         }
944
945                         if (!tmp_buf)
946                                 goto nocopy_fmt;
947
948                         if (tmp_buf_end == tmp_buf) {
949                                 err = -ENOSPC;
950                                 goto out;
951                         }
952
953                         unsafe_ptr = (char *)(long)raw_args[num_spec];
954                         err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
955                                                     fmt_ptype,
956                                                     tmp_buf_end - tmp_buf);
957                         if (err < 0) {
958                                 tmp_buf[0] = '\0';
959                                 err = 1;
960                         }
961
962                         tmp_buf += err;
963                         num_spec++;
964
965                         continue;
966                 } else if (fmt[i] == 'c') {
967                         if (!tmp_buf)
968                                 goto nocopy_fmt;
969
970                         if (tmp_buf_end == tmp_buf) {
971                                 err = -ENOSPC;
972                                 goto out;
973                         }
974
975                         *tmp_buf = raw_args[num_spec];
976                         tmp_buf++;
977                         num_spec++;
978
979                         continue;
980                 }
981
982                 sizeof_cur_arg = sizeof(int);
983
984                 if (fmt[i] == 'l') {
985                         sizeof_cur_arg = sizeof(long);
986                         i++;
987                 }
988                 if (fmt[i] == 'l') {
989                         sizeof_cur_arg = sizeof(long long);
990                         i++;
991                 }
992
993                 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
994                     fmt[i] != 'x' && fmt[i] != 'X') {
995                         err = -EINVAL;
996                         goto out;
997                 }
998
999                 if (tmp_buf)
1000                         cur_arg = raw_args[num_spec];
1001 nocopy_fmt:
1002                 if (tmp_buf) {
1003                         tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1004                         if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1005                                 err = -ENOSPC;
1006                                 goto out;
1007                         }
1008
1009                         if (sizeof_cur_arg == 8) {
1010                                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1011                                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1012                         } else {
1013                                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1014                         }
1015                         tmp_buf += sizeof_cur_arg;
1016                 }
1017                 num_spec++;
1018         }
1019
1020         err = 0;
1021 out:
1022         if (err)
1023                 bpf_bprintf_cleanup();
1024         return err;
1025 }
1026
1027 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1028            const void *, data, u32, data_len)
1029 {
1030         int err, num_args;
1031         u32 *bin_args;
1032
1033         if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1034             (data_len && !data))
1035                 return -EINVAL;
1036         num_args = data_len / 8;
1037
1038         /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1039          * can safely give an unbounded size.
1040          */
1041         err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1042         if (err < 0)
1043                 return err;
1044
1045         err = bstr_printf(str, str_size, fmt, bin_args);
1046
1047         bpf_bprintf_cleanup();
1048
1049         return err + 1;
1050 }
1051
1052 const struct bpf_func_proto bpf_snprintf_proto = {
1053         .func           = bpf_snprintf,
1054         .gpl_only       = true,
1055         .ret_type       = RET_INTEGER,
1056         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1057         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1058         .arg3_type      = ARG_PTR_TO_CONST_STR,
1059         .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1060         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1061 };
1062
1063 /* BPF map elements can contain 'struct bpf_timer'.
1064  * Such map owns all of its BPF timers.
1065  * 'struct bpf_timer' is allocated as part of map element allocation
1066  * and it's zero initialized.
1067  * That space is used to keep 'struct bpf_timer_kern'.
1068  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1069  * remembers 'struct bpf_map *' pointer it's part of.
1070  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1071  * bpf_timer_start() arms the timer.
1072  * If user space reference to a map goes to zero at this point
1073  * ops->map_release_uref callback is responsible for cancelling the timers,
1074  * freeing their memory, and decrementing prog's refcnts.
1075  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1076  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1077  * freeing the timers when inner map is replaced or deleted by user space.
1078  */
1079 struct bpf_hrtimer {
1080         struct hrtimer timer;
1081         struct bpf_map *map;
1082         struct bpf_prog *prog;
1083         void __rcu *callback_fn;
1084         void *value;
1085 };
1086
1087 /* the actual struct hidden inside uapi struct bpf_timer */
1088 struct bpf_timer_kern {
1089         struct bpf_hrtimer *timer;
1090         /* bpf_spin_lock is used here instead of spinlock_t to make
1091          * sure that it always fits into space reserved by struct bpf_timer
1092          * regardless of LOCKDEP and spinlock debug flags.
1093          */
1094         struct bpf_spin_lock lock;
1095 } __attribute__((aligned(8)));
1096
1097 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1098
1099 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1100 {
1101         struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1102         struct bpf_map *map = t->map;
1103         void *value = t->value;
1104         bpf_callback_t callback_fn;
1105         void *key;
1106         u32 idx;
1107
1108         BTF_TYPE_EMIT(struct bpf_timer);
1109         callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1110         if (!callback_fn)
1111                 goto out;
1112
1113         /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1114          * cannot be preempted by another bpf_timer_cb() on the same cpu.
1115          * Remember the timer this callback is servicing to prevent
1116          * deadlock if callback_fn() calls bpf_timer_cancel() or
1117          * bpf_map_delete_elem() on the same timer.
1118          */
1119         this_cpu_write(hrtimer_running, t);
1120         if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1121                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1122
1123                 /* compute the key */
1124                 idx = ((char *)value - array->value) / array->elem_size;
1125                 key = &idx;
1126         } else { /* hash or lru */
1127                 key = value - round_up(map->key_size, 8);
1128         }
1129
1130         callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1131         /* The verifier checked that return value is zero. */
1132
1133         this_cpu_write(hrtimer_running, NULL);
1134 out:
1135         return HRTIMER_NORESTART;
1136 }
1137
1138 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1139            u64, flags)
1140 {
1141         clockid_t clockid = flags & (MAX_CLOCKS - 1);
1142         struct bpf_hrtimer *t;
1143         int ret = 0;
1144
1145         BUILD_BUG_ON(MAX_CLOCKS != 16);
1146         BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1147         BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1148
1149         if (in_nmi())
1150                 return -EOPNOTSUPP;
1151
1152         if (flags >= MAX_CLOCKS ||
1153             /* similar to timerfd except _ALARM variants are not supported */
1154             (clockid != CLOCK_MONOTONIC &&
1155              clockid != CLOCK_REALTIME &&
1156              clockid != CLOCK_BOOTTIME))
1157                 return -EINVAL;
1158         __bpf_spin_lock_irqsave(&timer->lock);
1159         t = timer->timer;
1160         if (t) {
1161                 ret = -EBUSY;
1162                 goto out;
1163         }
1164         if (!atomic64_read(&map->usercnt)) {
1165                 /* maps with timers must be either held by user space
1166                  * or pinned in bpffs.
1167                  */
1168                 ret = -EPERM;
1169                 goto out;
1170         }
1171         /* allocate hrtimer via map_kmalloc to use memcg accounting */
1172         t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1173         if (!t) {
1174                 ret = -ENOMEM;
1175                 goto out;
1176         }
1177         t->value = (void *)timer - map->timer_off;
1178         t->map = map;
1179         t->prog = NULL;
1180         rcu_assign_pointer(t->callback_fn, NULL);
1181         hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1182         t->timer.function = bpf_timer_cb;
1183         timer->timer = t;
1184 out:
1185         __bpf_spin_unlock_irqrestore(&timer->lock);
1186         return ret;
1187 }
1188
1189 static const struct bpf_func_proto bpf_timer_init_proto = {
1190         .func           = bpf_timer_init,
1191         .gpl_only       = true,
1192         .ret_type       = RET_INTEGER,
1193         .arg1_type      = ARG_PTR_TO_TIMER,
1194         .arg2_type      = ARG_CONST_MAP_PTR,
1195         .arg3_type      = ARG_ANYTHING,
1196 };
1197
1198 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1199            struct bpf_prog_aux *, aux)
1200 {
1201         struct bpf_prog *prev, *prog = aux->prog;
1202         struct bpf_hrtimer *t;
1203         int ret = 0;
1204
1205         if (in_nmi())
1206                 return -EOPNOTSUPP;
1207         __bpf_spin_lock_irqsave(&timer->lock);
1208         t = timer->timer;
1209         if (!t) {
1210                 ret = -EINVAL;
1211                 goto out;
1212         }
1213         if (!atomic64_read(&t->map->usercnt)) {
1214                 /* maps with timers must be either held by user space
1215                  * or pinned in bpffs. Otherwise timer might still be
1216                  * running even when bpf prog is detached and user space
1217                  * is gone, since map_release_uref won't ever be called.
1218                  */
1219                 ret = -EPERM;
1220                 goto out;
1221         }
1222         prev = t->prog;
1223         if (prev != prog) {
1224                 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1225                  * can pick different callback_fn-s within the same prog.
1226                  */
1227                 prog = bpf_prog_inc_not_zero(prog);
1228                 if (IS_ERR(prog)) {
1229                         ret = PTR_ERR(prog);
1230                         goto out;
1231                 }
1232                 if (prev)
1233                         /* Drop prev prog refcnt when swapping with new prog */
1234                         bpf_prog_put(prev);
1235                 t->prog = prog;
1236         }
1237         rcu_assign_pointer(t->callback_fn, callback_fn);
1238 out:
1239         __bpf_spin_unlock_irqrestore(&timer->lock);
1240         return ret;
1241 }
1242
1243 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1244         .func           = bpf_timer_set_callback,
1245         .gpl_only       = true,
1246         .ret_type       = RET_INTEGER,
1247         .arg1_type      = ARG_PTR_TO_TIMER,
1248         .arg2_type      = ARG_PTR_TO_FUNC,
1249 };
1250
1251 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1252 {
1253         struct bpf_hrtimer *t;
1254         int ret = 0;
1255
1256         if (in_nmi())
1257                 return -EOPNOTSUPP;
1258         if (flags)
1259                 return -EINVAL;
1260         __bpf_spin_lock_irqsave(&timer->lock);
1261         t = timer->timer;
1262         if (!t || !t->prog) {
1263                 ret = -EINVAL;
1264                 goto out;
1265         }
1266         hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1267 out:
1268         __bpf_spin_unlock_irqrestore(&timer->lock);
1269         return ret;
1270 }
1271
1272 static const struct bpf_func_proto bpf_timer_start_proto = {
1273         .func           = bpf_timer_start,
1274         .gpl_only       = true,
1275         .ret_type       = RET_INTEGER,
1276         .arg1_type      = ARG_PTR_TO_TIMER,
1277         .arg2_type      = ARG_ANYTHING,
1278         .arg3_type      = ARG_ANYTHING,
1279 };
1280
1281 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1282 {
1283         struct bpf_prog *prog = t->prog;
1284
1285         if (prog) {
1286                 bpf_prog_put(prog);
1287                 t->prog = NULL;
1288                 rcu_assign_pointer(t->callback_fn, NULL);
1289         }
1290 }
1291
1292 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1293 {
1294         struct bpf_hrtimer *t;
1295         int ret = 0;
1296
1297         if (in_nmi())
1298                 return -EOPNOTSUPP;
1299         __bpf_spin_lock_irqsave(&timer->lock);
1300         t = timer->timer;
1301         if (!t) {
1302                 ret = -EINVAL;
1303                 goto out;
1304         }
1305         if (this_cpu_read(hrtimer_running) == t) {
1306                 /* If bpf callback_fn is trying to bpf_timer_cancel()
1307                  * its own timer the hrtimer_cancel() will deadlock
1308                  * since it waits for callback_fn to finish
1309                  */
1310                 ret = -EDEADLK;
1311                 goto out;
1312         }
1313         drop_prog_refcnt(t);
1314 out:
1315         __bpf_spin_unlock_irqrestore(&timer->lock);
1316         /* Cancel the timer and wait for associated callback to finish
1317          * if it was running.
1318          */
1319         ret = ret ?: hrtimer_cancel(&t->timer);
1320         return ret;
1321 }
1322
1323 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1324         .func           = bpf_timer_cancel,
1325         .gpl_only       = true,
1326         .ret_type       = RET_INTEGER,
1327         .arg1_type      = ARG_PTR_TO_TIMER,
1328 };
1329
1330 /* This function is called by map_delete/update_elem for individual element and
1331  * by ops->map_release_uref when the user space reference to a map reaches zero.
1332  */
1333 void bpf_timer_cancel_and_free(void *val)
1334 {
1335         struct bpf_timer_kern *timer = val;
1336         struct bpf_hrtimer *t;
1337
1338         /* Performance optimization: read timer->timer without lock first. */
1339         if (!READ_ONCE(timer->timer))
1340                 return;
1341
1342         __bpf_spin_lock_irqsave(&timer->lock);
1343         /* re-read it under lock */
1344         t = timer->timer;
1345         if (!t)
1346                 goto out;
1347         drop_prog_refcnt(t);
1348         /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1349          * this timer, since it won't be initialized.
1350          */
1351         timer->timer = NULL;
1352 out:
1353         __bpf_spin_unlock_irqrestore(&timer->lock);
1354         if (!t)
1355                 return;
1356         /* Cancel the timer and wait for callback to complete if it was running.
1357          * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1358          * right after for both preallocated and non-preallocated maps.
1359          * The timer->timer = NULL was already done and no code path can
1360          * see address 't' anymore.
1361          *
1362          * Check that bpf_map_delete/update_elem() wasn't called from timer
1363          * callback_fn. In such case don't call hrtimer_cancel() (since it will
1364          * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1365          * return -1). Though callback_fn is still running on this cpu it's
1366          * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1367          * from 't'. The bpf subprog callback_fn won't be able to access 't',
1368          * since timer->timer = NULL was already done. The timer will be
1369          * effectively cancelled because bpf_timer_cb() will return
1370          * HRTIMER_NORESTART.
1371          */
1372         if (this_cpu_read(hrtimer_running) != t)
1373                 hrtimer_cancel(&t->timer);
1374         kfree(t);
1375 }
1376
1377 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1378 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1379 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1380 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1381 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1382 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1383 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1384
1385 const struct bpf_func_proto *
1386 bpf_base_func_proto(enum bpf_func_id func_id)
1387 {
1388         switch (func_id) {
1389         case BPF_FUNC_map_lookup_elem:
1390                 return &bpf_map_lookup_elem_proto;
1391         case BPF_FUNC_map_update_elem:
1392                 return &bpf_map_update_elem_proto;
1393         case BPF_FUNC_map_delete_elem:
1394                 return &bpf_map_delete_elem_proto;
1395         case BPF_FUNC_map_push_elem:
1396                 return &bpf_map_push_elem_proto;
1397         case BPF_FUNC_map_pop_elem:
1398                 return &bpf_map_pop_elem_proto;
1399         case BPF_FUNC_map_peek_elem:
1400                 return &bpf_map_peek_elem_proto;
1401         case BPF_FUNC_get_prandom_u32:
1402                 return &bpf_get_prandom_u32_proto;
1403         case BPF_FUNC_get_smp_processor_id:
1404                 return &bpf_get_raw_smp_processor_id_proto;
1405         case BPF_FUNC_get_numa_node_id:
1406                 return &bpf_get_numa_node_id_proto;
1407         case BPF_FUNC_tail_call:
1408                 return &bpf_tail_call_proto;
1409         case BPF_FUNC_ktime_get_ns:
1410                 return &bpf_ktime_get_ns_proto;
1411         case BPF_FUNC_ktime_get_boot_ns:
1412                 return &bpf_ktime_get_boot_ns_proto;
1413         case BPF_FUNC_ringbuf_output:
1414                 return &bpf_ringbuf_output_proto;
1415         case BPF_FUNC_ringbuf_reserve:
1416                 return &bpf_ringbuf_reserve_proto;
1417         case BPF_FUNC_ringbuf_submit:
1418                 return &bpf_ringbuf_submit_proto;
1419         case BPF_FUNC_ringbuf_discard:
1420                 return &bpf_ringbuf_discard_proto;
1421         case BPF_FUNC_ringbuf_query:
1422                 return &bpf_ringbuf_query_proto;
1423         case BPF_FUNC_for_each_map_elem:
1424                 return &bpf_for_each_map_elem_proto;
1425         case BPF_FUNC_loop:
1426                 return &bpf_loop_proto;
1427         case BPF_FUNC_strncmp:
1428                 return &bpf_strncmp_proto;
1429         default:
1430                 break;
1431         }
1432
1433         if (!bpf_capable())
1434                 return NULL;
1435
1436         switch (func_id) {
1437         case BPF_FUNC_spin_lock:
1438                 return &bpf_spin_lock_proto;
1439         case BPF_FUNC_spin_unlock:
1440                 return &bpf_spin_unlock_proto;
1441         case BPF_FUNC_jiffies64:
1442                 return &bpf_jiffies64_proto;
1443         case BPF_FUNC_per_cpu_ptr:
1444                 return &bpf_per_cpu_ptr_proto;
1445         case BPF_FUNC_this_cpu_ptr:
1446                 return &bpf_this_cpu_ptr_proto;
1447         case BPF_FUNC_timer_init:
1448                 return &bpf_timer_init_proto;
1449         case BPF_FUNC_timer_set_callback:
1450                 return &bpf_timer_set_callback_proto;
1451         case BPF_FUNC_timer_start:
1452                 return &bpf_timer_start_proto;
1453         case BPF_FUNC_timer_cancel:
1454                 return &bpf_timer_cancel_proto;
1455         default:
1456                 break;
1457         }
1458
1459         if (!perfmon_capable())
1460                 return NULL;
1461
1462         switch (func_id) {
1463         case BPF_FUNC_trace_printk:
1464                 return bpf_get_trace_printk_proto();
1465         case BPF_FUNC_get_current_task:
1466                 return &bpf_get_current_task_proto;
1467         case BPF_FUNC_get_current_task_btf:
1468                 return &bpf_get_current_task_btf_proto;
1469         case BPF_FUNC_probe_read_user:
1470                 return &bpf_probe_read_user_proto;
1471         case BPF_FUNC_probe_read_kernel:
1472                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1473                        NULL : &bpf_probe_read_kernel_proto;
1474         case BPF_FUNC_probe_read_user_str:
1475                 return &bpf_probe_read_user_str_proto;
1476         case BPF_FUNC_probe_read_kernel_str:
1477                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1478                        NULL : &bpf_probe_read_kernel_str_proto;
1479         case BPF_FUNC_snprintf_btf:
1480                 return &bpf_snprintf_btf_proto;
1481         case BPF_FUNC_snprintf:
1482                 return &bpf_snprintf_proto;
1483         case BPF_FUNC_task_pt_regs:
1484                 return &bpf_task_pt_regs_proto;
1485         case BPF_FUNC_trace_vprintk:
1486                 return bpf_get_trace_vprintk_proto();
1487         default:
1488                 return NULL;
1489         }
1490 }
This page took 0.114663 seconds and 4 git commands to generate.