1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
99 #include <net/checksum.h>
101 #include <linux/atomic.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x))
107 #define cas_page_unmap(x) kunmap_atomic((x))
108 #define CAS_NCPUS num_online_cpus()
110 #define cas_skb_release(x) netif_rx(x)
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125 * also, we need to make cp->lock finer-grained.
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
145 #define CAS_DEF_MSG_ENABLE \
155 /* length of time before we decide the hardware is borked,
156 * and dev->tx_timeout() should be called to fix the problem
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
162 /* timeout values for state changing. these specify the number
163 * of 10us delays to be used before giving up.
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
168 /* specify a minimum frame size to deal with some fifo issues
169 * max mtu == 2 * page size - ethernet header - 64 - swivel =
170 * 2 * page_size - 0x50
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179 * Eliminate these and use separate atomic counters for each, to
180 * avoid a race condition.
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
188 static char version[] =
189 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout;
225 static u16 link_modes[] = {
226 BMCR_ANENABLE, /* 0 : autoneg */
227 0, /* 1 : 10bt half duplex */
228 BMCR_SPEED100, /* 2 : 100bt half duplex */
229 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
230 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
231 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244 static void cas_set_link_modes(struct cas *cp);
246 static inline void cas_lock_tx(struct cas *cp)
250 for (i = 0; i < N_TX_RINGS; i++)
251 spin_lock(&cp->tx_lock[i]);
254 static inline void cas_lock_all(struct cas *cp)
256 spin_lock_irq(&cp->lock);
260 /* WTZ: QA was finding deadlock problems with the previous
261 * versions after long test runs with multiple cards per machine.
262 * See if replacing cas_lock_all with safer versions helps. The
263 * symptoms QA is reporting match those we'd expect if interrupts
264 * aren't being properly restored, and we fixed a previous deadlock
265 * with similar symptoms by using save/restore versions in other
268 #define cas_lock_all_save(cp, flags) \
270 struct cas *xxxcp = (cp); \
271 spin_lock_irqsave(&xxxcp->lock, flags); \
272 cas_lock_tx(xxxcp); \
275 static inline void cas_unlock_tx(struct cas *cp)
279 for (i = N_TX_RINGS; i > 0; i--)
280 spin_unlock(&cp->tx_lock[i - 1]);
283 static inline void cas_unlock_all(struct cas *cp)
286 spin_unlock_irq(&cp->lock);
289 #define cas_unlock_all_restore(cp, flags) \
291 struct cas *xxxcp = (cp); \
292 cas_unlock_tx(xxxcp); \
293 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 static void cas_disable_irq(struct cas *cp, const int ring)
298 /* Make sure we won't get any more interrupts */
300 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
304 /* disable completion interrupts and selectively mask */
305 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
317 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318 cp->regs + REG_PLUS_INTRN_MASK(ring));
322 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323 REG_PLUS_INTRN_MASK(ring));
329 static inline void cas_mask_intr(struct cas *cp)
333 for (i = 0; i < N_RX_COMP_RINGS; i++)
334 cas_disable_irq(cp, i);
337 static void cas_enable_irq(struct cas *cp, const int ring)
339 if (ring == 0) { /* all but TX_DONE */
340 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
344 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
356 writel(INTRN_MASK_RX_EN, cp->regs +
357 REG_PLUS_INTRN_MASK(ring));
366 static inline void cas_unmask_intr(struct cas *cp)
370 for (i = 0; i < N_RX_COMP_RINGS; i++)
371 cas_enable_irq(cp, i);
374 static inline void cas_entropy_gather(struct cas *cp)
376 #ifdef USE_ENTROPY_DEV
377 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381 readl(cp->regs + REG_ENTROPY_IV),
386 static inline void cas_entropy_reset(struct cas *cp)
388 #ifdef USE_ENTROPY_DEV
389 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393 cp->regs + REG_BIM_LOCAL_DEV_EN);
394 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397 /* if we read back 0x0, we don't have an entropy device */
398 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
403 /* access to the phy. the following assumes that we've initialized the MIF to
404 * be in frame rather than bit-bang mode
406 static u16 cas_phy_read(struct cas *cp, int reg)
409 int limit = STOP_TRIES_PHY;
411 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414 cmd |= MIF_FRAME_TURN_AROUND_MSB;
415 writel(cmd, cp->regs + REG_MIF_FRAME);
417 /* poll for completion */
418 while (limit-- > 0) {
420 cmd = readl(cp->regs + REG_MIF_FRAME);
421 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422 return cmd & MIF_FRAME_DATA_MASK;
424 return 0xFFFF; /* -1 */
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 int limit = STOP_TRIES_PHY;
432 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435 cmd |= MIF_FRAME_TURN_AROUND_MSB;
436 cmd |= val & MIF_FRAME_DATA_MASK;
437 writel(cmd, cp->regs + REG_MIF_FRAME);
439 /* poll for completion */
440 while (limit-- > 0) {
442 cmd = readl(cp->regs + REG_MIF_FRAME);
443 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449 static void cas_phy_powerup(struct cas *cp)
451 u16 ctl = cas_phy_read(cp, MII_BMCR);
453 if ((ctl & BMCR_PDOWN) == 0)
456 cas_phy_write(cp, MII_BMCR, ctl);
459 static void cas_phy_powerdown(struct cas *cp)
461 u16 ctl = cas_phy_read(cp, MII_BMCR);
463 if (ctl & BMCR_PDOWN)
466 cas_phy_write(cp, MII_BMCR, ctl);
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474 __free_pages(page->buffer, cp->page_order);
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
487 /* local page allocation routines for the receive buffers. jumbo pages
488 * require at least 8K contiguous and 8K aligned buffers.
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
494 page = kmalloc(sizeof(cas_page_t), flags);
498 INIT_LIST_HEAD(&page->list);
499 RX_USED_SET(page, 0);
500 page->buffer = alloc_pages(flags, cp->page_order);
503 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504 cp->page_size, PCI_DMA_FROMDEVICE);
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
515 spin_lock(&cp->rx_inuse_lock);
516 INIT_LIST_HEAD(&cp->rx_inuse_list);
517 spin_unlock(&cp->rx_inuse_lock);
519 spin_lock(&cp->rx_spare_lock);
520 INIT_LIST_HEAD(&cp->rx_spare_list);
521 cp->rx_spares_needed = RX_SPARE_COUNT;
522 spin_unlock(&cp->rx_spare_lock);
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
528 struct list_head list, *elem, *tmp;
530 /* free spare buffers */
531 INIT_LIST_HEAD(&list);
532 spin_lock(&cp->rx_spare_lock);
533 list_splice_init(&cp->rx_spare_list, &list);
534 spin_unlock(&cp->rx_spare_lock);
535 list_for_each_safe(elem, tmp, &list) {
536 cas_page_free(cp, list_entry(elem, cas_page_t, list));
539 INIT_LIST_HEAD(&list);
542 * Looks like Adrian had protected this with a different
543 * lock than used everywhere else to manipulate this list.
545 spin_lock(&cp->rx_inuse_lock);
546 list_splice_init(&cp->rx_inuse_list, &list);
547 spin_unlock(&cp->rx_inuse_lock);
549 spin_lock(&cp->rx_spare_lock);
550 list_splice_init(&cp->rx_inuse_list, &list);
551 spin_unlock(&cp->rx_spare_lock);
553 list_for_each_safe(elem, tmp, &list) {
554 cas_page_free(cp, list_entry(elem, cas_page_t, list));
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 struct list_head list, *elem, *tmp;
564 /* check inuse list. if we don't need any more free buffers,
568 /* make a local copy of the list */
569 INIT_LIST_HEAD(&list);
570 spin_lock(&cp->rx_inuse_lock);
571 list_splice_init(&cp->rx_inuse_list, &list);
572 spin_unlock(&cp->rx_inuse_lock);
574 list_for_each_safe(elem, tmp, &list) {
575 cas_page_t *page = list_entry(elem, cas_page_t, list);
578 * With the lockless pagecache, cassini buffering scheme gets
579 * slightly less accurate: we might find that a page has an
580 * elevated reference count here, due to a speculative ref,
581 * and skip it as in-use. Ideally we would be able to reclaim
582 * it. However this would be such a rare case, it doesn't
583 * matter too much as we should pick it up the next time round.
585 * Importantly, if we find that the page has a refcount of 1
586 * here (our refcount), then we know it is definitely not inuse
587 * so we can reuse it.
589 if (page_count(page->buffer) > 1)
593 spin_lock(&cp->rx_spare_lock);
594 if (cp->rx_spares_needed > 0) {
595 list_add(elem, &cp->rx_spare_list);
596 cp->rx_spares_needed--;
597 spin_unlock(&cp->rx_spare_lock);
599 spin_unlock(&cp->rx_spare_lock);
600 cas_page_free(cp, page);
604 /* put any inuse buffers back on the list */
605 if (!list_empty(&list)) {
606 spin_lock(&cp->rx_inuse_lock);
607 list_splice(&list, &cp->rx_inuse_list);
608 spin_unlock(&cp->rx_inuse_lock);
611 spin_lock(&cp->rx_spare_lock);
612 needed = cp->rx_spares_needed;
613 spin_unlock(&cp->rx_spare_lock);
617 /* we still need spares, so try to allocate some */
618 INIT_LIST_HEAD(&list);
621 cas_page_t *spare = cas_page_alloc(cp, flags);
624 list_add(&spare->list, &list);
628 spin_lock(&cp->rx_spare_lock);
629 list_splice(&list, &cp->rx_spare_list);
630 cp->rx_spares_needed -= i;
631 spin_unlock(&cp->rx_spare_lock);
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 struct list_head *entry;
640 spin_lock(&cp->rx_spare_lock);
641 if (list_empty(&cp->rx_spare_list)) {
642 /* try to do a quick recovery */
643 spin_unlock(&cp->rx_spare_lock);
644 cas_spare_recover(cp, GFP_ATOMIC);
645 spin_lock(&cp->rx_spare_lock);
646 if (list_empty(&cp->rx_spare_list)) {
647 netif_err(cp, rx_err, cp->dev,
648 "no spare buffers available\n");
649 spin_unlock(&cp->rx_spare_lock);
654 entry = cp->rx_spare_list.next;
656 recover = ++cp->rx_spares_needed;
657 spin_unlock(&cp->rx_spare_lock);
659 /* trigger the timer to do the recovery */
660 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
662 atomic_inc(&cp->reset_task_pending);
663 atomic_inc(&cp->reset_task_pending_spare);
664 schedule_work(&cp->reset_task);
666 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667 schedule_work(&cp->reset_task);
670 return list_entry(entry, cas_page_t, list);
674 static void cas_mif_poll(struct cas *cp, const int enable)
678 cfg = readl(cp->regs + REG_MIF_CFG);
679 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681 if (cp->phy_type & CAS_PHY_MII_MDIO1)
682 cfg |= MIF_CFG_PHY_SELECT;
684 /* poll and interrupt on link status change. */
686 cfg |= MIF_CFG_POLL_EN;
687 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691 cp->regs + REG_MIF_MASK);
692 writel(cfg, cp->regs + REG_MIF_CFG);
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
702 int oldstate = cp->lstate;
703 int link_was_not_down = !(oldstate == link_down);
705 /* Setup link parameters */
708 lcntl = cp->link_cntl;
709 if (ep->autoneg == AUTONEG_ENABLE)
710 cp->link_cntl = BMCR_ANENABLE;
712 u32 speed = ethtool_cmd_speed(ep);
714 if (speed == SPEED_100)
715 cp->link_cntl |= BMCR_SPEED100;
716 else if (speed == SPEED_1000)
717 cp->link_cntl |= CAS_BMCR_SPEED1000;
718 if (ep->duplex == DUPLEX_FULL)
719 cp->link_cntl |= BMCR_FULLDPLX;
722 changed = (lcntl != cp->link_cntl);
725 if (cp->lstate == link_up) {
726 netdev_info(cp->dev, "PCS link down\n");
729 netdev_info(cp->dev, "link configuration changed\n");
732 cp->lstate = link_down;
733 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate == link_up)
743 netif_carrier_off(cp->dev);
744 if (changed && link_was_not_down) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp->reset_task_pending);
751 atomic_inc(&cp->reset_task_pending_all);
752 schedule_work(&cp->reset_task);
754 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
758 if (cp->phy_type & CAS_PHY_SERDES) {
759 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761 if (cp->link_cntl & BMCR_ANENABLE) {
762 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 cp->lstate = link_aneg;
765 if (cp->link_cntl & BMCR_FULLDPLX)
766 val |= PCS_MII_CTRL_DUPLEX;
767 val &= ~PCS_MII_AUTONEG_EN;
768 cp->lstate = link_force_ok;
770 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 writel(val, cp->regs + REG_PCS_MII_CTRL);
775 ctl = cas_phy_read(cp, MII_BMCR);
776 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 ctl |= cp->link_cntl;
779 if (ctl & BMCR_ANENABLE) {
780 ctl |= BMCR_ANRESTART;
781 cp->lstate = link_aneg;
783 cp->lstate = link_force_ok;
785 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 cas_phy_write(cp, MII_BMCR, ctl);
791 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
797 int limit = STOP_TRIES_PHY;
800 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
803 val = cas_phy_read(cp, MII_BMCR);
804 if ((val & BMCR_RESET) == 0)
811 static void cas_saturn_firmware_init(struct cas *cp)
813 const struct firmware *fw;
814 const char fw_name[] = "sun/cassini.bin";
817 if (PHY_NS_DP83065 != cp->phy_id)
820 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
822 pr_err("Failed to load firmware \"%s\"\n",
827 pr_err("bogus length %zu in \"%s\"\n",
831 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832 cp->fw_size = fw->size - 2;
833 cp->fw_data = vmalloc(cp->fw_size);
836 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
838 release_firmware(fw);
841 static void cas_saturn_firmware_load(struct cas *cp)
848 cas_phy_powerdown(cp);
850 /* expanded memory access mode */
851 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853 /* pointer configuration for new firmware */
854 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
855 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
857 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
859 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
861 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863 /* download new firmware */
864 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
865 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
866 for (i = 0; i < cp->fw_size; i++)
867 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869 /* enable firmware */
870 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
871 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
875 /* phy initialization */
876 static void cas_phy_init(struct cas *cp)
880 /* if we're in MII/GMII mode, set up phy */
881 if (CAS_PHY_MII(cp->phy_type)) {
882 writel(PCS_DATAPATH_MODE_MII,
883 cp->regs + REG_PCS_DATAPATH_MODE);
886 cas_reset_mii_phy(cp); /* take out of isolate mode */
888 if (PHY_LUCENT_B0 == cp->phy_id) {
889 /* workaround link up/down issue with lucent */
890 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
891 cas_phy_write(cp, MII_BMCR, 0x00f1);
892 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
895 /* workarounds for broadcom phy */
896 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
897 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
898 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
905 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
906 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
909 val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 val = cas_phy_read(cp, BROADCOM_MII_REG4);
912 /* link workaround */
913 cas_phy_write(cp, BROADCOM_MII_REG4,
917 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
918 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
919 SATURN_PCFG_FSI : 0x0,
920 cp->regs + REG_SATURN_PCFG);
922 /* load firmware to address 10Mbps auto-negotiation
923 * issue. NOTE: this will need to be changed if the
924 * default firmware gets fixed.
926 if (PHY_NS_DP83065 == cp->phy_id) {
927 cas_saturn_firmware_load(cp);
932 /* advertise capabilities */
933 val = cas_phy_read(cp, MII_BMCR);
934 val &= ~BMCR_ANENABLE;
935 cas_phy_write(cp, MII_BMCR, val);
938 cas_phy_write(cp, MII_ADVERTISE,
939 cas_phy_read(cp, MII_ADVERTISE) |
940 (ADVERTISE_10HALF | ADVERTISE_10FULL |
941 ADVERTISE_100HALF | ADVERTISE_100FULL |
942 CAS_ADVERTISE_PAUSE |
943 CAS_ADVERTISE_ASYM_PAUSE));
945 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
946 /* make sure that we don't advertise half
947 * duplex to avoid a chip issue
949 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
950 val &= ~CAS_ADVERTISE_1000HALF;
951 val |= CAS_ADVERTISE_1000FULL;
952 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
956 /* reset pcs for serdes */
960 writel(PCS_DATAPATH_MODE_SERDES,
961 cp->regs + REG_PCS_DATAPATH_MODE);
963 /* enable serdes pins on saturn */
964 if (cp->cas_flags & CAS_FLAG_SATURN)
965 writel(0, cp->regs + REG_SATURN_PCFG);
967 /* Reset PCS unit. */
968 val = readl(cp->regs + REG_PCS_MII_CTRL);
969 val |= PCS_MII_RESET;
970 writel(val, cp->regs + REG_PCS_MII_CTRL);
973 while (--limit > 0) {
975 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
980 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
981 readl(cp->regs + REG_PCS_STATE_MACHINE));
983 /* Make sure PCS is disabled while changing advertisement
986 writel(0x0, cp->regs + REG_PCS_CFG);
988 /* Advertise all capabilities except half-duplex. */
989 val = readl(cp->regs + REG_PCS_MII_ADVERT);
990 val &= ~PCS_MII_ADVERT_HD;
991 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
992 PCS_MII_ADVERT_ASYM_PAUSE);
993 writel(val, cp->regs + REG_PCS_MII_ADVERT);
996 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
998 /* pcs workaround: enable sync detect */
999 writel(PCS_SERDES_CTRL_SYNCD_EN,
1000 cp->regs + REG_PCS_SERDES_CTRL);
1005 static int cas_pcs_link_check(struct cas *cp)
1007 u32 stat, state_machine;
1010 /* The link status bit latches on zero, so you must
1011 * read it twice in such a case to see a transition
1012 * to the link being up.
1014 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1016 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018 /* The remote-fault indication is only valid
1019 * when autoneg has completed.
1021 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1022 PCS_MII_STATUS_REMOTE_FAULT)) ==
1023 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1024 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026 /* work around link detection issue by querying the PCS state
1029 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1030 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1031 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1032 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1033 stat |= PCS_MII_STATUS_LINK_STATUS;
1036 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1037 if (cp->lstate != link_up) {
1039 cp->lstate = link_up;
1040 cp->link_transition = LINK_TRANSITION_LINK_UP;
1042 cas_set_link_modes(cp);
1043 netif_carrier_on(cp->dev);
1046 } else if (cp->lstate == link_up) {
1047 cp->lstate = link_down;
1048 if (link_transition_timeout != 0 &&
1049 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1050 !cp->link_transition_jiffies_valid) {
1052 * force a reset, as a workaround for the
1053 * link-failure problem. May want to move this to a
1054 * point a bit earlier in the sequence. If we had
1055 * generated a reset a short time ago, we'll wait for
1056 * the link timer to check the status until a
1057 * timer expires (link_transistion_jiffies_valid is
1058 * true when the timer is running.) Instead of using
1059 * a system timer, we just do a check whenever the
1060 * link timer is running - this clears the flag after
1064 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1065 cp->link_transition_jiffies = jiffies;
1066 cp->link_transition_jiffies_valid = 1;
1068 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1070 netif_carrier_off(cp->dev);
1072 netif_info(cp, link, cp->dev, "PCS link down\n");
1074 /* Cassini only: if you force a mode, there can be
1075 * sync problems on link down. to fix that, the following
1076 * things need to be checked:
1077 * 1) read serialink state register
1078 * 2) read pcs status register to verify link down.
1079 * 3) if link down and serial link == 0x03, then you need
1080 * to global reset the chip.
1082 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1083 /* should check to see if we're in a forced mode */
1084 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1088 } else if (cp->lstate == link_down) {
1089 if (link_transition_timeout != 0 &&
1090 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1091 !cp->link_transition_jiffies_valid) {
1092 /* force a reset, as a workaround for the
1093 * link-failure problem. May want to move
1094 * this to a point a bit earlier in the
1098 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1099 cp->link_transition_jiffies = jiffies;
1100 cp->link_transition_jiffies_valid = 1;
1102 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1109 static int cas_pcs_interrupt(struct net_device *dev,
1110 struct cas *cp, u32 status)
1112 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116 return cas_pcs_link_check(cp);
1119 static int cas_txmac_interrupt(struct net_device *dev,
1120 struct cas *cp, u32 status)
1122 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1127 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1128 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130 /* Defer timer expiration is quite normal,
1131 * don't even log the event.
1133 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1134 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1137 spin_lock(&cp->stat_lock[0]);
1138 if (txmac_stat & MAC_TX_UNDERRUN) {
1139 netdev_err(dev, "TX MAC xmit underrun\n");
1140 cp->net_stats[0].tx_fifo_errors++;
1143 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144 netdev_err(dev, "TX MAC max packet size error\n");
1145 cp->net_stats[0].tx_errors++;
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1163 spin_unlock(&cp->stat_lock[0]);
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 cas_hp_inst_t *inst;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1204 static void cas_init_rx_dma(struct cas *cp)
1206 u64 desc_dma = cp->block_dvma;
1210 /* rx free descriptors */
1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1219 val = (unsigned long) cp->init_rxds[0] -
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1229 val = (unsigned long) cp->init_rxds[1] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 REG_PLUS_RX_DB1_LOW);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1238 /* rx completion registers */
1239 val = (unsigned long) cp->init_rxcs[0] -
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 val = (unsigned long) cp->init_rxcs[i] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs +
1250 REG_PLUS_RX_CBN_HI(i));
1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 REG_PLUS_RX_CBN_LOW(i));
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 /* interrupt mitigation */
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1320 writel(0x0, cp->regs + REG_RX_RED);
1322 /* receive page sizes. default == 2K (0x800) */
1324 if (cp->page_size == 0x1000)
1326 else if (cp->page_size == 0x2000)
1328 else if (cp->page_size == 0x4000)
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1338 else if (size <= 0x800)
1340 else if (size <= 0x1000)
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 memset(rxc, 0, sizeof(*rxc));
1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 cas_page_t *page = cp->rx_pages[1][index];
1377 if (page_count(page->buffer) == 1)
1380 new = cas_page_dequeue(cp);
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1396 /* swap if buffer is in use */
1397 if (page_count(page0[index]->buffer) > 1) {
1398 cas_page_t *new = cas_page_spare(cp, index);
1400 page1[index] = page0[index];
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1408 static void cas_clean_rxds(struct cas *cp)
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 CAS_BASE(RX_INDEX_RING, 0));
1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 static void cas_clean_rxcs(struct cas *cp)
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1458 static int cas_rxmac_reset(struct cas *cp)
1460 struct net_device *dev = cp->dev;
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1471 if (limit == STOP_TRIES) {
1472 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1476 /* Second, disable RX DMA. */
1477 writel(0, cp->regs + REG_RX_CFG);
1478 for (limit = 0; limit < STOP_TRIES; limit++) {
1479 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1483 if (limit == STOP_TRIES) {
1484 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1490 /* Execute RX reset command. */
1491 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1492 for (limit = 0; limit < STOP_TRIES; limit++) {
1493 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1497 if (limit == STOP_TRIES) {
1498 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1502 /* reset driver rx state */
1506 /* Now, reprogram the rest of RX unit. */
1507 cas_init_rx_dma(cp);
1510 val = readl(cp->regs + REG_RX_CFG);
1511 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1512 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1513 val = readl(cp->regs + REG_MAC_RX_CFG);
1514 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1519 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1522 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1527 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529 /* these are all rollovers */
1530 spin_lock(&cp->stat_lock[0]);
1531 if (stat & MAC_RX_ALIGN_ERR)
1532 cp->net_stats[0].rx_frame_errors += 0x10000;
1534 if (stat & MAC_RX_CRC_ERR)
1535 cp->net_stats[0].rx_crc_errors += 0x10000;
1537 if (stat & MAC_RX_LEN_ERR)
1538 cp->net_stats[0].rx_length_errors += 0x10000;
1540 if (stat & MAC_RX_OVERFLOW) {
1541 cp->net_stats[0].rx_over_errors++;
1542 cp->net_stats[0].rx_fifo_errors++;
1545 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1548 spin_unlock(&cp->stat_lock[0]);
1552 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1555 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1560 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1561 "mac interrupt, stat: 0x%x\n", stat);
1563 /* This interrupt is just for pause frame and pause
1564 * tracking. It is useful for diagnostics and debug
1565 * but probably by default we will mask these events.
1567 if (stat & MAC_CTRL_PAUSE_STATE)
1568 cp->pause_entered++;
1570 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1571 cp->pause_last_time_recvd = (stat >> 16);
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas *cp)
1582 switch (cp->lstate) {
1583 case link_force_ret:
1584 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1585 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1586 cp->timer_ticks = 5;
1587 cp->lstate = link_force_ok;
1588 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592 val = cas_phy_read(cp, MII_BMCR);
1594 /* Try forced modes. we try things in the following order:
1595 * 1000 full -> 100 full/half -> 10 half
1597 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1598 val |= BMCR_FULLDPLX;
1599 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1600 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1601 cas_phy_write(cp, MII_BMCR, val);
1602 cp->timer_ticks = 5;
1603 cp->lstate = link_force_try;
1604 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1607 case link_force_try:
1608 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609 val = cas_phy_read(cp, MII_BMCR);
1610 cp->timer_ticks = 5;
1611 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1612 val &= ~CAS_BMCR_SPEED1000;
1613 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1614 cas_phy_write(cp, MII_BMCR, val);
1618 if (val & BMCR_SPEED100) {
1619 if (val & BMCR_FULLDPLX) /* fd failed */
1620 val &= ~BMCR_FULLDPLX;
1621 else { /* 100Mbps failed */
1622 val &= ~BMCR_SPEED100;
1624 cas_phy_write(cp, MII_BMCR, val);
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1639 if (bmsr & BMSR_LSTATUS) {
1640 /* Ok, here we got a link. If we had it due to a forced
1641 * fallback, and we were configured for autoneg, we
1642 * retry a short autoneg pass. If you know your hub is
1643 * broken, use ethtool ;)
1645 if ((cp->lstate == link_force_try) &&
1646 (cp->link_cntl & BMCR_ANENABLE)) {
1647 cp->lstate = link_force_ret;
1648 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1649 cas_mif_poll(cp, 0);
1650 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1651 cp->timer_ticks = 5;
1653 netif_info(cp, link, cp->dev,
1654 "Got link after fallback, retrying autoneg once...\n");
1655 cas_phy_write(cp, MII_BMCR,
1656 cp->link_fcntl | BMCR_ANENABLE |
1658 cas_mif_poll(cp, 1);
1660 } else if (cp->lstate != link_up) {
1661 cp->lstate = link_up;
1662 cp->link_transition = LINK_TRANSITION_LINK_UP;
1665 cas_set_link_modes(cp);
1666 netif_carrier_on(cp->dev);
1672 /* link not up. if the link was previously up, we restart the
1676 if (cp->lstate == link_up) {
1677 cp->lstate = link_down;
1678 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1680 netif_carrier_off(cp->dev);
1682 netif_info(cp, link, cp->dev, "Link down\n");
1685 } else if (++cp->timer_ticks > 10)
1686 cas_mdio_link_not_up(cp);
1691 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1694 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1697 /* check for a link change */
1698 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1701 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1702 return cas_mii_link_check(cp, bmsr);
1705 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1708 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1713 netdev_err(dev, "PCI error [%04x:%04x]",
1714 stat, readl(cp->regs + REG_BIM_DIAG));
1716 /* cassini+ has this reserved */
1717 if ((stat & PCI_ERR_BADACK) &&
1718 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1719 pr_cont(" <No ACK64# during ABS64 cycle>");
1721 if (stat & PCI_ERR_DTRTO)
1722 pr_cont(" <Delayed transaction timeout>");
1723 if (stat & PCI_ERR_OTHER)
1724 pr_cont(" <other>");
1725 if (stat & PCI_ERR_BIM_DMA_WRITE)
1726 pr_cont(" <BIM DMA 0 write req>");
1727 if (stat & PCI_ERR_BIM_DMA_READ)
1728 pr_cont(" <BIM DMA 0 read req>");
1731 if (stat & PCI_ERR_OTHER) {
1734 /* Interrogate PCI config space for the
1737 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1738 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1739 if (cfg & PCI_STATUS_PARITY)
1740 netdev_err(dev, "PCI parity error detected\n");
1741 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1742 netdev_err(dev, "PCI target abort\n");
1743 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1744 netdev_err(dev, "PCI master acks target abort\n");
1745 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1746 netdev_err(dev, "PCI master abort\n");
1747 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1748 netdev_err(dev, "PCI system error SERR#\n");
1749 if (cfg & PCI_STATUS_DETECTED_PARITY)
1750 netdev_err(dev, "PCI parity error\n");
1752 /* Write the error bits back to clear them. */
1753 cfg &= (PCI_STATUS_PARITY |
1754 PCI_STATUS_SIG_TARGET_ABORT |
1755 PCI_STATUS_REC_TARGET_ABORT |
1756 PCI_STATUS_REC_MASTER_ABORT |
1757 PCI_STATUS_SIG_SYSTEM_ERROR |
1758 PCI_STATUS_DETECTED_PARITY);
1759 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1762 /* For all PCI errors, we should reset the chip. */
1766 /* All non-normal interrupt conditions get serviced here.
1767 * Returns non-zero if we should just exit the interrupt
1768 * handler right now (ie. if we reset the card which invalidates
1769 * all of the other original irq status bits).
1771 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1774 if (status & INTR_RX_TAG_ERROR) {
1775 /* corrupt RX tag framing */
1776 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1777 "corrupt rx tag framing\n");
1778 spin_lock(&cp->stat_lock[0]);
1779 cp->net_stats[0].rx_errors++;
1780 spin_unlock(&cp->stat_lock[0]);
1784 if (status & INTR_RX_LEN_MISMATCH) {
1785 /* length mismatch. */
1786 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1787 "length mismatch for rx frame\n");
1788 spin_lock(&cp->stat_lock[0]);
1789 cp->net_stats[0].rx_errors++;
1790 spin_unlock(&cp->stat_lock[0]);
1794 if (status & INTR_PCS_STATUS) {
1795 if (cas_pcs_interrupt(dev, cp, status))
1799 if (status & INTR_TX_MAC_STATUS) {
1800 if (cas_txmac_interrupt(dev, cp, status))
1804 if (status & INTR_RX_MAC_STATUS) {
1805 if (cas_rxmac_interrupt(dev, cp, status))
1809 if (status & INTR_MAC_CTRL_STATUS) {
1810 if (cas_mac_interrupt(dev, cp, status))
1814 if (status & INTR_MIF_STATUS) {
1815 if (cas_mif_interrupt(dev, cp, status))
1819 if (status & INTR_PCI_ERROR_STATUS) {
1820 if (cas_pci_interrupt(dev, cp, status))
1827 atomic_inc(&cp->reset_task_pending);
1828 atomic_inc(&cp->reset_task_pending_all);
1829 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1830 schedule_work(&cp->reset_task);
1832 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1834 schedule_work(&cp->reset_task);
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840 * determining whether to do a netif_stop/wakeup
1842 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1847 unsigned long off = addr + len;
1849 if (CAS_TABORT(cp) == 1)
1851 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853 return TX_TARGET_ABORT_LEN;
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 struct cas_tx_desc *txds;
1859 struct sk_buff **skbs;
1860 struct net_device *dev = cp->dev;
1863 spin_lock(&cp->tx_lock[ring]);
1864 txds = cp->init_txds[ring];
1865 skbs = cp->tx_skbs[ring];
1866 entry = cp->tx_old[ring];
1868 count = TX_BUFF_COUNT(ring, entry, limit);
1869 while (entry != limit) {
1870 struct sk_buff *skb = skbs[entry];
1876 /* this should never occur */
1877 entry = TX_DESC_NEXT(ring, entry);
1881 /* however, we might get only a partial skb release. */
1882 count -= skb_shinfo(skb)->nr_frags +
1883 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1887 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1888 "tx[%d] done, slot %d\n", ring, entry);
1891 cp->tx_tiny_use[ring][entry].nbufs = 0;
1893 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1894 struct cas_tx_desc *txd = txds + entry;
1896 daddr = le64_to_cpu(txd->buffer);
1897 dlen = CAS_VAL(TX_DESC_BUFLEN,
1898 le64_to_cpu(txd->control));
1899 pci_unmap_page(cp->pdev, daddr, dlen,
1901 entry = TX_DESC_NEXT(ring, entry);
1903 /* tiny buffer may follow */
1904 if (cp->tx_tiny_use[ring][entry].used) {
1905 cp->tx_tiny_use[ring][entry].used = 0;
1906 entry = TX_DESC_NEXT(ring, entry);
1910 spin_lock(&cp->stat_lock[ring]);
1911 cp->net_stats[ring].tx_packets++;
1912 cp->net_stats[ring].tx_bytes += skb->len;
1913 spin_unlock(&cp->stat_lock[ring]);
1914 dev_kfree_skb_irq(skb);
1916 cp->tx_old[ring] = entry;
1918 /* this is wrong for multiple tx rings. the net device needs
1919 * multiple queues for this to do the right thing. we wait
1920 * for 2*packets to be available when using tiny buffers
1922 if (netif_queue_stopped(dev) &&
1923 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1924 netif_wake_queue(dev);
1925 spin_unlock(&cp->tx_lock[ring]);
1928 static void cas_tx(struct net_device *dev, struct cas *cp,
1932 #ifdef USE_TX_COMPWB
1933 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1936 "tx interrupt, status: 0x%x, %llx\n",
1937 status, (unsigned long long)compwb);
1938 /* process all the rings */
1939 for (ring = 0; ring < N_TX_RINGS; ring++) {
1940 #ifdef USE_TX_COMPWB
1941 /* use the completion writeback registers */
1942 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1943 CAS_VAL(TX_COMPWB_LSB, compwb);
1944 compwb = TX_COMPWB_NEXT(compwb);
1946 limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 if (cp->tx_old[ring] != limit)
1949 cas_tx_ringN(cp, ring, limit);
1954 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1955 int entry, const u64 *words,
1956 struct sk_buff **skbref)
1958 int dlen, hlen, len, i, alloclen;
1959 int off, swivel = RX_SWIVEL_OFF_VAL;
1960 struct cas_page *page;
1961 struct sk_buff *skb;
1962 void *addr, *crcaddr;
1966 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1967 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1970 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1973 alloclen = max(hlen, RX_COPY_MIN);
1975 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1980 skb_reserve(skb, swivel);
1983 addr = crcaddr = NULL;
1984 if (hlen) { /* always copy header pages */
1985 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1986 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1987 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1991 if (!dlen) /* attach FCS */
1993 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1994 PCI_DMA_FROMDEVICE);
1995 addr = cas_page_map(page->buffer);
1996 memcpy(p, addr + off, i);
1997 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1998 PCI_DMA_FROMDEVICE);
1999 cas_page_unmap(addr);
2000 RX_USED_ADD(page, 0x100);
2006 if (alloclen < (hlen + dlen)) {
2007 skb_frag_t *frag = skb_shinfo(skb)->frags;
2009 /* normal or jumbo packets. we use frags */
2010 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2011 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014 hlen = min(cp->page_size - off, dlen);
2016 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2017 "rx page overflow: %d\n", hlen);
2018 dev_kfree_skb_irq(skb);
2022 if (i == dlen) /* attach FCS */
2024 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2025 PCI_DMA_FROMDEVICE);
2027 /* make sure we always copy a header */
2029 if (p == (char *) skb->data) { /* not split */
2030 addr = cas_page_map(page->buffer);
2031 memcpy(p, addr + off, RX_COPY_MIN);
2032 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2033 PCI_DMA_FROMDEVICE);
2034 cas_page_unmap(addr);
2036 swivel = RX_COPY_MIN;
2037 RX_USED_ADD(page, cp->mtu_stride);
2039 RX_USED_ADD(page, hlen);
2041 skb_put(skb, alloclen);
2043 skb_shinfo(skb)->nr_frags++;
2044 skb->data_len += hlen - swivel;
2045 skb->truesize += hlen - swivel;
2046 skb->len += hlen - swivel;
2048 __skb_frag_set_page(frag, page->buffer);
2049 __skb_frag_ref(frag);
2050 frag->page_offset = off;
2051 skb_frag_size_set(frag, hlen - swivel);
2053 /* any more data? */
2054 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2058 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2059 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2060 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2061 hlen + cp->crc_size,
2062 PCI_DMA_FROMDEVICE);
2063 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2064 hlen + cp->crc_size,
2065 PCI_DMA_FROMDEVICE);
2067 skb_shinfo(skb)->nr_frags++;
2068 skb->data_len += hlen;
2072 __skb_frag_set_page(frag, page->buffer);
2073 __skb_frag_ref(frag);
2074 frag->page_offset = 0;
2075 skb_frag_size_set(frag, hlen);
2076 RX_USED_ADD(page, hlen + cp->crc_size);
2080 addr = cas_page_map(page->buffer);
2081 crcaddr = addr + off + hlen;
2085 /* copying packet */
2089 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2090 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2092 hlen = min(cp->page_size - off, dlen);
2094 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2095 "rx page overflow: %d\n", hlen);
2096 dev_kfree_skb_irq(skb);
2100 if (i == dlen) /* attach FCS */
2102 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2103 PCI_DMA_FROMDEVICE);
2104 addr = cas_page_map(page->buffer);
2105 memcpy(p, addr + off, i);
2106 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2107 PCI_DMA_FROMDEVICE);
2108 cas_page_unmap(addr);
2109 if (p == (char *) skb->data) /* not split */
2110 RX_USED_ADD(page, cp->mtu_stride);
2112 RX_USED_ADD(page, i);
2114 /* any more data? */
2115 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2118 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2119 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2120 dlen + cp->crc_size,
2121 PCI_DMA_FROMDEVICE);
2122 addr = cas_page_map(page->buffer);
2123 memcpy(p, addr, dlen + cp->crc_size);
2124 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2125 dlen + cp->crc_size,
2126 PCI_DMA_FROMDEVICE);
2127 cas_page_unmap(addr);
2128 RX_USED_ADD(page, dlen + cp->crc_size);
2133 crcaddr = skb->data + alloclen;
2135 skb_put(skb, alloclen);
2138 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140 /* checksum includes FCS. strip it out. */
2141 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2142 csum_unfold(csum)));
2144 cas_page_unmap(addr);
2146 skb->protocol = eth_type_trans(skb, cp->dev);
2147 if (skb->protocol == htons(ETH_P_IP)) {
2148 skb->csum = csum_unfold(~csum);
2149 skb->ip_summed = CHECKSUM_COMPLETE;
2151 skb_checksum_none_assert(skb);
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157 * as nonreassm except that we batch up the buffers.
2158 * NOTE: we currently just treat each flow as a bunch of packets that
2159 * we pass up. a better way would be to coalesce the packets
2160 * into a jumbo packet. to do that, we need to do the following:
2161 * 1) the first packet will have a clean split between header and
2163 * 2) each time the next flow packet comes in, extend the
2164 * data length and merge the checksums.
2165 * 3) on flow release, fix up the header.
2166 * 4) make sure the higher layer doesn't care.
2167 * because packets get coalesced, we shouldn't run into fragment count
2170 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2171 struct sk_buff *skb)
2173 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2174 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176 /* this is protected at a higher layer, so no need to
2177 * do any additional locking here. stick the buffer
2180 __skb_queue_tail(flow, skb);
2181 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2182 while ((skb = __skb_dequeue(flow))) {
2183 cas_skb_release(skb);
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189 * layer, this will need to put in a replacement.
2191 static void cas_post_page(struct cas *cp, const int ring, const int index)
2196 entry = cp->rx_old[ring];
2198 new = cas_page_swap(cp, ring, index);
2199 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2200 cp->init_rxds[ring][entry].index =
2201 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2202 CAS_BASE(RX_INDEX_RING, ring));
2204 entry = RX_DESC_ENTRY(ring, entry + 1);
2205 cp->rx_old[ring] = entry;
2211 writel(entry, cp->regs + REG_RX_KICK);
2212 else if ((N_RX_DESC_RINGS > 1) &&
2213 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2214 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 unsigned int entry, last, count, released;
2223 cas_page_t **page = cp->rx_pages[ring];
2225 entry = cp->rx_old[ring];
2227 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2228 "rxd[%d] interrupt, done: %d\n", ring, entry);
2231 count = entry & 0x3;
2232 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234 while (entry != last) {
2235 /* make a new buffer if it's still in use */
2236 if (page_count(page[entry]->buffer) > 1) {
2237 cas_page_t *new = cas_page_dequeue(cp);
2239 /* let the timer know that we need to
2242 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2243 if (!timer_pending(&cp->link_timer))
2244 mod_timer(&cp->link_timer, jiffies +
2245 CAS_LINK_FAST_TIMEOUT);
2246 cp->rx_old[ring] = entry;
2247 cp->rx_last[ring] = num ? num - released : 0;
2250 spin_lock(&cp->rx_inuse_lock);
2251 list_add(&page[entry]->list, &cp->rx_inuse_list);
2252 spin_unlock(&cp->rx_inuse_lock);
2253 cp->init_rxds[ring][entry].buffer =
2254 cpu_to_le64(new->dma_addr);
2264 entry = RX_DESC_ENTRY(ring, entry + 1);
2266 cp->rx_old[ring] = entry;
2272 writel(cluster, cp->regs + REG_RX_KICK);
2273 else if ((N_RX_DESC_RINGS > 1) &&
2274 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2275 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2280 /* process a completion ring. packets are set up in three basic ways:
2281 * small packets: should be copied header + data in single buffer.
2282 * large packets: header and data in a single buffer.
2283 * split packets: header in a separate buffer from data.
2284 * data may be in multiple pages. data may be > 256
2285 * bytes but in a single page.
2287 * NOTE: RX page posting is done in this routine as well. while there's
2288 * the capability of using multiple RX completion rings, it isn't
2289 * really worthwhile due to the fact that the page posting will
2290 * force serialization on the single descriptor ring.
2292 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2298 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2299 "rx[%d] interrupt, done: %d/%d\n",
2301 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303 entry = cp->rx_new[ring];
2306 struct cas_rx_comp *rxc = rxcs + entry;
2307 struct sk_buff *uninitialized_var(skb);
2312 words[0] = le64_to_cpu(rxc->word1);
2313 words[1] = le64_to_cpu(rxc->word2);
2314 words[2] = le64_to_cpu(rxc->word3);
2315 words[3] = le64_to_cpu(rxc->word4);
2317 /* don't touch if still owned by hw */
2318 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2322 /* hw hasn't cleared the zero bit yet */
2323 if (words[3] & RX_COMP4_ZERO) {
2327 /* get info on the packet */
2328 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2329 spin_lock(&cp->stat_lock[ring]);
2330 cp->net_stats[ring].rx_errors++;
2331 if (words[3] & RX_COMP4_LEN_MISMATCH)
2332 cp->net_stats[ring].rx_length_errors++;
2333 if (words[3] & RX_COMP4_BAD)
2334 cp->net_stats[ring].rx_crc_errors++;
2335 spin_unlock(&cp->stat_lock[ring]);
2337 /* We'll just return it to Cassini. */
2339 spin_lock(&cp->stat_lock[ring]);
2340 ++cp->net_stats[ring].rx_dropped;
2341 spin_unlock(&cp->stat_lock[ring]);
2345 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2351 /* see if it's a flow re-assembly or not. the driver
2352 * itself handles release back up.
2354 if (RX_DONT_BATCH || (type == 0x2)) {
2355 /* non-reassm: these always get released */
2356 cas_skb_release(skb);
2358 cas_rx_flow_pkt(cp, words, skb);
2361 spin_lock(&cp->stat_lock[ring]);
2362 cp->net_stats[ring].rx_packets++;
2363 cp->net_stats[ring].rx_bytes += len;
2364 spin_unlock(&cp->stat_lock[ring]);
2369 /* should it be released? */
2370 if (words[0] & RX_COMP1_RELEASE_HDR) {
2371 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2372 dring = CAS_VAL(RX_INDEX_RING, i);
2373 i = CAS_VAL(RX_INDEX_NUM, i);
2374 cas_post_page(cp, dring, i);
2377 if (words[0] & RX_COMP1_RELEASE_DATA) {
2378 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2379 dring = CAS_VAL(RX_INDEX_RING, i);
2380 i = CAS_VAL(RX_INDEX_NUM, i);
2381 cas_post_page(cp, dring, i);
2384 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2385 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2386 dring = CAS_VAL(RX_INDEX_RING, i);
2387 i = CAS_VAL(RX_INDEX_NUM, i);
2388 cas_post_page(cp, dring, i);
2391 /* skip to the next entry */
2392 entry = RX_COMP_ENTRY(ring, entry + 1 +
2393 CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 if (budget && (npackets >= budget))
2399 cp->rx_new[ring] = entry;
2402 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device *dev,
2409 struct cas *cp, int ring)
2411 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2414 last = cp->rx_cur[ring];
2415 entry = cp->rx_new[ring];
2416 netif_printk(cp, intr, KERN_DEBUG, dev,
2417 "rxc[%d] interrupt, done: %d/%d\n",
2418 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420 /* zero and re-mark descriptors */
2421 while (last != entry) {
2422 cas_rxc_init(rxc + last);
2423 last = RX_COMP_ENTRY(ring, last + 1);
2425 cp->rx_cur[ring] = last;
2428 writel(last, cp->regs + REG_RX_COMP_TAIL);
2429 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2430 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436 * rings 3 and 4 are identical
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device *dev,
2440 struct cas *cp, const u32 status,
2443 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2444 cas_post_rxcs_ringN(dev, cp, ring);
2447 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 struct net_device *dev = dev_id;
2450 struct cas *cp = netdev_priv(dev);
2451 unsigned long flags;
2452 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2453 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455 /* check for shared irq */
2459 spin_lock_irqsave(&cp->lock, flags);
2460 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2463 napi_schedule(&cp->napi);
2465 cas_rx_ringN(cp, ring, 0);
2467 status &= ~INTR_RX_DONE_ALT;
2471 cas_handle_irqN(dev, cp, status, ring);
2472 spin_unlock_irqrestore(&cp->lock, flags);
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 if (status & INTR_RX_BUF_UNAVAIL_1) {
2482 /* Frame arrived, no free RX buffers available.
2483 * NOTE: we can get this on a link transition. */
2484 cas_post_rxds_ringN(cp, 1, 0);
2485 spin_lock(&cp->stat_lock[1]);
2486 cp->net_stats[1].rx_dropped++;
2487 spin_unlock(&cp->stat_lock[1]);
2490 if (status & INTR_RX_BUF_AE_1)
2491 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492 RX_AE_FREEN_VAL(1));
2494 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495 cas_post_rxcs_ringN(cp, 1);
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 struct net_device *dev = dev_id;
2502 struct cas *cp = netdev_priv(dev);
2503 unsigned long flags;
2504 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506 /* check for shared interrupt */
2510 spin_lock_irqsave(&cp->lock, flags);
2511 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2514 napi_schedule(&cp->napi);
2516 cas_rx_ringN(cp, 1, 0);
2518 status &= ~INTR_RX_DONE_ALT;
2521 cas_handle_irq1(cp, status);
2522 spin_unlock_irqrestore(&cp->lock, flags);
2527 static inline void cas_handle_irq(struct net_device *dev,
2528 struct cas *cp, const u32 status)
2530 /* housekeeping interrupts */
2531 if (status & INTR_ERROR_MASK)
2532 cas_abnormal_irq(dev, cp, status);
2534 if (status & INTR_RX_BUF_UNAVAIL) {
2535 /* Frame arrived, no free RX buffers available.
2536 * NOTE: we can get this on a link transition.
2538 cas_post_rxds_ringN(cp, 0, 0);
2539 spin_lock(&cp->stat_lock[0]);
2540 cp->net_stats[0].rx_dropped++;
2541 spin_unlock(&cp->stat_lock[0]);
2542 } else if (status & INTR_RX_BUF_AE) {
2543 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544 RX_AE_FREEN_VAL(0));
2547 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548 cas_post_rxcs_ringN(dev, cp, 0);
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 struct net_device *dev = dev_id;
2554 struct cas *cp = netdev_priv(dev);
2555 unsigned long flags;
2556 u32 status = readl(cp->regs + REG_INTR_STATUS);
2561 spin_lock_irqsave(&cp->lock, flags);
2562 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563 cas_tx(dev, cp, status);
2564 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567 if (status & INTR_RX_DONE) {
2570 napi_schedule(&cp->napi);
2572 cas_rx_ringN(cp, 0, 0);
2574 status &= ~INTR_RX_DONE;
2578 cas_handle_irq(dev, cp, status);
2579 spin_unlock_irqrestore(&cp->lock, flags);
2585 static int cas_poll(struct napi_struct *napi, int budget)
2587 struct cas *cp = container_of(napi, struct cas, napi);
2588 struct net_device *dev = cp->dev;
2589 int i, enable_intr, credits;
2590 u32 status = readl(cp->regs + REG_INTR_STATUS);
2591 unsigned long flags;
2593 spin_lock_irqsave(&cp->lock, flags);
2594 cas_tx(dev, cp, status);
2595 spin_unlock_irqrestore(&cp->lock, flags);
2597 /* NAPI rx packets. we spread the credits across all of the
2600 * to make sure we're fair with the work we loop through each
2601 * ring N_RX_COMP_RING times with a request of
2602 * budget / N_RX_COMP_RINGS
2606 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2608 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610 if (credits >= budget) {
2618 /* final rx completion */
2619 spin_lock_irqsave(&cp->lock, flags);
2621 cas_handle_irq(dev, cp, status);
2624 if (N_RX_COMP_RINGS > 1) {
2625 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2627 cas_handle_irq1(dev, cp, status);
2632 if (N_RX_COMP_RINGS > 2) {
2633 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2635 cas_handle_irqN(dev, cp, status, 2);
2640 if (N_RX_COMP_RINGS > 3) {
2641 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2643 cas_handle_irqN(dev, cp, status, 3);
2646 spin_unlock_irqrestore(&cp->lock, flags);
2648 napi_complete(napi);
2649 cas_unmask_intr(cp);
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2658 struct cas *cp = netdev_priv(dev);
2660 cas_disable_irq(cp, 0);
2661 cas_interrupt(cp->pdev->irq, dev);
2662 cas_enable_irq(cp, 0);
2665 if (N_RX_COMP_RINGS > 1) {
2666 /* cas_interrupt1(); */
2670 if (N_RX_COMP_RINGS > 2) {
2671 /* cas_interruptN(); */
2675 if (N_RX_COMP_RINGS > 3) {
2676 /* cas_interruptN(); */
2682 static void cas_tx_timeout(struct net_device *dev)
2684 struct cas *cp = netdev_priv(dev);
2686 netdev_err(dev, "transmit timed out, resetting\n");
2687 if (!cp->hw_running) {
2688 netdev_err(dev, "hrm.. hw not running!\n");
2692 netdev_err(dev, "MIF_STATE[%08x]\n",
2693 readl(cp->regs + REG_MIF_STATE_MACHINE));
2695 netdev_err(dev, "MAC_STATE[%08x]\n",
2696 readl(cp->regs + REG_MAC_STATE_MACHINE));
2698 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699 readl(cp->regs + REG_TX_CFG),
2700 readl(cp->regs + REG_MAC_TX_STATUS),
2701 readl(cp->regs + REG_MAC_TX_CFG),
2702 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2703 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2704 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2705 readl(cp->regs + REG_TX_SM_1),
2706 readl(cp->regs + REG_TX_SM_2));
2708 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2709 readl(cp->regs + REG_RX_CFG),
2710 readl(cp->regs + REG_MAC_RX_STATUS),
2711 readl(cp->regs + REG_MAC_RX_CFG));
2713 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 readl(cp->regs + REG_HP_STATE_MACHINE),
2715 readl(cp->regs + REG_HP_STATUS0),
2716 readl(cp->regs + REG_HP_STATUS1),
2717 readl(cp->regs + REG_HP_STATUS2));
2720 atomic_inc(&cp->reset_task_pending);
2721 atomic_inc(&cp->reset_task_pending_all);
2722 schedule_work(&cp->reset_task);
2724 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 schedule_work(&cp->reset_task);
2729 static inline int cas_intme(int ring, int entry)
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 dma_addr_t mapping, int len, u64 ctrl, int last)
2741 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 if (cas_intme(ring, entry))
2745 ctrl |= TX_DESC_INTME;
2747 ctrl |= TX_DESC_EOF;
2748 txd->control = cpu_to_le64(ctrl);
2749 txd->buffer = cpu_to_le64(mapping);
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2755 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759 const int entry, const int tentry)
2761 cp->tx_tiny_use[ring][tentry].nbufs++;
2762 cp->tx_tiny_use[ring][entry].used = 1;
2763 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767 struct sk_buff *skb)
2769 struct net_device *dev = cp->dev;
2770 int entry, nr_frags, frag, tabort, tentry;
2772 unsigned long flags;
2776 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778 /* This is a hard error, log it. */
2779 if (TX_BUFFS_AVAIL(cp, ring) <=
2780 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 netif_stop_queue(dev);
2782 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 const u64 csum_start_off = skb_checksum_start_offset(skb);
2790 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2792 ctrl = TX_DESC_CSUM_EN |
2793 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2794 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2797 entry = cp->tx_new[ring];
2798 cp->tx_skbs[ring][entry] = skb;
2800 nr_frags = skb_shinfo(skb)->nr_frags;
2801 len = skb_headlen(skb);
2802 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2803 offset_in_page(skb->data), len,
2807 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2808 if (unlikely(tabort)) {
2809 /* NOTE: len is always > tabort */
2810 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811 ctrl | TX_DESC_SOF, 0);
2812 entry = TX_DESC_NEXT(ring, entry);
2814 skb_copy_from_linear_data_offset(skb, len - tabort,
2815 tx_tiny_buf(cp, ring, entry), tabort);
2816 mapping = tx_tiny_map(cp, ring, entry, tentry);
2817 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2820 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2821 TX_DESC_SOF, (nr_frags == 0));
2823 entry = TX_DESC_NEXT(ring, entry);
2825 for (frag = 0; frag < nr_frags; frag++) {
2826 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828 len = skb_frag_size(fragp);
2829 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2832 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2833 if (unlikely(tabort)) {
2836 /* NOTE: len is always > tabort */
2837 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2839 entry = TX_DESC_NEXT(ring, entry);
2841 addr = cas_page_map(skb_frag_page(fragp));
2842 memcpy(tx_tiny_buf(cp, ring, entry),
2843 addr + fragp->page_offset + len - tabort,
2845 cas_page_unmap(addr);
2846 mapping = tx_tiny_map(cp, ring, entry, tentry);
2850 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2851 (frag + 1 == nr_frags));
2852 entry = TX_DESC_NEXT(ring, entry);
2855 cp->tx_new[ring] = entry;
2856 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2857 netif_stop_queue(dev);
2859 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2860 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2862 writel(entry, cp->regs + REG_TX_KICKN(ring));
2863 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2867 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2869 struct cas *cp = netdev_priv(dev);
2871 /* this is only used as a load-balancing hint, so it doesn't
2872 * need to be SMP safe
2876 if (skb_padto(skb, cp->min_frame_size))
2877 return NETDEV_TX_OK;
2879 /* XXX: we need some higher-level QoS hooks to steer packets to
2880 * individual queues.
2882 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2883 return NETDEV_TX_BUSY;
2884 return NETDEV_TX_OK;
2887 static void cas_init_tx_dma(struct cas *cp)
2889 u64 desc_dma = cp->block_dvma;
2894 /* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896 off = offsetof(struct cas_init_block, tx_compwb);
2897 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2898 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2901 /* enable completion writebacks, enable paced mode,
2902 * disable read pipe, and disable pre-interrupt compwbs
2904 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2905 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2906 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2907 TX_CFG_INTR_COMPWB_DIS;
2909 /* write out tx ring info and tx desc bases */
2910 for (i = 0; i < MAX_TX_RINGS; i++) {
2911 off = (unsigned long) cp->init_txds[i] -
2912 (unsigned long) cp->init_block;
2914 val |= CAS_TX_RINGN_BASE(i);
2915 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2916 writel((desc_dma + off) & 0xffffffff, cp->regs +
2918 /* don't zero out the kick register here as the system
2922 writel(val, cp->regs + REG_TX_CFG);
2924 /* program max burst sizes. these numbers should be different
2928 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2929 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2930 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2931 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2935 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2936 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas *cp)
2943 cas_init_tx_dma(cp);
2944 cas_init_rx_dma(cp);
2947 static void cas_process_mc_list(struct cas *cp)
2951 struct netdev_hw_addr *ha;
2954 memset(hash_table, 0, sizeof(hash_table));
2955 netdev_for_each_mc_addr(ha, cp->dev) {
2956 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2957 /* use the alternate mac address registers for the
2958 * first 15 multicast addresses
2960 writel((ha->addr[4] << 8) | ha->addr[5],
2961 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2962 writel((ha->addr[2] << 8) | ha->addr[3],
2963 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2964 writel((ha->addr[0] << 8) | ha->addr[1],
2965 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2969 /* use hw hash table for the next series of
2970 * multicast addresses
2972 crc = ether_crc_le(ETH_ALEN, ha->addr);
2974 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2977 for (i = 0; i < 16; i++)
2978 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2987 if (cp->dev->flags & IFF_PROMISC) {
2988 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990 } else if (cp->dev->flags & IFF_ALLMULTI) {
2991 for (i=0; i < 16; i++)
2992 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996 cas_process_mc_list(cp);
2997 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas *cp)
3006 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3007 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3008 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3009 writel(0, cp->regs + REG_MAC_COLL_LATE);
3010 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3011 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3012 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3013 writel(0, cp->regs + REG_MAC_LEN_ERR);
3014 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3015 writel(0, cp->regs + REG_MAC_FCS_ERR);
3016 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3020 static void cas_mac_reset(struct cas *cp)
3024 /* do both TX and RX reset */
3025 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3026 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3031 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3039 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3044 if (readl(cp->regs + REG_MAC_TX_RESET) |
3045 readl(cp->regs + REG_MAC_RX_RESET))
3046 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047 readl(cp->regs + REG_MAC_TX_RESET),
3048 readl(cp->regs + REG_MAC_RX_RESET),
3049 readl(cp->regs + REG_MAC_STATE_MACHINE));
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas *cp)
3056 unsigned char *e = &cp->dev->dev_addr[0];
3060 /* setup core arbitration weight register */
3061 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3063 /* XXX Use pci_dma_burst_advice() */
3064 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3065 /* set the infinite burst register for chips that don't have
3068 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3069 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3072 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3074 writel(0x00, cp->regs + REG_MAC_IPG0);
3075 writel(0x08, cp->regs + REG_MAC_IPG1);
3076 writel(0x04, cp->regs + REG_MAC_IPG2);
3078 /* change later for 802.3z */
3079 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3081 /* min frame + FCS */
3082 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3084 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3085 * specify the maximum frame size to prevent RX tag errors on
3088 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3089 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3090 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3091 cp->regs + REG_MAC_FRAMESIZE_MAX);
3093 /* NOTE: crc_size is used as a surrogate for half-duplex.
3094 * workaround saturn half-duplex issue by increasing preamble
3097 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3098 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3100 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3101 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3102 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3103 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3105 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3113 /* setup mac address in perfect filter array */
3114 for (i = 0; i < 45; i++)
3115 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3117 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3118 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3119 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3121 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3122 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3123 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3125 cp->mac_rx_cfg = cas_setup_multicast(cp);
3127 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3128 cas_clear_mac_err(cp);
3129 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3131 /* Setup MAC interrupts. We want to get all of the interesting
3132 * counter expiration events, but we do not want to hear about
3133 * normal rx/tx as the DMA engine tells us that.
3135 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3136 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3138 /* Don't enable even the PAUSE interrupts for now, we
3139 * make no use of those events other than to record them.
3141 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3144 /* Must be invoked under cp->lock. */
3145 static void cas_init_pause_thresholds(struct cas *cp)
3147 /* Calculate pause thresholds. Setting the OFF threshold to the
3148 * full RX fifo size effectively disables PAUSE generation
3150 if (cp->rx_fifo_size <= (2 * 1024)) {
3151 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3153 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3154 if (max_frame * 3 > cp->rx_fifo_size) {
3155 cp->rx_pause_off = 7104;
3156 cp->rx_pause_on = 960;
3158 int off = (cp->rx_fifo_size - (max_frame * 2));
3159 int on = off - max_frame;
3160 cp->rx_pause_off = off;
3161 cp->rx_pause_on = on;
3166 static int cas_vpd_match(const void __iomem *p, const char *str)
3168 int len = strlen(str) + 1;
3171 for (i = 0; i < len; i++) {
3172 if (readb(p + i) != str[i])
3179 /* get the mac address by reading the vpd information in the rom.
3180 * also get the phy type and determine if there's an entropy generator.
3181 * NOTE: this is a bit convoluted for the following reasons:
3182 * 1) vpd info has order-dependent mac addresses for multinic cards
3183 * 2) the only way to determine the nic order is to use the slot
3185 * 3) fiber cards don't have bridges, so their slot numbers don't
3187 * 4) we don't actually know we have a fiber card until after
3188 * the mac addresses are parsed.
3190 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3193 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3194 void __iomem *base, *kstart;
3197 #define VPD_FOUND_MAC 0x01
3198 #define VPD_FOUND_PHY 0x02
3200 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3203 #if defined(CONFIG_SPARC)
3204 const unsigned char *addr;
3207 /* give us access to the PROM */
3208 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3209 cp->regs + REG_BIM_LOCAL_DEV_EN);
3211 /* check for an expansion rom */
3212 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3213 goto use_random_mac_addr;
3215 /* search for beginning of vpd */
3217 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3218 /* check for PCIR */
3219 if ((readb(p + i + 0) == 0x50) &&
3220 (readb(p + i + 1) == 0x43) &&
3221 (readb(p + i + 2) == 0x49) &&
3222 (readb(p + i + 3) == 0x52)) {
3223 base = p + (readb(p + i + 8) |
3224 (readb(p + i + 9) << 8));
3229 if (!base || (readb(base) != 0x82))
3230 goto use_random_mac_addr;
3232 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3233 while (i < EXPANSION_ROM_SIZE) {
3234 if (readb(base + i) != 0x90) /* no vpd found */
3235 goto use_random_mac_addr;
3237 /* found a vpd field */
3238 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3240 /* extract keywords */
3241 kstart = base + i + 3;
3243 while ((p - kstart) < len) {
3244 int klen = readb(p + 2);
3250 /* look for the following things:
3251 * -- correct length == 29
3252 * 3 (type) + 2 (size) +
3253 * 18 (strlen("local-mac-address") + 1) +
3255 * -- VPD Instance 'I'
3256 * -- VPD Type Bytes 'B'
3257 * -- VPD data length == 6
3258 * -- property string == local-mac-address
3260 * -- correct length == 24
3261 * 3 (type) + 2 (size) +
3262 * 12 (strlen("entropy-dev") + 1) +
3263 * 7 (strlen("vms110") + 1)
3264 * -- VPD Instance 'I'
3265 * -- VPD Type String 'B'
3266 * -- VPD data length == 7
3267 * -- property string == entropy-dev
3269 * -- correct length == 18
3270 * 3 (type) + 2 (size) +
3271 * 9 (strlen("phy-type") + 1) +
3272 * 4 (strlen("pcs") + 1)
3273 * -- VPD Instance 'I'
3274 * -- VPD Type String 'S'
3275 * -- VPD data length == 4
3276 * -- property string == phy-type
3278 * -- correct length == 23
3279 * 3 (type) + 2 (size) +
3280 * 14 (strlen("phy-interface") + 1) +
3281 * 4 (strlen("pcs") + 1)
3282 * -- VPD Instance 'I'
3283 * -- VPD Type String 'S'
3284 * -- VPD data length == 4
3285 * -- property string == phy-interface
3287 if (readb(p) != 'I')
3290 /* finally, check string and length */
3291 type = readb(p + 3);
3293 if ((klen == 29) && readb(p + 4) == 6 &&
3294 cas_vpd_match(p + 5,
3295 "local-mac-address")) {
3296 if (mac_off++ > offset)
3299 /* set mac address */
3300 for (j = 0; j < 6; j++)
3310 #ifdef USE_ENTROPY_DEV
3312 cas_vpd_match(p + 5, "entropy-dev") &&
3313 cas_vpd_match(p + 17, "vms110")) {
3314 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3319 if (found & VPD_FOUND_PHY)
3322 if ((klen == 18) && readb(p + 4) == 4 &&
3323 cas_vpd_match(p + 5, "phy-type")) {
3324 if (cas_vpd_match(p + 14, "pcs")) {
3325 phy_type = CAS_PHY_SERDES;
3330 if ((klen == 23) && readb(p + 4) == 4 &&
3331 cas_vpd_match(p + 5, "phy-interface")) {
3332 if (cas_vpd_match(p + 19, "pcs")) {
3333 phy_type = CAS_PHY_SERDES;
3338 found |= VPD_FOUND_MAC;
3342 found |= VPD_FOUND_PHY;
3350 use_random_mac_addr:
3351 if (found & VPD_FOUND_MAC)
3354 #if defined(CONFIG_SPARC)
3355 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3357 memcpy(dev_addr, addr, 6);
3362 /* Sun MAC prefix then 3 random bytes. */
3363 pr_info("MAC address not found in ROM VPD\n");
3367 get_random_bytes(dev_addr + 3, 3);
3370 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3374 /* check pci invariants */
3375 static void cas_check_pci_invariants(struct cas *cp)
3377 struct pci_dev *pdev = cp->pdev;
3380 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3381 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3382 if (pdev->revision >= CAS_ID_REVPLUS)
3383 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3384 if (pdev->revision < CAS_ID_REVPLUS02u)
3385 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3387 /* Original Cassini supports HW CSUM, but it's not
3388 * enabled by default as it can trigger TX hangs.
3390 if (pdev->revision < CAS_ID_REV2)
3391 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3393 /* Only sun has original cassini chips. */
3394 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3396 /* We use a flag because the same phy might be externally
3399 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3400 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3401 cp->cas_flags |= CAS_FLAG_SATURN;
3406 static int cas_check_invariants(struct cas *cp)
3408 struct pci_dev *pdev = cp->pdev;
3412 /* get page size for rx buffers. */
3414 #ifdef USE_PAGE_ORDER
3415 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3416 /* see if we can allocate larger pages */
3417 struct page *page = alloc_pages(GFP_ATOMIC,
3418 CAS_JUMBO_PAGE_SHIFT -
3421 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3422 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3424 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3428 cp->page_size = (PAGE_SIZE << cp->page_order);
3430 /* Fetch the FIFO configurations. */
3431 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3432 cp->rx_fifo_size = RX_FIFO_SIZE;
3434 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3435 * they're both connected.
3437 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3438 PCI_SLOT(pdev->devfn));
3439 if (cp->phy_type & CAS_PHY_SERDES) {
3440 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3441 return 0; /* no more checking needed */
3445 cfg = readl(cp->regs + REG_MIF_CFG);
3446 if (cfg & MIF_CFG_MDIO_1) {
3447 cp->phy_type = CAS_PHY_MII_MDIO1;
3448 } else if (cfg & MIF_CFG_MDIO_0) {
3449 cp->phy_type = CAS_PHY_MII_MDIO0;
3452 cas_mif_poll(cp, 0);
3453 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3455 for (i = 0; i < 32; i++) {
3459 for (j = 0; j < 3; j++) {
3461 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3462 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3463 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3464 cp->phy_id = phy_id;
3469 pr_err("MII phy did not respond [%08x]\n",
3470 readl(cp->regs + REG_MIF_STATE_MACHINE));
3474 /* see if we can do gigabit */
3475 cfg = cas_phy_read(cp, MII_BMSR);
3476 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3477 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3478 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3482 /* Must be invoked under cp->lock. */
3483 static inline void cas_start_dma(struct cas *cp)
3490 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3491 writel(val, cp->regs + REG_TX_CFG);
3492 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3493 writel(val, cp->regs + REG_RX_CFG);
3495 /* enable the mac */
3496 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3497 writel(val, cp->regs + REG_MAC_TX_CFG);
3498 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3499 writel(val, cp->regs + REG_MAC_RX_CFG);
3503 val = readl(cp->regs + REG_MAC_TX_CFG);
3504 if ((val & MAC_TX_CFG_EN))
3508 if (i < 0) txfailed = 1;
3511 val = readl(cp->regs + REG_MAC_RX_CFG);
3512 if ((val & MAC_RX_CFG_EN)) {
3515 "enabling mac failed [tx:%08x:%08x]\n",
3516 readl(cp->regs + REG_MIF_STATE_MACHINE),
3517 readl(cp->regs + REG_MAC_STATE_MACHINE));
3519 goto enable_rx_done;
3523 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3524 (txfailed ? "tx,rx" : "rx"),
3525 readl(cp->regs + REG_MIF_STATE_MACHINE),
3526 readl(cp->regs + REG_MAC_STATE_MACHINE));
3529 cas_unmask_intr(cp); /* enable interrupts */
3530 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3531 writel(0, cp->regs + REG_RX_COMP_TAIL);
3533 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3534 if (N_RX_DESC_RINGS > 1)
3535 writel(RX_DESC_RINGN_SIZE(1) - 4,
3536 cp->regs + REG_PLUS_RX_KICK1);
3538 for (i = 1; i < N_RX_COMP_RINGS; i++)
3539 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3543 /* Must be invoked under cp->lock. */
3544 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3547 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3548 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3549 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3550 if (val & PCS_MII_LPA_ASYM_PAUSE)
3555 /* Must be invoked under cp->lock. */
3556 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3565 /* use GMII registers */
3566 val = cas_phy_read(cp, MII_LPA);
3567 if (val & CAS_LPA_PAUSE)
3570 if (val & CAS_LPA_ASYM_PAUSE)
3573 if (val & LPA_DUPLEX)
3578 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3579 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3580 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3582 if (val & CAS_LPA_1000FULL)
3587 /* A link-up condition has occurred, initialize and enable the
3590 * Must be invoked under cp->lock.
3592 static void cas_set_link_modes(struct cas *cp)
3595 int full_duplex, speed, pause;
3601 if (CAS_PHY_MII(cp->phy_type)) {
3602 cas_mif_poll(cp, 0);
3603 val = cas_phy_read(cp, MII_BMCR);
3604 if (val & BMCR_ANENABLE) {
3605 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3608 if (val & BMCR_FULLDPLX)
3611 if (val & BMCR_SPEED100)
3613 else if (val & CAS_BMCR_SPEED1000)
3614 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3617 cas_mif_poll(cp, 1);
3620 val = readl(cp->regs + REG_PCS_MII_CTRL);
3621 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3622 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3623 if (val & PCS_MII_CTRL_DUPLEX)
3628 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3629 speed, full_duplex ? "full" : "half");
3631 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3632 if (CAS_PHY_MII(cp->phy_type)) {
3633 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3635 val |= MAC_XIF_DISABLE_ECHO;
3638 val |= MAC_XIF_FDPLX_LED;
3640 val |= MAC_XIF_GMII_MODE;
3641 writel(val, cp->regs + REG_MAC_XIF_CFG);
3643 /* deal with carrier and collision detect. */
3644 val = MAC_TX_CFG_IPG_EN;
3646 val |= MAC_TX_CFG_IGNORE_CARRIER;
3647 val |= MAC_TX_CFG_IGNORE_COLL;
3649 #ifndef USE_CSMA_CD_PROTO
3650 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3651 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3654 /* val now set up for REG_MAC_TX_CFG */
3656 /* If gigabit and half-duplex, enable carrier extension
3657 * mode. increase slot time to 512 bytes as well.
3658 * else, disable it and make sure slot time is 64 bytes.
3659 * also activate checksum bug workaround
3661 if ((speed == 1000) && !full_duplex) {
3662 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3663 cp->regs + REG_MAC_TX_CFG);
3665 val = readl(cp->regs + REG_MAC_RX_CFG);
3666 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3667 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3668 cp->regs + REG_MAC_RX_CFG);
3670 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3673 /* minimum size gigabit frame at half duplex */
3674 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3677 writel(val, cp->regs + REG_MAC_TX_CFG);
3679 /* checksum bug workaround. don't strip FCS when in
3682 val = readl(cp->regs + REG_MAC_RX_CFG);
3684 val |= MAC_RX_CFG_STRIP_FCS;
3686 cp->min_frame_size = CAS_MIN_MTU;
3688 val &= ~MAC_RX_CFG_STRIP_FCS;
3690 cp->min_frame_size = CAS_MIN_FRAME;
3692 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3693 cp->regs + REG_MAC_RX_CFG);
3694 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3697 if (netif_msg_link(cp)) {
3699 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3703 } else if (pause & 0x10) {
3704 netdev_info(cp->dev, "TX pause enabled\n");
3706 netdev_info(cp->dev, "Pause is disabled\n");
3710 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3711 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3712 if (pause) { /* symmetric or asymmetric pause */
3713 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3714 if (pause & 0x01) { /* symmetric pause */
3715 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3718 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3722 /* Must be invoked under cp->lock. */
3723 static void cas_init_hw(struct cas *cp, int restart_link)
3728 cas_init_pause_thresholds(cp);
3733 /* Default aneg parameters */
3734 cp->timer_ticks = 0;
3735 cas_begin_auto_negotiation(cp, NULL);
3736 } else if (cp->lstate == link_up) {
3737 cas_set_link_modes(cp);
3738 netif_carrier_on(cp->dev);
3742 /* Must be invoked under cp->lock. on earlier cassini boards,
3743 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3744 * let it settle out, and then restore pci state.
3746 static void cas_hard_reset(struct cas *cp)
3748 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3750 pci_restore_state(cp->pdev);
3754 static void cas_global_reset(struct cas *cp, int blkflag)
3758 /* issue a global reset. don't use RSTOUT. */
3759 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3760 /* For PCS, when the blkflag is set, we should set the
3761 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3762 * the last autonegotiation from being cleared. We'll
3763 * need some special handling if the chip is set into a
3766 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3767 cp->regs + REG_SW_RESET);
3769 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3772 /* need to wait at least 3ms before polling register */
3776 while (limit-- > 0) {
3777 u32 val = readl(cp->regs + REG_SW_RESET);
3778 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3782 netdev_err(cp->dev, "sw reset failed\n");
3785 /* enable various BIM interrupts */
3786 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3787 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3789 /* clear out pci error status mask for handled errors.
3790 * we don't deal with DMA counter overflows as they happen
3793 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3794 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3795 PCI_ERR_BIM_DMA_READ), cp->regs +
3796 REG_PCI_ERR_STATUS_MASK);
3798 /* set up for MII by default to address mac rx reset timeout
3801 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3804 static void cas_reset(struct cas *cp, int blkflag)
3809 cas_global_reset(cp, blkflag);
3811 cas_entropy_reset(cp);
3813 /* disable dma engines. */
3814 val = readl(cp->regs + REG_TX_CFG);
3815 val &= ~TX_CFG_DMA_EN;
3816 writel(val, cp->regs + REG_TX_CFG);
3818 val = readl(cp->regs + REG_RX_CFG);
3819 val &= ~RX_CFG_DMA_EN;
3820 writel(val, cp->regs + REG_RX_CFG);
3822 /* program header parser */
3823 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3824 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3825 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3827 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3830 /* clear out error registers */
3831 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3832 cas_clear_mac_err(cp);
3833 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3836 /* Shut down the chip, must be called with pm_mutex held. */
3837 static void cas_shutdown(struct cas *cp)
3839 unsigned long flags;
3841 /* Make us not-running to avoid timers respawning */
3844 del_timer_sync(&cp->link_timer);
3846 /* Stop the reset task */
3848 while (atomic_read(&cp->reset_task_pending_mtu) ||
3849 atomic_read(&cp->reset_task_pending_spare) ||
3850 atomic_read(&cp->reset_task_pending_all))
3854 while (atomic_read(&cp->reset_task_pending))
3857 /* Actually stop the chip */
3858 cas_lock_all_save(cp, flags);
3860 if (cp->cas_flags & CAS_FLAG_SATURN)
3861 cas_phy_powerdown(cp);
3862 cas_unlock_all_restore(cp, flags);
3865 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3867 struct cas *cp = netdev_priv(dev);
3869 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3873 if (!netif_running(dev) || !netif_device_present(dev))
3876 /* let the reset task handle it */
3878 atomic_inc(&cp->reset_task_pending);
3879 if ((cp->phy_type & CAS_PHY_SERDES)) {
3880 atomic_inc(&cp->reset_task_pending_all);
3882 atomic_inc(&cp->reset_task_pending_mtu);
3884 schedule_work(&cp->reset_task);
3886 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3887 CAS_RESET_ALL : CAS_RESET_MTU);
3888 pr_err("reset called in cas_change_mtu\n");
3889 schedule_work(&cp->reset_task);
3892 flush_work(&cp->reset_task);
3896 static void cas_clean_txd(struct cas *cp, int ring)
3898 struct cas_tx_desc *txd = cp->init_txds[ring];
3899 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3903 size = TX_DESC_RINGN_SIZE(ring);
3904 for (i = 0; i < size; i++) {
3907 if (skbs[i] == NULL)
3913 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3914 int ent = i & (size - 1);
3916 /* first buffer is never a tiny buffer and so
3917 * needs to be unmapped.
3919 daddr = le64_to_cpu(txd[ent].buffer);
3920 dlen = CAS_VAL(TX_DESC_BUFLEN,
3921 le64_to_cpu(txd[ent].control));
3922 pci_unmap_page(cp->pdev, daddr, dlen,
3925 if (frag != skb_shinfo(skb)->nr_frags) {
3928 /* next buffer might by a tiny buffer.
3931 ent = i & (size - 1);
3932 if (cp->tx_tiny_use[ring][ent].used)
3936 dev_kfree_skb_any(skb);
3939 /* zero out tiny buf usage */
3940 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3943 /* freed on close */
3944 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3946 cas_page_t **page = cp->rx_pages[ring];
3949 size = RX_DESC_RINGN_SIZE(ring);
3950 for (i = 0; i < size; i++) {
3952 cas_page_free(cp, page[i]);
3958 static void cas_free_rxds(struct cas *cp)
3962 for (i = 0; i < N_RX_DESC_RINGS; i++)
3963 cas_free_rx_desc(cp, i);
3966 /* Must be invoked under cp->lock. */
3967 static void cas_clean_rings(struct cas *cp)
3971 /* need to clean all tx rings */
3972 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3973 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3974 for (i = 0; i < N_TX_RINGS; i++)
3975 cas_clean_txd(cp, i);
3977 /* zero out init block */
3978 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3983 /* allocated on open */
3984 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3986 cas_page_t **page = cp->rx_pages[ring];
3989 size = RX_DESC_RINGN_SIZE(ring);
3990 for (i = 0; i < size; i++) {
3991 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3997 static int cas_alloc_rxds(struct cas *cp)
4001 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4002 if (cas_alloc_rx_desc(cp, i) < 0) {
4010 static void cas_reset_task(struct work_struct *work)
4012 struct cas *cp = container_of(work, struct cas, reset_task);
4014 int pending = atomic_read(&cp->reset_task_pending);
4016 int pending_all = atomic_read(&cp->reset_task_pending_all);
4017 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4018 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4020 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4021 /* We can have more tasks scheduled than actually
4024 atomic_dec(&cp->reset_task_pending);
4028 /* The link went down, we reset the ring, but keep
4029 * DMA stopped. Use this function for reset
4032 if (cp->hw_running) {
4033 unsigned long flags;
4035 /* Make sure we don't get interrupts or tx packets */
4036 netif_device_detach(cp->dev);
4037 cas_lock_all_save(cp, flags);
4040 /* We call cas_spare_recover when we call cas_open.
4041 * but we do not initialize the lists cas_spare_recover
4042 * uses until cas_open is called.
4044 cas_spare_recover(cp, GFP_ATOMIC);
4047 /* test => only pending_spare set */
4048 if (!pending_all && !pending_mtu)
4051 if (pending == CAS_RESET_SPARE)
4054 /* when pending == CAS_RESET_ALL, the following
4055 * call to cas_init_hw will restart auto negotiation.
4056 * Setting the second argument of cas_reset to
4057 * !(pending == CAS_RESET_ALL) will set this argument
4058 * to 1 (avoiding reinitializing the PHY for the normal
4059 * PCS case) when auto negotiation is not restarted.
4062 cas_reset(cp, !(pending_all > 0));
4064 cas_clean_rings(cp);
4065 cas_init_hw(cp, (pending_all > 0));
4067 cas_reset(cp, !(pending == CAS_RESET_ALL));
4069 cas_clean_rings(cp);
4070 cas_init_hw(cp, pending == CAS_RESET_ALL);
4074 cas_unlock_all_restore(cp, flags);
4075 netif_device_attach(cp->dev);
4078 atomic_sub(pending_all, &cp->reset_task_pending_all);
4079 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4080 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4081 atomic_dec(&cp->reset_task_pending);
4083 atomic_set(&cp->reset_task_pending, 0);
4087 static void cas_link_timer(unsigned long data)
4089 struct cas *cp = (struct cas *) data;
4090 int mask, pending = 0, reset = 0;
4091 unsigned long flags;
4093 if (link_transition_timeout != 0 &&
4094 cp->link_transition_jiffies_valid &&
4095 ((jiffies - cp->link_transition_jiffies) >
4096 (link_transition_timeout))) {
4097 /* One-second counter so link-down workaround doesn't
4098 * cause resets to occur so fast as to fool the switch
4099 * into thinking the link is down.
4101 cp->link_transition_jiffies_valid = 0;
4104 if (!cp->hw_running)
4107 spin_lock_irqsave(&cp->lock, flags);
4109 cas_entropy_gather(cp);
4111 /* If the link task is still pending, we just
4112 * reschedule the link timer
4115 if (atomic_read(&cp->reset_task_pending_all) ||
4116 atomic_read(&cp->reset_task_pending_spare) ||
4117 atomic_read(&cp->reset_task_pending_mtu))
4120 if (atomic_read(&cp->reset_task_pending))
4124 /* check for rx cleaning */
4125 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4128 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4129 rmask = CAS_FLAG_RXD_POST(i);
4130 if ((mask & rmask) == 0)
4133 /* post_rxds will do a mod_timer */
4134 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4138 cp->cas_flags &= ~rmask;
4142 if (CAS_PHY_MII(cp->phy_type)) {
4144 cas_mif_poll(cp, 0);
4145 bmsr = cas_phy_read(cp, MII_BMSR);
4146 /* WTZ: Solaris driver reads this twice, but that
4147 * may be due to the PCS case and the use of a
4148 * common implementation. Read it twice here to be
4151 bmsr = cas_phy_read(cp, MII_BMSR);
4152 cas_mif_poll(cp, 1);
4153 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4154 reset = cas_mii_link_check(cp, bmsr);
4156 reset = cas_pcs_link_check(cp);
4162 /* check for tx state machine confusion */
4163 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4164 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4166 int tlm = CAS_VAL(MAC_SM_TLM, val);
4168 if (((tlm == 0x5) || (tlm == 0x3)) &&
4169 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4170 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4171 "tx err: MAC_STATE[%08x]\n", val);
4176 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4177 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4178 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4179 if ((val == 0) && (wptr != rptr)) {
4180 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4181 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4193 atomic_inc(&cp->reset_task_pending);
4194 atomic_inc(&cp->reset_task_pending_all);
4195 schedule_work(&cp->reset_task);
4197 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4198 pr_err("reset called in cas_link_timer\n");
4199 schedule_work(&cp->reset_task);
4204 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4206 spin_unlock_irqrestore(&cp->lock, flags);
4209 /* tiny buffers are used to avoid target abort issues with
4212 static void cas_tx_tiny_free(struct cas *cp)
4214 struct pci_dev *pdev = cp->pdev;
4217 for (i = 0; i < N_TX_RINGS; i++) {
4218 if (!cp->tx_tiny_bufs[i])
4221 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4222 cp->tx_tiny_bufs[i],
4223 cp->tx_tiny_dvma[i]);
4224 cp->tx_tiny_bufs[i] = NULL;
4228 static int cas_tx_tiny_alloc(struct cas *cp)
4230 struct pci_dev *pdev = cp->pdev;
4233 for (i = 0; i < N_TX_RINGS; i++) {
4234 cp->tx_tiny_bufs[i] =
4235 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4236 &cp->tx_tiny_dvma[i]);
4237 if (!cp->tx_tiny_bufs[i]) {
4238 cas_tx_tiny_free(cp);
4246 static int cas_open(struct net_device *dev)
4248 struct cas *cp = netdev_priv(dev);
4250 unsigned long flags;
4252 mutex_lock(&cp->pm_mutex);
4254 hw_was_up = cp->hw_running;
4256 /* The power-management mutex protects the hw_running
4257 * etc. state so it is safe to do this bit without cp->lock
4259 if (!cp->hw_running) {
4260 /* Reset the chip */
4261 cas_lock_all_save(cp, flags);
4262 /* We set the second arg to cas_reset to zero
4263 * because cas_init_hw below will have its second
4264 * argument set to non-zero, which will force
4265 * autonegotiation to start.
4269 cas_unlock_all_restore(cp, flags);
4273 if (cas_tx_tiny_alloc(cp) < 0)
4276 /* alloc rx descriptors */
4277 if (cas_alloc_rxds(cp) < 0)
4280 /* allocate spares */
4282 cas_spare_recover(cp, GFP_KERNEL);
4284 /* We can now request the interrupt as we know it's masked
4285 * on the controller. cassini+ has up to 4 interrupts
4286 * that can be used, but you need to do explicit pci interrupt
4287 * mapping to expose them
4289 if (request_irq(cp->pdev->irq, cas_interrupt,
4290 IRQF_SHARED, dev->name, (void *) dev)) {
4291 netdev_err(cp->dev, "failed to request irq !\n");
4297 napi_enable(&cp->napi);
4300 cas_lock_all_save(cp, flags);
4301 cas_clean_rings(cp);
4302 cas_init_hw(cp, !hw_was_up);
4304 cas_unlock_all_restore(cp, flags);
4306 netif_start_queue(dev);
4307 mutex_unlock(&cp->pm_mutex);
4314 cas_tx_tiny_free(cp);
4316 mutex_unlock(&cp->pm_mutex);
4320 static int cas_close(struct net_device *dev)
4322 unsigned long flags;
4323 struct cas *cp = netdev_priv(dev);
4326 napi_disable(&cp->napi);
4328 /* Make sure we don't get distracted by suspend/resume */
4329 mutex_lock(&cp->pm_mutex);
4331 netif_stop_queue(dev);
4333 /* Stop traffic, mark us closed */
4334 cas_lock_all_save(cp, flags);
4338 cas_begin_auto_negotiation(cp, NULL);
4339 cas_clean_rings(cp);
4340 cas_unlock_all_restore(cp, flags);
4342 free_irq(cp->pdev->irq, (void *) dev);
4345 cas_tx_tiny_free(cp);
4346 mutex_unlock(&cp->pm_mutex);
4351 const char name[ETH_GSTRING_LEN];
4352 } ethtool_cassini_statnames[] = {
4359 {"rx_frame_errors"},
4360 {"rx_length_errors"},
4363 {"tx_aborted_errors"},
4370 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4373 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4374 } ethtool_register_table[] = {
4389 {REG_PCS_MII_STATUS},
4390 {REG_PCS_STATE_MACHINE},
4391 {REG_MAC_COLL_EXCESS},
4394 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4395 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4397 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4401 unsigned long flags;
4403 spin_lock_irqsave(&cp->lock, flags);
4404 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4407 if (ethtool_register_table[i].offsets < 0) {
4408 hval = cas_phy_read(cp,
4409 -ethtool_register_table[i].offsets);
4412 val= readl(cp->regs+ethtool_register_table[i].offsets);
4414 memcpy(p, (u8 *)&val, sizeof(u32));
4416 spin_unlock_irqrestore(&cp->lock, flags);
4419 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4421 struct cas *cp = netdev_priv(dev);
4422 struct net_device_stats *stats = cp->net_stats;
4423 unsigned long flags;
4427 /* we collate all of the stats into net_stats[N_TX_RING] */
4428 if (!cp->hw_running)
4429 return stats + N_TX_RINGS;
4431 /* collect outstanding stats */
4432 /* WTZ: the Cassini spec gives these as 16 bit counters but
4433 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4434 * in case the chip somehow puts any garbage in the other bits.
4435 * Also, counter usage didn't seem to mach what Adrian did
4436 * in the parts of the code that set these quantities. Made
4439 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4440 stats[N_TX_RINGS].rx_crc_errors +=
4441 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4442 stats[N_TX_RINGS].rx_frame_errors +=
4443 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4444 stats[N_TX_RINGS].rx_length_errors +=
4445 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4447 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4448 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4449 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4450 stats[N_TX_RINGS].collisions +=
4451 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4453 stats[N_TX_RINGS].tx_aborted_errors +=
4454 readl(cp->regs + REG_MAC_COLL_EXCESS);
4455 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4456 readl(cp->regs + REG_MAC_COLL_LATE);
4458 cas_clear_mac_err(cp);
4460 /* saved bits that are unique to ring 0 */
4461 spin_lock(&cp->stat_lock[0]);
4462 stats[N_TX_RINGS].collisions += stats[0].collisions;
4463 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4464 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4465 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4466 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4467 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4468 spin_unlock(&cp->stat_lock[0]);
4470 for (i = 0; i < N_TX_RINGS; i++) {
4471 spin_lock(&cp->stat_lock[i]);
4472 stats[N_TX_RINGS].rx_length_errors +=
4473 stats[i].rx_length_errors;
4474 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4475 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4476 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4477 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4478 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4479 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4480 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4481 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4482 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4483 memset(stats + i, 0, sizeof(struct net_device_stats));
4484 spin_unlock(&cp->stat_lock[i]);
4486 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4487 return stats + N_TX_RINGS;
4491 static void cas_set_multicast(struct net_device *dev)
4493 struct cas *cp = netdev_priv(dev);
4494 u32 rxcfg, rxcfg_new;
4495 unsigned long flags;
4496 int limit = STOP_TRIES;
4498 if (!cp->hw_running)
4501 spin_lock_irqsave(&cp->lock, flags);
4502 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4504 /* disable RX MAC and wait for completion */
4505 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4506 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4512 /* disable hash filter and wait for completion */
4514 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4515 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4516 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4522 /* program hash filters */
4523 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4525 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4526 spin_unlock_irqrestore(&cp->lock, flags);
4529 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4531 struct cas *cp = netdev_priv(dev);
4532 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4533 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4534 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4535 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4536 cp->casreg_len : CAS_MAX_REGS;
4537 info->n_stats = CAS_NUM_STAT_KEYS;
4540 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4542 struct cas *cp = netdev_priv(dev);
4544 int full_duplex, speed, pause;
4545 unsigned long flags;
4546 enum link_state linkstate = link_up;
4548 cmd->advertising = 0;
4549 cmd->supported = SUPPORTED_Autoneg;
4550 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4551 cmd->supported |= SUPPORTED_1000baseT_Full;
4552 cmd->advertising |= ADVERTISED_1000baseT_Full;
4555 /* Record PHY settings if HW is on. */
4556 spin_lock_irqsave(&cp->lock, flags);
4558 linkstate = cp->lstate;
4559 if (CAS_PHY_MII(cp->phy_type)) {
4560 cmd->port = PORT_MII;
4561 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4562 XCVR_INTERNAL : XCVR_EXTERNAL;
4563 cmd->phy_address = cp->phy_addr;
4564 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4565 ADVERTISED_10baseT_Half |
4566 ADVERTISED_10baseT_Full |
4567 ADVERTISED_100baseT_Half |
4568 ADVERTISED_100baseT_Full;
4571 (SUPPORTED_10baseT_Half |
4572 SUPPORTED_10baseT_Full |
4573 SUPPORTED_100baseT_Half |
4574 SUPPORTED_100baseT_Full |
4575 SUPPORTED_TP | SUPPORTED_MII);
4577 if (cp->hw_running) {
4578 cas_mif_poll(cp, 0);
4579 bmcr = cas_phy_read(cp, MII_BMCR);
4580 cas_read_mii_link_mode(cp, &full_duplex,
4582 cas_mif_poll(cp, 1);
4586 cmd->port = PORT_FIBRE;
4587 cmd->transceiver = XCVR_INTERNAL;
4588 cmd->phy_address = 0;
4589 cmd->supported |= SUPPORTED_FIBRE;
4590 cmd->advertising |= ADVERTISED_FIBRE;
4592 if (cp->hw_running) {
4593 /* pcs uses the same bits as mii */
4594 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4595 cas_read_pcs_link_mode(cp, &full_duplex,
4599 spin_unlock_irqrestore(&cp->lock, flags);
4601 if (bmcr & BMCR_ANENABLE) {
4602 cmd->advertising |= ADVERTISED_Autoneg;
4603 cmd->autoneg = AUTONEG_ENABLE;
4604 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4607 SPEED_1000 : SPEED_100)));
4608 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4610 cmd->autoneg = AUTONEG_DISABLE;
4611 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4613 ((bmcr & BMCR_SPEED100) ?
4614 SPEED_100 : SPEED_10)));
4616 (bmcr & BMCR_FULLDPLX) ?
4617 DUPLEX_FULL : DUPLEX_HALF;
4619 if (linkstate != link_up) {
4620 /* Force these to "unknown" if the link is not up and
4621 * autonogotiation in enabled. We can set the link
4622 * speed to 0, but not cmd->duplex,
4623 * because its legal values are 0 and 1. Ethtool will
4624 * print the value reported in parentheses after the
4625 * word "Unknown" for unrecognized values.
4627 * If in forced mode, we report the speed and duplex
4628 * settings that we configured.
4630 if (cp->link_cntl & BMCR_ANENABLE) {
4631 ethtool_cmd_speed_set(cmd, 0);
4634 ethtool_cmd_speed_set(cmd, SPEED_10);
4635 if (cp->link_cntl & BMCR_SPEED100) {
4636 ethtool_cmd_speed_set(cmd, SPEED_100);
4637 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4638 ethtool_cmd_speed_set(cmd, SPEED_1000);
4640 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4641 DUPLEX_FULL : DUPLEX_HALF;
4647 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4649 struct cas *cp = netdev_priv(dev);
4650 unsigned long flags;
4651 u32 speed = ethtool_cmd_speed(cmd);
4653 /* Verify the settings we care about. */
4654 if (cmd->autoneg != AUTONEG_ENABLE &&
4655 cmd->autoneg != AUTONEG_DISABLE)
4658 if (cmd->autoneg == AUTONEG_DISABLE &&
4659 ((speed != SPEED_1000 &&
4660 speed != SPEED_100 &&
4661 speed != SPEED_10) ||
4662 (cmd->duplex != DUPLEX_HALF &&
4663 cmd->duplex != DUPLEX_FULL)))
4666 /* Apply settings and restart link process. */
4667 spin_lock_irqsave(&cp->lock, flags);
4668 cas_begin_auto_negotiation(cp, cmd);
4669 spin_unlock_irqrestore(&cp->lock, flags);
4673 static int cas_nway_reset(struct net_device *dev)
4675 struct cas *cp = netdev_priv(dev);
4676 unsigned long flags;
4678 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4681 /* Restart link process. */
4682 spin_lock_irqsave(&cp->lock, flags);
4683 cas_begin_auto_negotiation(cp, NULL);
4684 spin_unlock_irqrestore(&cp->lock, flags);
4689 static u32 cas_get_link(struct net_device *dev)
4691 struct cas *cp = netdev_priv(dev);
4692 return cp->lstate == link_up;
4695 static u32 cas_get_msglevel(struct net_device *dev)
4697 struct cas *cp = netdev_priv(dev);
4698 return cp->msg_enable;
4701 static void cas_set_msglevel(struct net_device *dev, u32 value)
4703 struct cas *cp = netdev_priv(dev);
4704 cp->msg_enable = value;
4707 static int cas_get_regs_len(struct net_device *dev)
4709 struct cas *cp = netdev_priv(dev);
4710 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4713 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4716 struct cas *cp = netdev_priv(dev);
4718 /* cas_read_regs handles locks (cp->lock). */
4719 cas_read_regs(cp, p, regs->len / sizeof(u32));
4722 static int cas_get_sset_count(struct net_device *dev, int sset)
4726 return CAS_NUM_STAT_KEYS;
4732 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4734 memcpy(data, ðtool_cassini_statnames,
4735 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4738 static void cas_get_ethtool_stats(struct net_device *dev,
4739 struct ethtool_stats *estats, u64 *data)
4741 struct cas *cp = netdev_priv(dev);
4742 struct net_device_stats *stats = cas_get_stats(cp->dev);
4744 data[i++] = stats->collisions;
4745 data[i++] = stats->rx_bytes;
4746 data[i++] = stats->rx_crc_errors;
4747 data[i++] = stats->rx_dropped;
4748 data[i++] = stats->rx_errors;
4749 data[i++] = stats->rx_fifo_errors;
4750 data[i++] = stats->rx_frame_errors;
4751 data[i++] = stats->rx_length_errors;
4752 data[i++] = stats->rx_over_errors;
4753 data[i++] = stats->rx_packets;
4754 data[i++] = stats->tx_aborted_errors;
4755 data[i++] = stats->tx_bytes;
4756 data[i++] = stats->tx_dropped;
4757 data[i++] = stats->tx_errors;
4758 data[i++] = stats->tx_fifo_errors;
4759 data[i++] = stats->tx_packets;
4760 BUG_ON(i != CAS_NUM_STAT_KEYS);
4763 static const struct ethtool_ops cas_ethtool_ops = {
4764 .get_drvinfo = cas_get_drvinfo,
4765 .get_settings = cas_get_settings,
4766 .set_settings = cas_set_settings,
4767 .nway_reset = cas_nway_reset,
4768 .get_link = cas_get_link,
4769 .get_msglevel = cas_get_msglevel,
4770 .set_msglevel = cas_set_msglevel,
4771 .get_regs_len = cas_get_regs_len,
4772 .get_regs = cas_get_regs,
4773 .get_sset_count = cas_get_sset_count,
4774 .get_strings = cas_get_strings,
4775 .get_ethtool_stats = cas_get_ethtool_stats,
4778 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4780 struct cas *cp = netdev_priv(dev);
4781 struct mii_ioctl_data *data = if_mii(ifr);
4782 unsigned long flags;
4783 int rc = -EOPNOTSUPP;
4785 /* Hold the PM mutex while doing ioctl's or we may collide
4786 * with open/close and power management and oops.
4788 mutex_lock(&cp->pm_mutex);
4790 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4791 data->phy_id = cp->phy_addr;
4792 /* Fallthrough... */
4794 case SIOCGMIIREG: /* Read MII PHY register. */
4795 spin_lock_irqsave(&cp->lock, flags);
4796 cas_mif_poll(cp, 0);
4797 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4798 cas_mif_poll(cp, 1);
4799 spin_unlock_irqrestore(&cp->lock, flags);
4803 case SIOCSMIIREG: /* Write MII PHY register. */
4804 spin_lock_irqsave(&cp->lock, flags);
4805 cas_mif_poll(cp, 0);
4806 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4807 cas_mif_poll(cp, 1);
4808 spin_unlock_irqrestore(&cp->lock, flags);
4814 mutex_unlock(&cp->pm_mutex);
4818 /* When this chip sits underneath an Intel 31154 bridge, it is the
4819 * only subordinate device and we can tweak the bridge settings to
4820 * reflect that fact.
4822 static void cas_program_bridge(struct pci_dev *cas_pdev)
4824 struct pci_dev *pdev = cas_pdev->bus->self;
4830 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4833 /* Clear bit 10 (Bus Parking Control) in the Secondary
4834 * Arbiter Control/Status Register which lives at offset
4835 * 0x41. Using a 32-bit word read/modify/write at 0x40
4836 * is much simpler so that's how we do this.
4838 pci_read_config_dword(pdev, 0x40, &val);
4840 pci_write_config_dword(pdev, 0x40, val);
4842 /* Max out the Multi-Transaction Timer settings since
4843 * Cassini is the only device present.
4845 * The register is 16-bit and lives at 0x50. When the
4846 * settings are enabled, it extends the GRANT# signal
4847 * for a requestor after a transaction is complete. This
4848 * allows the next request to run without first needing
4849 * to negotiate the GRANT# signal back.
4851 * Bits 12:10 define the grant duration:
4859 * All other values are illegal.
4861 * Bits 09:00 define which REQ/GNT signal pairs get the
4862 * GRANT# signal treatment. We set them all.
4864 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4866 /* The Read Prefecth Policy register is 16-bit and sits at
4867 * offset 0x52. It enables a "smart" pre-fetch policy. We
4868 * enable it and max out all of the settings since only one
4869 * device is sitting underneath and thus bandwidth sharing is
4872 * The register has several 3 bit fields, which indicates a
4873 * multiplier applied to the base amount of prefetching the
4874 * chip would do. These fields are at:
4876 * 15:13 --- ReRead Primary Bus
4877 * 12:10 --- FirstRead Primary Bus
4878 * 09:07 --- ReRead Secondary Bus
4879 * 06:04 --- FirstRead Secondary Bus
4881 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4882 * get enabled on. Bit 3 is a grouped enabler which controls
4883 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4884 * the individual REQ/GNT pairs [2:0].
4886 pci_write_config_word(pdev, 0x52,
4893 /* Force cacheline size to 0x8 */
4894 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4896 /* Force latency timer to maximum setting so Cassini can
4897 * sit on the bus as long as it likes.
4899 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4902 static const struct net_device_ops cas_netdev_ops = {
4903 .ndo_open = cas_open,
4904 .ndo_stop = cas_close,
4905 .ndo_start_xmit = cas_start_xmit,
4906 .ndo_get_stats = cas_get_stats,
4907 .ndo_set_rx_mode = cas_set_multicast,
4908 .ndo_do_ioctl = cas_ioctl,
4909 .ndo_tx_timeout = cas_tx_timeout,
4910 .ndo_change_mtu = cas_change_mtu,
4911 .ndo_set_mac_address = eth_mac_addr,
4912 .ndo_validate_addr = eth_validate_addr,
4913 #ifdef CONFIG_NET_POLL_CONTROLLER
4914 .ndo_poll_controller = cas_netpoll,
4918 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4920 static int cas_version_printed = 0;
4921 unsigned long casreg_len;
4922 struct net_device *dev;
4924 int i, err, pci_using_dac;
4926 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4928 if (cas_version_printed++ == 0)
4929 pr_info("%s", version);
4931 err = pci_enable_device(pdev);
4933 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4937 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4938 dev_err(&pdev->dev, "Cannot find proper PCI device "
4939 "base address, aborting\n");
4941 goto err_out_disable_pdev;
4944 dev = alloc_etherdev(sizeof(*cp));
4947 goto err_out_disable_pdev;
4949 SET_NETDEV_DEV(dev, &pdev->dev);
4951 err = pci_request_regions(pdev, dev->name);
4953 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4954 goto err_out_free_netdev;
4956 pci_set_master(pdev);
4958 /* we must always turn on parity response or else parity
4959 * doesn't get generated properly. disable SERR/PERR as well.
4960 * in addition, we want to turn MWI on.
4962 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4963 pci_cmd &= ~PCI_COMMAND_SERR;
4964 pci_cmd |= PCI_COMMAND_PARITY;
4965 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4966 if (pci_try_set_mwi(pdev))
4967 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4969 cas_program_bridge(pdev);
4972 * On some architectures, the default cache line size set
4973 * by pci_try_set_mwi reduces perforamnce. We have to increase
4974 * it for this case. To start, we'll print some configuration
4978 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4979 &orig_cacheline_size);
4980 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4981 cas_cacheline_size =
4982 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4983 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4984 if (pci_write_config_byte(pdev,
4985 PCI_CACHE_LINE_SIZE,
4986 cas_cacheline_size)) {
4987 dev_err(&pdev->dev, "Could not set PCI cache "
4989 goto err_write_cacheline;
4995 /* Configure DMA attributes. */
4996 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4998 err = pci_set_consistent_dma_mask(pdev,
5001 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5002 "for consistent allocations\n");
5003 goto err_out_free_res;
5007 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5009 dev_err(&pdev->dev, "No usable DMA configuration, "
5011 goto err_out_free_res;
5016 casreg_len = pci_resource_len(pdev, 0);
5018 cp = netdev_priv(dev);
5021 /* A value of 0 indicates we never explicitly set it */
5022 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5025 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5028 #if defined(CONFIG_SPARC)
5029 cp->of_node = pci_device_to_OF_node(pdev);
5032 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5033 cp->link_transition_jiffies_valid = 0;
5035 spin_lock_init(&cp->lock);
5036 spin_lock_init(&cp->rx_inuse_lock);
5037 spin_lock_init(&cp->rx_spare_lock);
5038 for (i = 0; i < N_TX_RINGS; i++) {
5039 spin_lock_init(&cp->stat_lock[i]);
5040 spin_lock_init(&cp->tx_lock[i]);
5042 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5043 mutex_init(&cp->pm_mutex);
5045 init_timer(&cp->link_timer);
5046 cp->link_timer.function = cas_link_timer;
5047 cp->link_timer.data = (unsigned long) cp;
5050 /* Just in case the implementation of atomic operations
5051 * change so that an explicit initialization is necessary.
5053 atomic_set(&cp->reset_task_pending, 0);
5054 atomic_set(&cp->reset_task_pending_all, 0);
5055 atomic_set(&cp->reset_task_pending_spare, 0);
5056 atomic_set(&cp->reset_task_pending_mtu, 0);
5058 INIT_WORK(&cp->reset_task, cas_reset_task);
5060 /* Default link parameters */
5061 if (link_mode >= 0 && link_mode < 6)
5062 cp->link_cntl = link_modes[link_mode];
5064 cp->link_cntl = BMCR_ANENABLE;
5065 cp->lstate = link_down;
5066 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5067 netif_carrier_off(cp->dev);
5068 cp->timer_ticks = 0;
5070 /* give us access to cassini registers */
5071 cp->regs = pci_iomap(pdev, 0, casreg_len);
5073 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5074 goto err_out_free_res;
5076 cp->casreg_len = casreg_len;
5078 pci_save_state(pdev);
5079 cas_check_pci_invariants(cp);
5082 if (cas_check_invariants(cp))
5083 goto err_out_iounmap;
5084 if (cp->cas_flags & CAS_FLAG_SATURN)
5085 cas_saturn_firmware_init(cp);
5087 cp->init_block = (struct cas_init_block *)
5088 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5090 if (!cp->init_block) {
5091 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5092 goto err_out_iounmap;
5095 for (i = 0; i < N_TX_RINGS; i++)
5096 cp->init_txds[i] = cp->init_block->txds[i];
5098 for (i = 0; i < N_RX_DESC_RINGS; i++)
5099 cp->init_rxds[i] = cp->init_block->rxds[i];
5101 for (i = 0; i < N_RX_COMP_RINGS; i++)
5102 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5104 for (i = 0; i < N_RX_FLOWS; i++)
5105 skb_queue_head_init(&cp->rx_flows[i]);
5107 dev->netdev_ops = &cas_netdev_ops;
5108 dev->ethtool_ops = &cas_ethtool_ops;
5109 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5112 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5114 dev->irq = pdev->irq;
5117 /* Cassini features. */
5118 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5119 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5122 dev->features |= NETIF_F_HIGHDMA;
5124 if (register_netdev(dev)) {
5125 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5126 goto err_out_free_consistent;
5129 i = readl(cp->regs + REG_BIM_CFG);
5130 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5132 (i & BIM_CFG_32BIT) ? "32" : "64",
5133 (i & BIM_CFG_66MHZ) ? "66" : "33",
5134 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5137 pci_set_drvdata(pdev, dev);
5139 cas_entropy_reset(cp);
5141 cas_begin_auto_negotiation(cp, NULL);
5144 err_out_free_consistent:
5145 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5146 cp->init_block, cp->block_dvma);
5149 mutex_lock(&cp->pm_mutex);
5152 mutex_unlock(&cp->pm_mutex);
5154 pci_iounmap(pdev, cp->regs);
5158 pci_release_regions(pdev);
5160 err_write_cacheline:
5161 /* Try to restore it in case the error occurred after we
5164 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5166 err_out_free_netdev:
5169 err_out_disable_pdev:
5170 pci_disable_device(pdev);
5171 pci_set_drvdata(pdev, NULL);
5175 static void cas_remove_one(struct pci_dev *pdev)
5177 struct net_device *dev = pci_get_drvdata(pdev);
5182 cp = netdev_priv(dev);
5183 unregister_netdev(dev);
5188 mutex_lock(&cp->pm_mutex);
5189 cancel_work_sync(&cp->reset_task);
5192 mutex_unlock(&cp->pm_mutex);
5195 if (cp->orig_cacheline_size) {
5196 /* Restore the cache line size if we had modified
5199 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5200 cp->orig_cacheline_size);
5203 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5204 cp->init_block, cp->block_dvma);
5205 pci_iounmap(pdev, cp->regs);
5207 pci_release_regions(pdev);
5208 pci_disable_device(pdev);
5209 pci_set_drvdata(pdev, NULL);
5213 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5215 struct net_device *dev = pci_get_drvdata(pdev);
5216 struct cas *cp = netdev_priv(dev);
5217 unsigned long flags;
5219 mutex_lock(&cp->pm_mutex);
5221 /* If the driver is opened, we stop the DMA */
5223 netif_device_detach(dev);
5225 cas_lock_all_save(cp, flags);
5227 /* We can set the second arg of cas_reset to 0
5228 * because on resume, we'll call cas_init_hw with
5229 * its second arg set so that autonegotiation is
5233 cas_clean_rings(cp);
5234 cas_unlock_all_restore(cp, flags);
5239 mutex_unlock(&cp->pm_mutex);
5244 static int cas_resume(struct pci_dev *pdev)
5246 struct net_device *dev = pci_get_drvdata(pdev);
5247 struct cas *cp = netdev_priv(dev);
5249 netdev_info(dev, "resuming\n");
5251 mutex_lock(&cp->pm_mutex);
5254 unsigned long flags;
5255 cas_lock_all_save(cp, flags);
5258 cas_clean_rings(cp);
5260 cas_unlock_all_restore(cp, flags);
5262 netif_device_attach(dev);
5264 mutex_unlock(&cp->pm_mutex);
5267 #endif /* CONFIG_PM */
5269 static struct pci_driver cas_driver = {
5270 .name = DRV_MODULE_NAME,
5271 .id_table = cas_pci_tbl,
5272 .probe = cas_init_one,
5273 .remove = cas_remove_one,
5275 .suspend = cas_suspend,
5276 .resume = cas_resume
5280 static int __init cas_init(void)
5282 if (linkdown_timeout > 0)
5283 link_transition_timeout = linkdown_timeout * HZ;
5285 link_transition_timeout = 0;
5287 return pci_register_driver(&cas_driver);
5290 static void __exit cas_cleanup(void)
5292 pci_unregister_driver(&cas_driver);
5295 module_init(cas_init);
5296 module_exit(cas_cleanup);