4 * A generic video device interface for the LINUX operating system
5 * using a set of device structures/vectors for low level operations.
7 * This file replaces the videodev.c file that comes with the
8 * regular kernel distribution.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
21 * Video capture interface for Linux
23 * A generic video device interface for the LINUX operating system
24 * using a set of device structures/vectors for low level operations.
26 * This program is free software; you can redistribute it and/or
27 * modify it under the terms of the GNU General Public License
28 * as published by the Free Software Foundation; either version
29 * 2 of the License, or (at your option) any later version.
37 * Video4linux 1/2 integration by Justin Schoeman
39 * 2.4 PROCFS support ported from 2.4 kernels by
42 * 2.4 devfs support ported from 2.4 kernels by
44 * Added Gerd Knorrs v4l1 enhancements (Justin Schoeman)
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/i2c.h>
54 #if defined(CONFIG_SPI)
55 #include <linux/spi/spi.h>
57 #include <asm/uaccess.h>
58 #include <asm/pgtable.h>
60 #include <asm/div64.h>
61 #include <media/v4l2-common.h>
62 #include <media/v4l2-device.h>
63 #include <media/v4l2-ctrls.h>
65 #include <linux/videodev2.h>
67 MODULE_AUTHOR("Bill Dirks, Justin Schoeman, Gerd Knorr");
68 MODULE_DESCRIPTION("misc helper functions for v4l2 device drivers");
69 MODULE_LICENSE("GPL");
73 * V 4 L 2 D R I V E R H E L P E R A P I
78 * Video Standard Operations (contributed by Michael Schimek)
81 /* Helper functions for control handling */
83 /* Check for correctness of the ctrl's value based on the data from
84 struct v4l2_queryctrl and the available menu items. Note that
85 menu_items may be NULL, in that case it is ignored. */
86 int v4l2_ctrl_check(struct v4l2_ext_control *ctrl, struct v4l2_queryctrl *qctrl,
87 const char * const *menu_items)
89 if (qctrl->flags & V4L2_CTRL_FLAG_DISABLED)
91 if (qctrl->flags & V4L2_CTRL_FLAG_GRABBED)
93 if (qctrl->type == V4L2_CTRL_TYPE_STRING)
95 if (qctrl->type == V4L2_CTRL_TYPE_BUTTON ||
96 qctrl->type == V4L2_CTRL_TYPE_INTEGER64 ||
97 qctrl->type == V4L2_CTRL_TYPE_CTRL_CLASS)
99 if (ctrl->value < qctrl->minimum || ctrl->value > qctrl->maximum)
101 if (qctrl->type == V4L2_CTRL_TYPE_MENU && menu_items != NULL) {
102 if (menu_items[ctrl->value] == NULL ||
103 menu_items[ctrl->value][0] == '\0')
106 if (qctrl->type == V4L2_CTRL_TYPE_BITMASK &&
107 (ctrl->value & ~qctrl->maximum))
111 EXPORT_SYMBOL(v4l2_ctrl_check);
113 /* Fill in a struct v4l2_queryctrl */
114 int v4l2_ctrl_query_fill(struct v4l2_queryctrl *qctrl, s32 min, s32 max, s32 step, s32 def)
118 v4l2_ctrl_fill(qctrl->id, &name, &qctrl->type,
119 &min, &max, &step, &def, &qctrl->flags);
124 qctrl->minimum = min;
125 qctrl->maximum = max;
127 qctrl->default_value = def;
128 qctrl->reserved[0] = qctrl->reserved[1] = 0;
129 strlcpy(qctrl->name, name, sizeof(qctrl->name));
132 EXPORT_SYMBOL(v4l2_ctrl_query_fill);
134 /* Fill in a struct v4l2_querymenu based on the struct v4l2_queryctrl and
135 the menu. The qctrl pointer may be NULL, in which case it is ignored.
136 If menu_items is NULL, then the menu items are retrieved using
137 v4l2_ctrl_get_menu. */
138 int v4l2_ctrl_query_menu(struct v4l2_querymenu *qmenu, struct v4l2_queryctrl *qctrl,
139 const char * const *menu_items)
144 if (menu_items == NULL)
145 menu_items = v4l2_ctrl_get_menu(qmenu->id);
146 if (menu_items == NULL ||
147 (qctrl && (qmenu->index < qctrl->minimum || qmenu->index > qctrl->maximum)))
149 for (i = 0; i < qmenu->index && menu_items[i]; i++) ;
150 if (menu_items[i] == NULL || menu_items[i][0] == '\0')
152 strlcpy(qmenu->name, menu_items[qmenu->index], sizeof(qmenu->name));
155 EXPORT_SYMBOL(v4l2_ctrl_query_menu);
157 /* Fill in a struct v4l2_querymenu based on the specified array of valid
158 menu items (terminated by V4L2_CTRL_MENU_IDS_END).
159 Use this if there are 'holes' in the list of valid menu items. */
160 int v4l2_ctrl_query_menu_valid_items(struct v4l2_querymenu *qmenu, const u32 *ids)
162 const char * const *menu_items = v4l2_ctrl_get_menu(qmenu->id);
165 if (menu_items == NULL || ids == NULL)
167 while (*ids != V4L2_CTRL_MENU_IDS_END) {
168 if (*ids++ == qmenu->index) {
169 strlcpy(qmenu->name, menu_items[qmenu->index],
170 sizeof(qmenu->name));
176 EXPORT_SYMBOL(v4l2_ctrl_query_menu_valid_items);
178 /* ctrl_classes points to an array of u32 pointers, the last element is
179 a NULL pointer. Each u32 array is a 0-terminated array of control IDs.
180 Each array must be sorted low to high and belong to the same control
181 class. The array of u32 pointers must also be sorted, from low class IDs
184 This function returns the first ID that follows after the given ID.
185 When no more controls are available 0 is returned. */
186 u32 v4l2_ctrl_next(const u32 * const * ctrl_classes, u32 id)
188 u32 ctrl_class = V4L2_CTRL_ID2CLASS(id);
191 if (ctrl_classes == NULL)
194 /* if no query is desired, then check if the ID is part of ctrl_classes */
195 if ((id & V4L2_CTRL_FLAG_NEXT_CTRL) == 0) {
197 while (*ctrl_classes && V4L2_CTRL_ID2CLASS(**ctrl_classes) != ctrl_class)
199 if (*ctrl_classes == NULL)
201 pctrl = *ctrl_classes;
202 /* find control ID */
203 while (*pctrl && *pctrl != id) pctrl++;
204 return *pctrl ? id : 0;
206 id &= V4L2_CTRL_ID_MASK;
207 id++; /* select next control */
208 /* find first class that matches (or is greater than) the class of
210 while (*ctrl_classes && V4L2_CTRL_ID2CLASS(**ctrl_classes) < ctrl_class)
212 /* no more classes */
213 if (*ctrl_classes == NULL)
215 pctrl = *ctrl_classes;
216 /* find first ctrl within the class that is >= ID */
217 while (*pctrl && *pctrl < id) pctrl++;
220 /* we are at the end of the controls of the current class. */
221 /* continue with next class if available */
223 if (*ctrl_classes == NULL)
225 return **ctrl_classes;
227 EXPORT_SYMBOL(v4l2_ctrl_next);
229 /* I2C Helper functions */
231 #if IS_ENABLED(CONFIG_I2C)
233 void v4l2_i2c_subdev_init(struct v4l2_subdev *sd, struct i2c_client *client,
234 const struct v4l2_subdev_ops *ops)
236 v4l2_subdev_init(sd, ops);
237 sd->flags |= V4L2_SUBDEV_FL_IS_I2C;
238 /* the owner is the same as the i2c_client's driver owner */
239 sd->owner = client->driver->driver.owner;
240 sd->dev = &client->dev;
241 /* i2c_client and v4l2_subdev point to one another */
242 v4l2_set_subdevdata(sd, client);
243 i2c_set_clientdata(client, sd);
244 /* initialize name */
245 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
246 client->driver->driver.name, i2c_adapter_id(client->adapter),
249 EXPORT_SYMBOL_GPL(v4l2_i2c_subdev_init);
251 /* Load an i2c sub-device. */
252 struct v4l2_subdev *v4l2_i2c_new_subdev_board(struct v4l2_device *v4l2_dev,
253 struct i2c_adapter *adapter, struct i2c_board_info *info,
254 const unsigned short *probe_addrs)
256 struct v4l2_subdev *sd = NULL;
257 struct i2c_client *client;
261 request_module(I2C_MODULE_PREFIX "%s", info->type);
263 /* Create the i2c client */
264 if (info->addr == 0 && probe_addrs)
265 client = i2c_new_probed_device(adapter, info, probe_addrs,
268 client = i2c_new_device(adapter, info);
270 /* Note: by loading the module first we are certain that c->driver
271 will be set if the driver was found. If the module was not loaded
272 first, then the i2c core tries to delay-load the module for us,
273 and then c->driver is still NULL until the module is finally
274 loaded. This delay-load mechanism doesn't work if other drivers
275 want to use the i2c device, so explicitly loading the module
276 is the best alternative. */
277 if (client == NULL || client->driver == NULL)
280 /* Lock the module so we can safely get the v4l2_subdev pointer */
281 if (!try_module_get(client->driver->driver.owner))
283 sd = i2c_get_clientdata(client);
285 /* Register with the v4l2_device which increases the module's
286 use count as well. */
287 if (v4l2_device_register_subdev(v4l2_dev, sd))
289 /* Decrease the module use count to match the first try_module_get. */
290 module_put(client->driver->driver.owner);
293 /* If we have a client but no subdev, then something went wrong and
294 we must unregister the client. */
295 if (client && sd == NULL)
296 i2c_unregister_device(client);
299 EXPORT_SYMBOL_GPL(v4l2_i2c_new_subdev_board);
301 struct v4l2_subdev *v4l2_i2c_new_subdev(struct v4l2_device *v4l2_dev,
302 struct i2c_adapter *adapter, const char *client_type,
303 u8 addr, const unsigned short *probe_addrs)
305 struct i2c_board_info info;
307 /* Setup the i2c board info with the device type and
308 the device address. */
309 memset(&info, 0, sizeof(info));
310 strlcpy(info.type, client_type, sizeof(info.type));
313 return v4l2_i2c_new_subdev_board(v4l2_dev, adapter, &info, probe_addrs);
315 EXPORT_SYMBOL_GPL(v4l2_i2c_new_subdev);
317 /* Return i2c client address of v4l2_subdev. */
318 unsigned short v4l2_i2c_subdev_addr(struct v4l2_subdev *sd)
320 struct i2c_client *client = v4l2_get_subdevdata(sd);
322 return client ? client->addr : I2C_CLIENT_END;
324 EXPORT_SYMBOL_GPL(v4l2_i2c_subdev_addr);
326 /* Return a list of I2C tuner addresses to probe. Use only if the tuner
327 addresses are unknown. */
328 const unsigned short *v4l2_i2c_tuner_addrs(enum v4l2_i2c_tuner_type type)
330 static const unsigned short radio_addrs[] = {
331 #if IS_ENABLED(CONFIG_MEDIA_TUNER_TEA5761)
337 static const unsigned short demod_addrs[] = {
338 0x42, 0x43, 0x4a, 0x4b,
341 static const unsigned short tv_addrs[] = {
342 0x42, 0x43, 0x4a, 0x4b, /* tda8290 */
343 0x60, 0x61, 0x62, 0x63, 0x64,
354 case ADDRS_TV_WITH_DEMOD:
359 EXPORT_SYMBOL_GPL(v4l2_i2c_tuner_addrs);
361 #endif /* defined(CONFIG_I2C) */
363 #if defined(CONFIG_SPI)
365 /* Load an spi sub-device. */
367 void v4l2_spi_subdev_init(struct v4l2_subdev *sd, struct spi_device *spi,
368 const struct v4l2_subdev_ops *ops)
370 v4l2_subdev_init(sd, ops);
371 sd->flags |= V4L2_SUBDEV_FL_IS_SPI;
372 /* the owner is the same as the spi_device's driver owner */
373 sd->owner = spi->dev.driver->owner;
375 /* spi_device and v4l2_subdev point to one another */
376 v4l2_set_subdevdata(sd, spi);
377 spi_set_drvdata(spi, sd);
378 /* initialize name */
379 strlcpy(sd->name, spi->dev.driver->name, sizeof(sd->name));
381 EXPORT_SYMBOL_GPL(v4l2_spi_subdev_init);
383 struct v4l2_subdev *v4l2_spi_new_subdev(struct v4l2_device *v4l2_dev,
384 struct spi_master *master, struct spi_board_info *info)
386 struct v4l2_subdev *sd = NULL;
387 struct spi_device *spi = NULL;
391 if (info->modalias[0])
392 request_module(info->modalias);
394 spi = spi_new_device(master, info);
396 if (spi == NULL || spi->dev.driver == NULL)
399 if (!try_module_get(spi->dev.driver->owner))
402 sd = spi_get_drvdata(spi);
404 /* Register with the v4l2_device which increases the module's
405 use count as well. */
406 if (v4l2_device_register_subdev(v4l2_dev, sd))
409 /* Decrease the module use count to match the first try_module_get. */
410 module_put(spi->dev.driver->owner);
413 /* If we have a client but no subdev, then something went wrong and
414 we must unregister the client. */
415 if (spi && sd == NULL)
416 spi_unregister_device(spi);
420 EXPORT_SYMBOL_GPL(v4l2_spi_new_subdev);
422 #endif /* defined(CONFIG_SPI) */
424 /* Clamp x to be between min and max, aligned to a multiple of 2^align. min
425 * and max don't have to be aligned, but there must be at least one valid
426 * value. E.g., min=17,max=31,align=4 is not allowed as there are no multiples
427 * of 16 between 17 and 31. */
428 static unsigned int clamp_align(unsigned int x, unsigned int min,
429 unsigned int max, unsigned int align)
431 /* Bits that must be zero to be aligned */
432 unsigned int mask = ~((1 << align) - 1);
434 /* Round to nearest aligned value */
436 x = (x + (1 << (align - 1))) & mask;
438 /* Clamp to aligned value of min and max */
440 x = (min + ~mask) & mask;
447 /* Bound an image to have a width between wmin and wmax, and height between
448 * hmin and hmax, inclusive. Additionally, the width will be a multiple of
449 * 2^walign, the height will be a multiple of 2^halign, and the overall size
450 * (width*height) will be a multiple of 2^salign. The image may be shrunk
451 * or enlarged to fit the alignment constraints.
453 * The width or height maximum must not be smaller than the corresponding
454 * minimum. The alignments must not be so high there are no possible image
455 * sizes within the allowed bounds. wmin and hmin must be at least 1
456 * (don't use 0). If you don't care about a certain alignment, specify 0,
457 * as 2^0 is 1 and one byte alignment is equivalent to no alignment. If
458 * you only want to adjust downward, specify a maximum that's the same as
461 void v4l_bound_align_image(u32 *w, unsigned int wmin, unsigned int wmax,
463 u32 *h, unsigned int hmin, unsigned int hmax,
464 unsigned int halign, unsigned int salign)
466 *w = clamp_align(*w, wmin, wmax, walign);
467 *h = clamp_align(*h, hmin, hmax, halign);
469 /* Usually we don't need to align the size and are done now. */
473 /* How much alignment do we have? */
476 /* Enough to satisfy the image alignment? */
477 if (walign + halign < salign) {
478 /* Max walign where there is still a valid width */
479 unsigned int wmaxa = __fls(wmax ^ (wmin - 1));
480 /* Max halign where there is still a valid height */
481 unsigned int hmaxa = __fls(hmax ^ (hmin - 1));
483 /* up the smaller alignment until we have enough */
485 if (halign >= hmaxa ||
486 (walign <= halign && walign < wmaxa)) {
487 *w = clamp_align(*w, wmin, wmax, walign + 1);
490 *h = clamp_align(*h, hmin, hmax, halign + 1);
493 } while (halign + walign < salign);
496 EXPORT_SYMBOL_GPL(v4l_bound_align_image);
499 * v4l_match_dv_timings - check if two timings match
500 * @t1 - compare this v4l2_dv_timings struct...
501 * @t2 - with this struct.
502 * @pclock_delta - the allowed pixelclock deviation.
504 * Compare t1 with t2 with a given margin of error for the pixelclock.
506 bool v4l_match_dv_timings(const struct v4l2_dv_timings *t1,
507 const struct v4l2_dv_timings *t2,
508 unsigned pclock_delta)
510 if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
512 if (t1->bt.width == t2->bt.width &&
513 t1->bt.height == t2->bt.height &&
514 t1->bt.interlaced == t2->bt.interlaced &&
515 t1->bt.polarities == t2->bt.polarities &&
516 t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
517 t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
518 t1->bt.hfrontporch == t2->bt.hfrontporch &&
519 t1->bt.vfrontporch == t2->bt.vfrontporch &&
520 t1->bt.vsync == t2->bt.vsync &&
521 t1->bt.vbackporch == t2->bt.vbackporch &&
522 (!t1->bt.interlaced ||
523 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
524 t1->bt.il_vsync == t2->bt.il_vsync &&
525 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
529 EXPORT_SYMBOL_GPL(v4l_match_dv_timings);
533 * Based on Coordinated Video Timings Standard
534 * version 1.1 September 10, 2003
537 #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
539 /* Normal blanking */
540 #define CVT_MIN_V_BPORCH 7 /* lines */
541 #define CVT_MIN_V_PORCH_RND 3 /* lines */
542 #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
544 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
545 #define CVT_CELL_GRAN 8 /* character cell granularity */
546 #define CVT_M 600 /* blanking formula gradient */
547 #define CVT_C 40 /* blanking formula offset */
548 #define CVT_K 128 /* blanking formula scaling factor */
549 #define CVT_J 20 /* blanking formula scaling factor */
550 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
551 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
553 /* Reduced Blanking */
554 #define CVT_RB_MIN_V_BPORCH 7 /* lines */
555 #define CVT_RB_V_FPORCH 3 /* lines */
556 #define CVT_RB_MIN_V_BLANK 460 /* us */
557 #define CVT_RB_H_SYNC 32 /* pixels */
558 #define CVT_RB_H_BPORCH 80 /* pixels */
559 #define CVT_RB_H_BLANK 160 /* pixels */
561 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
562 * @frame_height - the total height of the frame (including blanking) in lines.
563 * @hfreq - the horizontal frequency in Hz.
564 * @vsync - the height of the vertical sync in lines.
565 * @polarities - the horizontal and vertical polarities (same as struct
566 * v4l2_bt_timings polarities).
567 * @fmt - the resulting timings.
569 * This function will attempt to detect if the given values correspond to a
570 * valid CVT format. If so, then it will return true, and fmt will be filled
571 * in with the found CVT timings.
573 bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync,
574 u32 polarities, struct v4l2_dv_timings *fmt)
576 int v_fp, v_bp, h_fp, h_bp, hsync;
577 int frame_width, image_height, image_width;
578 bool reduced_blanking;
581 if (vsync < 4 || vsync > 7)
584 if (polarities == V4L2_DV_VSYNC_POS_POL)
585 reduced_blanking = false;
586 else if (polarities == V4L2_DV_HSYNC_POS_POL)
587 reduced_blanking = true;
592 if (reduced_blanking) {
593 v_fp = CVT_RB_V_FPORCH;
594 v_bp = (CVT_RB_MIN_V_BLANK * hfreq + 999999) / 1000000;
595 v_bp -= vsync + v_fp;
597 if (v_bp < CVT_RB_MIN_V_BPORCH)
598 v_bp = CVT_RB_MIN_V_BPORCH;
600 v_fp = CVT_MIN_V_PORCH_RND;
601 v_bp = (CVT_MIN_VSYNC_BP * hfreq + 999999) / 1000000 - vsync;
603 if (v_bp < CVT_MIN_V_BPORCH)
604 v_bp = CVT_MIN_V_BPORCH;
606 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
608 /* Aspect ratio based on vsync */
611 image_width = (image_height * 4) / 3;
614 image_width = (image_height * 16) / 9;
617 image_width = (image_height * 16) / 10;
621 if (image_height == 1024)
622 image_width = (image_height * 5) / 4;
623 else if (image_height == 768)
624 image_width = (image_height * 15) / 9;
632 image_width = image_width & ~7;
635 if (reduced_blanking) {
636 pix_clk = (image_width + CVT_RB_H_BLANK) * hfreq;
637 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
639 h_bp = CVT_RB_H_BPORCH;
640 hsync = CVT_RB_H_SYNC;
641 h_fp = CVT_RB_H_BLANK - h_bp - hsync;
643 frame_width = image_width + CVT_RB_H_BLANK;
646 unsigned ideal_duty_cycle = CVT_C_PRIME - (CVT_M_PRIME * 1000) / hfreq;
648 h_blank = (image_width * ideal_duty_cycle + (100 - ideal_duty_cycle) / 2) /
649 (100 - ideal_duty_cycle);
650 h_blank = h_blank - h_blank % (2 * CVT_CELL_GRAN);
652 if (h_blank * 100 / image_width < 20) {
653 h_blank = image_width / 5;
654 h_blank = (h_blank + 0x7) & ~0x7;
657 pix_clk = (image_width + h_blank) * hfreq;
658 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
661 frame_width = image_width + h_blank;
663 hsync = (frame_width * 8 + 50) / 100;
664 hsync = hsync - hsync % CVT_CELL_GRAN;
665 h_fp = h_blank - hsync - h_bp;
668 fmt->bt.polarities = polarities;
669 fmt->bt.width = image_width;
670 fmt->bt.height = image_height;
671 fmt->bt.hfrontporch = h_fp;
672 fmt->bt.vfrontporch = v_fp;
673 fmt->bt.hsync = hsync;
674 fmt->bt.vsync = vsync;
675 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
676 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
677 fmt->bt.pixelclock = pix_clk;
678 fmt->bt.standards = V4L2_DV_BT_STD_CVT;
679 if (reduced_blanking)
680 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
683 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
687 * Based on Generalized Timing Formula Standard
688 * Version 1.1 September 2, 1999
691 #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
693 #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
694 #define GTF_V_FP 1 /* vertical front porch (lines) */
695 #define GTF_CELL_GRAN 8 /* character cell granularity */
698 #define GTF_D_M 600 /* blanking formula gradient */
699 #define GTF_D_C 40 /* blanking formula offset */
700 #define GTF_D_K 128 /* blanking formula scaling factor */
701 #define GTF_D_J 20 /* blanking formula scaling factor */
702 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
703 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
706 #define GTF_S_M 3600 /* blanking formula gradient */
707 #define GTF_S_C 40 /* blanking formula offset */
708 #define GTF_S_K 128 /* blanking formula scaling factor */
709 #define GTF_S_J 35 /* blanking formula scaling factor */
710 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
711 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
713 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
714 * @frame_height - the total height of the frame (including blanking) in lines.
715 * @hfreq - the horizontal frequency in Hz.
716 * @vsync - the height of the vertical sync in lines.
717 * @polarities - the horizontal and vertical polarities (same as struct
718 * v4l2_bt_timings polarities).
719 * @aspect - preferred aspect ratio. GTF has no method of determining the
720 * aspect ratio in order to derive the image width from the
721 * image height, so it has to be passed explicitly. Usually
722 * the native screen aspect ratio is used for this. If it
723 * is not filled in correctly, then 16:9 will be assumed.
724 * @fmt - the resulting timings.
726 * This function will attempt to detect if the given values correspond to a
727 * valid GTF format. If so, then it will return true, and fmt will be filled
728 * in with the found GTF timings.
730 bool v4l2_detect_gtf(unsigned frame_height,
734 struct v4l2_fract aspect,
735 struct v4l2_dv_timings *fmt)
738 int v_fp, v_bp, h_fp, hsync;
739 int frame_width, image_height, image_width;
746 if (polarities == V4L2_DV_VSYNC_POS_POL)
748 else if (polarities == V4L2_DV_HSYNC_POS_POL)
755 v_bp = (GTF_MIN_VSYNC_BP * hfreq + 999999) / 1000000 - vsync;
756 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
758 if (aspect.numerator == 0 || aspect.denominator == 0) {
759 aspect.numerator = 16;
760 aspect.denominator = 9;
762 image_width = ((image_height * aspect.numerator) / aspect.denominator);
766 h_blank = ((image_width * GTF_D_C_PRIME * hfreq) -
767 (image_width * GTF_D_M_PRIME * 1000) +
768 (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) / 2) /
769 (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000);
771 h_blank = ((image_width * GTF_S_C_PRIME * hfreq) -
772 (image_width * GTF_S_M_PRIME * 1000) +
773 (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) / 2) /
774 (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000);
776 h_blank = h_blank - h_blank % (2 * GTF_CELL_GRAN);
777 frame_width = image_width + h_blank;
779 pix_clk = (image_width + h_blank) * hfreq;
780 pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
782 hsync = (frame_width * 8 + 50) / 100;
783 hsync = hsync - hsync % GTF_CELL_GRAN;
785 h_fp = h_blank / 2 - hsync;
787 fmt->bt.polarities = polarities;
788 fmt->bt.width = image_width;
789 fmt->bt.height = image_height;
790 fmt->bt.hfrontporch = h_fp;
791 fmt->bt.vfrontporch = v_fp;
792 fmt->bt.hsync = hsync;
793 fmt->bt.vsync = vsync;
794 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
795 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
796 fmt->bt.pixelclock = pix_clk;
797 fmt->bt.standards = V4L2_DV_BT_STD_GTF;
799 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
802 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
804 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
805 * 0x15 and 0x16 from the EDID.
806 * @hor_landscape - byte 0x15 from the EDID.
807 * @vert_portrait - byte 0x16 from the EDID.
809 * Determines the aspect ratio from the EDID.
810 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
811 * "Horizontal and Vertical Screen Size or Aspect Ratio"
813 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
815 struct v4l2_fract aspect = { 16, 9 };
819 /* Nothing filled in, fallback to 16:9 */
820 if (!hor_landscape && !vert_portrait)
822 /* Both filled in, so they are interpreted as the screen size in cm */
823 if (hor_landscape && vert_portrait) {
824 aspect.numerator = hor_landscape;
825 aspect.denominator = vert_portrait;
828 /* Only one is filled in, so interpret them as a ratio:
830 ratio = hor_landscape | vert_portrait;
831 /* Change some rounded values into the exact aspect ratio */
833 aspect.numerator = 16;
834 aspect.denominator = 9;
835 } else if (ratio == 34) {
836 aspect.numerator = 4;
837 aspect.numerator = 3;
838 } else if (ratio == 68) {
839 aspect.numerator = 15;
840 aspect.numerator = 9;
842 aspect.numerator = hor_landscape + 99;
843 aspect.denominator = 100;
847 /* The aspect ratio is for portrait, so swap numerator and denominator */
848 tmp = aspect.denominator;
849 aspect.denominator = aspect.numerator;
850 aspect.numerator = tmp;
853 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
855 const struct v4l2_frmsize_discrete *v4l2_find_nearest_format(
856 const struct v4l2_discrete_probe *probe,
857 s32 width, s32 height)
860 u32 error, min_error = UINT_MAX;
861 const struct v4l2_frmsize_discrete *size, *best = NULL;
866 for (i = 0, size = probe->sizes; i < probe->num_sizes; i++, size++) {
867 error = abs(size->width - width) + abs(size->height - height);
868 if (error < min_error) {
878 EXPORT_SYMBOL_GPL(v4l2_find_nearest_format);
880 void v4l2_get_timestamp(struct timeval *tv)
885 tv->tv_sec = ts.tv_sec;
886 tv->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
888 EXPORT_SYMBOL_GPL(v4l2_get_timestamp);