]> Git Repo - linux.git/blob - lib/test_hmm.c
Merge tag 'nios2_update_for_v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / lib / test_hmm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32
33 #include "test_hmm_uapi.h"
34
35 #define DMIRROR_NDEVICES                4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT     1000
37 #define DEVMEM_CHUNK_SIZE               (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE           16
39
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49                            (page)->zone_device_data : (page))
50
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54                 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59                 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64
65 struct dmirror_device;
66
67 struct dmirror_bounce {
68         void                    *ptr;
69         unsigned long           size;
70         unsigned long           addr;
71         unsigned long           cpages;
72 };
73
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82         struct mmu_interval_notifier    notifier;
83         struct dmirror                  *dmirror;
84 };
85
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91         struct dmirror_device           *mdevice;
92         struct xarray                   pt;
93         struct mmu_interval_notifier    notifier;
94         struct mutex                    mutex;
95 };
96
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101         struct dev_pagemap      pagemap;
102         struct dmirror_device   *mdevice;
103         bool remove;
104 };
105
106 /*
107  * Per device data.
108  */
109 struct dmirror_device {
110         struct cdev             cdevice;
111         unsigned int            zone_device_type;
112         struct device           device;
113
114         unsigned int            devmem_capacity;
115         unsigned int            devmem_count;
116         struct dmirror_chunk    **devmem_chunks;
117         struct mutex            devmem_lock;    /* protects the above */
118
119         unsigned long           calloc;
120         unsigned long           cfree;
121         struct page             *free_pages;
122         spinlock_t              lock;           /* protects the above */
123 };
124
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126
127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128                                unsigned long addr,
129                                unsigned long size)
130 {
131         bounce->addr = addr;
132         bounce->size = size;
133         bounce->cpages = 0;
134         bounce->ptr = vmalloc(size);
135         if (!bounce->ptr)
136                 return -ENOMEM;
137         return 0;
138 }
139
140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142         return (mdevice->zone_device_type ==
143                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145
146 static enum migrate_vma_direction
147 dmirror_select_device(struct dmirror *dmirror)
148 {
149         return (dmirror->mdevice->zone_device_type ==
150                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152                 MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154
155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157         vfree(bounce->ptr);
158 }
159
160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162         struct cdev *cdev = inode->i_cdev;
163         struct dmirror *dmirror;
164         int ret;
165
166         /* Mirror this process address space */
167         dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168         if (dmirror == NULL)
169                 return -ENOMEM;
170
171         dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172         mutex_init(&dmirror->mutex);
173         xa_init(&dmirror->pt);
174
175         ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176                                 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177         if (ret) {
178                 kfree(dmirror);
179                 return ret;
180         }
181
182         filp->private_data = dmirror;
183         return 0;
184 }
185
186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188         struct dmirror *dmirror = filp->private_data;
189
190         mmu_interval_notifier_remove(&dmirror->notifier);
191         xa_destroy(&dmirror->pt);
192         kfree(dmirror);
193         return 0;
194 }
195
196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198         return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199 }
200
201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
202
203 {
204         return dmirror_page_to_chunk(page)->mdevice;
205 }
206
207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208 {
209         unsigned long *pfns = range->hmm_pfns;
210         unsigned long pfn;
211
212         for (pfn = (range->start >> PAGE_SHIFT);
213              pfn < (range->end >> PAGE_SHIFT);
214              pfn++, pfns++) {
215                 struct page *page;
216                 void *entry;
217
218                 /*
219                  * Since we asked for hmm_range_fault() to populate pages,
220                  * it shouldn't return an error entry on success.
221                  */
222                 WARN_ON(*pfns & HMM_PFN_ERROR);
223                 WARN_ON(!(*pfns & HMM_PFN_VALID));
224
225                 page = hmm_pfn_to_page(*pfns);
226                 WARN_ON(!page);
227
228                 entry = page;
229                 if (*pfns & HMM_PFN_WRITE)
230                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231                 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232                         return -EFAULT;
233                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234                 if (xa_is_err(entry))
235                         return xa_err(entry);
236         }
237
238         return 0;
239 }
240
241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242                               unsigned long end)
243 {
244         unsigned long pfn;
245         void *entry;
246
247         /*
248          * The XArray doesn't hold references to pages since it relies on
249          * the mmu notifier to clear page pointers when they become stale.
250          * Therefore, it is OK to just clear the entry.
251          */
252         xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253                           end >> PAGE_SHIFT)
254                 xa_erase(&dmirror->pt, pfn);
255 }
256
257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258                                 const struct mmu_notifier_range *range,
259                                 unsigned long cur_seq)
260 {
261         struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262
263         /*
264          * Ignore invalidation callbacks for device private pages since
265          * the invalidation is handled as part of the migration process.
266          */
267         if (range->event == MMU_NOTIFY_MIGRATE &&
268             range->owner == dmirror->mdevice)
269                 return true;
270
271         if (mmu_notifier_range_blockable(range))
272                 mutex_lock(&dmirror->mutex);
273         else if (!mutex_trylock(&dmirror->mutex))
274                 return false;
275
276         mmu_interval_set_seq(mni, cur_seq);
277         dmirror_do_update(dmirror, range->start, range->end);
278
279         mutex_unlock(&dmirror->mutex);
280         return true;
281 }
282
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284         .invalidate = dmirror_interval_invalidate,
285 };
286
287 static int dmirror_range_fault(struct dmirror *dmirror,
288                                 struct hmm_range *range)
289 {
290         struct mm_struct *mm = dmirror->notifier.mm;
291         unsigned long timeout =
292                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293         int ret;
294
295         while (true) {
296                 if (time_after(jiffies, timeout)) {
297                         ret = -EBUSY;
298                         goto out;
299                 }
300
301                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
302                 mmap_read_lock(mm);
303                 ret = hmm_range_fault(range);
304                 mmap_read_unlock(mm);
305                 if (ret) {
306                         if (ret == -EBUSY)
307                                 continue;
308                         goto out;
309                 }
310
311                 mutex_lock(&dmirror->mutex);
312                 if (mmu_interval_read_retry(range->notifier,
313                                             range->notifier_seq)) {
314                         mutex_unlock(&dmirror->mutex);
315                         continue;
316                 }
317                 break;
318         }
319
320         ret = dmirror_do_fault(dmirror, range);
321
322         mutex_unlock(&dmirror->mutex);
323 out:
324         return ret;
325 }
326
327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328                          unsigned long end, bool write)
329 {
330         struct mm_struct *mm = dmirror->notifier.mm;
331         unsigned long addr;
332         unsigned long pfns[64];
333         struct hmm_range range = {
334                 .notifier = &dmirror->notifier,
335                 .hmm_pfns = pfns,
336                 .pfn_flags_mask = 0,
337                 .default_flags =
338                         HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339                 .dev_private_owner = dmirror->mdevice,
340         };
341         int ret = 0;
342
343         /* Since the mm is for the mirrored process, get a reference first. */
344         if (!mmget_not_zero(mm))
345                 return 0;
346
347         for (addr = start; addr < end; addr = range.end) {
348                 range.start = addr;
349                 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350
351                 ret = dmirror_range_fault(dmirror, &range);
352                 if (ret)
353                         break;
354         }
355
356         mmput(mm);
357         return ret;
358 }
359
360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361                            unsigned long end, struct dmirror_bounce *bounce)
362 {
363         unsigned long pfn;
364         void *ptr;
365
366         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367
368         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369                 void *entry;
370                 struct page *page;
371
372                 entry = xa_load(&dmirror->pt, pfn);
373                 page = xa_untag_pointer(entry);
374                 if (!page)
375                         return -ENOENT;
376
377                 memcpy_from_page(ptr, page, 0, PAGE_SIZE);
378
379                 ptr += PAGE_SIZE;
380                 bounce->cpages++;
381         }
382
383         return 0;
384 }
385
386 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
387 {
388         struct dmirror_bounce bounce;
389         unsigned long start, end;
390         unsigned long size = cmd->npages << PAGE_SHIFT;
391         int ret;
392
393         start = cmd->addr;
394         end = start + size;
395         if (end < start)
396                 return -EINVAL;
397
398         ret = dmirror_bounce_init(&bounce, start, size);
399         if (ret)
400                 return ret;
401
402         while (1) {
403                 mutex_lock(&dmirror->mutex);
404                 ret = dmirror_do_read(dmirror, start, end, &bounce);
405                 mutex_unlock(&dmirror->mutex);
406                 if (ret != -ENOENT)
407                         break;
408
409                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
410                 ret = dmirror_fault(dmirror, start, end, false);
411                 if (ret)
412                         break;
413                 cmd->faults++;
414         }
415
416         if (ret == 0) {
417                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
418                                  bounce.size))
419                         ret = -EFAULT;
420         }
421         cmd->cpages = bounce.cpages;
422         dmirror_bounce_fini(&bounce);
423         return ret;
424 }
425
426 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
427                             unsigned long end, struct dmirror_bounce *bounce)
428 {
429         unsigned long pfn;
430         void *ptr;
431
432         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
433
434         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
435                 void *entry;
436                 struct page *page;
437
438                 entry = xa_load(&dmirror->pt, pfn);
439                 page = xa_untag_pointer(entry);
440                 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
441                         return -ENOENT;
442
443                 memcpy_to_page(page, 0, ptr, PAGE_SIZE);
444
445                 ptr += PAGE_SIZE;
446                 bounce->cpages++;
447         }
448
449         return 0;
450 }
451
452 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
453 {
454         struct dmirror_bounce bounce;
455         unsigned long start, end;
456         unsigned long size = cmd->npages << PAGE_SHIFT;
457         int ret;
458
459         start = cmd->addr;
460         end = start + size;
461         if (end < start)
462                 return -EINVAL;
463
464         ret = dmirror_bounce_init(&bounce, start, size);
465         if (ret)
466                 return ret;
467         if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
468                            bounce.size)) {
469                 ret = -EFAULT;
470                 goto fini;
471         }
472
473         while (1) {
474                 mutex_lock(&dmirror->mutex);
475                 ret = dmirror_do_write(dmirror, start, end, &bounce);
476                 mutex_unlock(&dmirror->mutex);
477                 if (ret != -ENOENT)
478                         break;
479
480                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
481                 ret = dmirror_fault(dmirror, start, end, true);
482                 if (ret)
483                         break;
484                 cmd->faults++;
485         }
486
487 fini:
488         cmd->cpages = bounce.cpages;
489         dmirror_bounce_fini(&bounce);
490         return ret;
491 }
492
493 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
494                                    struct page **ppage)
495 {
496         struct dmirror_chunk *devmem;
497         struct resource *res = NULL;
498         unsigned long pfn;
499         unsigned long pfn_first;
500         unsigned long pfn_last;
501         void *ptr;
502         int ret = -ENOMEM;
503
504         devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
505         if (!devmem)
506                 return ret;
507
508         switch (mdevice->zone_device_type) {
509         case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
510                 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
511                                               "hmm_dmirror");
512                 if (IS_ERR_OR_NULL(res))
513                         goto err_devmem;
514                 devmem->pagemap.range.start = res->start;
515                 devmem->pagemap.range.end = res->end;
516                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
517                 break;
518         case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
519                 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
520                                                         spm_addr_dev0 :
521                                                         spm_addr_dev1;
522                 devmem->pagemap.range.end = devmem->pagemap.range.start +
523                                             DEVMEM_CHUNK_SIZE - 1;
524                 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
525                 break;
526         default:
527                 ret = -EINVAL;
528                 goto err_devmem;
529         }
530
531         devmem->pagemap.nr_range = 1;
532         devmem->pagemap.ops = &dmirror_devmem_ops;
533         devmem->pagemap.owner = mdevice;
534
535         mutex_lock(&mdevice->devmem_lock);
536
537         if (mdevice->devmem_count == mdevice->devmem_capacity) {
538                 struct dmirror_chunk **new_chunks;
539                 unsigned int new_capacity;
540
541                 new_capacity = mdevice->devmem_capacity +
542                                 DEVMEM_CHUNKS_RESERVE;
543                 new_chunks = krealloc(mdevice->devmem_chunks,
544                                 sizeof(new_chunks[0]) * new_capacity,
545                                 GFP_KERNEL);
546                 if (!new_chunks)
547                         goto err_release;
548                 mdevice->devmem_capacity = new_capacity;
549                 mdevice->devmem_chunks = new_chunks;
550         }
551         ptr = memremap_pages(&devmem->pagemap, numa_node_id());
552         if (IS_ERR_OR_NULL(ptr)) {
553                 if (ptr)
554                         ret = PTR_ERR(ptr);
555                 else
556                         ret = -EFAULT;
557                 goto err_release;
558         }
559
560         devmem->mdevice = mdevice;
561         pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
562         pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
563         mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
564
565         mutex_unlock(&mdevice->devmem_lock);
566
567         pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
568                 DEVMEM_CHUNK_SIZE / (1024 * 1024),
569                 mdevice->devmem_count,
570                 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
571                 pfn_first, pfn_last);
572
573         spin_lock(&mdevice->lock);
574         for (pfn = pfn_first; pfn < pfn_last; pfn++) {
575                 struct page *page = pfn_to_page(pfn);
576
577                 page->zone_device_data = mdevice->free_pages;
578                 mdevice->free_pages = page;
579         }
580         if (ppage) {
581                 *ppage = mdevice->free_pages;
582                 mdevice->free_pages = (*ppage)->zone_device_data;
583                 mdevice->calloc++;
584         }
585         spin_unlock(&mdevice->lock);
586
587         return 0;
588
589 err_release:
590         mutex_unlock(&mdevice->devmem_lock);
591         if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
592                 release_mem_region(devmem->pagemap.range.start,
593                                    range_len(&devmem->pagemap.range));
594 err_devmem:
595         kfree(devmem);
596
597         return ret;
598 }
599
600 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
601 {
602         struct page *dpage = NULL;
603         struct page *rpage = NULL;
604
605         /*
606          * For ZONE_DEVICE private type, this is a fake device so we allocate
607          * real system memory to store our device memory.
608          * For ZONE_DEVICE coherent type we use the actual dpage to store the
609          * data and ignore rpage.
610          */
611         if (dmirror_is_private_zone(mdevice)) {
612                 rpage = alloc_page(GFP_HIGHUSER);
613                 if (!rpage)
614                         return NULL;
615         }
616         spin_lock(&mdevice->lock);
617
618         if (mdevice->free_pages) {
619                 dpage = mdevice->free_pages;
620                 mdevice->free_pages = dpage->zone_device_data;
621                 mdevice->calloc++;
622                 spin_unlock(&mdevice->lock);
623         } else {
624                 spin_unlock(&mdevice->lock);
625                 if (dmirror_allocate_chunk(mdevice, &dpage))
626                         goto error;
627         }
628
629         zone_device_page_init(dpage);
630         dpage->zone_device_data = rpage;
631         return dpage;
632
633 error:
634         if (rpage)
635                 __free_page(rpage);
636         return NULL;
637 }
638
639 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
640                                            struct dmirror *dmirror)
641 {
642         struct dmirror_device *mdevice = dmirror->mdevice;
643         const unsigned long *src = args->src;
644         unsigned long *dst = args->dst;
645         unsigned long addr;
646
647         for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
648                                                    src++, dst++) {
649                 struct page *spage;
650                 struct page *dpage;
651                 struct page *rpage;
652
653                 if (!(*src & MIGRATE_PFN_MIGRATE))
654                         continue;
655
656                 /*
657                  * Note that spage might be NULL which is OK since it is an
658                  * unallocated pte_none() or read-only zero page.
659                  */
660                 spage = migrate_pfn_to_page(*src);
661                 if (WARN(spage && is_zone_device_page(spage),
662                      "page already in device spage pfn: 0x%lx\n",
663                      page_to_pfn(spage)))
664                         continue;
665
666                 dpage = dmirror_devmem_alloc_page(mdevice);
667                 if (!dpage)
668                         continue;
669
670                 rpage = BACKING_PAGE(dpage);
671                 if (spage)
672                         copy_highpage(rpage, spage);
673                 else
674                         clear_highpage(rpage);
675
676                 /*
677                  * Normally, a device would use the page->zone_device_data to
678                  * point to the mirror but here we use it to hold the page for
679                  * the simulated device memory and that page holds the pointer
680                  * to the mirror.
681                  */
682                 rpage->zone_device_data = dmirror;
683
684                 pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
685                          page_to_pfn(spage), page_to_pfn(dpage));
686                 *dst = migrate_pfn(page_to_pfn(dpage));
687                 if ((*src & MIGRATE_PFN_WRITE) ||
688                     (!spage && args->vma->vm_flags & VM_WRITE))
689                         *dst |= MIGRATE_PFN_WRITE;
690         }
691 }
692
693 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
694                              unsigned long end)
695 {
696         unsigned long pfn;
697
698         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
699                 void *entry;
700
701                 entry = xa_load(&dmirror->pt, pfn);
702                 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
703                         return -EPERM;
704         }
705
706         return 0;
707 }
708
709 static int dmirror_atomic_map(unsigned long start, unsigned long end,
710                               struct page **pages, struct dmirror *dmirror)
711 {
712         unsigned long pfn, mapped = 0;
713         int i;
714
715         /* Map the migrated pages into the device's page tables. */
716         mutex_lock(&dmirror->mutex);
717
718         for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
719                 void *entry;
720
721                 if (!pages[i])
722                         continue;
723
724                 entry = pages[i];
725                 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
726                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
727                 if (xa_is_err(entry)) {
728                         mutex_unlock(&dmirror->mutex);
729                         return xa_err(entry);
730                 }
731
732                 mapped++;
733         }
734
735         mutex_unlock(&dmirror->mutex);
736         return mapped;
737 }
738
739 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
740                                             struct dmirror *dmirror)
741 {
742         unsigned long start = args->start;
743         unsigned long end = args->end;
744         const unsigned long *src = args->src;
745         const unsigned long *dst = args->dst;
746         unsigned long pfn;
747
748         /* Map the migrated pages into the device's page tables. */
749         mutex_lock(&dmirror->mutex);
750
751         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
752                                                                 src++, dst++) {
753                 struct page *dpage;
754                 void *entry;
755
756                 if (!(*src & MIGRATE_PFN_MIGRATE))
757                         continue;
758
759                 dpage = migrate_pfn_to_page(*dst);
760                 if (!dpage)
761                         continue;
762
763                 entry = BACKING_PAGE(dpage);
764                 if (*dst & MIGRATE_PFN_WRITE)
765                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
766                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
767                 if (xa_is_err(entry)) {
768                         mutex_unlock(&dmirror->mutex);
769                         return xa_err(entry);
770                 }
771         }
772
773         mutex_unlock(&dmirror->mutex);
774         return 0;
775 }
776
777 static int dmirror_exclusive(struct dmirror *dmirror,
778                              struct hmm_dmirror_cmd *cmd)
779 {
780         unsigned long start, end, addr;
781         unsigned long size = cmd->npages << PAGE_SHIFT;
782         struct mm_struct *mm = dmirror->notifier.mm;
783         struct page *pages[64];
784         struct dmirror_bounce bounce;
785         unsigned long next;
786         int ret;
787
788         start = cmd->addr;
789         end = start + size;
790         if (end < start)
791                 return -EINVAL;
792
793         /* Since the mm is for the mirrored process, get a reference first. */
794         if (!mmget_not_zero(mm))
795                 return -EINVAL;
796
797         mmap_read_lock(mm);
798         for (addr = start; addr < end; addr = next) {
799                 unsigned long mapped = 0;
800                 int i;
801
802                 next = min(end, addr + (ARRAY_SIZE(pages) << PAGE_SHIFT));
803
804                 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
805                 /*
806                  * Do dmirror_atomic_map() iff all pages are marked for
807                  * exclusive access to avoid accessing uninitialized
808                  * fields of pages.
809                  */
810                 if (ret == (next - addr) >> PAGE_SHIFT)
811                         mapped = dmirror_atomic_map(addr, next, pages, dmirror);
812                 for (i = 0; i < ret; i++) {
813                         if (pages[i]) {
814                                 unlock_page(pages[i]);
815                                 put_page(pages[i]);
816                         }
817                 }
818
819                 if (addr + (mapped << PAGE_SHIFT) < next) {
820                         mmap_read_unlock(mm);
821                         mmput(mm);
822                         return -EBUSY;
823                 }
824         }
825         mmap_read_unlock(mm);
826         mmput(mm);
827
828         /* Return the migrated data for verification. */
829         ret = dmirror_bounce_init(&bounce, start, size);
830         if (ret)
831                 return ret;
832         mutex_lock(&dmirror->mutex);
833         ret = dmirror_do_read(dmirror, start, end, &bounce);
834         mutex_unlock(&dmirror->mutex);
835         if (ret == 0) {
836                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
837                                  bounce.size))
838                         ret = -EFAULT;
839         }
840
841         cmd->cpages = bounce.cpages;
842         dmirror_bounce_fini(&bounce);
843         return ret;
844 }
845
846 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
847                                                       struct dmirror *dmirror)
848 {
849         const unsigned long *src = args->src;
850         unsigned long *dst = args->dst;
851         unsigned long start = args->start;
852         unsigned long end = args->end;
853         unsigned long addr;
854
855         for (addr = start; addr < end; addr += PAGE_SIZE,
856                                        src++, dst++) {
857                 struct page *dpage, *spage;
858
859                 spage = migrate_pfn_to_page(*src);
860                 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
861                         continue;
862
863                 if (WARN_ON(!is_device_private_page(spage) &&
864                             !is_device_coherent_page(spage)))
865                         continue;
866                 spage = BACKING_PAGE(spage);
867                 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
868                 if (!dpage)
869                         continue;
870                 pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
871                          page_to_pfn(spage), page_to_pfn(dpage));
872
873                 lock_page(dpage);
874                 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
875                 copy_highpage(dpage, spage);
876                 *dst = migrate_pfn(page_to_pfn(dpage));
877                 if (*src & MIGRATE_PFN_WRITE)
878                         *dst |= MIGRATE_PFN_WRITE;
879         }
880         return 0;
881 }
882
883 static unsigned long
884 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
885 {
886         unsigned long cpages = 0;
887         unsigned long i;
888
889         for (i = 0; i < migrate->npages; i++) {
890                 if (migrate->src[i] & MIGRATE_PFN_VALID &&
891                     migrate->src[i] & MIGRATE_PFN_MIGRATE)
892                         cpages++;
893         }
894         return cpages;
895 }
896
897 static int dmirror_migrate_to_system(struct dmirror *dmirror,
898                                      struct hmm_dmirror_cmd *cmd)
899 {
900         unsigned long start, end, addr;
901         unsigned long size = cmd->npages << PAGE_SHIFT;
902         struct mm_struct *mm = dmirror->notifier.mm;
903         struct vm_area_struct *vma;
904         unsigned long src_pfns[64] = { 0 };
905         unsigned long dst_pfns[64] = { 0 };
906         struct migrate_vma args = { 0 };
907         unsigned long next;
908         int ret;
909
910         start = cmd->addr;
911         end = start + size;
912         if (end < start)
913                 return -EINVAL;
914
915         /* Since the mm is for the mirrored process, get a reference first. */
916         if (!mmget_not_zero(mm))
917                 return -EINVAL;
918
919         cmd->cpages = 0;
920         mmap_read_lock(mm);
921         for (addr = start; addr < end; addr = next) {
922                 vma = vma_lookup(mm, addr);
923                 if (!vma || !(vma->vm_flags & VM_READ)) {
924                         ret = -EINVAL;
925                         goto out;
926                 }
927                 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
928                 if (next > vma->vm_end)
929                         next = vma->vm_end;
930
931                 args.vma = vma;
932                 args.src = src_pfns;
933                 args.dst = dst_pfns;
934                 args.start = addr;
935                 args.end = next;
936                 args.pgmap_owner = dmirror->mdevice;
937                 args.flags = dmirror_select_device(dmirror);
938
939                 ret = migrate_vma_setup(&args);
940                 if (ret)
941                         goto out;
942
943                 pr_debug("Migrating from device mem to sys mem\n");
944                 dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
945
946                 migrate_vma_pages(&args);
947                 cmd->cpages += dmirror_successful_migrated_pages(&args);
948                 migrate_vma_finalize(&args);
949         }
950 out:
951         mmap_read_unlock(mm);
952         mmput(mm);
953
954         return ret;
955 }
956
957 static int dmirror_migrate_to_device(struct dmirror *dmirror,
958                                 struct hmm_dmirror_cmd *cmd)
959 {
960         unsigned long start, end, addr;
961         unsigned long size = cmd->npages << PAGE_SHIFT;
962         struct mm_struct *mm = dmirror->notifier.mm;
963         struct vm_area_struct *vma;
964         unsigned long src_pfns[64] = { 0 };
965         unsigned long dst_pfns[64] = { 0 };
966         struct dmirror_bounce bounce;
967         struct migrate_vma args = { 0 };
968         unsigned long next;
969         int ret;
970
971         start = cmd->addr;
972         end = start + size;
973         if (end < start)
974                 return -EINVAL;
975
976         /* Since the mm is for the mirrored process, get a reference first. */
977         if (!mmget_not_zero(mm))
978                 return -EINVAL;
979
980         mmap_read_lock(mm);
981         for (addr = start; addr < end; addr = next) {
982                 vma = vma_lookup(mm, addr);
983                 if (!vma || !(vma->vm_flags & VM_READ)) {
984                         ret = -EINVAL;
985                         goto out;
986                 }
987                 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
988                 if (next > vma->vm_end)
989                         next = vma->vm_end;
990
991                 args.vma = vma;
992                 args.src = src_pfns;
993                 args.dst = dst_pfns;
994                 args.start = addr;
995                 args.end = next;
996                 args.pgmap_owner = dmirror->mdevice;
997                 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
998                 ret = migrate_vma_setup(&args);
999                 if (ret)
1000                         goto out;
1001
1002                 pr_debug("Migrating from sys mem to device mem\n");
1003                 dmirror_migrate_alloc_and_copy(&args, dmirror);
1004                 migrate_vma_pages(&args);
1005                 dmirror_migrate_finalize_and_map(&args, dmirror);
1006                 migrate_vma_finalize(&args);
1007         }
1008         mmap_read_unlock(mm);
1009         mmput(mm);
1010
1011         /*
1012          * Return the migrated data for verification.
1013          * Only for pages in device zone
1014          */
1015         ret = dmirror_bounce_init(&bounce, start, size);
1016         if (ret)
1017                 return ret;
1018         mutex_lock(&dmirror->mutex);
1019         ret = dmirror_do_read(dmirror, start, end, &bounce);
1020         mutex_unlock(&dmirror->mutex);
1021         if (ret == 0) {
1022                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1023                                  bounce.size))
1024                         ret = -EFAULT;
1025         }
1026         cmd->cpages = bounce.cpages;
1027         dmirror_bounce_fini(&bounce);
1028         return ret;
1029
1030 out:
1031         mmap_read_unlock(mm);
1032         mmput(mm);
1033         return ret;
1034 }
1035
1036 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1037                             unsigned char *perm, unsigned long entry)
1038 {
1039         struct page *page;
1040
1041         if (entry & HMM_PFN_ERROR) {
1042                 *perm = HMM_DMIRROR_PROT_ERROR;
1043                 return;
1044         }
1045         if (!(entry & HMM_PFN_VALID)) {
1046                 *perm = HMM_DMIRROR_PROT_NONE;
1047                 return;
1048         }
1049
1050         page = hmm_pfn_to_page(entry);
1051         if (is_device_private_page(page)) {
1052                 /* Is the page migrated to this device or some other? */
1053                 if (dmirror->mdevice == dmirror_page_to_device(page))
1054                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1055                 else
1056                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1057         } else if (is_device_coherent_page(page)) {
1058                 /* Is the page migrated to this device or some other? */
1059                 if (dmirror->mdevice == dmirror_page_to_device(page))
1060                         *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1061                 else
1062                         *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1063         } else if (is_zero_pfn(page_to_pfn(page)))
1064                 *perm = HMM_DMIRROR_PROT_ZERO;
1065         else
1066                 *perm = HMM_DMIRROR_PROT_NONE;
1067         if (entry & HMM_PFN_WRITE)
1068                 *perm |= HMM_DMIRROR_PROT_WRITE;
1069         else
1070                 *perm |= HMM_DMIRROR_PROT_READ;
1071         if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1072                 *perm |= HMM_DMIRROR_PROT_PMD;
1073         else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1074                 *perm |= HMM_DMIRROR_PROT_PUD;
1075 }
1076
1077 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1078                                 const struct mmu_notifier_range *range,
1079                                 unsigned long cur_seq)
1080 {
1081         struct dmirror_interval *dmi =
1082                 container_of(mni, struct dmirror_interval, notifier);
1083         struct dmirror *dmirror = dmi->dmirror;
1084
1085         if (mmu_notifier_range_blockable(range))
1086                 mutex_lock(&dmirror->mutex);
1087         else if (!mutex_trylock(&dmirror->mutex))
1088                 return false;
1089
1090         /*
1091          * Snapshots only need to set the sequence number since any
1092          * invalidation in the interval invalidates the whole snapshot.
1093          */
1094         mmu_interval_set_seq(mni, cur_seq);
1095
1096         mutex_unlock(&dmirror->mutex);
1097         return true;
1098 }
1099
1100 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1101         .invalidate = dmirror_snapshot_invalidate,
1102 };
1103
1104 static int dmirror_range_snapshot(struct dmirror *dmirror,
1105                                   struct hmm_range *range,
1106                                   unsigned char *perm)
1107 {
1108         struct mm_struct *mm = dmirror->notifier.mm;
1109         struct dmirror_interval notifier;
1110         unsigned long timeout =
1111                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1112         unsigned long i;
1113         unsigned long n;
1114         int ret = 0;
1115
1116         notifier.dmirror = dmirror;
1117         range->notifier = &notifier.notifier;
1118
1119         ret = mmu_interval_notifier_insert(range->notifier, mm,
1120                         range->start, range->end - range->start,
1121                         &dmirror_mrn_ops);
1122         if (ret)
1123                 return ret;
1124
1125         while (true) {
1126                 if (time_after(jiffies, timeout)) {
1127                         ret = -EBUSY;
1128                         goto out;
1129                 }
1130
1131                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
1132
1133                 mmap_read_lock(mm);
1134                 ret = hmm_range_fault(range);
1135                 mmap_read_unlock(mm);
1136                 if (ret) {
1137                         if (ret == -EBUSY)
1138                                 continue;
1139                         goto out;
1140                 }
1141
1142                 mutex_lock(&dmirror->mutex);
1143                 if (mmu_interval_read_retry(range->notifier,
1144                                             range->notifier_seq)) {
1145                         mutex_unlock(&dmirror->mutex);
1146                         continue;
1147                 }
1148                 break;
1149         }
1150
1151         n = (range->end - range->start) >> PAGE_SHIFT;
1152         for (i = 0; i < n; i++)
1153                 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1154
1155         mutex_unlock(&dmirror->mutex);
1156 out:
1157         mmu_interval_notifier_remove(range->notifier);
1158         return ret;
1159 }
1160
1161 static int dmirror_snapshot(struct dmirror *dmirror,
1162                             struct hmm_dmirror_cmd *cmd)
1163 {
1164         struct mm_struct *mm = dmirror->notifier.mm;
1165         unsigned long start, end;
1166         unsigned long size = cmd->npages << PAGE_SHIFT;
1167         unsigned long addr;
1168         unsigned long next;
1169         unsigned long pfns[64];
1170         unsigned char perm[64];
1171         char __user *uptr;
1172         struct hmm_range range = {
1173                 .hmm_pfns = pfns,
1174                 .dev_private_owner = dmirror->mdevice,
1175         };
1176         int ret = 0;
1177
1178         start = cmd->addr;
1179         end = start + size;
1180         if (end < start)
1181                 return -EINVAL;
1182
1183         /* Since the mm is for the mirrored process, get a reference first. */
1184         if (!mmget_not_zero(mm))
1185                 return -EINVAL;
1186
1187         /*
1188          * Register a temporary notifier to detect invalidations even if it
1189          * overlaps with other mmu_interval_notifiers.
1190          */
1191         uptr = u64_to_user_ptr(cmd->ptr);
1192         for (addr = start; addr < end; addr = next) {
1193                 unsigned long n;
1194
1195                 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1196                 range.start = addr;
1197                 range.end = next;
1198
1199                 ret = dmirror_range_snapshot(dmirror, &range, perm);
1200                 if (ret)
1201                         break;
1202
1203                 n = (range.end - range.start) >> PAGE_SHIFT;
1204                 if (copy_to_user(uptr, perm, n)) {
1205                         ret = -EFAULT;
1206                         break;
1207                 }
1208
1209                 cmd->cpages += n;
1210                 uptr += n;
1211         }
1212         mmput(mm);
1213
1214         return ret;
1215 }
1216
1217 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1218 {
1219         unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1220         unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1221         unsigned long npages = end_pfn - start_pfn + 1;
1222         unsigned long i;
1223         unsigned long *src_pfns;
1224         unsigned long *dst_pfns;
1225
1226         src_pfns = kvcalloc(npages, sizeof(*src_pfns), GFP_KERNEL | __GFP_NOFAIL);
1227         dst_pfns = kvcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL | __GFP_NOFAIL);
1228
1229         migrate_device_range(src_pfns, start_pfn, npages);
1230         for (i = 0; i < npages; i++) {
1231                 struct page *dpage, *spage;
1232
1233                 spage = migrate_pfn_to_page(src_pfns[i]);
1234                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1235                         continue;
1236
1237                 if (WARN_ON(!is_device_private_page(spage) &&
1238                             !is_device_coherent_page(spage)))
1239                         continue;
1240                 spage = BACKING_PAGE(spage);
1241                 dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1242                 lock_page(dpage);
1243                 copy_highpage(dpage, spage);
1244                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1245                 if (src_pfns[i] & MIGRATE_PFN_WRITE)
1246                         dst_pfns[i] |= MIGRATE_PFN_WRITE;
1247         }
1248         migrate_device_pages(src_pfns, dst_pfns, npages);
1249         migrate_device_finalize(src_pfns, dst_pfns, npages);
1250         kvfree(src_pfns);
1251         kvfree(dst_pfns);
1252 }
1253
1254 /* Removes free pages from the free list so they can't be re-allocated */
1255 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1256 {
1257         struct dmirror_device *mdevice = devmem->mdevice;
1258         struct page *page;
1259
1260         for (page = mdevice->free_pages; page; page = page->zone_device_data)
1261                 if (dmirror_page_to_chunk(page) == devmem)
1262                         mdevice->free_pages = page->zone_device_data;
1263 }
1264
1265 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1266 {
1267         unsigned int i;
1268
1269         mutex_lock(&mdevice->devmem_lock);
1270         if (mdevice->devmem_chunks) {
1271                 for (i = 0; i < mdevice->devmem_count; i++) {
1272                         struct dmirror_chunk *devmem =
1273                                 mdevice->devmem_chunks[i];
1274
1275                         spin_lock(&mdevice->lock);
1276                         devmem->remove = true;
1277                         dmirror_remove_free_pages(devmem);
1278                         spin_unlock(&mdevice->lock);
1279
1280                         dmirror_device_evict_chunk(devmem);
1281                         memunmap_pages(&devmem->pagemap);
1282                         if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1283                                 release_mem_region(devmem->pagemap.range.start,
1284                                                    range_len(&devmem->pagemap.range));
1285                         kfree(devmem);
1286                 }
1287                 mdevice->devmem_count = 0;
1288                 mdevice->devmem_capacity = 0;
1289                 mdevice->free_pages = NULL;
1290                 kfree(mdevice->devmem_chunks);
1291                 mdevice->devmem_chunks = NULL;
1292         }
1293         mutex_unlock(&mdevice->devmem_lock);
1294 }
1295
1296 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1297                                         unsigned int command,
1298                                         unsigned long arg)
1299 {
1300         void __user *uarg = (void __user *)arg;
1301         struct hmm_dmirror_cmd cmd;
1302         struct dmirror *dmirror;
1303         int ret;
1304
1305         dmirror = filp->private_data;
1306         if (!dmirror)
1307                 return -EINVAL;
1308
1309         if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1310                 return -EFAULT;
1311
1312         if (cmd.addr & ~PAGE_MASK)
1313                 return -EINVAL;
1314         if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1315                 return -EINVAL;
1316
1317         cmd.cpages = 0;
1318         cmd.faults = 0;
1319
1320         switch (command) {
1321         case HMM_DMIRROR_READ:
1322                 ret = dmirror_read(dmirror, &cmd);
1323                 break;
1324
1325         case HMM_DMIRROR_WRITE:
1326                 ret = dmirror_write(dmirror, &cmd);
1327                 break;
1328
1329         case HMM_DMIRROR_MIGRATE_TO_DEV:
1330                 ret = dmirror_migrate_to_device(dmirror, &cmd);
1331                 break;
1332
1333         case HMM_DMIRROR_MIGRATE_TO_SYS:
1334                 ret = dmirror_migrate_to_system(dmirror, &cmd);
1335                 break;
1336
1337         case HMM_DMIRROR_EXCLUSIVE:
1338                 ret = dmirror_exclusive(dmirror, &cmd);
1339                 break;
1340
1341         case HMM_DMIRROR_CHECK_EXCLUSIVE:
1342                 ret = dmirror_check_atomic(dmirror, cmd.addr,
1343                                         cmd.addr + (cmd.npages << PAGE_SHIFT));
1344                 break;
1345
1346         case HMM_DMIRROR_SNAPSHOT:
1347                 ret = dmirror_snapshot(dmirror, &cmd);
1348                 break;
1349
1350         case HMM_DMIRROR_RELEASE:
1351                 dmirror_device_remove_chunks(dmirror->mdevice);
1352                 ret = 0;
1353                 break;
1354
1355         default:
1356                 return -EINVAL;
1357         }
1358         if (ret)
1359                 return ret;
1360
1361         if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1362                 return -EFAULT;
1363
1364         return 0;
1365 }
1366
1367 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1368 {
1369         unsigned long addr;
1370
1371         for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1372                 struct page *page;
1373                 int ret;
1374
1375                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1376                 if (!page)
1377                         return -ENOMEM;
1378
1379                 ret = vm_insert_page(vma, addr, page);
1380                 if (ret) {
1381                         __free_page(page);
1382                         return ret;
1383                 }
1384                 put_page(page);
1385         }
1386
1387         return 0;
1388 }
1389
1390 static const struct file_operations dmirror_fops = {
1391         .open           = dmirror_fops_open,
1392         .release        = dmirror_fops_release,
1393         .mmap           = dmirror_fops_mmap,
1394         .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1395         .llseek         = default_llseek,
1396         .owner          = THIS_MODULE,
1397 };
1398
1399 static void dmirror_devmem_free(struct page *page)
1400 {
1401         struct page *rpage = BACKING_PAGE(page);
1402         struct dmirror_device *mdevice;
1403
1404         if (rpage != page)
1405                 __free_page(rpage);
1406
1407         mdevice = dmirror_page_to_device(page);
1408         spin_lock(&mdevice->lock);
1409
1410         /* Return page to our allocator if not freeing the chunk */
1411         if (!dmirror_page_to_chunk(page)->remove) {
1412                 mdevice->cfree++;
1413                 page->zone_device_data = mdevice->free_pages;
1414                 mdevice->free_pages = page;
1415         }
1416         spin_unlock(&mdevice->lock);
1417 }
1418
1419 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1420 {
1421         struct migrate_vma args = { 0 };
1422         unsigned long src_pfns = 0;
1423         unsigned long dst_pfns = 0;
1424         struct page *rpage;
1425         struct dmirror *dmirror;
1426         vm_fault_t ret;
1427
1428         /*
1429          * Normally, a device would use the page->zone_device_data to point to
1430          * the mirror but here we use it to hold the page for the simulated
1431          * device memory and that page holds the pointer to the mirror.
1432          */
1433         rpage = vmf->page->zone_device_data;
1434         dmirror = rpage->zone_device_data;
1435
1436         /* FIXME demonstrate how we can adjust migrate range */
1437         args.vma = vmf->vma;
1438         args.start = vmf->address;
1439         args.end = args.start + PAGE_SIZE;
1440         args.src = &src_pfns;
1441         args.dst = &dst_pfns;
1442         args.pgmap_owner = dmirror->mdevice;
1443         args.flags = dmirror_select_device(dmirror);
1444         args.fault_page = vmf->page;
1445
1446         if (migrate_vma_setup(&args))
1447                 return VM_FAULT_SIGBUS;
1448
1449         ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1450         if (ret)
1451                 return ret;
1452         migrate_vma_pages(&args);
1453         /*
1454          * No device finalize step is needed since
1455          * dmirror_devmem_fault_alloc_and_copy() will have already
1456          * invalidated the device page table.
1457          */
1458         migrate_vma_finalize(&args);
1459         return 0;
1460 }
1461
1462 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1463         .page_free      = dmirror_devmem_free,
1464         .migrate_to_ram = dmirror_devmem_fault,
1465 };
1466
1467 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1468 {
1469         dev_t dev;
1470         int ret;
1471
1472         dev = MKDEV(MAJOR(dmirror_dev), id);
1473         mutex_init(&mdevice->devmem_lock);
1474         spin_lock_init(&mdevice->lock);
1475
1476         cdev_init(&mdevice->cdevice, &dmirror_fops);
1477         mdevice->cdevice.owner = THIS_MODULE;
1478         device_initialize(&mdevice->device);
1479         mdevice->device.devt = dev;
1480
1481         ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1482         if (ret)
1483                 return ret;
1484
1485         ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1486         if (ret)
1487                 return ret;
1488
1489         /* Build a list of free ZONE_DEVICE struct pages */
1490         return dmirror_allocate_chunk(mdevice, NULL);
1491 }
1492
1493 static void dmirror_device_remove(struct dmirror_device *mdevice)
1494 {
1495         dmirror_device_remove_chunks(mdevice);
1496         cdev_device_del(&mdevice->cdevice, &mdevice->device);
1497 }
1498
1499 static int __init hmm_dmirror_init(void)
1500 {
1501         int ret;
1502         int id = 0;
1503         int ndevices = 0;
1504
1505         ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1506                                   "HMM_DMIRROR");
1507         if (ret)
1508                 goto err_unreg;
1509
1510         memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1511         dmirror_devices[ndevices++].zone_device_type =
1512                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1513         dmirror_devices[ndevices++].zone_device_type =
1514                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1515         if (spm_addr_dev0 && spm_addr_dev1) {
1516                 dmirror_devices[ndevices++].zone_device_type =
1517                                         HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1518                 dmirror_devices[ndevices++].zone_device_type =
1519                                         HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1520         }
1521         for (id = 0; id < ndevices; id++) {
1522                 ret = dmirror_device_init(dmirror_devices + id, id);
1523                 if (ret)
1524                         goto err_chrdev;
1525         }
1526
1527         pr_info("HMM test module loaded. This is only for testing HMM.\n");
1528         return 0;
1529
1530 err_chrdev:
1531         while (--id >= 0)
1532                 dmirror_device_remove(dmirror_devices + id);
1533         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1534 err_unreg:
1535         return ret;
1536 }
1537
1538 static void __exit hmm_dmirror_exit(void)
1539 {
1540         int id;
1541
1542         for (id = 0; id < DMIRROR_NDEVICES; id++)
1543                 if (dmirror_devices[id].zone_device_type)
1544                         dmirror_device_remove(dmirror_devices + id);
1545         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1546 }
1547
1548 module_init(hmm_dmirror_init);
1549 module_exit(hmm_dmirror_exit);
1550 MODULE_DESCRIPTION("HMM (Heterogeneous Memory Management) test module");
1551 MODULE_LICENSE("GPL");
This page took 0.118956 seconds and 4 git commands to generate.