4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
32 #include <trace/events/f2fs.h>
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
43 sb_start_pagefault(inode->i_sb);
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47 /* block allocation */
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
58 f2fs_balance_fs(sbi, dn.node_changed);
60 file_update_time(vma->vm_file);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
71 * check to see if the page is mapped already (no holes)
73 if (PageMappedToDisk(page))
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
80 offset = i_size_read(inode) & ~PAGE_MASK;
81 zero_user_segment(page, offset, PAGE_SIZE);
84 SetPageUptodate(page);
86 trace_f2fs_vm_page_mkwrite(page, DATA);
89 f2fs_wait_on_page_writeback(page, DATA, false);
91 /* wait for GCed encrypted page writeback */
92 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
95 /* if gced page is attached, don't write to cold segment */
96 clear_cold_data(page);
98 sb_end_pagefault(inode->i_sb);
99 f2fs_update_time(sbi, REQ_TIME);
100 return block_page_mkwrite_return(err);
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 .fault = filemap_fault,
105 .map_pages = filemap_map_pages,
106 .page_mkwrite = f2fs_vm_page_mkwrite,
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
111 struct dentry *dentry;
113 inode = igrab(inode);
114 dentry = d_find_any_alias(inode);
119 if (update_dent_inode(inode, inode, &dentry->d_name)) {
124 *pino = parent_ino(dentry);
129 static inline bool need_do_checkpoint(struct inode *inode)
131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 bool need_cp = false;
134 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
136 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
138 else if (file_wrong_pino(inode))
140 else if (!space_for_roll_forward(sbi))
142 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
144 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
146 else if (test_opt(sbi, FASTBOOT))
148 else if (sbi->active_logs == 2)
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
156 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
158 /* But we need to avoid that there are some inode updates */
159 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
165 static void try_to_fix_pino(struct inode *inode)
167 struct f2fs_inode_info *fi = F2FS_I(inode);
170 down_write(&fi->i_sem);
172 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 get_parent_ino(inode, &pino)) {
174 f2fs_i_pino_write(inode, pino);
175 file_got_pino(inode);
177 up_write(&fi->i_sem);
180 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
181 int datasync, bool atomic)
183 struct inode *inode = file->f_mapping->host;
184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
185 nid_t ino = inode->i_ino;
187 bool need_cp = false;
188 struct writeback_control wbc = {
189 .sync_mode = WB_SYNC_ALL,
190 .nr_to_write = LONG_MAX,
194 if (unlikely(f2fs_readonly(inode->i_sb)))
197 trace_f2fs_sync_file_enter(inode);
199 /* if fdatasync is triggered, let's do in-place-update */
200 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
201 set_inode_flag(inode, FI_NEED_IPU);
202 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
203 clear_inode_flag(inode, FI_NEED_IPU);
206 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
210 /* if the inode is dirty, let's recover all the time */
212 f2fs_write_inode(inode, NULL);
217 * if there is no written data, don't waste time to write recovery info.
219 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
220 !exist_written_data(sbi, ino, APPEND_INO)) {
222 /* it may call write_inode just prior to fsync */
223 if (need_inode_page_update(sbi, ino))
226 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
227 exist_written_data(sbi, ino, UPDATE_INO))
233 * Both of fdatasync() and fsync() are able to be recovered from
236 down_read(&F2FS_I(inode)->i_sem);
237 need_cp = need_do_checkpoint(inode);
238 up_read(&F2FS_I(inode)->i_sem);
241 /* all the dirty node pages should be flushed for POR */
242 ret = f2fs_sync_fs(inode->i_sb, 1);
245 * We've secured consistency through sync_fs. Following pino
246 * will be used only for fsynced inodes after checkpoint.
248 try_to_fix_pino(inode);
249 clear_inode_flag(inode, FI_APPEND_WRITE);
250 clear_inode_flag(inode, FI_UPDATE_WRITE);
254 ret = fsync_node_pages(sbi, ino, &wbc, atomic);
258 /* if cp_error was enabled, we should avoid infinite loop */
259 if (unlikely(f2fs_cp_error(sbi))) {
264 if (need_inode_block_update(sbi, ino)) {
265 mark_inode_dirty_sync(inode);
266 f2fs_write_inode(inode, NULL);
270 ret = wait_on_node_pages_writeback(sbi, ino);
274 /* once recovery info is written, don't need to tack this */
275 remove_ino_entry(sbi, ino, APPEND_INO);
276 clear_inode_flag(inode, FI_APPEND_WRITE);
278 remove_ino_entry(sbi, ino, UPDATE_INO);
279 clear_inode_flag(inode, FI_UPDATE_WRITE);
280 ret = f2fs_issue_flush(sbi);
281 f2fs_update_time(sbi, REQ_TIME);
283 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
284 f2fs_trace_ios(NULL, 1);
288 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
290 return f2fs_do_sync_file(file, start, end, datasync, false);
293 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
294 pgoff_t pgofs, int whence)
299 if (whence != SEEK_DATA)
302 /* find first dirty page index */
303 pagevec_init(&pvec, 0);
304 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
305 PAGECACHE_TAG_DIRTY, 1);
306 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
307 pagevec_release(&pvec);
311 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
316 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
317 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
321 if (blkaddr == NULL_ADDR)
328 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
330 struct inode *inode = file->f_mapping->host;
331 loff_t maxbytes = inode->i_sb->s_maxbytes;
332 struct dnode_of_data dn;
333 pgoff_t pgofs, end_offset, dirty;
334 loff_t data_ofs = offset;
340 isize = i_size_read(inode);
344 /* handle inline data case */
345 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
346 if (whence == SEEK_HOLE)
351 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
353 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
355 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
356 set_new_dnode(&dn, inode, NULL, NULL, 0);
357 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
358 if (err && err != -ENOENT) {
360 } else if (err == -ENOENT) {
361 /* direct node does not exists */
362 if (whence == SEEK_DATA) {
363 pgofs = get_next_page_offset(&dn, pgofs);
370 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
372 /* find data/hole in dnode block */
373 for (; dn.ofs_in_node < end_offset;
374 dn.ofs_in_node++, pgofs++,
375 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
377 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
379 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
387 if (whence == SEEK_DATA)
390 if (whence == SEEK_HOLE && data_ofs > isize)
393 return vfs_setpos(file, data_ofs, maxbytes);
399 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
401 struct inode *inode = file->f_mapping->host;
402 loff_t maxbytes = inode->i_sb->s_maxbytes;
408 return generic_file_llseek_size(file, offset, whence,
409 maxbytes, i_size_read(inode));
414 return f2fs_seek_block(file, offset, whence);
420 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
422 struct inode *inode = file_inode(file);
425 if (f2fs_encrypted_inode(inode)) {
426 err = fscrypt_get_encryption_info(inode);
429 if (!f2fs_encrypted_inode(inode))
433 /* we don't need to use inline_data strictly */
434 err = f2fs_convert_inline_inode(inode);
439 vma->vm_ops = &f2fs_file_vm_ops;
443 static int f2fs_file_open(struct inode *inode, struct file *filp)
445 int ret = generic_file_open(inode, filp);
448 if (!ret && f2fs_encrypted_inode(inode)) {
449 ret = fscrypt_get_encryption_info(inode);
452 if (!fscrypt_has_encryption_key(inode))
455 dir = dget_parent(file_dentry(filp));
456 if (f2fs_encrypted_inode(d_inode(dir)) &&
457 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
465 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
467 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
468 struct f2fs_node *raw_node;
469 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472 raw_node = F2FS_NODE(dn->node_page);
473 addr = blkaddr_in_node(raw_node) + ofs;
475 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
476 block_t blkaddr = le32_to_cpu(*addr);
477 if (blkaddr == NULL_ADDR)
480 dn->data_blkaddr = NULL_ADDR;
481 set_data_blkaddr(dn);
482 invalidate_blocks(sbi, blkaddr);
483 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
484 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
491 * once we invalidate valid blkaddr in range [ofs, ofs + count],
492 * we will invalidate all blkaddr in the whole range.
494 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
496 f2fs_update_extent_cache_range(dn, fofs, 0, len);
497 dec_valid_block_count(sbi, dn->inode, nr_free);
499 dn->ofs_in_node = ofs;
501 f2fs_update_time(sbi, REQ_TIME);
502 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
503 dn->ofs_in_node, nr_free);
507 void truncate_data_blocks(struct dnode_of_data *dn)
509 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
512 static int truncate_partial_data_page(struct inode *inode, u64 from,
515 unsigned offset = from & (PAGE_SIZE - 1);
516 pgoff_t index = from >> PAGE_SHIFT;
517 struct address_space *mapping = inode->i_mapping;
520 if (!offset && !cache_only)
524 page = f2fs_grab_cache_page(mapping, index, false);
525 if (page && PageUptodate(page))
527 f2fs_put_page(page, 1);
531 page = get_lock_data_page(inode, index, true);
535 f2fs_wait_on_page_writeback(page, DATA, true);
536 zero_user(page, offset, PAGE_SIZE - offset);
537 if (!cache_only || !f2fs_encrypted_inode(inode) ||
538 !S_ISREG(inode->i_mode))
539 set_page_dirty(page);
540 f2fs_put_page(page, 1);
544 int truncate_blocks(struct inode *inode, u64 from, bool lock)
546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
547 unsigned int blocksize = inode->i_sb->s_blocksize;
548 struct dnode_of_data dn;
550 int count = 0, err = 0;
552 bool truncate_page = false;
554 trace_f2fs_truncate_blocks_enter(inode, from);
556 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
558 if (free_from >= sbi->max_file_blocks)
564 ipage = get_node_page(sbi, inode->i_ino);
566 err = PTR_ERR(ipage);
570 if (f2fs_has_inline_data(inode)) {
571 if (truncate_inline_inode(ipage, from))
572 set_page_dirty(ipage);
573 f2fs_put_page(ipage, 1);
574 truncate_page = true;
578 set_new_dnode(&dn, inode, ipage, NULL, 0);
579 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
586 count = ADDRS_PER_PAGE(dn.node_page, inode);
588 count -= dn.ofs_in_node;
589 f2fs_bug_on(sbi, count < 0);
591 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
592 truncate_data_blocks_range(&dn, count);
598 err = truncate_inode_blocks(inode, free_from);
603 /* lastly zero out the first data page */
605 err = truncate_partial_data_page(inode, from, truncate_page);
607 trace_f2fs_truncate_blocks_exit(inode, err);
611 int f2fs_truncate(struct inode *inode, bool lock)
615 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
616 S_ISLNK(inode->i_mode)))
619 trace_f2fs_truncate(inode);
621 /* we should check inline_data size */
622 if (!f2fs_may_inline_data(inode)) {
623 err = f2fs_convert_inline_inode(inode);
628 err = truncate_blocks(inode, i_size_read(inode), lock);
632 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
633 mark_inode_dirty_sync(inode);
637 int f2fs_getattr(struct vfsmount *mnt,
638 struct dentry *dentry, struct kstat *stat)
640 struct inode *inode = d_inode(dentry);
641 generic_fillattr(inode, stat);
646 #ifdef CONFIG_F2FS_FS_POSIX_ACL
647 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
649 unsigned int ia_valid = attr->ia_valid;
651 if (ia_valid & ATTR_UID)
652 inode->i_uid = attr->ia_uid;
653 if (ia_valid & ATTR_GID)
654 inode->i_gid = attr->ia_gid;
655 if (ia_valid & ATTR_ATIME)
656 inode->i_atime = timespec_trunc(attr->ia_atime,
657 inode->i_sb->s_time_gran);
658 if (ia_valid & ATTR_MTIME)
659 inode->i_mtime = timespec_trunc(attr->ia_mtime,
660 inode->i_sb->s_time_gran);
661 if (ia_valid & ATTR_CTIME)
662 inode->i_ctime = timespec_trunc(attr->ia_ctime,
663 inode->i_sb->s_time_gran);
664 if (ia_valid & ATTR_MODE) {
665 umode_t mode = attr->ia_mode;
667 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
669 set_acl_inode(inode, mode);
673 #define __setattr_copy setattr_copy
676 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
678 struct inode *inode = d_inode(dentry);
681 err = inode_change_ok(inode, attr);
685 if (attr->ia_valid & ATTR_SIZE) {
686 if (f2fs_encrypted_inode(inode) &&
687 fscrypt_get_encryption_info(inode))
690 if (attr->ia_size <= i_size_read(inode)) {
691 truncate_setsize(inode, attr->ia_size);
692 err = f2fs_truncate(inode, true);
695 f2fs_balance_fs(F2FS_I_SB(inode), true);
698 * do not trim all blocks after i_size if target size is
699 * larger than i_size.
701 truncate_setsize(inode, attr->ia_size);
703 /* should convert inline inode here */
704 if (!f2fs_may_inline_data(inode)) {
705 err = f2fs_convert_inline_inode(inode);
709 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
713 __setattr_copy(inode, attr);
715 if (attr->ia_valid & ATTR_MODE) {
716 err = posix_acl_chmod(inode, get_inode_mode(inode));
717 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
718 inode->i_mode = F2FS_I(inode)->i_acl_mode;
719 clear_inode_flag(inode, FI_ACL_MODE);
723 mark_inode_dirty_sync(inode);
727 const struct inode_operations f2fs_file_inode_operations = {
728 .getattr = f2fs_getattr,
729 .setattr = f2fs_setattr,
730 .get_acl = f2fs_get_acl,
731 .set_acl = f2fs_set_acl,
732 #ifdef CONFIG_F2FS_FS_XATTR
733 .setxattr = generic_setxattr,
734 .getxattr = generic_getxattr,
735 .listxattr = f2fs_listxattr,
736 .removexattr = generic_removexattr,
738 .fiemap = f2fs_fiemap,
741 static int fill_zero(struct inode *inode, pgoff_t index,
742 loff_t start, loff_t len)
744 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
750 f2fs_balance_fs(sbi, true);
753 page = get_new_data_page(inode, NULL, index, false);
757 return PTR_ERR(page);
759 f2fs_wait_on_page_writeback(page, DATA, true);
760 zero_user(page, start, len);
761 set_page_dirty(page);
762 f2fs_put_page(page, 1);
766 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
770 while (pg_start < pg_end) {
771 struct dnode_of_data dn;
772 pgoff_t end_offset, count;
774 set_new_dnode(&dn, inode, NULL, NULL, 0);
775 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
777 if (err == -ENOENT) {
784 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
785 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
787 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
789 truncate_data_blocks_range(&dn, count);
797 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
799 pgoff_t pg_start, pg_end;
800 loff_t off_start, off_end;
803 ret = f2fs_convert_inline_inode(inode);
807 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
808 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
810 off_start = offset & (PAGE_SIZE - 1);
811 off_end = (offset + len) & (PAGE_SIZE - 1);
813 if (pg_start == pg_end) {
814 ret = fill_zero(inode, pg_start, off_start,
815 off_end - off_start);
820 ret = fill_zero(inode, pg_start++, off_start,
821 PAGE_SIZE - off_start);
826 ret = fill_zero(inode, pg_end, 0, off_end);
831 if (pg_start < pg_end) {
832 struct address_space *mapping = inode->i_mapping;
833 loff_t blk_start, blk_end;
834 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
836 f2fs_balance_fs(sbi, true);
838 blk_start = (loff_t)pg_start << PAGE_SHIFT;
839 blk_end = (loff_t)pg_end << PAGE_SHIFT;
840 truncate_inode_pages_range(mapping, blk_start,
844 ret = truncate_hole(inode, pg_start, pg_end);
852 static int __exchange_data_block(struct inode *inode, pgoff_t src,
853 pgoff_t dst, bool full)
855 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
856 struct dnode_of_data dn;
858 bool do_replace = false;
861 set_new_dnode(&dn, inode, NULL, NULL, 0);
862 ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
863 if (ret && ret != -ENOENT) {
865 } else if (ret == -ENOENT) {
866 new_addr = NULL_ADDR;
868 new_addr = dn.data_blkaddr;
869 if (!is_checkpointed_data(sbi, new_addr)) {
870 /* do not invalidate this block address */
871 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
877 if (new_addr == NULL_ADDR)
878 return full ? truncate_hole(inode, dst, dst + 1) : 0;
881 struct page *ipage = get_node_page(sbi, inode->i_ino);
885 ret = PTR_ERR(ipage);
889 set_new_dnode(&dn, inode, ipage, NULL, 0);
890 ret = f2fs_reserve_block(&dn, dst);
894 truncate_data_blocks_range(&dn, 1);
896 get_node_info(sbi, dn.nid, &ni);
897 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
898 ni.version, true, false);
901 struct page *psrc, *pdst;
903 psrc = get_lock_data_page(inode, src, true);
905 return PTR_ERR(psrc);
906 pdst = get_new_data_page(inode, NULL, dst, true);
908 f2fs_put_page(psrc, 1);
909 return PTR_ERR(pdst);
911 f2fs_copy_page(psrc, pdst);
912 set_page_dirty(pdst);
913 f2fs_put_page(pdst, 1);
914 f2fs_put_page(psrc, 1);
916 return truncate_hole(inode, src, src + 1);
921 if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
922 f2fs_update_data_blkaddr(&dn, new_addr);
928 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
930 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
931 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
934 for (; end < nrpages; start++, end++) {
935 f2fs_balance_fs(sbi, true);
937 ret = __exchange_data_block(inode, end, start, true);
945 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
947 pgoff_t pg_start, pg_end;
951 if (offset + len >= i_size_read(inode))
954 /* collapse range should be aligned to block size of f2fs. */
955 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
958 ret = f2fs_convert_inline_inode(inode);
962 pg_start = offset >> PAGE_SHIFT;
963 pg_end = (offset + len) >> PAGE_SHIFT;
965 /* write out all dirty pages from offset */
966 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
970 truncate_pagecache(inode, offset);
972 ret = f2fs_do_collapse(inode, pg_start, pg_end);
976 /* write out all moved pages, if possible */
977 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
978 truncate_pagecache(inode, offset);
980 new_size = i_size_read(inode) - len;
981 truncate_pagecache(inode, new_size);
983 ret = truncate_blocks(inode, new_size, true);
985 f2fs_i_size_write(inode, new_size);
990 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
993 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
994 pgoff_t index = start;
995 unsigned int ofs_in_node = dn->ofs_in_node;
999 for (; index < end; index++, dn->ofs_in_node++) {
1000 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1004 dn->ofs_in_node = ofs_in_node;
1005 ret = reserve_new_blocks(dn, count);
1009 dn->ofs_in_node = ofs_in_node;
1010 for (index = start; index < end; index++, dn->ofs_in_node++) {
1012 datablock_addr(dn->node_page, dn->ofs_in_node);
1014 * reserve_new_blocks will not guarantee entire block
1017 if (dn->data_blkaddr == NULL_ADDR) {
1021 if (dn->data_blkaddr != NEW_ADDR) {
1022 invalidate_blocks(sbi, dn->data_blkaddr);
1023 dn->data_blkaddr = NEW_ADDR;
1024 set_data_blkaddr(dn);
1028 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1033 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037 struct address_space *mapping = inode->i_mapping;
1038 pgoff_t index, pg_start, pg_end;
1039 loff_t new_size = i_size_read(inode);
1040 loff_t off_start, off_end;
1043 ret = inode_newsize_ok(inode, (len + offset));
1047 ret = f2fs_convert_inline_inode(inode);
1051 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1055 truncate_pagecache_range(inode, offset, offset + len - 1);
1057 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1058 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1060 off_start = offset & (PAGE_SIZE - 1);
1061 off_end = (offset + len) & (PAGE_SIZE - 1);
1063 if (pg_start == pg_end) {
1064 ret = fill_zero(inode, pg_start, off_start,
1065 off_end - off_start);
1069 if (offset + len > new_size)
1070 new_size = offset + len;
1071 new_size = max_t(loff_t, new_size, offset + len);
1074 ret = fill_zero(inode, pg_start++, off_start,
1075 PAGE_SIZE - off_start);
1079 new_size = max_t(loff_t, new_size,
1080 (loff_t)pg_start << PAGE_SHIFT);
1083 for (index = pg_start; index < pg_end;) {
1084 struct dnode_of_data dn;
1085 unsigned int end_offset;
1090 set_new_dnode(&dn, inode, NULL, NULL, 0);
1091 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1093 f2fs_unlock_op(sbi);
1097 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1098 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1100 ret = f2fs_do_zero_range(&dn, index, end);
1101 f2fs_put_dnode(&dn);
1102 f2fs_unlock_op(sbi);
1107 new_size = max_t(loff_t, new_size,
1108 (loff_t)index << PAGE_SHIFT);
1112 ret = fill_zero(inode, pg_end, 0, off_end);
1116 new_size = max_t(loff_t, new_size, offset + len);
1121 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1122 f2fs_i_size_write(inode, new_size);
1127 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1129 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1134 new_size = i_size_read(inode) + len;
1135 if (new_size > inode->i_sb->s_maxbytes)
1138 if (offset >= i_size_read(inode))
1141 /* insert range should be aligned to block size of f2fs. */
1142 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1145 ret = f2fs_convert_inline_inode(inode);
1149 f2fs_balance_fs(sbi, true);
1151 ret = truncate_blocks(inode, i_size_read(inode), true);
1155 /* write out all dirty pages from offset */
1156 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1160 truncate_pagecache(inode, offset);
1162 pg_start = offset >> PAGE_SHIFT;
1163 pg_end = (offset + len) >> PAGE_SHIFT;
1164 delta = pg_end - pg_start;
1165 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1167 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1169 ret = __exchange_data_block(inode, idx, idx + delta, false);
1170 f2fs_unlock_op(sbi);
1175 /* write out all moved pages, if possible */
1176 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1177 truncate_pagecache(inode, offset);
1180 f2fs_i_size_write(inode, new_size);
1184 static int expand_inode_data(struct inode *inode, loff_t offset,
1185 loff_t len, int mode)
1187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1188 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1190 loff_t new_size = i_size_read(inode);
1194 ret = inode_newsize_ok(inode, (len + offset));
1198 ret = f2fs_convert_inline_inode(inode);
1202 f2fs_balance_fs(sbi, true);
1204 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1205 off_end = (offset + len) & (PAGE_SIZE - 1);
1207 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1208 map.m_len = pg_end - map.m_lblk;
1212 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1219 last_off = map.m_lblk + map.m_len - 1;
1221 /* update new size to the failed position */
1222 new_size = (last_off == pg_end) ? offset + len:
1223 (loff_t)(last_off + 1) << PAGE_SHIFT;
1225 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1228 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1229 f2fs_i_size_write(inode, new_size);
1234 static long f2fs_fallocate(struct file *file, int mode,
1235 loff_t offset, loff_t len)
1237 struct inode *inode = file_inode(file);
1240 /* f2fs only support ->fallocate for regular file */
1241 if (!S_ISREG(inode->i_mode))
1244 if (f2fs_encrypted_inode(inode) &&
1245 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1248 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1249 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1250 FALLOC_FL_INSERT_RANGE))
1255 if (mode & FALLOC_FL_PUNCH_HOLE) {
1256 if (offset >= inode->i_size)
1259 ret = punch_hole(inode, offset, len);
1260 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1261 ret = f2fs_collapse_range(inode, offset, len);
1262 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1263 ret = f2fs_zero_range(inode, offset, len, mode);
1264 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1265 ret = f2fs_insert_range(inode, offset, len);
1267 ret = expand_inode_data(inode, offset, len, mode);
1271 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1272 mark_inode_dirty_sync(inode);
1273 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1277 inode_unlock(inode);
1279 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1283 static int f2fs_release_file(struct inode *inode, struct file *filp)
1286 * f2fs_relase_file is called at every close calls. So we should
1287 * not drop any inmemory pages by close called by other process.
1289 if (!(filp->f_mode & FMODE_WRITE) ||
1290 atomic_read(&inode->i_writecount) != 1)
1293 /* some remained atomic pages should discarded */
1294 if (f2fs_is_atomic_file(inode))
1295 drop_inmem_pages(inode);
1296 if (f2fs_is_volatile_file(inode)) {
1297 clear_inode_flag(inode, FI_VOLATILE_FILE);
1298 set_inode_flag(inode, FI_DROP_CACHE);
1299 filemap_fdatawrite(inode->i_mapping);
1300 clear_inode_flag(inode, FI_DROP_CACHE);
1305 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1306 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1308 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1312 else if (S_ISREG(mode))
1313 return flags & F2FS_REG_FLMASK;
1315 return flags & F2FS_OTHER_FLMASK;
1318 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1320 struct inode *inode = file_inode(filp);
1321 struct f2fs_inode_info *fi = F2FS_I(inode);
1322 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1323 return put_user(flags, (int __user *)arg);
1326 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1328 struct inode *inode = file_inode(filp);
1329 struct f2fs_inode_info *fi = F2FS_I(inode);
1330 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1331 unsigned int oldflags;
1334 if (!inode_owner_or_capable(inode))
1337 if (get_user(flags, (int __user *)arg))
1340 ret = mnt_want_write_file(filp);
1344 flags = f2fs_mask_flags(inode->i_mode, flags);
1348 oldflags = fi->i_flags;
1350 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1351 if (!capable(CAP_LINUX_IMMUTABLE)) {
1352 inode_unlock(inode);
1358 flags = flags & FS_FL_USER_MODIFIABLE;
1359 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1360 fi->i_flags = flags;
1361 inode_unlock(inode);
1363 inode->i_ctime = CURRENT_TIME;
1364 f2fs_set_inode_flags(inode);
1366 mnt_drop_write_file(filp);
1370 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1372 struct inode *inode = file_inode(filp);
1374 return put_user(inode->i_generation, (int __user *)arg);
1377 static int f2fs_ioc_start_atomic_write(struct file *filp)
1379 struct inode *inode = file_inode(filp);
1382 if (!inode_owner_or_capable(inode))
1385 ret = mnt_want_write_file(filp);
1391 if (f2fs_is_atomic_file(inode))
1394 ret = f2fs_convert_inline_inode(inode);
1398 set_inode_flag(inode, FI_ATOMIC_FILE);
1399 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1401 if (!get_dirty_pages(inode))
1404 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1405 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1406 inode->i_ino, get_dirty_pages(inode));
1407 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1409 clear_inode_flag(inode, FI_ATOMIC_FILE);
1411 inode_unlock(inode);
1412 mnt_drop_write_file(filp);
1416 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1418 struct inode *inode = file_inode(filp);
1421 if (!inode_owner_or_capable(inode))
1424 ret = mnt_want_write_file(filp);
1430 if (f2fs_is_volatile_file(inode))
1433 if (f2fs_is_atomic_file(inode)) {
1434 clear_inode_flag(inode, FI_ATOMIC_FILE);
1435 ret = commit_inmem_pages(inode);
1437 set_inode_flag(inode, FI_ATOMIC_FILE);
1442 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1444 inode_unlock(inode);
1445 mnt_drop_write_file(filp);
1449 static int f2fs_ioc_start_volatile_write(struct file *filp)
1451 struct inode *inode = file_inode(filp);
1454 if (!inode_owner_or_capable(inode))
1457 ret = mnt_want_write_file(filp);
1463 if (f2fs_is_volatile_file(inode))
1466 ret = f2fs_convert_inline_inode(inode);
1470 set_inode_flag(inode, FI_VOLATILE_FILE);
1471 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1473 inode_unlock(inode);
1474 mnt_drop_write_file(filp);
1478 static int f2fs_ioc_release_volatile_write(struct file *filp)
1480 struct inode *inode = file_inode(filp);
1483 if (!inode_owner_or_capable(inode))
1486 ret = mnt_want_write_file(filp);
1492 if (!f2fs_is_volatile_file(inode))
1495 if (!f2fs_is_first_block_written(inode)) {
1496 ret = truncate_partial_data_page(inode, 0, true);
1500 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1502 inode_unlock(inode);
1503 mnt_drop_write_file(filp);
1507 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1509 struct inode *inode = file_inode(filp);
1512 if (!inode_owner_or_capable(inode))
1515 ret = mnt_want_write_file(filp);
1521 if (f2fs_is_atomic_file(inode))
1522 drop_inmem_pages(inode);
1523 if (f2fs_is_volatile_file(inode)) {
1524 clear_inode_flag(inode, FI_VOLATILE_FILE);
1525 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1528 inode_unlock(inode);
1530 mnt_drop_write_file(filp);
1531 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1535 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1537 struct inode *inode = file_inode(filp);
1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1539 struct super_block *sb = sbi->sb;
1543 if (!capable(CAP_SYS_ADMIN))
1546 if (get_user(in, (__u32 __user *)arg))
1549 ret = mnt_want_write_file(filp);
1554 case F2FS_GOING_DOWN_FULLSYNC:
1555 sb = freeze_bdev(sb->s_bdev);
1556 if (sb && !IS_ERR(sb)) {
1557 f2fs_stop_checkpoint(sbi, false);
1558 thaw_bdev(sb->s_bdev, sb);
1561 case F2FS_GOING_DOWN_METASYNC:
1562 /* do checkpoint only */
1563 f2fs_sync_fs(sb, 1);
1564 f2fs_stop_checkpoint(sbi, false);
1566 case F2FS_GOING_DOWN_NOSYNC:
1567 f2fs_stop_checkpoint(sbi, false);
1569 case F2FS_GOING_DOWN_METAFLUSH:
1570 sync_meta_pages(sbi, META, LONG_MAX);
1571 f2fs_stop_checkpoint(sbi, false);
1577 f2fs_update_time(sbi, REQ_TIME);
1579 mnt_drop_write_file(filp);
1583 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1585 struct inode *inode = file_inode(filp);
1586 struct super_block *sb = inode->i_sb;
1587 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1588 struct fstrim_range range;
1591 if (!capable(CAP_SYS_ADMIN))
1594 if (!blk_queue_discard(q))
1597 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1601 ret = mnt_want_write_file(filp);
1605 range.minlen = max((unsigned int)range.minlen,
1606 q->limits.discard_granularity);
1607 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1608 mnt_drop_write_file(filp);
1612 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1615 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1619 static bool uuid_is_nonzero(__u8 u[16])
1623 for (i = 0; i < 16; i++)
1629 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1631 struct fscrypt_policy policy;
1632 struct inode *inode = file_inode(filp);
1635 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1639 ret = mnt_want_write_file(filp);
1643 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1644 ret = fscrypt_process_policy(inode, &policy);
1646 mnt_drop_write_file(filp);
1650 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1652 struct fscrypt_policy policy;
1653 struct inode *inode = file_inode(filp);
1656 err = fscrypt_get_policy(inode, &policy);
1660 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1665 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1667 struct inode *inode = file_inode(filp);
1668 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1671 if (!f2fs_sb_has_crypto(inode->i_sb))
1674 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1677 err = mnt_want_write_file(filp);
1681 /* update superblock with uuid */
1682 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1684 err = f2fs_commit_super(sbi, false);
1687 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1688 mnt_drop_write_file(filp);
1691 mnt_drop_write_file(filp);
1693 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1699 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1701 struct inode *inode = file_inode(filp);
1702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1706 if (!capable(CAP_SYS_ADMIN))
1709 if (get_user(sync, (__u32 __user *)arg))
1712 if (f2fs_readonly(sbi->sb))
1715 ret = mnt_want_write_file(filp);
1720 if (!mutex_trylock(&sbi->gc_mutex)) {
1725 mutex_lock(&sbi->gc_mutex);
1728 ret = f2fs_gc(sbi, sync);
1730 mnt_drop_write_file(filp);
1734 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1736 struct inode *inode = file_inode(filp);
1737 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1740 if (!capable(CAP_SYS_ADMIN))
1743 if (f2fs_readonly(sbi->sb))
1746 ret = mnt_want_write_file(filp);
1750 ret = f2fs_sync_fs(sbi->sb, 1);
1752 mnt_drop_write_file(filp);
1756 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1758 struct f2fs_defragment *range)
1760 struct inode *inode = file_inode(filp);
1761 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1762 struct extent_info ei;
1763 pgoff_t pg_start, pg_end;
1764 unsigned int blk_per_seg = sbi->blocks_per_seg;
1765 unsigned int total = 0, sec_num;
1766 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1767 block_t blk_end = 0;
1768 bool fragmented = false;
1771 /* if in-place-update policy is enabled, don't waste time here */
1772 if (need_inplace_update(inode))
1775 pg_start = range->start >> PAGE_SHIFT;
1776 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1778 f2fs_balance_fs(sbi, true);
1782 /* writeback all dirty pages in the range */
1783 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1784 range->start + range->len - 1);
1789 * lookup mapping info in extent cache, skip defragmenting if physical
1790 * block addresses are continuous.
1792 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1793 if (ei.fofs + ei.len >= pg_end)
1797 map.m_lblk = pg_start;
1800 * lookup mapping info in dnode page cache, skip defragmenting if all
1801 * physical block addresses are continuous even if there are hole(s)
1802 * in logical blocks.
1804 while (map.m_lblk < pg_end) {
1805 map.m_len = pg_end - map.m_lblk;
1806 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1810 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1815 if (blk_end && blk_end != map.m_pblk) {
1819 blk_end = map.m_pblk + map.m_len;
1821 map.m_lblk += map.m_len;
1827 map.m_lblk = pg_start;
1828 map.m_len = pg_end - pg_start;
1830 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1833 * make sure there are enough free section for LFS allocation, this can
1834 * avoid defragment running in SSR mode when free section are allocated
1837 if (has_not_enough_free_secs(sbi, sec_num)) {
1842 while (map.m_lblk < pg_end) {
1847 map.m_len = pg_end - map.m_lblk;
1848 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1852 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1857 set_inode_flag(inode, FI_DO_DEFRAG);
1860 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1863 page = get_lock_data_page(inode, idx, true);
1865 err = PTR_ERR(page);
1869 set_page_dirty(page);
1870 f2fs_put_page(page, 1);
1879 if (idx < pg_end && cnt < blk_per_seg)
1882 clear_inode_flag(inode, FI_DO_DEFRAG);
1884 err = filemap_fdatawrite(inode->i_mapping);
1889 clear_inode_flag(inode, FI_DO_DEFRAG);
1891 inode_unlock(inode);
1893 range->len = (u64)total << PAGE_SHIFT;
1897 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1899 struct inode *inode = file_inode(filp);
1900 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1901 struct f2fs_defragment range;
1904 if (!capable(CAP_SYS_ADMIN))
1907 if (!S_ISREG(inode->i_mode))
1910 err = mnt_want_write_file(filp);
1914 if (f2fs_readonly(sbi->sb)) {
1919 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1925 /* verify alignment of offset & size */
1926 if (range.start & (F2FS_BLKSIZE - 1) ||
1927 range.len & (F2FS_BLKSIZE - 1)) {
1932 err = f2fs_defragment_range(sbi, filp, &range);
1933 f2fs_update_time(sbi, REQ_TIME);
1937 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1941 mnt_drop_write_file(filp);
1945 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1948 case F2FS_IOC_GETFLAGS:
1949 return f2fs_ioc_getflags(filp, arg);
1950 case F2FS_IOC_SETFLAGS:
1951 return f2fs_ioc_setflags(filp, arg);
1952 case F2FS_IOC_GETVERSION:
1953 return f2fs_ioc_getversion(filp, arg);
1954 case F2FS_IOC_START_ATOMIC_WRITE:
1955 return f2fs_ioc_start_atomic_write(filp);
1956 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1957 return f2fs_ioc_commit_atomic_write(filp);
1958 case F2FS_IOC_START_VOLATILE_WRITE:
1959 return f2fs_ioc_start_volatile_write(filp);
1960 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1961 return f2fs_ioc_release_volatile_write(filp);
1962 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1963 return f2fs_ioc_abort_volatile_write(filp);
1964 case F2FS_IOC_SHUTDOWN:
1965 return f2fs_ioc_shutdown(filp, arg);
1967 return f2fs_ioc_fitrim(filp, arg);
1968 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1969 return f2fs_ioc_set_encryption_policy(filp, arg);
1970 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1971 return f2fs_ioc_get_encryption_policy(filp, arg);
1972 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1973 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1974 case F2FS_IOC_GARBAGE_COLLECT:
1975 return f2fs_ioc_gc(filp, arg);
1976 case F2FS_IOC_WRITE_CHECKPOINT:
1977 return f2fs_ioc_write_checkpoint(filp, arg);
1978 case F2FS_IOC_DEFRAGMENT:
1979 return f2fs_ioc_defragment(filp, arg);
1985 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1987 struct file *file = iocb->ki_filp;
1988 struct inode *inode = file_inode(file);
1991 if (f2fs_encrypted_inode(inode) &&
1992 !fscrypt_has_encryption_key(inode) &&
1993 fscrypt_get_encryption_info(inode))
1997 ret = generic_write_checks(iocb, from);
1999 ret = f2fs_preallocate_blocks(iocb, from);
2001 ret = __generic_file_write_iter(iocb, from);
2003 inode_unlock(inode);
2006 ret = generic_write_sync(iocb, ret);
2010 #ifdef CONFIG_COMPAT
2011 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2014 case F2FS_IOC32_GETFLAGS:
2015 cmd = F2FS_IOC_GETFLAGS;
2017 case F2FS_IOC32_SETFLAGS:
2018 cmd = F2FS_IOC_SETFLAGS;
2020 case F2FS_IOC32_GETVERSION:
2021 cmd = F2FS_IOC_GETVERSION;
2023 case F2FS_IOC_START_ATOMIC_WRITE:
2024 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2025 case F2FS_IOC_START_VOLATILE_WRITE:
2026 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2027 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2028 case F2FS_IOC_SHUTDOWN:
2029 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2030 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2031 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2032 case F2FS_IOC_GARBAGE_COLLECT:
2033 case F2FS_IOC_WRITE_CHECKPOINT:
2034 case F2FS_IOC_DEFRAGMENT:
2037 return -ENOIOCTLCMD;
2039 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2043 const struct file_operations f2fs_file_operations = {
2044 .llseek = f2fs_llseek,
2045 .read_iter = generic_file_read_iter,
2046 .write_iter = f2fs_file_write_iter,
2047 .open = f2fs_file_open,
2048 .release = f2fs_release_file,
2049 .mmap = f2fs_file_mmap,
2050 .fsync = f2fs_sync_file,
2051 .fallocate = f2fs_fallocate,
2052 .unlocked_ioctl = f2fs_ioctl,
2053 #ifdef CONFIG_COMPAT
2054 .compat_ioctl = f2fs_compat_ioctl,
2056 .splice_read = generic_file_splice_read,
2057 .splice_write = iter_file_splice_write,