]> Git Repo - linux.git/blob - net/core/skmsg.c
KVM: x86: Preserve TDP MMU roots until they are explicitly invalidated
[linux.git] / net / core / skmsg.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11 #include <trace/events/sock.h>
12
13 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 {
15         if (msg->sg.end > msg->sg.start &&
16             elem_first_coalesce < msg->sg.end)
17                 return true;
18
19         if (msg->sg.end < msg->sg.start &&
20             (elem_first_coalesce > msg->sg.start ||
21              elem_first_coalesce < msg->sg.end))
22                 return true;
23
24         return false;
25 }
26
27 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
28                  int elem_first_coalesce)
29 {
30         struct page_frag *pfrag = sk_page_frag(sk);
31         u32 osize = msg->sg.size;
32         int ret = 0;
33
34         len -= msg->sg.size;
35         while (len > 0) {
36                 struct scatterlist *sge;
37                 u32 orig_offset;
38                 int use, i;
39
40                 if (!sk_page_frag_refill(sk, pfrag)) {
41                         ret = -ENOMEM;
42                         goto msg_trim;
43                 }
44
45                 orig_offset = pfrag->offset;
46                 use = min_t(int, len, pfrag->size - orig_offset);
47                 if (!sk_wmem_schedule(sk, use)) {
48                         ret = -ENOMEM;
49                         goto msg_trim;
50                 }
51
52                 i = msg->sg.end;
53                 sk_msg_iter_var_prev(i);
54                 sge = &msg->sg.data[i];
55
56                 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
57                     sg_page(sge) == pfrag->page &&
58                     sge->offset + sge->length == orig_offset) {
59                         sge->length += use;
60                 } else {
61                         if (sk_msg_full(msg)) {
62                                 ret = -ENOSPC;
63                                 break;
64                         }
65
66                         sge = &msg->sg.data[msg->sg.end];
67                         sg_unmark_end(sge);
68                         sg_set_page(sge, pfrag->page, use, orig_offset);
69                         get_page(pfrag->page);
70                         sk_msg_iter_next(msg, end);
71                 }
72
73                 sk_mem_charge(sk, use);
74                 msg->sg.size += use;
75                 pfrag->offset += use;
76                 len -= use;
77         }
78
79         return ret;
80
81 msg_trim:
82         sk_msg_trim(sk, msg, osize);
83         return ret;
84 }
85 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86
87 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
88                  u32 off, u32 len)
89 {
90         int i = src->sg.start;
91         struct scatterlist *sge = sk_msg_elem(src, i);
92         struct scatterlist *sgd = NULL;
93         u32 sge_len, sge_off;
94
95         while (off) {
96                 if (sge->length > off)
97                         break;
98                 off -= sge->length;
99                 sk_msg_iter_var_next(i);
100                 if (i == src->sg.end && off)
101                         return -ENOSPC;
102                 sge = sk_msg_elem(src, i);
103         }
104
105         while (len) {
106                 sge_len = sge->length - off;
107                 if (sge_len > len)
108                         sge_len = len;
109
110                 if (dst->sg.end)
111                         sgd = sk_msg_elem(dst, dst->sg.end - 1);
112
113                 if (sgd &&
114                     (sg_page(sge) == sg_page(sgd)) &&
115                     (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
116                         sgd->length += sge_len;
117                         dst->sg.size += sge_len;
118                 } else if (!sk_msg_full(dst)) {
119                         sge_off = sge->offset + off;
120                         sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
121                 } else {
122                         return -ENOSPC;
123                 }
124
125                 off = 0;
126                 len -= sge_len;
127                 sk_mem_charge(sk, sge_len);
128                 sk_msg_iter_var_next(i);
129                 if (i == src->sg.end && len)
130                         return -ENOSPC;
131                 sge = sk_msg_elem(src, i);
132         }
133
134         return 0;
135 }
136 EXPORT_SYMBOL_GPL(sk_msg_clone);
137
138 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 {
140         int i = msg->sg.start;
141
142         do {
143                 struct scatterlist *sge = sk_msg_elem(msg, i);
144
145                 if (bytes < sge->length) {
146                         sge->length -= bytes;
147                         sge->offset += bytes;
148                         sk_mem_uncharge(sk, bytes);
149                         break;
150                 }
151
152                 sk_mem_uncharge(sk, sge->length);
153                 bytes -= sge->length;
154                 sge->length = 0;
155                 sge->offset = 0;
156                 sk_msg_iter_var_next(i);
157         } while (bytes && i != msg->sg.end);
158         msg->sg.start = i;
159 }
160 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161
162 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 {
164         int i = msg->sg.start;
165
166         do {
167                 struct scatterlist *sge = &msg->sg.data[i];
168                 int uncharge = (bytes < sge->length) ? bytes : sge->length;
169
170                 sk_mem_uncharge(sk, uncharge);
171                 bytes -= uncharge;
172                 sk_msg_iter_var_next(i);
173         } while (i != msg->sg.end);
174 }
175 EXPORT_SYMBOL_GPL(sk_msg_return);
176
177 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
178                             bool charge)
179 {
180         struct scatterlist *sge = sk_msg_elem(msg, i);
181         u32 len = sge->length;
182
183         /* When the skb owns the memory we free it from consume_skb path. */
184         if (!msg->skb) {
185                 if (charge)
186                         sk_mem_uncharge(sk, len);
187                 put_page(sg_page(sge));
188         }
189         memset(sge, 0, sizeof(*sge));
190         return len;
191 }
192
193 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
194                          bool charge)
195 {
196         struct scatterlist *sge = sk_msg_elem(msg, i);
197         int freed = 0;
198
199         while (msg->sg.size) {
200                 msg->sg.size -= sge->length;
201                 freed += sk_msg_free_elem(sk, msg, i, charge);
202                 sk_msg_iter_var_next(i);
203                 sk_msg_check_to_free(msg, i, msg->sg.size);
204                 sge = sk_msg_elem(msg, i);
205         }
206         consume_skb(msg->skb);
207         sk_msg_init(msg);
208         return freed;
209 }
210
211 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 {
213         return __sk_msg_free(sk, msg, msg->sg.start, false);
214 }
215 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216
217 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 {
219         return __sk_msg_free(sk, msg, msg->sg.start, true);
220 }
221 EXPORT_SYMBOL_GPL(sk_msg_free);
222
223 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
224                                   u32 bytes, bool charge)
225 {
226         struct scatterlist *sge;
227         u32 i = msg->sg.start;
228
229         while (bytes) {
230                 sge = sk_msg_elem(msg, i);
231                 if (!sge->length)
232                         break;
233                 if (bytes < sge->length) {
234                         if (charge)
235                                 sk_mem_uncharge(sk, bytes);
236                         sge->length -= bytes;
237                         sge->offset += bytes;
238                         msg->sg.size -= bytes;
239                         break;
240                 }
241
242                 msg->sg.size -= sge->length;
243                 bytes -= sge->length;
244                 sk_msg_free_elem(sk, msg, i, charge);
245                 sk_msg_iter_var_next(i);
246                 sk_msg_check_to_free(msg, i, bytes);
247         }
248         msg->sg.start = i;
249 }
250
251 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 {
253         __sk_msg_free_partial(sk, msg, bytes, true);
254 }
255 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256
257 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
258                                   u32 bytes)
259 {
260         __sk_msg_free_partial(sk, msg, bytes, false);
261 }
262
263 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 {
265         int trim = msg->sg.size - len;
266         u32 i = msg->sg.end;
267
268         if (trim <= 0) {
269                 WARN_ON(trim < 0);
270                 return;
271         }
272
273         sk_msg_iter_var_prev(i);
274         msg->sg.size = len;
275         while (msg->sg.data[i].length &&
276                trim >= msg->sg.data[i].length) {
277                 trim -= msg->sg.data[i].length;
278                 sk_msg_free_elem(sk, msg, i, true);
279                 sk_msg_iter_var_prev(i);
280                 if (!trim)
281                         goto out;
282         }
283
284         msg->sg.data[i].length -= trim;
285         sk_mem_uncharge(sk, trim);
286         /* Adjust copybreak if it falls into the trimmed part of last buf */
287         if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
288                 msg->sg.copybreak = msg->sg.data[i].length;
289 out:
290         sk_msg_iter_var_next(i);
291         msg->sg.end = i;
292
293         /* If we trim data a full sg elem before curr pointer update
294          * copybreak and current so that any future copy operations
295          * start at new copy location.
296          * However trimed data that has not yet been used in a copy op
297          * does not require an update.
298          */
299         if (!msg->sg.size) {
300                 msg->sg.curr = msg->sg.start;
301                 msg->sg.copybreak = 0;
302         } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
303                    sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
304                 sk_msg_iter_var_prev(i);
305                 msg->sg.curr = i;
306                 msg->sg.copybreak = msg->sg.data[i].length;
307         }
308 }
309 EXPORT_SYMBOL_GPL(sk_msg_trim);
310
311 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
312                               struct sk_msg *msg, u32 bytes)
313 {
314         int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
315         const int to_max_pages = MAX_MSG_FRAGS;
316         struct page *pages[MAX_MSG_FRAGS];
317         ssize_t orig, copied, use, offset;
318
319         orig = msg->sg.size;
320         while (bytes > 0) {
321                 i = 0;
322                 maxpages = to_max_pages - num_elems;
323                 if (maxpages == 0) {
324                         ret = -EFAULT;
325                         goto out;
326                 }
327
328                 copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
329                                             &offset);
330                 if (copied <= 0) {
331                         ret = -EFAULT;
332                         goto out;
333                 }
334
335                 bytes -= copied;
336                 msg->sg.size += copied;
337
338                 while (copied) {
339                         use = min_t(int, copied, PAGE_SIZE - offset);
340                         sg_set_page(&msg->sg.data[msg->sg.end],
341                                     pages[i], use, offset);
342                         sg_unmark_end(&msg->sg.data[msg->sg.end]);
343                         sk_mem_charge(sk, use);
344
345                         offset = 0;
346                         copied -= use;
347                         sk_msg_iter_next(msg, end);
348                         num_elems++;
349                         i++;
350                 }
351                 /* When zerocopy is mixed with sk_msg_*copy* operations we
352                  * may have a copybreak set in this case clear and prefer
353                  * zerocopy remainder when possible.
354                  */
355                 msg->sg.copybreak = 0;
356                 msg->sg.curr = msg->sg.end;
357         }
358 out:
359         /* Revert iov_iter updates, msg will need to use 'trim' later if it
360          * also needs to be cleared.
361          */
362         if (ret)
363                 iov_iter_revert(from, msg->sg.size - orig);
364         return ret;
365 }
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
367
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369                              struct sk_msg *msg, u32 bytes)
370 {
371         int ret = -ENOSPC, i = msg->sg.curr;
372         struct scatterlist *sge;
373         u32 copy, buf_size;
374         void *to;
375
376         do {
377                 sge = sk_msg_elem(msg, i);
378                 /* This is possible if a trim operation shrunk the buffer */
379                 if (msg->sg.copybreak >= sge->length) {
380                         msg->sg.copybreak = 0;
381                         sk_msg_iter_var_next(i);
382                         if (i == msg->sg.end)
383                                 break;
384                         sge = sk_msg_elem(msg, i);
385                 }
386
387                 buf_size = sge->length - msg->sg.copybreak;
388                 copy = (buf_size > bytes) ? bytes : buf_size;
389                 to = sg_virt(sge) + msg->sg.copybreak;
390                 msg->sg.copybreak += copy;
391                 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392                         ret = copy_from_iter_nocache(to, copy, from);
393                 else
394                         ret = copy_from_iter(to, copy, from);
395                 if (ret != copy) {
396                         ret = -EFAULT;
397                         goto out;
398                 }
399                 bytes -= copy;
400                 if (!bytes)
401                         break;
402                 msg->sg.copybreak = 0;
403                 sk_msg_iter_var_next(i);
404         } while (i != msg->sg.end);
405 out:
406         msg->sg.curr = i;
407         return ret;
408 }
409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
410
411 /* Receive sk_msg from psock->ingress_msg to @msg. */
412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
413                    int len, int flags)
414 {
415         struct iov_iter *iter = &msg->msg_iter;
416         int peek = flags & MSG_PEEK;
417         struct sk_msg *msg_rx;
418         int i, copied = 0;
419
420         msg_rx = sk_psock_peek_msg(psock);
421         while (copied != len) {
422                 struct scatterlist *sge;
423
424                 if (unlikely(!msg_rx))
425                         break;
426
427                 i = msg_rx->sg.start;
428                 do {
429                         struct page *page;
430                         int copy;
431
432                         sge = sk_msg_elem(msg_rx, i);
433                         copy = sge->length;
434                         page = sg_page(sge);
435                         if (copied + copy > len)
436                                 copy = len - copied;
437                         copy = copy_page_to_iter(page, sge->offset, copy, iter);
438                         if (!copy) {
439                                 copied = copied ? copied : -EFAULT;
440                                 goto out;
441                         }
442
443                         copied += copy;
444                         if (likely(!peek)) {
445                                 sge->offset += copy;
446                                 sge->length -= copy;
447                                 if (!msg_rx->skb)
448                                         sk_mem_uncharge(sk, copy);
449                                 msg_rx->sg.size -= copy;
450
451                                 if (!sge->length) {
452                                         sk_msg_iter_var_next(i);
453                                         if (!msg_rx->skb)
454                                                 put_page(page);
455                                 }
456                         } else {
457                                 /* Lets not optimize peek case if copy_page_to_iter
458                                  * didn't copy the entire length lets just break.
459                                  */
460                                 if (copy != sge->length)
461                                         goto out;
462                                 sk_msg_iter_var_next(i);
463                         }
464
465                         if (copied == len)
466                                 break;
467                 } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
468
469                 if (unlikely(peek)) {
470                         msg_rx = sk_psock_next_msg(psock, msg_rx);
471                         if (!msg_rx)
472                                 break;
473                         continue;
474                 }
475
476                 msg_rx->sg.start = i;
477                 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
478                         msg_rx = sk_psock_dequeue_msg(psock);
479                         kfree_sk_msg(msg_rx);
480                 }
481                 msg_rx = sk_psock_peek_msg(psock);
482         }
483 out:
484         if (psock->work_state.skb && copied > 0)
485                 schedule_work(&psock->work);
486         return copied;
487 }
488 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
489
490 bool sk_msg_is_readable(struct sock *sk)
491 {
492         struct sk_psock *psock;
493         bool empty = true;
494
495         rcu_read_lock();
496         psock = sk_psock(sk);
497         if (likely(psock))
498                 empty = list_empty(&psock->ingress_msg);
499         rcu_read_unlock();
500         return !empty;
501 }
502 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
503
504 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
505 {
506         struct sk_msg *msg;
507
508         msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
509         if (unlikely(!msg))
510                 return NULL;
511         sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
512         return msg;
513 }
514
515 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
516                                                   struct sk_buff *skb)
517 {
518         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
519                 return NULL;
520
521         if (!sk_rmem_schedule(sk, skb, skb->truesize))
522                 return NULL;
523
524         return alloc_sk_msg(GFP_KERNEL);
525 }
526
527 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
528                                         u32 off, u32 len,
529                                         struct sk_psock *psock,
530                                         struct sock *sk,
531                                         struct sk_msg *msg)
532 {
533         int num_sge, copied;
534
535         num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
536         if (num_sge < 0) {
537                 /* skb linearize may fail with ENOMEM, but lets simply try again
538                  * later if this happens. Under memory pressure we don't want to
539                  * drop the skb. We need to linearize the skb so that the mapping
540                  * in skb_to_sgvec can not error.
541                  */
542                 if (skb_linearize(skb))
543                         return -EAGAIN;
544
545                 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
546                 if (unlikely(num_sge < 0))
547                         return num_sge;
548         }
549
550         copied = len;
551         msg->sg.start = 0;
552         msg->sg.size = copied;
553         msg->sg.end = num_sge;
554         msg->skb = skb;
555
556         sk_psock_queue_msg(psock, msg);
557         sk_psock_data_ready(sk, psock);
558         return copied;
559 }
560
561 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
562                                      u32 off, u32 len);
563
564 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
565                                 u32 off, u32 len)
566 {
567         struct sock *sk = psock->sk;
568         struct sk_msg *msg;
569         int err;
570
571         /* If we are receiving on the same sock skb->sk is already assigned,
572          * skip memory accounting and owner transition seeing it already set
573          * correctly.
574          */
575         if (unlikely(skb->sk == sk))
576                 return sk_psock_skb_ingress_self(psock, skb, off, len);
577         msg = sk_psock_create_ingress_msg(sk, skb);
578         if (!msg)
579                 return -EAGAIN;
580
581         /* This will transition ownership of the data from the socket where
582          * the BPF program was run initiating the redirect to the socket
583          * we will eventually receive this data on. The data will be released
584          * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
585          * into user buffers.
586          */
587         skb_set_owner_r(skb, sk);
588         err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
589         if (err < 0)
590                 kfree(msg);
591         return err;
592 }
593
594 /* Puts an skb on the ingress queue of the socket already assigned to the
595  * skb. In this case we do not need to check memory limits or skb_set_owner_r
596  * because the skb is already accounted for here.
597  */
598 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
599                                      u32 off, u32 len)
600 {
601         struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
602         struct sock *sk = psock->sk;
603         int err;
604
605         if (unlikely(!msg))
606                 return -EAGAIN;
607         skb_set_owner_r(skb, sk);
608         err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
609         if (err < 0)
610                 kfree(msg);
611         return err;
612 }
613
614 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
615                                u32 off, u32 len, bool ingress)
616 {
617         if (!ingress) {
618                 if (!sock_writeable(psock->sk))
619                         return -EAGAIN;
620                 return skb_send_sock(psock->sk, skb, off, len);
621         }
622         return sk_psock_skb_ingress(psock, skb, off, len);
623 }
624
625 static void sk_psock_skb_state(struct sk_psock *psock,
626                                struct sk_psock_work_state *state,
627                                struct sk_buff *skb,
628                                int len, int off)
629 {
630         spin_lock_bh(&psock->ingress_lock);
631         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
632                 state->skb = skb;
633                 state->len = len;
634                 state->off = off;
635         } else {
636                 sock_drop(psock->sk, skb);
637         }
638         spin_unlock_bh(&psock->ingress_lock);
639 }
640
641 static void sk_psock_backlog(struct work_struct *work)
642 {
643         struct sk_psock *psock = container_of(work, struct sk_psock, work);
644         struct sk_psock_work_state *state = &psock->work_state;
645         struct sk_buff *skb = NULL;
646         bool ingress;
647         u32 len, off;
648         int ret;
649
650         mutex_lock(&psock->work_mutex);
651         if (unlikely(state->skb)) {
652                 spin_lock_bh(&psock->ingress_lock);
653                 skb = state->skb;
654                 len = state->len;
655                 off = state->off;
656                 state->skb = NULL;
657                 spin_unlock_bh(&psock->ingress_lock);
658         }
659         if (skb)
660                 goto start;
661
662         while ((skb = skb_dequeue(&psock->ingress_skb))) {
663                 len = skb->len;
664                 off = 0;
665                 if (skb_bpf_strparser(skb)) {
666                         struct strp_msg *stm = strp_msg(skb);
667
668                         off = stm->offset;
669                         len = stm->full_len;
670                 }
671 start:
672                 ingress = skb_bpf_ingress(skb);
673                 skb_bpf_redirect_clear(skb);
674                 do {
675                         ret = -EIO;
676                         if (!sock_flag(psock->sk, SOCK_DEAD))
677                                 ret = sk_psock_handle_skb(psock, skb, off,
678                                                           len, ingress);
679                         if (ret <= 0) {
680                                 if (ret == -EAGAIN) {
681                                         sk_psock_skb_state(psock, state, skb,
682                                                            len, off);
683                                         goto end;
684                                 }
685                                 /* Hard errors break pipe and stop xmit. */
686                                 sk_psock_report_error(psock, ret ? -ret : EPIPE);
687                                 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
688                                 sock_drop(psock->sk, skb);
689                                 goto end;
690                         }
691                         off += ret;
692                         len -= ret;
693                 } while (len);
694
695                 if (!ingress)
696                         kfree_skb(skb);
697         }
698 end:
699         mutex_unlock(&psock->work_mutex);
700 }
701
702 struct sk_psock *sk_psock_init(struct sock *sk, int node)
703 {
704         struct sk_psock *psock;
705         struct proto *prot;
706
707         write_lock_bh(&sk->sk_callback_lock);
708
709         if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
710                 psock = ERR_PTR(-EINVAL);
711                 goto out;
712         }
713
714         if (sk->sk_user_data) {
715                 psock = ERR_PTR(-EBUSY);
716                 goto out;
717         }
718
719         psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
720         if (!psock) {
721                 psock = ERR_PTR(-ENOMEM);
722                 goto out;
723         }
724
725         prot = READ_ONCE(sk->sk_prot);
726         psock->sk = sk;
727         psock->eval = __SK_NONE;
728         psock->sk_proto = prot;
729         psock->saved_unhash = prot->unhash;
730         psock->saved_destroy = prot->destroy;
731         psock->saved_close = prot->close;
732         psock->saved_write_space = sk->sk_write_space;
733
734         INIT_LIST_HEAD(&psock->link);
735         spin_lock_init(&psock->link_lock);
736
737         INIT_WORK(&psock->work, sk_psock_backlog);
738         mutex_init(&psock->work_mutex);
739         INIT_LIST_HEAD(&psock->ingress_msg);
740         spin_lock_init(&psock->ingress_lock);
741         skb_queue_head_init(&psock->ingress_skb);
742
743         sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
744         refcount_set(&psock->refcnt, 1);
745
746         __rcu_assign_sk_user_data_with_flags(sk, psock,
747                                              SK_USER_DATA_NOCOPY |
748                                              SK_USER_DATA_PSOCK);
749         sock_hold(sk);
750
751 out:
752         write_unlock_bh(&sk->sk_callback_lock);
753         return psock;
754 }
755 EXPORT_SYMBOL_GPL(sk_psock_init);
756
757 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
758 {
759         struct sk_psock_link *link;
760
761         spin_lock_bh(&psock->link_lock);
762         link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
763                                         list);
764         if (link)
765                 list_del(&link->list);
766         spin_unlock_bh(&psock->link_lock);
767         return link;
768 }
769
770 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
771 {
772         struct sk_msg *msg, *tmp;
773
774         list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
775                 list_del(&msg->list);
776                 sk_msg_free(psock->sk, msg);
777                 kfree(msg);
778         }
779 }
780
781 static void __sk_psock_zap_ingress(struct sk_psock *psock)
782 {
783         struct sk_buff *skb;
784
785         while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
786                 skb_bpf_redirect_clear(skb);
787                 sock_drop(psock->sk, skb);
788         }
789         kfree_skb(psock->work_state.skb);
790         /* We null the skb here to ensure that calls to sk_psock_backlog
791          * do not pick up the free'd skb.
792          */
793         psock->work_state.skb = NULL;
794         __sk_psock_purge_ingress_msg(psock);
795 }
796
797 static void sk_psock_link_destroy(struct sk_psock *psock)
798 {
799         struct sk_psock_link *link, *tmp;
800
801         list_for_each_entry_safe(link, tmp, &psock->link, list) {
802                 list_del(&link->list);
803                 sk_psock_free_link(link);
804         }
805 }
806
807 void sk_psock_stop(struct sk_psock *psock)
808 {
809         spin_lock_bh(&psock->ingress_lock);
810         sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
811         sk_psock_cork_free(psock);
812         __sk_psock_zap_ingress(psock);
813         spin_unlock_bh(&psock->ingress_lock);
814 }
815
816 static void sk_psock_done_strp(struct sk_psock *psock);
817
818 static void sk_psock_destroy(struct work_struct *work)
819 {
820         struct sk_psock *psock = container_of(to_rcu_work(work),
821                                               struct sk_psock, rwork);
822         /* No sk_callback_lock since already detached. */
823
824         sk_psock_done_strp(psock);
825
826         cancel_work_sync(&psock->work);
827         mutex_destroy(&psock->work_mutex);
828
829         psock_progs_drop(&psock->progs);
830
831         sk_psock_link_destroy(psock);
832         sk_psock_cork_free(psock);
833
834         if (psock->sk_redir)
835                 sock_put(psock->sk_redir);
836         sock_put(psock->sk);
837         kfree(psock);
838 }
839
840 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
841 {
842         write_lock_bh(&sk->sk_callback_lock);
843         sk_psock_restore_proto(sk, psock);
844         rcu_assign_sk_user_data(sk, NULL);
845         if (psock->progs.stream_parser)
846                 sk_psock_stop_strp(sk, psock);
847         else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
848                 sk_psock_stop_verdict(sk, psock);
849         write_unlock_bh(&sk->sk_callback_lock);
850
851         sk_psock_stop(psock);
852
853         INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
854         queue_rcu_work(system_wq, &psock->rwork);
855 }
856 EXPORT_SYMBOL_GPL(sk_psock_drop);
857
858 static int sk_psock_map_verd(int verdict, bool redir)
859 {
860         switch (verdict) {
861         case SK_PASS:
862                 return redir ? __SK_REDIRECT : __SK_PASS;
863         case SK_DROP:
864         default:
865                 break;
866         }
867
868         return __SK_DROP;
869 }
870
871 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
872                          struct sk_msg *msg)
873 {
874         struct bpf_prog *prog;
875         int ret;
876
877         rcu_read_lock();
878         prog = READ_ONCE(psock->progs.msg_parser);
879         if (unlikely(!prog)) {
880                 ret = __SK_PASS;
881                 goto out;
882         }
883
884         sk_msg_compute_data_pointers(msg);
885         msg->sk = sk;
886         ret = bpf_prog_run_pin_on_cpu(prog, msg);
887         ret = sk_psock_map_verd(ret, msg->sk_redir);
888         psock->apply_bytes = msg->apply_bytes;
889         if (ret == __SK_REDIRECT) {
890                 if (psock->sk_redir) {
891                         sock_put(psock->sk_redir);
892                         psock->sk_redir = NULL;
893                 }
894                 if (!msg->sk_redir) {
895                         ret = __SK_DROP;
896                         goto out;
897                 }
898                 psock->redir_ingress = sk_msg_to_ingress(msg);
899                 psock->sk_redir = msg->sk_redir;
900                 sock_hold(psock->sk_redir);
901         }
902 out:
903         rcu_read_unlock();
904         return ret;
905 }
906 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
907
908 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
909 {
910         struct sk_psock *psock_other;
911         struct sock *sk_other;
912
913         sk_other = skb_bpf_redirect_fetch(skb);
914         /* This error is a buggy BPF program, it returned a redirect
915          * return code, but then didn't set a redirect interface.
916          */
917         if (unlikely(!sk_other)) {
918                 skb_bpf_redirect_clear(skb);
919                 sock_drop(from->sk, skb);
920                 return -EIO;
921         }
922         psock_other = sk_psock(sk_other);
923         /* This error indicates the socket is being torn down or had another
924          * error that caused the pipe to break. We can't send a packet on
925          * a socket that is in this state so we drop the skb.
926          */
927         if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
928                 skb_bpf_redirect_clear(skb);
929                 sock_drop(from->sk, skb);
930                 return -EIO;
931         }
932         spin_lock_bh(&psock_other->ingress_lock);
933         if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
934                 spin_unlock_bh(&psock_other->ingress_lock);
935                 skb_bpf_redirect_clear(skb);
936                 sock_drop(from->sk, skb);
937                 return -EIO;
938         }
939
940         skb_queue_tail(&psock_other->ingress_skb, skb);
941         schedule_work(&psock_other->work);
942         spin_unlock_bh(&psock_other->ingress_lock);
943         return 0;
944 }
945
946 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
947                                        struct sk_psock *from, int verdict)
948 {
949         switch (verdict) {
950         case __SK_REDIRECT:
951                 sk_psock_skb_redirect(from, skb);
952                 break;
953         case __SK_PASS:
954         case __SK_DROP:
955         default:
956                 break;
957         }
958 }
959
960 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
961 {
962         struct bpf_prog *prog;
963         int ret = __SK_PASS;
964
965         rcu_read_lock();
966         prog = READ_ONCE(psock->progs.stream_verdict);
967         if (likely(prog)) {
968                 skb->sk = psock->sk;
969                 skb_dst_drop(skb);
970                 skb_bpf_redirect_clear(skb);
971                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
972                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
973                 skb->sk = NULL;
974         }
975         sk_psock_tls_verdict_apply(skb, psock, ret);
976         rcu_read_unlock();
977         return ret;
978 }
979 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
980
981 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
982                                   int verdict)
983 {
984         struct sock *sk_other;
985         int err = 0;
986         u32 len, off;
987
988         switch (verdict) {
989         case __SK_PASS:
990                 err = -EIO;
991                 sk_other = psock->sk;
992                 if (sock_flag(sk_other, SOCK_DEAD) ||
993                     !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
994                         skb_bpf_redirect_clear(skb);
995                         goto out_free;
996                 }
997
998                 skb_bpf_set_ingress(skb);
999
1000                 /* If the queue is empty then we can submit directly
1001                  * into the msg queue. If its not empty we have to
1002                  * queue work otherwise we may get OOO data. Otherwise,
1003                  * if sk_psock_skb_ingress errors will be handled by
1004                  * retrying later from workqueue.
1005                  */
1006                 if (skb_queue_empty(&psock->ingress_skb)) {
1007                         len = skb->len;
1008                         off = 0;
1009                         if (skb_bpf_strparser(skb)) {
1010                                 struct strp_msg *stm = strp_msg(skb);
1011
1012                                 off = stm->offset;
1013                                 len = stm->full_len;
1014                         }
1015                         err = sk_psock_skb_ingress_self(psock, skb, off, len);
1016                 }
1017                 if (err < 0) {
1018                         spin_lock_bh(&psock->ingress_lock);
1019                         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1020                                 skb_queue_tail(&psock->ingress_skb, skb);
1021                                 schedule_work(&psock->work);
1022                                 err = 0;
1023                         }
1024                         spin_unlock_bh(&psock->ingress_lock);
1025                         if (err < 0) {
1026                                 skb_bpf_redirect_clear(skb);
1027                                 goto out_free;
1028                         }
1029                 }
1030                 break;
1031         case __SK_REDIRECT:
1032                 err = sk_psock_skb_redirect(psock, skb);
1033                 break;
1034         case __SK_DROP:
1035         default:
1036 out_free:
1037                 sock_drop(psock->sk, skb);
1038         }
1039
1040         return err;
1041 }
1042
1043 static void sk_psock_write_space(struct sock *sk)
1044 {
1045         struct sk_psock *psock;
1046         void (*write_space)(struct sock *sk) = NULL;
1047
1048         rcu_read_lock();
1049         psock = sk_psock(sk);
1050         if (likely(psock)) {
1051                 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1052                         schedule_work(&psock->work);
1053                 write_space = psock->saved_write_space;
1054         }
1055         rcu_read_unlock();
1056         if (write_space)
1057                 write_space(sk);
1058 }
1059
1060 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1061 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1062 {
1063         struct sk_psock *psock;
1064         struct bpf_prog *prog;
1065         int ret = __SK_DROP;
1066         struct sock *sk;
1067
1068         rcu_read_lock();
1069         sk = strp->sk;
1070         psock = sk_psock(sk);
1071         if (unlikely(!psock)) {
1072                 sock_drop(sk, skb);
1073                 goto out;
1074         }
1075         prog = READ_ONCE(psock->progs.stream_verdict);
1076         if (likely(prog)) {
1077                 skb->sk = sk;
1078                 skb_dst_drop(skb);
1079                 skb_bpf_redirect_clear(skb);
1080                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1081                 if (ret == SK_PASS)
1082                         skb_bpf_set_strparser(skb);
1083                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1084                 skb->sk = NULL;
1085         }
1086         sk_psock_verdict_apply(psock, skb, ret);
1087 out:
1088         rcu_read_unlock();
1089 }
1090
1091 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1092 {
1093         return err;
1094 }
1095
1096 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1097 {
1098         struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1099         struct bpf_prog *prog;
1100         int ret = skb->len;
1101
1102         rcu_read_lock();
1103         prog = READ_ONCE(psock->progs.stream_parser);
1104         if (likely(prog)) {
1105                 skb->sk = psock->sk;
1106                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1107                 skb->sk = NULL;
1108         }
1109         rcu_read_unlock();
1110         return ret;
1111 }
1112
1113 /* Called with socket lock held. */
1114 static void sk_psock_strp_data_ready(struct sock *sk)
1115 {
1116         struct sk_psock *psock;
1117
1118         trace_sk_data_ready(sk);
1119
1120         rcu_read_lock();
1121         psock = sk_psock(sk);
1122         if (likely(psock)) {
1123                 if (tls_sw_has_ctx_rx(sk)) {
1124                         psock->saved_data_ready(sk);
1125                 } else {
1126                         write_lock_bh(&sk->sk_callback_lock);
1127                         strp_data_ready(&psock->strp);
1128                         write_unlock_bh(&sk->sk_callback_lock);
1129                 }
1130         }
1131         rcu_read_unlock();
1132 }
1133
1134 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1135 {
1136         static const struct strp_callbacks cb = {
1137                 .rcv_msg        = sk_psock_strp_read,
1138                 .read_sock_done = sk_psock_strp_read_done,
1139                 .parse_msg      = sk_psock_strp_parse,
1140         };
1141
1142         return strp_init(&psock->strp, sk, &cb);
1143 }
1144
1145 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1146 {
1147         if (psock->saved_data_ready)
1148                 return;
1149
1150         psock->saved_data_ready = sk->sk_data_ready;
1151         sk->sk_data_ready = sk_psock_strp_data_ready;
1152         sk->sk_write_space = sk_psock_write_space;
1153 }
1154
1155 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1156 {
1157         psock_set_prog(&psock->progs.stream_parser, NULL);
1158
1159         if (!psock->saved_data_ready)
1160                 return;
1161
1162         sk->sk_data_ready = psock->saved_data_ready;
1163         psock->saved_data_ready = NULL;
1164         strp_stop(&psock->strp);
1165 }
1166
1167 static void sk_psock_done_strp(struct sk_psock *psock)
1168 {
1169         /* Parser has been stopped */
1170         if (psock->progs.stream_parser)
1171                 strp_done(&psock->strp);
1172 }
1173 #else
1174 static void sk_psock_done_strp(struct sk_psock *psock)
1175 {
1176 }
1177 #endif /* CONFIG_BPF_STREAM_PARSER */
1178
1179 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1180 {
1181         struct sk_psock *psock;
1182         struct bpf_prog *prog;
1183         int ret = __SK_DROP;
1184         int len = skb->len;
1185
1186         skb_get(skb);
1187
1188         rcu_read_lock();
1189         psock = sk_psock(sk);
1190         if (unlikely(!psock)) {
1191                 len = 0;
1192                 sock_drop(sk, skb);
1193                 goto out;
1194         }
1195         prog = READ_ONCE(psock->progs.stream_verdict);
1196         if (!prog)
1197                 prog = READ_ONCE(psock->progs.skb_verdict);
1198         if (likely(prog)) {
1199                 skb_dst_drop(skb);
1200                 skb_bpf_redirect_clear(skb);
1201                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1202                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1203         }
1204         ret = sk_psock_verdict_apply(psock, skb, ret);
1205         if (ret < 0)
1206                 len = ret;
1207 out:
1208         rcu_read_unlock();
1209         return len;
1210 }
1211
1212 static void sk_psock_verdict_data_ready(struct sock *sk)
1213 {
1214         struct socket *sock = sk->sk_socket;
1215
1216         trace_sk_data_ready(sk);
1217
1218         if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1219                 return;
1220         sock->ops->read_skb(sk, sk_psock_verdict_recv);
1221 }
1222
1223 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1224 {
1225         if (psock->saved_data_ready)
1226                 return;
1227
1228         psock->saved_data_ready = sk->sk_data_ready;
1229         sk->sk_data_ready = sk_psock_verdict_data_ready;
1230         sk->sk_write_space = sk_psock_write_space;
1231 }
1232
1233 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1234 {
1235         psock_set_prog(&psock->progs.stream_verdict, NULL);
1236         psock_set_prog(&psock->progs.skb_verdict, NULL);
1237
1238         if (!psock->saved_data_ready)
1239                 return;
1240
1241         sk->sk_data_ready = psock->saved_data_ready;
1242         psock->saved_data_ready = NULL;
1243 }
This page took 0.105032 seconds and 4 git commands to generate.