1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "block-group.h"
21 #include "space-info.h"
23 #include "inode-item.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
29 #include "file-item.h"
32 #include "tree-checker.h"
34 #define MAX_CONFLICT_INODES 10
36 /* magic values for the inode_only field in btrfs_log_inode:
38 * LOG_INODE_ALL means to log everything
39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
48 * directory trouble cases
50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51 * log, we must force a full commit before doing an fsync of the directory
52 * where the unlink was done.
53 * ---> record transid of last unlink/rename per directory
57 * rename foo/some_dir foo2/some_dir
59 * fsync foo/some_dir/some_file
61 * The fsync above will unlink the original some_dir without recording
62 * it in its new location (foo2). After a crash, some_dir will be gone
63 * unless the fsync of some_file forces a full commit
65 * 2) we must log any new names for any file or dir that is in the fsync
66 * log. ---> check inode while renaming/linking.
68 * 2a) we must log any new names for any file or dir during rename
69 * when the directory they are being removed from was logged.
70 * ---> check inode and old parent dir during rename
72 * 2a is actually the more important variant. With the extra logging
73 * a crash might unlink the old name without recreating the new one
75 * 3) after a crash, we must go through any directories with a link count
76 * of zero and redo the rm -rf
83 * The directory f1 was fully removed from the FS, but fsync was never
84 * called on f1, only its parent dir. After a crash the rm -rf must
85 * be replayed. This must be able to recurse down the entire
86 * directory tree. The inode link count fixup code takes care of the
91 * stages for the tree walking. The first
92 * stage (0) is to only pin down the blocks we find
93 * the second stage (1) is to make sure that all the inodes
94 * we find in the log are created in the subvolume.
96 * The last stage is to deal with directories and links and extents
97 * and all the other fun semantics
101 LOG_WALK_REPLAY_INODES,
102 LOG_WALK_REPLAY_DIR_INDEX,
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 struct btrfs_inode *inode,
109 struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 struct btrfs_root *root,
115 struct btrfs_root *log,
116 struct btrfs_path *path,
117 u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
121 * tree logging is a special write ahead log used to make sure that
122 * fsyncs and O_SYNCs can happen without doing full tree commits.
124 * Full tree commits are expensive because they require commonly
125 * modified blocks to be recowed, creating many dirty pages in the
126 * extent tree an 4x-6x higher write load than ext3.
128 * Instead of doing a tree commit on every fsync, we use the
129 * key ranges and transaction ids to find items for a given file or directory
130 * that have changed in this transaction. Those items are copied into
131 * a special tree (one per subvolume root), that tree is written to disk
132 * and then the fsync is considered complete.
134 * After a crash, items are copied out of the log-tree back into the
135 * subvolume tree. Any file data extents found are recorded in the extent
136 * allocation tree, and the log-tree freed.
138 * The log tree is read three times, once to pin down all the extents it is
139 * using in ram and once, once to create all the inodes logged in the tree
140 * and once to do all the other items.
144 * start a sub transaction and setup the log tree
145 * this increments the log tree writer count to make the people
146 * syncing the tree wait for us to finish
148 static int start_log_trans(struct btrfs_trans_handle *trans,
149 struct btrfs_root *root,
150 struct btrfs_log_ctx *ctx)
152 struct btrfs_fs_info *fs_info = root->fs_info;
153 struct btrfs_root *tree_root = fs_info->tree_root;
154 const bool zoned = btrfs_is_zoned(fs_info);
156 bool created = false;
159 * First check if the log root tree was already created. If not, create
160 * it before locking the root's log_mutex, just to keep lockdep happy.
162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 mutex_lock(&tree_root->log_mutex);
164 if (!fs_info->log_root_tree) {
165 ret = btrfs_init_log_root_tree(trans, fs_info);
167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
171 mutex_unlock(&tree_root->log_mutex);
176 mutex_lock(&root->log_mutex);
179 if (root->log_root) {
180 int index = (root->log_transid + 1) % 2;
182 if (btrfs_need_log_full_commit(trans)) {
183 ret = BTRFS_LOG_FORCE_COMMIT;
187 if (zoned && atomic_read(&root->log_commit[index])) {
188 wait_log_commit(root, root->log_transid - 1);
192 if (!root->log_start_pid) {
193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 root->log_start_pid = current->pid;
195 } else if (root->log_start_pid != current->pid) {
196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
200 * This means fs_info->log_root_tree was already created
201 * for some other FS trees. Do the full commit not to mix
202 * nodes from multiple log transactions to do sequential
205 if (zoned && !created) {
206 ret = BTRFS_LOG_FORCE_COMMIT;
210 ret = btrfs_add_log_tree(trans, root);
214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 root->log_start_pid = current->pid;
219 atomic_inc(&root->log_writers);
220 if (!ctx->logging_new_name) {
221 int index = root->log_transid % 2;
222 list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 ctx->log_transid = root->log_transid;
227 mutex_unlock(&root->log_mutex);
232 * returns 0 if there was a log transaction running and we were able
233 * to join, or returns -ENOENT if there were not transactions
236 static int join_running_log_trans(struct btrfs_root *root)
238 const bool zoned = btrfs_is_zoned(root->fs_info);
241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
244 mutex_lock(&root->log_mutex);
246 if (root->log_root) {
247 int index = (root->log_transid + 1) % 2;
250 if (zoned && atomic_read(&root->log_commit[index])) {
251 wait_log_commit(root, root->log_transid - 1);
254 atomic_inc(&root->log_writers);
256 mutex_unlock(&root->log_mutex);
261 * This either makes the current running log transaction wait
262 * until you call btrfs_end_log_trans() or it makes any future
263 * log transactions wait until you call btrfs_end_log_trans()
265 void btrfs_pin_log_trans(struct btrfs_root *root)
267 atomic_inc(&root->log_writers);
271 * indicate we're done making changes to the log tree
272 * and wake up anyone waiting to do a sync
274 void btrfs_end_log_trans(struct btrfs_root *root)
276 if (atomic_dec_and_test(&root->log_writers)) {
277 /* atomic_dec_and_test implies a barrier */
278 cond_wake_up_nomb(&root->log_writer_wait);
282 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
284 filemap_fdatawait_range(buf->pages[0]->mapping,
285 buf->start, buf->start + buf->len - 1);
289 * the walk control struct is used to pass state down the chain when
290 * processing the log tree. The stage field tells us which part
291 * of the log tree processing we are currently doing. The others
292 * are state fields used for that specific part
294 struct walk_control {
295 /* should we free the extent on disk when done? This is used
296 * at transaction commit time while freeing a log tree
300 /* pin only walk, we record which extents on disk belong to the
305 /* what stage of the replay code we're currently in */
309 * Ignore any items from the inode currently being processed. Needs
310 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
311 * the LOG_WALK_REPLAY_INODES stage.
313 bool ignore_cur_inode;
315 /* the root we are currently replaying */
316 struct btrfs_root *replay_dest;
318 /* the trans handle for the current replay */
319 struct btrfs_trans_handle *trans;
321 /* the function that gets used to process blocks we find in the
322 * tree. Note the extent_buffer might not be up to date when it is
323 * passed in, and it must be checked or read if you need the data
326 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level);
331 * process_func used to pin down extents, write them or wait on them
333 static int process_one_buffer(struct btrfs_root *log,
334 struct extent_buffer *eb,
335 struct walk_control *wc, u64 gen, int level)
337 struct btrfs_fs_info *fs_info = log->fs_info;
341 * If this fs is mixed then we need to be able to process the leaves to
342 * pin down any logged extents, so we have to read the block.
344 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
345 struct btrfs_tree_parent_check check = {
350 ret = btrfs_read_extent_buffer(eb, &check);
356 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
361 if (btrfs_buffer_uptodate(eb, gen, 0) &&
362 btrfs_header_level(eb) == 0)
363 ret = btrfs_exclude_logged_extents(eb);
369 * Item overwrite used by replay and tree logging. eb, slot and key all refer
370 * to the src data we are copying out.
372 * root is the tree we are copying into, and path is a scratch
373 * path for use in this function (it should be released on entry and
374 * will be released on exit).
376 * If the key is already in the destination tree the existing item is
377 * overwritten. If the existing item isn't big enough, it is extended.
378 * If it is too large, it is truncated.
380 * If the key isn't in the destination yet, a new item is inserted.
382 static int overwrite_item(struct btrfs_trans_handle *trans,
383 struct btrfs_root *root,
384 struct btrfs_path *path,
385 struct extent_buffer *eb, int slot,
386 struct btrfs_key *key)
390 u64 saved_i_size = 0;
391 int save_old_i_size = 0;
392 unsigned long src_ptr;
393 unsigned long dst_ptr;
394 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
397 * This is only used during log replay, so the root is always from a
398 * fs/subvolume tree. In case we ever need to support a log root, then
399 * we'll have to clone the leaf in the path, release the path and use
400 * the leaf before writing into the log tree. See the comments at
401 * copy_items() for more details.
403 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
405 item_size = btrfs_item_size(eb, slot);
406 src_ptr = btrfs_item_ptr_offset(eb, slot);
408 /* Look for the key in the destination tree. */
409 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
416 u32 dst_size = btrfs_item_size(path->nodes[0],
418 if (dst_size != item_size)
421 if (item_size == 0) {
422 btrfs_release_path(path);
425 dst_copy = kmalloc(item_size, GFP_NOFS);
426 src_copy = kmalloc(item_size, GFP_NOFS);
427 if (!dst_copy || !src_copy) {
428 btrfs_release_path(path);
434 read_extent_buffer(eb, src_copy, src_ptr, item_size);
436 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
437 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
439 ret = memcmp(dst_copy, src_copy, item_size);
444 * they have the same contents, just return, this saves
445 * us from cowing blocks in the destination tree and doing
446 * extra writes that may not have been done by a previous
450 btrfs_release_path(path);
455 * We need to load the old nbytes into the inode so when we
456 * replay the extents we've logged we get the right nbytes.
459 struct btrfs_inode_item *item;
463 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
464 struct btrfs_inode_item);
465 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
466 item = btrfs_item_ptr(eb, slot,
467 struct btrfs_inode_item);
468 btrfs_set_inode_nbytes(eb, item, nbytes);
471 * If this is a directory we need to reset the i_size to
472 * 0 so that we can set it up properly when replaying
473 * the rest of the items in this log.
475 mode = btrfs_inode_mode(eb, item);
477 btrfs_set_inode_size(eb, item, 0);
479 } else if (inode_item) {
480 struct btrfs_inode_item *item;
484 * New inode, set nbytes to 0 so that the nbytes comes out
485 * properly when we replay the extents.
487 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
488 btrfs_set_inode_nbytes(eb, item, 0);
491 * If this is a directory we need to reset the i_size to 0 so
492 * that we can set it up properly when replaying the rest of
493 * the items in this log.
495 mode = btrfs_inode_mode(eb, item);
497 btrfs_set_inode_size(eb, item, 0);
500 btrfs_release_path(path);
501 /* try to insert the key into the destination tree */
502 path->skip_release_on_error = 1;
503 ret = btrfs_insert_empty_item(trans, root, path,
505 path->skip_release_on_error = 0;
507 /* make sure any existing item is the correct size */
508 if (ret == -EEXIST || ret == -EOVERFLOW) {
510 found_size = btrfs_item_size(path->nodes[0],
512 if (found_size > item_size)
513 btrfs_truncate_item(path, item_size, 1);
514 else if (found_size < item_size)
515 btrfs_extend_item(path, item_size - found_size);
519 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
522 /* don't overwrite an existing inode if the generation number
523 * was logged as zero. This is done when the tree logging code
524 * is just logging an inode to make sure it exists after recovery.
526 * Also, don't overwrite i_size on directories during replay.
527 * log replay inserts and removes directory items based on the
528 * state of the tree found in the subvolume, and i_size is modified
531 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
532 struct btrfs_inode_item *src_item;
533 struct btrfs_inode_item *dst_item;
535 src_item = (struct btrfs_inode_item *)src_ptr;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(eb, src_item) == 0) {
539 struct extent_buffer *dst_eb = path->nodes[0];
540 const u64 ino_size = btrfs_inode_size(eb, src_item);
543 * For regular files an ino_size == 0 is used only when
544 * logging that an inode exists, as part of a directory
545 * fsync, and the inode wasn't fsynced before. In this
546 * case don't set the size of the inode in the fs/subvol
547 * tree, otherwise we would be throwing valid data away.
549 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
550 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
552 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
556 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
557 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
559 saved_i_size = btrfs_inode_size(path->nodes[0],
564 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
567 if (save_old_i_size) {
568 struct btrfs_inode_item *dst_item;
569 dst_item = (struct btrfs_inode_item *)dst_ptr;
570 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
573 /* make sure the generation is filled in */
574 if (key->type == BTRFS_INODE_ITEM_KEY) {
575 struct btrfs_inode_item *dst_item;
576 dst_item = (struct btrfs_inode_item *)dst_ptr;
577 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
578 btrfs_set_inode_generation(path->nodes[0], dst_item,
583 btrfs_mark_buffer_dirty(path->nodes[0]);
584 btrfs_release_path(path);
588 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
589 struct fscrypt_str *name)
593 buf = kmalloc(len, GFP_NOFS);
597 read_extent_buffer(eb, buf, (unsigned long)start, len);
604 * simple helper to read an inode off the disk from a given root
605 * This can only be called for subvolume roots and not for the log
607 static noinline struct inode *read_one_inode(struct btrfs_root *root,
612 inode = btrfs_iget(root->fs_info->sb, objectid, root);
618 /* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
630 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
636 struct btrfs_drop_extents_args drop_args = { 0 };
637 struct btrfs_fs_info *fs_info = root->fs_info;
640 u64 start = key->offset;
642 struct btrfs_file_extent_item *item;
643 struct inode *inode = NULL;
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
650 if (found_type == BTRFS_FILE_EXTENT_REG ||
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
656 * We don't add to the inodes nbytes if we are prealloc or a
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
662 size = btrfs_file_extent_ram_bytes(eb, item);
663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
664 extent_end = ALIGN(start + size,
665 fs_info->sectorsize);
671 inode = read_one_inode(root, key->objectid);
678 * first check to see if we already have this extent in the
679 * file. This must be done before the btrfs_drop_extents run
680 * so we don't try to drop this extent.
682 ret = btrfs_lookup_file_extent(trans, root, path,
683 btrfs_ino(BTRFS_I(inode)), start, 0);
686 (found_type == BTRFS_FILE_EXTENT_REG ||
687 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
688 struct btrfs_file_extent_item cmp1;
689 struct btrfs_file_extent_item cmp2;
690 struct btrfs_file_extent_item *existing;
691 struct extent_buffer *leaf;
693 leaf = path->nodes[0];
694 existing = btrfs_item_ptr(leaf, path->slots[0],
695 struct btrfs_file_extent_item);
697 read_extent_buffer(eb, &cmp1, (unsigned long)item,
699 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
703 * we already have a pointer to this exact extent,
704 * we don't have to do anything
706 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
707 btrfs_release_path(path);
711 btrfs_release_path(path);
713 /* drop any overlapping extents */
714 drop_args.start = start;
715 drop_args.end = extent_end;
716 drop_args.drop_cache = true;
717 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
721 if (found_type == BTRFS_FILE_EXTENT_REG ||
722 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
724 unsigned long dest_offset;
725 struct btrfs_key ins;
727 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
728 btrfs_fs_incompat(fs_info, NO_HOLES))
731 ret = btrfs_insert_empty_item(trans, root, path, key,
735 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
737 copy_extent_buffer(path->nodes[0], eb, dest_offset,
738 (unsigned long)item, sizeof(*item));
740 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
741 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
742 ins.type = BTRFS_EXTENT_ITEM_KEY;
743 offset = key->offset - btrfs_file_extent_offset(eb, item);
746 * Manually record dirty extent, as here we did a shallow
747 * file extent item copy and skip normal backref update,
748 * but modifying extent tree all by ourselves.
749 * So need to manually record dirty extent for qgroup,
750 * as the owner of the file extent changed from log tree
751 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
753 ret = btrfs_qgroup_trace_extent(trans,
754 btrfs_file_extent_disk_bytenr(eb, item),
755 btrfs_file_extent_disk_num_bytes(eb, item));
759 if (ins.objectid > 0) {
760 struct btrfs_ref ref = { 0 };
763 LIST_HEAD(ordered_sums);
766 * is this extent already allocated in the extent
767 * allocation tree? If so, just add a reference
769 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
773 } else if (ret == 0) {
774 btrfs_init_generic_ref(&ref,
775 BTRFS_ADD_DELAYED_REF,
776 ins.objectid, ins.offset, 0);
777 btrfs_init_data_ref(&ref,
778 root->root_key.objectid,
779 key->objectid, offset, 0, false);
780 ret = btrfs_inc_extent_ref(trans, &ref);
785 * insert the extent pointer in the extent
788 ret = btrfs_alloc_logged_file_extent(trans,
789 root->root_key.objectid,
790 key->objectid, offset, &ins);
794 btrfs_release_path(path);
796 if (btrfs_file_extent_compression(eb, item)) {
797 csum_start = ins.objectid;
798 csum_end = csum_start + ins.offset;
800 csum_start = ins.objectid +
801 btrfs_file_extent_offset(eb, item);
802 csum_end = csum_start +
803 btrfs_file_extent_num_bytes(eb, item);
806 ret = btrfs_lookup_csums_list(root->log_root,
807 csum_start, csum_end - 1,
808 &ordered_sums, 0, false);
812 * Now delete all existing cums in the csum root that
813 * cover our range. We do this because we can have an
814 * extent that is completely referenced by one file
815 * extent item and partially referenced by another
816 * file extent item (like after using the clone or
817 * extent_same ioctls). In this case if we end up doing
818 * the replay of the one that partially references the
819 * extent first, and we do not do the csum deletion
820 * below, we can get 2 csum items in the csum tree that
821 * overlap each other. For example, imagine our log has
822 * the two following file extent items:
824 * key (257 EXTENT_DATA 409600)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 20480 nr 20480 ram 102400
828 * key (257 EXTENT_DATA 819200)
829 * extent data disk byte 12845056 nr 102400
830 * extent data offset 0 nr 102400 ram 102400
832 * Where the second one fully references the 100K extent
833 * that starts at disk byte 12845056, and the log tree
834 * has a single csum item that covers the entire range
837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
839 * After the first file extent item is replayed, the
840 * csum tree gets the following csum item:
842 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844 * Which covers the 20K sub-range starting at offset 20K
845 * of our extent. Now when we replay the second file
846 * extent item, if we do not delete existing csum items
847 * that cover any of its blocks, we end up getting two
848 * csum items in our csum tree that overlap each other:
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
853 * Which is a problem, because after this anyone trying
854 * to lookup up for the checksum of any block of our
855 * extent starting at an offset of 40K or higher, will
856 * end up looking at the second csum item only, which
857 * does not contain the checksum for any block starting
858 * at offset 40K or higher of our extent.
860 while (!list_empty(&ordered_sums)) {
861 struct btrfs_ordered_sum *sums;
862 struct btrfs_root *csum_root;
864 sums = list_entry(ordered_sums.next,
865 struct btrfs_ordered_sum,
867 csum_root = btrfs_csum_root(fs_info,
870 ret = btrfs_del_csums(trans, csum_root,
874 ret = btrfs_csum_file_blocks(trans,
877 list_del(&sums->list);
883 btrfs_release_path(path);
885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
886 /* inline extents are easy, we just overwrite them */
887 ret = overwrite_item(trans, root, path, eb, slot, key);
892 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
898 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
899 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
905 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
906 struct btrfs_inode *dir,
907 struct btrfs_inode *inode,
908 const struct fscrypt_str *name)
912 ret = btrfs_unlink_inode(trans, dir, inode, name);
916 * Whenever we need to check if a name exists or not, we check the
917 * fs/subvolume tree. So after an unlink we must run delayed items, so
918 * that future checks for a name during log replay see that the name
919 * does not exists anymore.
921 return btrfs_run_delayed_items(trans);
925 * when cleaning up conflicts between the directory names in the
926 * subvolume, directory names in the log and directory names in the
927 * inode back references, we may have to unlink inodes from directories.
929 * This is a helper function to do the unlink of a specific directory
932 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
933 struct btrfs_path *path,
934 struct btrfs_inode *dir,
935 struct btrfs_dir_item *di)
937 struct btrfs_root *root = dir->root;
939 struct fscrypt_str name;
940 struct extent_buffer *leaf;
941 struct btrfs_key location;
944 leaf = path->nodes[0];
946 btrfs_dir_item_key_to_cpu(leaf, di, &location);
947 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
951 btrfs_release_path(path);
953 inode = read_one_inode(root, location.objectid);
959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
977 static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
980 struct fscrypt_str *name)
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
999 btrfs_release_path(path);
1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1010 btrfs_release_path(path);
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1024 static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
1027 const struct fscrypt_str *name)
1029 struct btrfs_path *path;
1032 path = btrfs_alloc_path();
1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1039 } else if (ret == 1) {
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047 ref_objectid, name);
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 path->slots[0], name);
1052 btrfs_free_path(path);
1056 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 struct btrfs_root *log_root,
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
1062 u64 inode_objectid, u64 parent_objectid,
1063 u64 ref_index, struct fscrypt_str *name)
1066 struct extent_buffer *leaf;
1067 struct btrfs_dir_item *di;
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1078 struct btrfs_inode_ref *victim_ref;
1080 unsigned long ptr_end;
1082 leaf = path->nodes[0];
1084 /* are we trying to overwrite a back ref for the root directory
1085 * if so, just jump out, we're done
1087 if (search_key.objectid == search_key.offset)
1090 /* check all the names in this back reference to see
1091 * if they are in the log. if so, we allow them to stay
1092 * otherwise they must be unlinked as a conflict
1094 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1095 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1096 while (ptr < ptr_end) {
1097 struct fscrypt_str victim_name;
1099 victim_ref = (struct btrfs_inode_ref *)ptr;
1100 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1101 btrfs_inode_ref_name_len(leaf, victim_ref),
1106 ret = backref_in_log(log_root, &search_key,
1107 parent_objectid, &victim_name);
1109 kfree(victim_name.name);
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1115 ret = unlink_inode_for_log_replay(trans, dir, inode,
1117 kfree(victim_name.name);
1122 kfree(victim_name.name);
1124 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1127 btrfs_release_path(path);
1129 /* Same search but for extended refs */
1130 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1131 inode_objectid, parent_objectid, 0,
1133 if (IS_ERR(extref)) {
1134 return PTR_ERR(extref);
1135 } else if (extref) {
1139 struct inode *victim_parent;
1141 leaf = path->nodes[0];
1143 item_size = btrfs_item_size(leaf, path->slots[0]);
1144 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1146 while (cur_offset < item_size) {
1147 struct fscrypt_str victim_name;
1149 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1151 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1154 ret = read_alloc_one_name(leaf, &extref->name,
1155 btrfs_inode_extref_name_len(leaf, extref),
1160 search_key.objectid = inode_objectid;
1161 search_key.type = BTRFS_INODE_EXTREF_KEY;
1162 search_key.offset = btrfs_extref_hash(parent_objectid,
1165 ret = backref_in_log(log_root, &search_key,
1166 parent_objectid, &victim_name);
1168 kfree(victim_name.name);
1172 victim_parent = read_one_inode(root,
1174 if (victim_parent) {
1175 inc_nlink(&inode->vfs_inode);
1176 btrfs_release_path(path);
1178 ret = unlink_inode_for_log_replay(trans,
1179 BTRFS_I(victim_parent),
1180 inode, &victim_name);
1182 iput(victim_parent);
1183 kfree(victim_name.name);
1188 kfree(victim_name.name);
1190 cur_offset += victim_name.len + sizeof(*extref);
1193 btrfs_release_path(path);
1195 /* look for a conflicting sequence number */
1196 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1197 ref_index, name, 0);
1201 ret = drop_one_dir_item(trans, path, dir, di);
1205 btrfs_release_path(path);
1207 /* look for a conflicting name */
1208 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1212 ret = drop_one_dir_item(trans, path, dir, di);
1216 btrfs_release_path(path);
1221 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1222 struct fscrypt_str *name, u64 *index,
1223 u64 *parent_objectid)
1225 struct btrfs_inode_extref *extref;
1228 extref = (struct btrfs_inode_extref *)ref_ptr;
1230 ret = read_alloc_one_name(eb, &extref->name,
1231 btrfs_inode_extref_name_len(eb, extref), name);
1236 *index = btrfs_inode_extref_index(eb, extref);
1237 if (parent_objectid)
1238 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1243 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 struct fscrypt_str *name, u64 *index)
1246 struct btrfs_inode_ref *ref;
1249 ref = (struct btrfs_inode_ref *)ref_ptr;
1251 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1257 *index = btrfs_inode_ref_index(eb, ref);
1263 * Take an inode reference item from the log tree and iterate all names from the
1264 * inode reference item in the subvolume tree with the same key (if it exists).
1265 * For any name that is not in the inode reference item from the log tree, do a
1266 * proper unlink of that name (that is, remove its entry from the inode
1267 * reference item and both dir index keys).
1269 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 struct btrfs_inode *inode,
1273 struct extent_buffer *log_eb,
1275 struct btrfs_key *key)
1278 unsigned long ref_ptr;
1279 unsigned long ref_end;
1280 struct extent_buffer *eb;
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1292 eb = path->nodes[0];
1293 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1294 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1295 while (ref_ptr < ref_end) {
1296 struct fscrypt_str name;
1299 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1300 ret = extref_get_fields(eb, ref_ptr, &name,
1303 parent_id = key->offset;
1304 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1318 btrfs_release_path(path);
1319 dir = read_one_inode(root, parent_id);
1325 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1335 ref_ptr += name.len;
1336 if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 ref_ptr += sizeof(struct btrfs_inode_extref);
1339 ref_ptr += sizeof(struct btrfs_inode_ref);
1343 btrfs_release_path(path);
1348 * replay one inode back reference item found in the log tree.
1349 * eb, slot and key refer to the buffer and key found in the log tree.
1350 * root is the destination we are replaying into, and path is for temp
1351 * use by this function. (it should be released on return).
1353 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1354 struct btrfs_root *root,
1355 struct btrfs_root *log,
1356 struct btrfs_path *path,
1357 struct extent_buffer *eb, int slot,
1358 struct btrfs_key *key)
1360 struct inode *dir = NULL;
1361 struct inode *inode = NULL;
1362 unsigned long ref_ptr;
1363 unsigned long ref_end;
1364 struct fscrypt_str name;
1366 int log_ref_ver = 0;
1367 u64 parent_objectid;
1370 int ref_struct_size;
1372 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1373 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1375 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1376 struct btrfs_inode_extref *r;
1378 ref_struct_size = sizeof(struct btrfs_inode_extref);
1380 r = (struct btrfs_inode_extref *)ref_ptr;
1381 parent_objectid = btrfs_inode_extref_parent(eb, r);
1383 ref_struct_size = sizeof(struct btrfs_inode_ref);
1384 parent_objectid = key->offset;
1386 inode_objectid = key->objectid;
1389 * it is possible that we didn't log all the parent directories
1390 * for a given inode. If we don't find the dir, just don't
1391 * copy the back ref in. The link count fixup code will take
1394 dir = read_one_inode(root, parent_objectid);
1400 inode = read_one_inode(root, inode_objectid);
1406 while (ref_ptr < ref_end) {
1408 ret = extref_get_fields(eb, ref_ptr, &name,
1409 &ref_index, &parent_objectid);
1411 * parent object can change from one array
1415 dir = read_one_inode(root, parent_objectid);
1421 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1426 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1427 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1430 } else if (ret == 0) {
1432 * look for a conflicting back reference in the
1433 * metadata. if we find one we have to unlink that name
1434 * of the file before we add our new link. Later on, we
1435 * overwrite any existing back reference, and we don't
1436 * want to create dangling pointers in the directory.
1438 ret = __add_inode_ref(trans, root, path, log,
1439 BTRFS_I(dir), BTRFS_I(inode),
1440 inode_objectid, parent_objectid,
1448 /* insert our name */
1449 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1450 &name, 0, ref_index);
1454 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1458 /* Else, ret == 1, we already have a perfect match, we're done. */
1460 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1470 * Before we overwrite the inode reference item in the subvolume tree
1471 * with the item from the log tree, we must unlink all names from the
1472 * parent directory that are in the subvolume's tree inode reference
1473 * item, otherwise we end up with an inconsistent subvolume tree where
1474 * dir index entries exist for a name but there is no inode reference
1475 * item with the same name.
1477 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1482 /* finally write the back reference in the inode */
1483 ret = overwrite_item(trans, root, path, eb, slot, key);
1485 btrfs_release_path(path);
1492 static int count_inode_extrefs(struct btrfs_root *root,
1493 struct btrfs_inode *inode, struct btrfs_path *path)
1497 unsigned int nlink = 0;
1500 u64 inode_objectid = btrfs_ino(inode);
1503 struct btrfs_inode_extref *extref;
1504 struct extent_buffer *leaf;
1507 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1512 leaf = path->nodes[0];
1513 item_size = btrfs_item_size(leaf, path->slots[0]);
1514 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1517 while (cur_offset < item_size) {
1518 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1519 name_len = btrfs_inode_extref_name_len(leaf, extref);
1523 cur_offset += name_len + sizeof(*extref);
1527 btrfs_release_path(path);
1529 btrfs_release_path(path);
1531 if (ret < 0 && ret != -ENOENT)
1536 static int count_inode_refs(struct btrfs_root *root,
1537 struct btrfs_inode *inode, struct btrfs_path *path)
1540 struct btrfs_key key;
1541 unsigned int nlink = 0;
1543 unsigned long ptr_end;
1545 u64 ino = btrfs_ino(inode);
1548 key.type = BTRFS_INODE_REF_KEY;
1549 key.offset = (u64)-1;
1552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1556 if (path->slots[0] == 0)
1561 btrfs_item_key_to_cpu(path->nodes[0], &key,
1563 if (key.objectid != ino ||
1564 key.type != BTRFS_INODE_REF_KEY)
1566 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1567 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1569 while (ptr < ptr_end) {
1570 struct btrfs_inode_ref *ref;
1572 ref = (struct btrfs_inode_ref *)ptr;
1573 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1575 ptr = (unsigned long)(ref + 1) + name_len;
1579 if (key.offset == 0)
1581 if (path->slots[0] > 0) {
1586 btrfs_release_path(path);
1588 btrfs_release_path(path);
1594 * There are a few corners where the link count of the file can't
1595 * be properly maintained during replay. So, instead of adding
1596 * lots of complexity to the log code, we just scan the backrefs
1597 * for any file that has been through replay.
1599 * The scan will update the link count on the inode to reflect the
1600 * number of back refs found. If it goes down to zero, the iput
1601 * will free the inode.
1603 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct inode *inode)
1607 struct btrfs_path *path;
1610 u64 ino = btrfs_ino(BTRFS_I(inode));
1612 path = btrfs_alloc_path();
1616 ret = count_inode_refs(root, BTRFS_I(inode), path);
1622 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1630 if (nlink != inode->i_nlink) {
1631 set_nlink(inode, nlink);
1632 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1636 BTRFS_I(inode)->index_cnt = (u64)-1;
1638 if (inode->i_nlink == 0) {
1639 if (S_ISDIR(inode->i_mode)) {
1640 ret = replay_dir_deletes(trans, root, NULL, path,
1645 ret = btrfs_insert_orphan_item(trans, root, ino);
1651 btrfs_free_path(path);
1655 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_path *path)
1660 struct btrfs_key key;
1661 struct inode *inode;
1663 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1664 key.type = BTRFS_ORPHAN_ITEM_KEY;
1665 key.offset = (u64)-1;
1667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1673 if (path->slots[0] == 0)
1678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1679 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1680 key.type != BTRFS_ORPHAN_ITEM_KEY)
1683 ret = btrfs_del_item(trans, root, path);
1687 btrfs_release_path(path);
1688 inode = read_one_inode(root, key.offset);
1694 ret = fixup_inode_link_count(trans, root, inode);
1700 * fixup on a directory may create new entries,
1701 * make sure we always look for the highset possible
1704 key.offset = (u64)-1;
1706 btrfs_release_path(path);
1712 * record a given inode in the fixup dir so we can check its link
1713 * count when replay is done. The link count is incremented here
1714 * so the inode won't go away until we check it
1716 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 struct btrfs_path *path,
1721 struct btrfs_key key;
1723 struct inode *inode;
1725 inode = read_one_inode(root, objectid);
1729 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730 key.type = BTRFS_ORPHAN_ITEM_KEY;
1731 key.offset = objectid;
1733 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1735 btrfs_release_path(path);
1737 if (!inode->i_nlink)
1738 set_nlink(inode, 1);
1741 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1742 } else if (ret == -EEXIST) {
1751 * when replaying the log for a directory, we only insert names
1752 * for inodes that actually exist. This means an fsync on a directory
1753 * does not implicitly fsync all the new files in it
1755 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 u64 dirid, u64 index,
1758 const struct fscrypt_str *name,
1759 struct btrfs_key *location)
1761 struct inode *inode;
1765 inode = read_one_inode(root, location->objectid);
1769 dir = read_one_inode(root, dirid);
1775 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1778 /* FIXME, put inode into FIXUP list */
1785 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1786 struct btrfs_inode *dir,
1787 struct btrfs_path *path,
1788 struct btrfs_dir_item *dst_di,
1789 const struct btrfs_key *log_key,
1793 struct btrfs_key found_key;
1795 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1796 /* The existing dentry points to the same inode, don't delete it. */
1797 if (found_key.objectid == log_key->objectid &&
1798 found_key.type == log_key->type &&
1799 found_key.offset == log_key->offset &&
1800 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1804 * Don't drop the conflicting directory entry if the inode for the new
1805 * entry doesn't exist.
1810 return drop_one_dir_item(trans, path, dir, dst_di);
1814 * take a single entry in a log directory item and replay it into
1817 * if a conflicting item exists in the subdirectory already,
1818 * the inode it points to is unlinked and put into the link count
1821 * If a name from the log points to a file or directory that does
1822 * not exist in the FS, it is skipped. fsyncs on directories
1823 * do not force down inodes inside that directory, just changes to the
1824 * names or unlinks in a directory.
1826 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1827 * non-existing inode) and 1 if the name was replayed.
1829 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 struct btrfs_path *path,
1832 struct extent_buffer *eb,
1833 struct btrfs_dir_item *di,
1834 struct btrfs_key *key)
1836 struct fscrypt_str name;
1837 struct btrfs_dir_item *dir_dst_di;
1838 struct btrfs_dir_item *index_dst_di;
1839 bool dir_dst_matches = false;
1840 bool index_dst_matches = false;
1841 struct btrfs_key log_key;
1842 struct btrfs_key search_key;
1847 bool update_size = true;
1848 bool name_added = false;
1850 dir = read_one_inode(root, key->objectid);
1854 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1858 log_flags = btrfs_dir_flags(eb, di);
1859 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1860 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1861 btrfs_release_path(path);
1864 exists = (ret == 0);
1867 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1869 if (IS_ERR(dir_dst_di)) {
1870 ret = PTR_ERR(dir_dst_di);
1872 } else if (dir_dst_di) {
1873 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1874 dir_dst_di, &log_key,
1878 dir_dst_matches = (ret == 1);
1881 btrfs_release_path(path);
1883 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1884 key->objectid, key->offset,
1886 if (IS_ERR(index_dst_di)) {
1887 ret = PTR_ERR(index_dst_di);
1889 } else if (index_dst_di) {
1890 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1891 index_dst_di, &log_key,
1895 index_dst_matches = (ret == 1);
1898 btrfs_release_path(path);
1900 if (dir_dst_matches && index_dst_matches) {
1902 update_size = false;
1907 * Check if the inode reference exists in the log for the given name,
1908 * inode and parent inode
1910 search_key.objectid = log_key.objectid;
1911 search_key.type = BTRFS_INODE_REF_KEY;
1912 search_key.offset = key->objectid;
1913 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1917 /* The dentry will be added later. */
1919 update_size = false;
1923 search_key.objectid = log_key.objectid;
1924 search_key.type = BTRFS_INODE_EXTREF_KEY;
1925 search_key.offset = key->objectid;
1926 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1930 /* The dentry will be added later. */
1932 update_size = false;
1935 btrfs_release_path(path);
1936 ret = insert_one_name(trans, root, key->objectid, key->offset,
1938 if (ret && ret != -ENOENT && ret != -EEXIST)
1942 update_size = false;
1946 if (!ret && update_size) {
1947 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1948 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1952 if (!ret && name_added)
1957 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1958 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root,
1960 struct btrfs_path *path,
1961 struct extent_buffer *eb, int slot,
1962 struct btrfs_key *key)
1965 struct btrfs_dir_item *di;
1967 /* We only log dir index keys, which only contain a single dir item. */
1968 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1970 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1971 ret = replay_one_name(trans, root, path, eb, di, key);
1976 * If this entry refers to a non-directory (directories can not have a
1977 * link count > 1) and it was added in the transaction that was not
1978 * committed, make sure we fixup the link count of the inode the entry
1979 * points to. Otherwise something like the following would result in a
1980 * directory pointing to an inode with a wrong link that does not account
1981 * for this dir entry:
1988 * ln testdir/bar testdir/bar_link
1989 * ln testdir/foo testdir/foo_link
1990 * xfs_io -c "fsync" testdir/bar
1994 * mount fs, log replay happens
1996 * File foo would remain with a link count of 1 when it has two entries
1997 * pointing to it in the directory testdir. This would make it impossible
1998 * to ever delete the parent directory has it would result in stale
1999 * dentries that can never be deleted.
2001 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2002 struct btrfs_path *fixup_path;
2003 struct btrfs_key di_key;
2005 fixup_path = btrfs_alloc_path();
2009 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2010 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2011 btrfs_free_path(fixup_path);
2018 * directory replay has two parts. There are the standard directory
2019 * items in the log copied from the subvolume, and range items
2020 * created in the log while the subvolume was logged.
2022 * The range items tell us which parts of the key space the log
2023 * is authoritative for. During replay, if a key in the subvolume
2024 * directory is in a logged range item, but not actually in the log
2025 * that means it was deleted from the directory before the fsync
2026 * and should be removed.
2028 static noinline int find_dir_range(struct btrfs_root *root,
2029 struct btrfs_path *path,
2031 u64 *start_ret, u64 *end_ret)
2033 struct btrfs_key key;
2035 struct btrfs_dir_log_item *item;
2039 if (*start_ret == (u64)-1)
2042 key.objectid = dirid;
2043 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2044 key.offset = *start_ret;
2046 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2050 if (path->slots[0] == 0)
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2057 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2065 if (*start_ret >= key.offset && *start_ret <= found_end) {
2067 *start_ret = key.offset;
2068 *end_ret = found_end;
2073 /* check the next slot in the tree to see if it is a valid item */
2074 nritems = btrfs_header_nritems(path->nodes[0]);
2076 if (path->slots[0] >= nritems) {
2077 ret = btrfs_next_leaf(root, path);
2082 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2084 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2088 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2089 struct btrfs_dir_log_item);
2090 found_end = btrfs_dir_log_end(path->nodes[0], item);
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2095 btrfs_release_path(path);
2100 * this looks for a given directory item in the log. If the directory
2101 * item is not in the log, the item is removed and the inode it points
2104 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *log,
2106 struct btrfs_path *path,
2107 struct btrfs_path *log_path,
2109 struct btrfs_key *dir_key)
2111 struct btrfs_root *root = BTRFS_I(dir)->root;
2113 struct extent_buffer *eb;
2115 struct btrfs_dir_item *di;
2116 struct fscrypt_str name;
2117 struct inode *inode = NULL;
2118 struct btrfs_key location;
2121 * Currently we only log dir index keys. Even if we replay a log created
2122 * by an older kernel that logged both dir index and dir item keys, all
2123 * we need to do is process the dir index keys, we (and our caller) can
2124 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2126 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2128 eb = path->nodes[0];
2129 slot = path->slots[0];
2130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2131 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2136 struct btrfs_dir_item *log_di;
2138 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2140 dir_key->offset, &name, 0);
2141 if (IS_ERR(log_di)) {
2142 ret = PTR_ERR(log_di);
2144 } else if (log_di) {
2145 /* The dentry exists in the log, we have nothing to do. */
2151 btrfs_dir_item_key_to_cpu(eb, di, &location);
2152 btrfs_release_path(path);
2153 btrfs_release_path(log_path);
2154 inode = read_one_inode(root, location.objectid);
2160 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2165 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2168 * Unlike dir item keys, dir index keys can only have one name (entry) in
2169 * them, as there are no key collisions since each key has a unique offset
2170 * (an index number), so we're done.
2173 btrfs_release_path(path);
2174 btrfs_release_path(log_path);
2180 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2192 log_path = btrfs_alloc_path();
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size(path->nodes[0], i);
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2227 name = kmalloc(name_len, GFP_NOFS);
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2237 btrfs_release_path(log_path);
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2253 btrfs_release_path(path);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2266 ret = btrfs_next_leaf(root, path);
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2285 * Anything we don't find in the log is unlinked and removed from the
2288 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2297 struct btrfs_key dir_key;
2298 struct btrfs_key found_key;
2299 struct btrfs_path *log_path;
2302 dir_key.objectid = dirid;
2303 dir_key.type = BTRFS_DIR_INDEX_KEY;
2304 log_path = btrfs_alloc_path();
2308 dir = read_one_inode(root, dirid);
2309 /* it isn't an error if the inode isn't there, that can happen
2310 * because we replay the deletes before we copy in the inode item
2314 btrfs_free_path(log_path);
2322 range_end = (u64)-1;
2324 ret = find_dir_range(log, path, dirid,
2325 &range_start, &range_end);
2332 dir_key.offset = range_start;
2335 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2340 nritems = btrfs_header_nritems(path->nodes[0]);
2341 if (path->slots[0] >= nritems) {
2342 ret = btrfs_next_leaf(root, path);
2348 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2350 if (found_key.objectid != dirid ||
2351 found_key.type != dir_key.type) {
2356 if (found_key.offset > range_end)
2359 ret = check_item_in_log(trans, log, path,
2364 if (found_key.offset == (u64)-1)
2366 dir_key.offset = found_key.offset + 1;
2368 btrfs_release_path(path);
2369 if (range_end == (u64)-1)
2371 range_start = range_end + 1;
2375 btrfs_release_path(path);
2376 btrfs_free_path(log_path);
2382 * the process_func used to replay items from the log tree. This
2383 * gets called in two different stages. The first stage just looks
2384 * for inodes and makes sure they are all copied into the subvolume.
2386 * The second stage copies all the other item types from the log into
2387 * the subvolume. The two stage approach is slower, but gets rid of
2388 * lots of complexity around inodes referencing other inodes that exist
2389 * only in the log (references come from either directory items or inode
2392 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2393 struct walk_control *wc, u64 gen, int level)
2396 struct btrfs_tree_parent_check check = {
2400 struct btrfs_path *path;
2401 struct btrfs_root *root = wc->replay_dest;
2402 struct btrfs_key key;
2406 ret = btrfs_read_extent_buffer(eb, &check);
2410 level = btrfs_header_level(eb);
2415 path = btrfs_alloc_path();
2419 nritems = btrfs_header_nritems(eb);
2420 for (i = 0; i < nritems; i++) {
2421 btrfs_item_key_to_cpu(eb, &key, i);
2423 /* inode keys are done during the first stage */
2424 if (key.type == BTRFS_INODE_ITEM_KEY &&
2425 wc->stage == LOG_WALK_REPLAY_INODES) {
2426 struct btrfs_inode_item *inode_item;
2429 inode_item = btrfs_item_ptr(eb, i,
2430 struct btrfs_inode_item);
2432 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2433 * and never got linked before the fsync, skip it, as
2434 * replaying it is pointless since it would be deleted
2435 * later. We skip logging tmpfiles, but it's always
2436 * possible we are replaying a log created with a kernel
2437 * that used to log tmpfiles.
2439 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2440 wc->ignore_cur_inode = true;
2443 wc->ignore_cur_inode = false;
2445 ret = replay_xattr_deletes(wc->trans, root, log,
2446 path, key.objectid);
2449 mode = btrfs_inode_mode(eb, inode_item);
2450 if (S_ISDIR(mode)) {
2451 ret = replay_dir_deletes(wc->trans,
2452 root, log, path, key.objectid, 0);
2456 ret = overwrite_item(wc->trans, root, path,
2462 * Before replaying extents, truncate the inode to its
2463 * size. We need to do it now and not after log replay
2464 * because before an fsync we can have prealloc extents
2465 * added beyond the inode's i_size. If we did it after,
2466 * through orphan cleanup for example, we would drop
2467 * those prealloc extents just after replaying them.
2469 if (S_ISREG(mode)) {
2470 struct btrfs_drop_extents_args drop_args = { 0 };
2471 struct inode *inode;
2474 inode = read_one_inode(root, key.objectid);
2479 from = ALIGN(i_size_read(inode),
2480 root->fs_info->sectorsize);
2481 drop_args.start = from;
2482 drop_args.end = (u64)-1;
2483 drop_args.drop_cache = true;
2484 ret = btrfs_drop_extents(wc->trans, root,
2488 inode_sub_bytes(inode,
2489 drop_args.bytes_found);
2490 /* Update the inode's nbytes. */
2491 ret = btrfs_update_inode(wc->trans,
2492 root, BTRFS_I(inode));
2499 ret = link_to_fixup_dir(wc->trans, root,
2500 path, key.objectid);
2505 if (wc->ignore_cur_inode)
2508 if (key.type == BTRFS_DIR_INDEX_KEY &&
2509 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2510 ret = replay_one_dir_item(wc->trans, root, path,
2516 if (wc->stage < LOG_WALK_REPLAY_ALL)
2519 /* these keys are simply copied */
2520 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2521 ret = overwrite_item(wc->trans, root, path,
2525 } else if (key.type == BTRFS_INODE_REF_KEY ||
2526 key.type == BTRFS_INODE_EXTREF_KEY) {
2527 ret = add_inode_ref(wc->trans, root, log, path,
2529 if (ret && ret != -ENOENT)
2532 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2533 ret = replay_one_extent(wc->trans, root, path,
2539 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2540 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2541 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2542 * older kernel with such keys, ignore them.
2545 btrfs_free_path(path);
2550 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2552 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2554 struct btrfs_block_group *cache;
2556 cache = btrfs_lookup_block_group(fs_info, start);
2558 btrfs_err(fs_info, "unable to find block group for %llu", start);
2562 spin_lock(&cache->space_info->lock);
2563 spin_lock(&cache->lock);
2564 cache->reserved -= fs_info->nodesize;
2565 cache->space_info->bytes_reserved -= fs_info->nodesize;
2566 spin_unlock(&cache->lock);
2567 spin_unlock(&cache->space_info->lock);
2569 btrfs_put_block_group(cache);
2572 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root,
2574 struct btrfs_path *path, int *level,
2575 struct walk_control *wc)
2577 struct btrfs_fs_info *fs_info = root->fs_info;
2580 struct extent_buffer *next;
2581 struct extent_buffer *cur;
2585 while (*level > 0) {
2586 struct btrfs_tree_parent_check check = { 0 };
2588 cur = path->nodes[*level];
2590 WARN_ON(btrfs_header_level(cur) != *level);
2592 if (path->slots[*level] >=
2593 btrfs_header_nritems(cur))
2596 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2597 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2598 check.transid = ptr_gen;
2599 check.level = *level - 1;
2600 check.has_first_key = true;
2601 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2602 blocksize = fs_info->nodesize;
2604 next = btrfs_find_create_tree_block(fs_info, bytenr,
2605 btrfs_header_owner(cur),
2608 return PTR_ERR(next);
2611 ret = wc->process_func(root, next, wc, ptr_gen,
2614 free_extent_buffer(next);
2618 path->slots[*level]++;
2620 ret = btrfs_read_extent_buffer(next, &check);
2622 free_extent_buffer(next);
2627 btrfs_tree_lock(next);
2628 btrfs_clean_tree_block(next);
2629 btrfs_wait_tree_block_writeback(next);
2630 btrfs_tree_unlock(next);
2631 ret = btrfs_pin_reserved_extent(trans,
2634 free_extent_buffer(next);
2637 btrfs_redirty_list_add(
2638 trans->transaction, next);
2640 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2641 clear_extent_buffer_dirty(next);
2642 unaccount_log_buffer(fs_info, bytenr);
2645 free_extent_buffer(next);
2648 ret = btrfs_read_extent_buffer(next, &check);
2650 free_extent_buffer(next);
2654 if (path->nodes[*level-1])
2655 free_extent_buffer(path->nodes[*level-1]);
2656 path->nodes[*level-1] = next;
2657 *level = btrfs_header_level(next);
2658 path->slots[*level] = 0;
2661 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2667 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root,
2669 struct btrfs_path *path, int *level,
2670 struct walk_control *wc)
2672 struct btrfs_fs_info *fs_info = root->fs_info;
2677 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678 slot = path->slots[i];
2679 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2682 WARN_ON(*level == 0);
2685 ret = wc->process_func(root, path->nodes[*level], wc,
2686 btrfs_header_generation(path->nodes[*level]),
2692 struct extent_buffer *next;
2694 next = path->nodes[*level];
2697 btrfs_tree_lock(next);
2698 btrfs_clean_tree_block(next);
2699 btrfs_wait_tree_block_writeback(next);
2700 btrfs_tree_unlock(next);
2701 ret = btrfs_pin_reserved_extent(trans,
2702 path->nodes[*level]->start,
2703 path->nodes[*level]->len);
2706 btrfs_redirty_list_add(trans->transaction,
2709 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2710 clear_extent_buffer_dirty(next);
2712 unaccount_log_buffer(fs_info,
2713 path->nodes[*level]->start);
2716 free_extent_buffer(path->nodes[*level]);
2717 path->nodes[*level] = NULL;
2725 * drop the reference count on the tree rooted at 'snap'. This traverses
2726 * the tree freeing any blocks that have a ref count of zero after being
2729 static int walk_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *log, struct walk_control *wc)
2732 struct btrfs_fs_info *fs_info = log->fs_info;
2736 struct btrfs_path *path;
2739 path = btrfs_alloc_path();
2743 level = btrfs_header_level(log->node);
2745 path->nodes[level] = log->node;
2746 atomic_inc(&log->node->refs);
2747 path->slots[level] = 0;
2750 wret = walk_down_log_tree(trans, log, path, &level, wc);
2758 wret = walk_up_log_tree(trans, log, path, &level, wc);
2767 /* was the root node processed? if not, catch it here */
2768 if (path->nodes[orig_level]) {
2769 ret = wc->process_func(log, path->nodes[orig_level], wc,
2770 btrfs_header_generation(path->nodes[orig_level]),
2775 struct extent_buffer *next;
2777 next = path->nodes[orig_level];
2780 btrfs_tree_lock(next);
2781 btrfs_clean_tree_block(next);
2782 btrfs_wait_tree_block_writeback(next);
2783 btrfs_tree_unlock(next);
2784 ret = btrfs_pin_reserved_extent(trans,
2785 next->start, next->len);
2788 btrfs_redirty_list_add(trans->transaction, next);
2790 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2791 clear_extent_buffer_dirty(next);
2792 unaccount_log_buffer(fs_info, next->start);
2798 btrfs_free_path(path);
2803 * helper function to update the item for a given subvolumes log root
2804 * in the tree of log roots
2806 static int update_log_root(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *log,
2808 struct btrfs_root_item *root_item)
2810 struct btrfs_fs_info *fs_info = log->fs_info;
2813 if (log->log_transid == 1) {
2814 /* insert root item on the first sync */
2815 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2816 &log->root_key, root_item);
2818 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2819 &log->root_key, root_item);
2824 static void wait_log_commit(struct btrfs_root *root, int transid)
2827 int index = transid % 2;
2830 * we only allow two pending log transactions at a time,
2831 * so we know that if ours is more than 2 older than the
2832 * current transaction, we're done
2835 prepare_to_wait(&root->log_commit_wait[index],
2836 &wait, TASK_UNINTERRUPTIBLE);
2838 if (!(root->log_transid_committed < transid &&
2839 atomic_read(&root->log_commit[index])))
2842 mutex_unlock(&root->log_mutex);
2844 mutex_lock(&root->log_mutex);
2846 finish_wait(&root->log_commit_wait[index], &wait);
2849 static void wait_for_writer(struct btrfs_root *root)
2854 prepare_to_wait(&root->log_writer_wait, &wait,
2855 TASK_UNINTERRUPTIBLE);
2856 if (!atomic_read(&root->log_writers))
2859 mutex_unlock(&root->log_mutex);
2861 mutex_lock(&root->log_mutex);
2863 finish_wait(&root->log_writer_wait, &wait);
2866 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2867 struct btrfs_log_ctx *ctx)
2869 mutex_lock(&root->log_mutex);
2870 list_del_init(&ctx->list);
2871 mutex_unlock(&root->log_mutex);
2875 * Invoked in log mutex context, or be sure there is no other task which
2876 * can access the list.
2878 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2879 int index, int error)
2881 struct btrfs_log_ctx *ctx;
2882 struct btrfs_log_ctx *safe;
2884 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2885 list_del_init(&ctx->list);
2886 ctx->log_ret = error;
2891 * btrfs_sync_log does sends a given tree log down to the disk and
2892 * updates the super blocks to record it. When this call is done,
2893 * you know that any inodes previously logged are safely on disk only
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2902 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2926 index1 = log_transid % 2;
2927 if (atomic_read(&root->log_commit[index1])) {
2928 wait_log_commit(root, log_transid);
2929 mutex_unlock(&root->log_mutex);
2930 return ctx->log_ret;
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(&root->log_commit[index1], 1);
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, log_transid - 1);
2940 int batch = atomic_read(&root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2948 wait_for_writer(root);
2949 if (batch == atomic_read(&root->log_batch))
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(&root->log_mutex);
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2982 blk_finish_plug(&plug);
2983 btrfs_abort_transaction(trans, ret);
2984 btrfs_set_log_full_commit(trans);
2985 mutex_unlock(&root->log_mutex);
2990 * We _must_ update under the root->log_mutex in order to make sure we
2991 * have a consistent view of the log root we are trying to commit at
2994 * We _must_ copy this into a local copy, because we are not holding the
2995 * log_root_tree->log_mutex yet. This is important because when we
2996 * commit the log_root_tree we must have a consistent view of the
2997 * log_root_tree when we update the super block to point at the
2998 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2999 * with the commit and possibly point at the new block which we may not
3002 btrfs_set_root_node(&log->root_item, log->node);
3003 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3005 root->log_transid++;
3006 log->log_transid = root->log_transid;
3007 root->log_start_pid = 0;
3009 * IO has been started, blocks of the log tree have WRITTEN flag set
3010 * in their headers. new modifications of the log will be written to
3011 * new positions. so it's safe to allow log writers to go in.
3013 mutex_unlock(&root->log_mutex);
3015 if (btrfs_is_zoned(fs_info)) {
3016 mutex_lock(&fs_info->tree_root->log_mutex);
3017 if (!log_root_tree->node) {
3018 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3020 mutex_unlock(&fs_info->tree_root->log_mutex);
3021 blk_finish_plug(&plug);
3025 mutex_unlock(&fs_info->tree_root->log_mutex);
3028 btrfs_init_log_ctx(&root_log_ctx, NULL);
3030 mutex_lock(&log_root_tree->log_mutex);
3032 index2 = log_root_tree->log_transid % 2;
3033 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3034 root_log_ctx.log_transid = log_root_tree->log_transid;
3037 * Now we are safe to update the log_root_tree because we're under the
3038 * log_mutex, and we're a current writer so we're holding the commit
3039 * open until we drop the log_mutex.
3041 ret = update_log_root(trans, log, &new_root_item);
3043 if (!list_empty(&root_log_ctx.list))
3044 list_del_init(&root_log_ctx.list);
3046 blk_finish_plug(&plug);
3047 btrfs_set_log_full_commit(trans);
3049 if (ret != -ENOSPC) {
3050 btrfs_abort_transaction(trans, ret);
3051 mutex_unlock(&log_root_tree->log_mutex);
3054 btrfs_wait_tree_log_extents(log, mark);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = BTRFS_LOG_FORCE_COMMIT;
3060 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3061 blk_finish_plug(&plug);
3062 list_del_init(&root_log_ctx.list);
3063 mutex_unlock(&log_root_tree->log_mutex);
3064 ret = root_log_ctx.log_ret;
3068 index2 = root_log_ctx.log_transid % 2;
3069 if (atomic_read(&log_root_tree->log_commit[index2])) {
3070 blk_finish_plug(&plug);
3071 ret = btrfs_wait_tree_log_extents(log, mark);
3072 wait_log_commit(log_root_tree,
3073 root_log_ctx.log_transid);
3074 mutex_unlock(&log_root_tree->log_mutex);
3076 ret = root_log_ctx.log_ret;
3079 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3080 atomic_set(&log_root_tree->log_commit[index2], 1);
3082 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3083 wait_log_commit(log_root_tree,
3084 root_log_ctx.log_transid - 1);
3088 * now that we've moved on to the tree of log tree roots,
3089 * check the full commit flag again
3091 if (btrfs_need_log_full_commit(trans)) {
3092 blk_finish_plug(&plug);
3093 btrfs_wait_tree_log_extents(log, mark);
3094 mutex_unlock(&log_root_tree->log_mutex);
3095 ret = BTRFS_LOG_FORCE_COMMIT;
3096 goto out_wake_log_root;
3099 ret = btrfs_write_marked_extents(fs_info,
3100 &log_root_tree->dirty_log_pages,
3101 EXTENT_DIRTY | EXTENT_NEW);
3102 blk_finish_plug(&plug);
3104 * As described above, -EAGAIN indicates a hole in the extents. We
3105 * cannot wait for these write outs since the waiting cause a
3106 * deadlock. Bail out to the full commit instead.
3108 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3109 btrfs_set_log_full_commit(trans);
3110 btrfs_wait_tree_log_extents(log, mark);
3111 mutex_unlock(&log_root_tree->log_mutex);
3112 goto out_wake_log_root;
3114 btrfs_set_log_full_commit(trans);
3115 btrfs_abort_transaction(trans, ret);
3116 mutex_unlock(&log_root_tree->log_mutex);
3117 goto out_wake_log_root;
3119 ret = btrfs_wait_tree_log_extents(log, mark);
3121 ret = btrfs_wait_tree_log_extents(log_root_tree,
3122 EXTENT_NEW | EXTENT_DIRTY);
3124 btrfs_set_log_full_commit(trans);
3125 mutex_unlock(&log_root_tree->log_mutex);
3126 goto out_wake_log_root;
3129 log_root_start = log_root_tree->node->start;
3130 log_root_level = btrfs_header_level(log_root_tree->node);
3131 log_root_tree->log_transid++;
3132 mutex_unlock(&log_root_tree->log_mutex);
3135 * Here we are guaranteed that nobody is going to write the superblock
3136 * for the current transaction before us and that neither we do write
3137 * our superblock before the previous transaction finishes its commit
3138 * and writes its superblock, because:
3140 * 1) We are holding a handle on the current transaction, so no body
3141 * can commit it until we release the handle;
3143 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3144 * if the previous transaction is still committing, and hasn't yet
3145 * written its superblock, we wait for it to do it, because a
3146 * transaction commit acquires the tree_log_mutex when the commit
3147 * begins and releases it only after writing its superblock.
3149 mutex_lock(&fs_info->tree_log_mutex);
3152 * The previous transaction writeout phase could have failed, and thus
3153 * marked the fs in an error state. We must not commit here, as we
3154 * could have updated our generation in the super_for_commit and
3155 * writing the super here would result in transid mismatches. If there
3156 * is an error here just bail.
3158 if (BTRFS_FS_ERROR(fs_info)) {
3160 btrfs_set_log_full_commit(trans);
3161 btrfs_abort_transaction(trans, ret);
3162 mutex_unlock(&fs_info->tree_log_mutex);
3163 goto out_wake_log_root;
3166 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3167 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3168 ret = write_all_supers(fs_info, 1);
3169 mutex_unlock(&fs_info->tree_log_mutex);
3171 btrfs_set_log_full_commit(trans);
3172 btrfs_abort_transaction(trans, ret);
3173 goto out_wake_log_root;
3177 * We know there can only be one task here, since we have not yet set
3178 * root->log_commit[index1] to 0 and any task attempting to sync the
3179 * log must wait for the previous log transaction to commit if it's
3180 * still in progress or wait for the current log transaction commit if
3181 * someone else already started it. We use <= and not < because the
3182 * first log transaction has an ID of 0.
3184 ASSERT(root->last_log_commit <= log_transid);
3185 root->last_log_commit = log_transid;
3188 mutex_lock(&log_root_tree->log_mutex);
3189 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3191 log_root_tree->log_transid_committed++;
3192 atomic_set(&log_root_tree->log_commit[index2], 0);
3193 mutex_unlock(&log_root_tree->log_mutex);
3196 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3197 * all the updates above are seen by the woken threads. It might not be
3198 * necessary, but proving that seems to be hard.
3200 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3202 mutex_lock(&root->log_mutex);
3203 btrfs_remove_all_log_ctxs(root, index1, ret);
3204 root->log_transid_committed++;
3205 atomic_set(&root->log_commit[index1], 0);
3206 mutex_unlock(&root->log_mutex);
3209 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3210 * all the updates above are seen by the woken threads. It might not be
3211 * necessary, but proving that seems to be hard.
3213 cond_wake_up(&root->log_commit_wait[index1]);
3217 static void free_log_tree(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *log)
3221 struct walk_control wc = {
3223 .process_func = process_one_buffer
3227 ret = walk_log_tree(trans, log, &wc);
3230 * We weren't able to traverse the entire log tree, the
3231 * typical scenario is getting an -EIO when reading an
3232 * extent buffer of the tree, due to a previous writeback
3235 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3236 &log->fs_info->fs_state);
3239 * Some extent buffers of the log tree may still be dirty
3240 * and not yet written back to storage, because we may
3241 * have updates to a log tree without syncing a log tree,
3242 * such as during rename and link operations. So flush
3243 * them out and wait for their writeback to complete, so
3244 * that we properly cleanup their state and pages.
3246 btrfs_write_marked_extents(log->fs_info,
3247 &log->dirty_log_pages,
3248 EXTENT_DIRTY | EXTENT_NEW);
3249 btrfs_wait_tree_log_extents(log,
3250 EXTENT_DIRTY | EXTENT_NEW);
3253 btrfs_abort_transaction(trans, ret);
3255 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3259 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3260 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3261 extent_io_tree_release(&log->log_csum_range);
3263 btrfs_put_root(log);
3267 * free all the extents used by the tree log. This should be called
3268 * at commit time of the full transaction
3270 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3272 if (root->log_root) {
3273 free_log_tree(trans, root->log_root);
3274 root->log_root = NULL;
3275 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3280 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3281 struct btrfs_fs_info *fs_info)
3283 if (fs_info->log_root_tree) {
3284 free_log_tree(trans, fs_info->log_root_tree);
3285 fs_info->log_root_tree = NULL;
3286 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3292 * Check if an inode was logged in the current transaction. This correctly deals
3293 * with the case where the inode was logged but has a logged_trans of 0, which
3294 * happens if the inode is evicted and loaded again, as logged_trans is an in
3295 * memory only field (not persisted).
3297 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3300 static int inode_logged(struct btrfs_trans_handle *trans,
3301 struct btrfs_inode *inode,
3302 struct btrfs_path *path_in)
3304 struct btrfs_path *path = path_in;
3305 struct btrfs_key key;
3308 if (inode->logged_trans == trans->transid)
3312 * If logged_trans is not 0, then we know the inode logged was not logged
3313 * in this transaction, so we can return false right away.
3315 if (inode->logged_trans > 0)
3319 * If no log tree was created for this root in this transaction, then
3320 * the inode can not have been logged in this transaction. In that case
3321 * set logged_trans to anything greater than 0 and less than the current
3322 * transaction's ID, to avoid the search below in a future call in case
3323 * a log tree gets created after this.
3325 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3326 inode->logged_trans = trans->transid - 1;
3331 * We have a log tree and the inode's logged_trans is 0. We can't tell
3332 * for sure if the inode was logged before in this transaction by looking
3333 * only at logged_trans. We could be pessimistic and assume it was, but
3334 * that can lead to unnecessarily logging an inode during rename and link
3335 * operations, and then further updating the log in followup rename and
3336 * link operations, specially if it's a directory, which adds latency
3337 * visible to applications doing a series of rename or link operations.
3339 * A logged_trans of 0 here can mean several things:
3341 * 1) The inode was never logged since the filesystem was mounted, and may
3342 * or may have not been evicted and loaded again;
3344 * 2) The inode was logged in a previous transaction, then evicted and
3345 * then loaded again;
3347 * 3) The inode was logged in the current transaction, then evicted and
3348 * then loaded again.
3350 * For cases 1) and 2) we don't want to return true, but we need to detect
3351 * case 3) and return true. So we do a search in the log root for the inode
3354 key.objectid = btrfs_ino(inode);
3355 key.type = BTRFS_INODE_ITEM_KEY;
3359 path = btrfs_alloc_path();
3364 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3367 btrfs_release_path(path);
3369 btrfs_free_path(path);
3372 * Logging an inode always results in logging its inode item. So if we
3373 * did not find the item we know the inode was not logged for sure.
3377 } else if (ret > 0) {
3379 * Set logged_trans to a value greater than 0 and less then the
3380 * current transaction to avoid doing the search in future calls.
3382 inode->logged_trans = trans->transid - 1;
3387 * The inode was previously logged and then evicted, set logged_trans to
3388 * the current transacion's ID, to avoid future tree searches as long as
3389 * the inode is not evicted again.
3391 inode->logged_trans = trans->transid;
3394 * If it's a directory, then we must set last_dir_index_offset to the
3395 * maximum possible value, so that the next attempt to log the inode does
3396 * not skip checking if dir index keys found in modified subvolume tree
3397 * leaves have been logged before, otherwise it would result in attempts
3398 * to insert duplicate dir index keys in the log tree. This must be done
3399 * because last_dir_index_offset is an in-memory only field, not persisted
3400 * in the inode item or any other on-disk structure, so its value is lost
3401 * once the inode is evicted.
3403 if (S_ISDIR(inode->vfs_inode.i_mode))
3404 inode->last_dir_index_offset = (u64)-1;
3410 * Delete a directory entry from the log if it exists.
3412 * Returns < 0 on error
3413 * 1 if the entry does not exists
3414 * 0 if the entry existed and was successfully deleted
3416 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3417 struct btrfs_root *log,
3418 struct btrfs_path *path,
3420 const struct fscrypt_str *name,
3423 struct btrfs_dir_item *di;
3426 * We only log dir index items of a directory, so we don't need to look
3427 * for dir item keys.
3429 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3437 * We do not need to update the size field of the directory's
3438 * inode item because on log replay we update the field to reflect
3439 * all existing entries in the directory (see overwrite_item()).
3441 return btrfs_delete_one_dir_name(trans, log, path, di);
3445 * If both a file and directory are logged, and unlinks or renames are
3446 * mixed in, we have a few interesting corners:
3448 * create file X in dir Y
3449 * link file X to X.link in dir Y
3451 * unlink file X but leave X.link
3454 * After a crash we would expect only X.link to exist. But file X
3455 * didn't get fsync'd again so the log has back refs for X and X.link.
3457 * We solve this by removing directory entries and inode backrefs from the
3458 * log when a file that was logged in the current transaction is
3459 * unlinked. Any later fsync will include the updated log entries, and
3460 * we'll be able to reconstruct the proper directory items from backrefs.
3462 * This optimizations allows us to avoid relogging the entire inode
3463 * or the entire directory.
3465 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3466 struct btrfs_root *root,
3467 const struct fscrypt_str *name,
3468 struct btrfs_inode *dir, u64 index)
3470 struct btrfs_path *path;
3473 ret = inode_logged(trans, dir, NULL);
3477 btrfs_set_log_full_commit(trans);
3481 ret = join_running_log_trans(root);
3485 mutex_lock(&dir->log_mutex);
3487 path = btrfs_alloc_path();
3493 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3495 btrfs_free_path(path);
3497 mutex_unlock(&dir->log_mutex);
3499 btrfs_set_log_full_commit(trans);
3500 btrfs_end_log_trans(root);
3503 /* see comments for btrfs_del_dir_entries_in_log */
3504 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *root,
3506 const struct fscrypt_str *name,
3507 struct btrfs_inode *inode, u64 dirid)
3509 struct btrfs_root *log;
3513 ret = inode_logged(trans, inode, NULL);
3517 btrfs_set_log_full_commit(trans);
3521 ret = join_running_log_trans(root);
3524 log = root->log_root;
3525 mutex_lock(&inode->log_mutex);
3527 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3529 mutex_unlock(&inode->log_mutex);
3530 if (ret < 0 && ret != -ENOENT)
3531 btrfs_set_log_full_commit(trans);
3532 btrfs_end_log_trans(root);
3536 * creates a range item in the log for 'dirid'. first_offset and
3537 * last_offset tell us which parts of the key space the log should
3538 * be considered authoritative for.
3540 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *log,
3542 struct btrfs_path *path,
3544 u64 first_offset, u64 last_offset)
3547 struct btrfs_key key;
3548 struct btrfs_dir_log_item *item;
3550 key.objectid = dirid;
3551 key.offset = first_offset;
3552 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3553 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3555 * -EEXIST is fine and can happen sporadically when we are logging a
3556 * directory and have concurrent insertions in the subvolume's tree for
3557 * items from other inodes and that result in pushing off some dir items
3558 * from one leaf to another in order to accommodate for the new items.
3559 * This results in logging the same dir index range key.
3561 if (ret && ret != -EEXIST)
3564 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3565 struct btrfs_dir_log_item);
3566 if (ret == -EEXIST) {
3567 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3570 * btrfs_del_dir_entries_in_log() might have been called during
3571 * an unlink between the initial insertion of this key and the
3572 * current update, or we might be logging a single entry deletion
3573 * during a rename, so set the new last_offset to the max value.
3575 last_offset = max(last_offset, curr_end);
3577 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3578 btrfs_mark_buffer_dirty(path->nodes[0]);
3579 btrfs_release_path(path);
3583 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3584 struct btrfs_root *log,
3585 struct extent_buffer *src,
3586 struct btrfs_path *dst_path,
3590 char *ins_data = NULL;
3591 struct btrfs_item_batch batch;
3592 struct extent_buffer *dst;
3593 unsigned long src_offset;
3594 unsigned long dst_offset;
3595 struct btrfs_key key;
3604 btrfs_item_key_to_cpu(src, &key, start_slot);
3605 item_size = btrfs_item_size(src, start_slot);
3607 batch.data_sizes = &item_size;
3608 batch.total_data_size = item_size;
3610 struct btrfs_key *ins_keys;
3613 ins_data = kmalloc(count * sizeof(u32) +
3614 count * sizeof(struct btrfs_key), GFP_NOFS);
3618 ins_sizes = (u32 *)ins_data;
3619 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3620 batch.keys = ins_keys;
3621 batch.data_sizes = ins_sizes;
3622 batch.total_data_size = 0;
3624 for (i = 0; i < count; i++) {
3625 const int slot = start_slot + i;
3627 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3628 ins_sizes[i] = btrfs_item_size(src, slot);
3629 batch.total_data_size += ins_sizes[i];
3633 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3637 dst = dst_path->nodes[0];
3639 * Copy all the items in bulk, in a single copy operation. Item data is
3640 * organized such that it's placed at the end of a leaf and from right
3641 * to left. For example, the data for the second item ends at an offset
3642 * that matches the offset where the data for the first item starts, the
3643 * data for the third item ends at an offset that matches the offset
3644 * where the data of the second items starts, and so on.
3645 * Therefore our source and destination start offsets for copy match the
3646 * offsets of the last items (highest slots).
3648 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3649 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3650 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3651 btrfs_release_path(dst_path);
3658 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3659 struct btrfs_inode *inode,
3660 struct btrfs_path *path,
3661 struct btrfs_path *dst_path,
3662 struct btrfs_log_ctx *ctx,
3663 u64 *last_old_dentry_offset)
3665 struct btrfs_root *log = inode->root->log_root;
3666 struct extent_buffer *src;
3667 const int nritems = btrfs_header_nritems(path->nodes[0]);
3668 const u64 ino = btrfs_ino(inode);
3669 bool last_found = false;
3670 int batch_start = 0;
3675 * We need to clone the leaf, release the read lock on it, and use the
3676 * clone before modifying the log tree. See the comment at copy_items()
3677 * about why we need to do this.
3679 src = btrfs_clone_extent_buffer(path->nodes[0]);
3684 btrfs_release_path(path);
3685 path->nodes[0] = src;
3688 for (; i < nritems; i++) {
3689 struct btrfs_dir_item *di;
3690 struct btrfs_key key;
3693 btrfs_item_key_to_cpu(src, &key, i);
3695 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3700 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3701 ctx->last_dir_item_offset = key.offset;
3704 * Skip ranges of items that consist only of dir item keys created
3705 * in past transactions. However if we find a gap, we must log a
3706 * dir index range item for that gap, so that index keys in that
3707 * gap are deleted during log replay.
3709 if (btrfs_dir_transid(src, di) < trans->transid) {
3710 if (key.offset > *last_old_dentry_offset + 1) {
3711 ret = insert_dir_log_key(trans, log, dst_path,
3712 ino, *last_old_dentry_offset + 1,
3718 *last_old_dentry_offset = key.offset;
3722 /* If we logged this dir index item before, we can skip it. */
3723 if (key.offset <= inode->last_dir_index_offset)
3727 * We must make sure that when we log a directory entry, the
3728 * corresponding inode, after log replay, has a matching link
3729 * count. For example:
3735 * xfs_io -c "fsync" mydir
3737 * <mount fs and log replay>
3739 * Would result in a fsync log that when replayed, our file inode
3740 * would have a link count of 1, but we get two directory entries
3741 * pointing to the same inode. After removing one of the names,
3742 * it would not be possible to remove the other name, which
3743 * resulted always in stale file handle errors, and would not be
3744 * possible to rmdir the parent directory, since its i_size could
3745 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3746 * resulting in -ENOTEMPTY errors.
3748 if (!ctx->log_new_dentries) {
3749 struct btrfs_key di_key;
3751 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3752 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3753 ctx->log_new_dentries = true;
3756 if (batch_size == 0)
3761 if (batch_size > 0) {
3764 ret = flush_dir_items_batch(trans, log, src, dst_path,
3765 batch_start, batch_size);
3770 return last_found ? 1 : 0;
3774 * log all the items included in the current transaction for a given
3775 * directory. This also creates the range items in the log tree required
3776 * to replay anything deleted before the fsync
3778 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3779 struct btrfs_inode *inode,
3780 struct btrfs_path *path,
3781 struct btrfs_path *dst_path,
3782 struct btrfs_log_ctx *ctx,
3783 u64 min_offset, u64 *last_offset_ret)
3785 struct btrfs_key min_key;
3786 struct btrfs_root *root = inode->root;
3787 struct btrfs_root *log = root->log_root;
3790 u64 last_old_dentry_offset = min_offset - 1;
3791 u64 last_offset = (u64)-1;
3792 u64 ino = btrfs_ino(inode);
3794 min_key.objectid = ino;
3795 min_key.type = BTRFS_DIR_INDEX_KEY;
3796 min_key.offset = min_offset;
3798 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3801 * we didn't find anything from this transaction, see if there
3802 * is anything at all
3804 if (ret != 0 || min_key.objectid != ino ||
3805 min_key.type != BTRFS_DIR_INDEX_KEY) {
3806 min_key.objectid = ino;
3807 min_key.type = BTRFS_DIR_INDEX_KEY;
3808 min_key.offset = (u64)-1;
3809 btrfs_release_path(path);
3810 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3812 btrfs_release_path(path);
3815 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3817 /* if ret == 0 there are items for this type,
3818 * create a range to tell us the last key of this type.
3819 * otherwise, there are no items in this directory after
3820 * *min_offset, and we create a range to indicate that.
3823 struct btrfs_key tmp;
3825 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3827 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3828 last_old_dentry_offset = tmp.offset;
3833 /* go backward to find any previous key */
3834 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3836 struct btrfs_key tmp;
3838 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3840 * The dir index key before the first one we found that needs to
3841 * be logged might be in a previous leaf, and there might be a
3842 * gap between these keys, meaning that we had deletions that
3843 * happened. So the key range item we log (key type
3844 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3845 * previous key's offset plus 1, so that those deletes are replayed.
3847 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3848 last_old_dentry_offset = tmp.offset;
3850 btrfs_release_path(path);
3853 * Find the first key from this transaction again. See the note for
3854 * log_new_dir_dentries, if we're logging a directory recursively we
3855 * won't be holding its i_mutex, which means we can modify the directory
3856 * while we're logging it. If we remove an entry between our first
3857 * search and this search we'll not find the key again and can just
3861 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3866 * we have a block from this transaction, log every item in it
3867 * from our directory
3870 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3871 &last_old_dentry_offset);
3877 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3880 * look ahead to the next item and see if it is also
3881 * from this directory and from this transaction
3883 ret = btrfs_next_leaf(root, path);
3886 last_offset = (u64)-1;
3891 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3892 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3893 last_offset = (u64)-1;
3896 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3898 * The next leaf was not changed in the current transaction
3899 * and has at least one dir index key.
3900 * We check for the next key because there might have been
3901 * one or more deletions between the last key we logged and
3902 * that next key. So the key range item we log (key type
3903 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3904 * offset minus 1, so that those deletes are replayed.
3906 last_offset = min_key.offset - 1;
3909 if (need_resched()) {
3910 btrfs_release_path(path);
3916 btrfs_release_path(path);
3917 btrfs_release_path(dst_path);
3920 *last_offset_ret = last_offset;
3922 * In case the leaf was changed in the current transaction but
3923 * all its dir items are from a past transaction, the last item
3924 * in the leaf is a dir item and there's no gap between that last
3925 * dir item and the first one on the next leaf (which did not
3926 * change in the current transaction), then we don't need to log
3927 * a range, last_old_dentry_offset is == to last_offset.
3929 ASSERT(last_old_dentry_offset <= last_offset);
3930 if (last_old_dentry_offset < last_offset) {
3931 ret = insert_dir_log_key(trans, log, path, ino,
3932 last_old_dentry_offset + 1,
3942 * If the inode was logged before and it was evicted, then its
3943 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3944 * key offset. If that's the case, search for it and update the inode. This
3945 * is to avoid lookups in the log tree every time we try to insert a dir index
3946 * key from a leaf changed in the current transaction, and to allow us to always
3947 * do batch insertions of dir index keys.
3949 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3950 struct btrfs_path *path,
3951 const struct btrfs_log_ctx *ctx)
3953 const u64 ino = btrfs_ino(inode);
3954 struct btrfs_key key;
3957 lockdep_assert_held(&inode->log_mutex);
3959 if (inode->last_dir_index_offset != (u64)-1)
3962 if (!ctx->logged_before) {
3963 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3968 key.type = BTRFS_DIR_INDEX_KEY;
3969 key.offset = (u64)-1;
3971 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3973 * An error happened or we actually have an index key with an offset
3974 * value of (u64)-1. Bail out, we're done.
3980 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3983 * No dir index items, bail out and leave last_dir_index_offset with
3984 * the value right before the first valid index value.
3986 if (path->slots[0] == 0)
3990 * btrfs_search_slot() left us at one slot beyond the slot with the last
3991 * index key, or beyond the last key of the directory that is not an
3992 * index key. If we have an index key before, set last_dir_index_offset
3993 * to its offset value, otherwise leave it with a value right before the
3994 * first valid index value, as it means we have an empty directory.
3996 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3997 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3998 inode->last_dir_index_offset = key.offset;
4001 btrfs_release_path(path);
4007 * logging directories is very similar to logging inodes, We find all the items
4008 * from the current transaction and write them to the log.
4010 * The recovery code scans the directory in the subvolume, and if it finds a
4011 * key in the range logged that is not present in the log tree, then it means
4012 * that dir entry was unlinked during the transaction.
4014 * In order for that scan to work, we must include one key smaller than
4015 * the smallest logged by this transaction and one key larger than the largest
4016 * key logged by this transaction.
4018 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4019 struct btrfs_inode *inode,
4020 struct btrfs_path *path,
4021 struct btrfs_path *dst_path,
4022 struct btrfs_log_ctx *ctx)
4028 ret = update_last_dir_index_offset(inode, path, ctx);
4032 min_key = BTRFS_DIR_START_INDEX;
4034 ctx->last_dir_item_offset = inode->last_dir_index_offset;
4037 ret = log_dir_items(trans, inode, path, dst_path,
4038 ctx, min_key, &max_key);
4041 if (max_key == (u64)-1)
4043 min_key = max_key + 1;
4046 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4052 * a helper function to drop items from the log before we relog an
4053 * inode. max_key_type indicates the highest item type to remove.
4054 * This cannot be run for file data extents because it does not
4055 * free the extents they point to.
4057 static int drop_inode_items(struct btrfs_trans_handle *trans,
4058 struct btrfs_root *log,
4059 struct btrfs_path *path,
4060 struct btrfs_inode *inode,
4064 struct btrfs_key key;
4065 struct btrfs_key found_key;
4068 key.objectid = btrfs_ino(inode);
4069 key.type = max_key_type;
4070 key.offset = (u64)-1;
4073 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4074 BUG_ON(ret == 0); /* Logic error */
4078 if (path->slots[0] == 0)
4082 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4085 if (found_key.objectid != key.objectid)
4088 found_key.offset = 0;
4090 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4094 ret = btrfs_del_items(trans, log, path, start_slot,
4095 path->slots[0] - start_slot + 1);
4097 * If start slot isn't 0 then we don't need to re-search, we've
4098 * found the last guy with the objectid in this tree.
4100 if (ret || start_slot != 0)
4102 btrfs_release_path(path);
4104 btrfs_release_path(path);
4110 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4111 struct btrfs_root *log_root,
4112 struct btrfs_inode *inode,
4113 u64 new_size, u32 min_type)
4115 struct btrfs_truncate_control control = {
4116 .new_size = new_size,
4117 .ino = btrfs_ino(inode),
4118 .min_type = min_type,
4119 .skip_ref_updates = true,
4122 return btrfs_truncate_inode_items(trans, log_root, &control);
4125 static void fill_inode_item(struct btrfs_trans_handle *trans,
4126 struct extent_buffer *leaf,
4127 struct btrfs_inode_item *item,
4128 struct inode *inode, int log_inode_only,
4131 struct btrfs_map_token token;
4134 btrfs_init_map_token(&token, leaf);
4136 if (log_inode_only) {
4137 /* set the generation to zero so the recover code
4138 * can tell the difference between an logging
4139 * just to say 'this inode exists' and a logging
4140 * to say 'update this inode with these values'
4142 btrfs_set_token_inode_generation(&token, item, 0);
4143 btrfs_set_token_inode_size(&token, item, logged_isize);
4145 btrfs_set_token_inode_generation(&token, item,
4146 BTRFS_I(inode)->generation);
4147 btrfs_set_token_inode_size(&token, item, inode->i_size);
4150 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4151 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4152 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4153 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4155 btrfs_set_token_timespec_sec(&token, &item->atime,
4156 inode->i_atime.tv_sec);
4157 btrfs_set_token_timespec_nsec(&token, &item->atime,
4158 inode->i_atime.tv_nsec);
4160 btrfs_set_token_timespec_sec(&token, &item->mtime,
4161 inode->i_mtime.tv_sec);
4162 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4163 inode->i_mtime.tv_nsec);
4165 btrfs_set_token_timespec_sec(&token, &item->ctime,
4166 inode->i_ctime.tv_sec);
4167 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4168 inode->i_ctime.tv_nsec);
4171 * We do not need to set the nbytes field, in fact during a fast fsync
4172 * its value may not even be correct, since a fast fsync does not wait
4173 * for ordered extent completion, which is where we update nbytes, it
4174 * only waits for writeback to complete. During log replay as we find
4175 * file extent items and replay them, we adjust the nbytes field of the
4176 * inode item in subvolume tree as needed (see overwrite_item()).
4179 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4180 btrfs_set_token_inode_transid(&token, item, trans->transid);
4181 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4182 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4183 BTRFS_I(inode)->ro_flags);
4184 btrfs_set_token_inode_flags(&token, item, flags);
4185 btrfs_set_token_inode_block_group(&token, item, 0);
4188 static int log_inode_item(struct btrfs_trans_handle *trans,
4189 struct btrfs_root *log, struct btrfs_path *path,
4190 struct btrfs_inode *inode, bool inode_item_dropped)
4192 struct btrfs_inode_item *inode_item;
4196 * If we are doing a fast fsync and the inode was logged before in the
4197 * current transaction, then we know the inode was previously logged and
4198 * it exists in the log tree. For performance reasons, in this case use
4199 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4200 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4201 * contention in case there are concurrent fsyncs for other inodes of the
4202 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4203 * already exists can also result in unnecessarily splitting a leaf.
4205 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4206 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4212 * This means it is the first fsync in the current transaction,
4213 * so the inode item is not in the log and we need to insert it.
4214 * We can never get -EEXIST because we are only called for a fast
4215 * fsync and in case an inode eviction happens after the inode was
4216 * logged before in the current transaction, when we load again
4217 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4218 * flags and set ->logged_trans to 0.
4220 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4221 sizeof(*inode_item));
4222 ASSERT(ret != -EEXIST);
4226 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4227 struct btrfs_inode_item);
4228 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4230 btrfs_release_path(path);
4234 static int log_csums(struct btrfs_trans_handle *trans,
4235 struct btrfs_inode *inode,
4236 struct btrfs_root *log_root,
4237 struct btrfs_ordered_sum *sums)
4239 const u64 lock_end = sums->bytenr + sums->len - 1;
4240 struct extent_state *cached_state = NULL;
4244 * If this inode was not used for reflink operations in the current
4245 * transaction with new extents, then do the fast path, no need to
4246 * worry about logging checksum items with overlapping ranges.
4248 if (inode->last_reflink_trans < trans->transid)
4249 return btrfs_csum_file_blocks(trans, log_root, sums);
4252 * Serialize logging for checksums. This is to avoid racing with the
4253 * same checksum being logged by another task that is logging another
4254 * file which happens to refer to the same extent as well. Such races
4255 * can leave checksum items in the log with overlapping ranges.
4257 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4262 * Due to extent cloning, we might have logged a csum item that covers a
4263 * subrange of a cloned extent, and later we can end up logging a csum
4264 * item for a larger subrange of the same extent or the entire range.
4265 * This would leave csum items in the log tree that cover the same range
4266 * and break the searches for checksums in the log tree, resulting in
4267 * some checksums missing in the fs/subvolume tree. So just delete (or
4268 * trim and adjust) any existing csum items in the log for this range.
4270 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4272 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4274 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4280 static noinline int copy_items(struct btrfs_trans_handle *trans,
4281 struct btrfs_inode *inode,
4282 struct btrfs_path *dst_path,
4283 struct btrfs_path *src_path,
4284 int start_slot, int nr, int inode_only,
4287 struct btrfs_root *log = inode->root->log_root;
4288 struct btrfs_file_extent_item *extent;
4289 struct extent_buffer *src;
4291 struct btrfs_key *ins_keys;
4293 struct btrfs_item_batch batch;
4297 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4298 const u64 i_size = i_size_read(&inode->vfs_inode);
4301 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4302 * use the clone. This is because otherwise we would be changing the log
4303 * tree, to insert items from the subvolume tree or insert csum items,
4304 * while holding a read lock on a leaf from the subvolume tree, which
4305 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4307 * 1) Modifying the log tree triggers an extent buffer allocation while
4308 * holding a write lock on a parent extent buffer from the log tree.
4309 * Allocating the pages for an extent buffer, or the extent buffer
4310 * struct, can trigger inode eviction and finally the inode eviction
4311 * will trigger a release/remove of a delayed node, which requires
4312 * taking the delayed node's mutex;
4314 * 2) Allocating a metadata extent for a log tree can trigger the async
4315 * reclaim thread and make us wait for it to release enough space and
4316 * unblock our reservation ticket. The reclaim thread can start
4317 * flushing delayed items, and that in turn results in the need to
4318 * lock delayed node mutexes and in the need to write lock extent
4319 * buffers of a subvolume tree - all this while holding a write lock
4320 * on the parent extent buffer in the log tree.
4322 * So one task in scenario 1) running in parallel with another task in
4323 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4324 * node mutex while having a read lock on a leaf from the subvolume,
4325 * while the other is holding the delayed node's mutex and wants to
4326 * write lock the same subvolume leaf for flushing delayed items.
4328 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4332 i = src_path->slots[0];
4333 btrfs_release_path(src_path);
4334 src_path->nodes[0] = src;
4335 src_path->slots[0] = i;
4337 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4338 nr * sizeof(u32), GFP_NOFS);
4342 ins_sizes = (u32 *)ins_data;
4343 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4344 batch.keys = ins_keys;
4345 batch.data_sizes = ins_sizes;
4346 batch.total_data_size = 0;
4350 for (i = 0; i < nr; i++) {
4351 const int src_slot = start_slot + i;
4352 struct btrfs_root *csum_root;
4353 struct btrfs_ordered_sum *sums;
4354 struct btrfs_ordered_sum *sums_next;
4355 LIST_HEAD(ordered_sums);
4359 u64 extent_num_bytes;
4362 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4364 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4367 extent = btrfs_item_ptr(src, src_slot,
4368 struct btrfs_file_extent_item);
4370 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4374 * Don't copy extents from past generations. That would make us
4375 * log a lot more metadata for common cases like doing only a
4376 * few random writes into a file and then fsync it for the first
4377 * time or after the full sync flag is set on the inode. We can
4378 * get leaves full of extent items, most of which are from past
4379 * generations, so we can skip them - as long as the inode has
4380 * not been the target of a reflink operation in this transaction,
4381 * as in that case it might have had file extent items with old
4382 * generations copied into it. We also must always log prealloc
4383 * extents that start at or beyond eof, otherwise we would lose
4384 * them on log replay.
4386 if (is_old_extent &&
4387 ins_keys[dst_index].offset < i_size &&
4388 inode->last_reflink_trans < trans->transid)
4394 /* Only regular extents have checksums. */
4395 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4399 * If it's an extent created in a past transaction, then its
4400 * checksums are already accessible from the committed csum tree,
4401 * no need to log them.
4406 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4407 /* If it's an explicit hole, there are no checksums. */
4408 if (disk_bytenr == 0)
4411 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4413 if (btrfs_file_extent_compression(src, extent)) {
4415 extent_num_bytes = disk_num_bytes;
4417 extent_offset = btrfs_file_extent_offset(src, extent);
4418 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4421 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4422 disk_bytenr += extent_offset;
4423 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4424 disk_bytenr + extent_num_bytes - 1,
4425 &ordered_sums, 0, false);
4429 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4431 ret = log_csums(trans, inode, log, sums);
4432 list_del(&sums->list);
4439 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4440 batch.total_data_size += ins_sizes[dst_index];
4446 * We have a leaf full of old extent items that don't need to be logged,
4447 * so we don't need to do anything.
4452 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4457 for (i = 0; i < nr; i++) {
4458 const int src_slot = start_slot + i;
4459 const int dst_slot = dst_path->slots[0] + dst_index;
4460 struct btrfs_key key;
4461 unsigned long src_offset;
4462 unsigned long dst_offset;
4465 * We're done, all the remaining items in the source leaf
4466 * correspond to old file extent items.
4468 if (dst_index >= batch.nr)
4471 btrfs_item_key_to_cpu(src, &key, src_slot);
4473 if (key.type != BTRFS_EXTENT_DATA_KEY)
4476 extent = btrfs_item_ptr(src, src_slot,
4477 struct btrfs_file_extent_item);
4479 /* See the comment in the previous loop, same logic. */
4480 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4481 key.offset < i_size &&
4482 inode->last_reflink_trans < trans->transid)
4486 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4487 src_offset = btrfs_item_ptr_offset(src, src_slot);
4489 if (key.type == BTRFS_INODE_ITEM_KEY) {
4490 struct btrfs_inode_item *inode_item;
4492 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4493 struct btrfs_inode_item);
4494 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4496 inode_only == LOG_INODE_EXISTS,
4499 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4500 src_offset, ins_sizes[dst_index]);
4506 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4507 btrfs_release_path(dst_path);
4514 static int extent_cmp(void *priv, const struct list_head *a,
4515 const struct list_head *b)
4517 const struct extent_map *em1, *em2;
4519 em1 = list_entry(a, struct extent_map, list);
4520 em2 = list_entry(b, struct extent_map, list);
4522 if (em1->start < em2->start)
4524 else if (em1->start > em2->start)
4529 static int log_extent_csums(struct btrfs_trans_handle *trans,
4530 struct btrfs_inode *inode,
4531 struct btrfs_root *log_root,
4532 const struct extent_map *em,
4533 struct btrfs_log_ctx *ctx)
4535 struct btrfs_ordered_extent *ordered;
4536 struct btrfs_root *csum_root;
4539 u64 mod_start = em->mod_start;
4540 u64 mod_len = em->mod_len;
4541 LIST_HEAD(ordered_sums);
4544 if (inode->flags & BTRFS_INODE_NODATASUM ||
4545 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4546 em->block_start == EXTENT_MAP_HOLE)
4549 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4550 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4551 const u64 mod_end = mod_start + mod_len;
4552 struct btrfs_ordered_sum *sums;
4557 if (ordered_end <= mod_start)
4559 if (mod_end <= ordered->file_offset)
4563 * We are going to copy all the csums on this ordered extent, so
4564 * go ahead and adjust mod_start and mod_len in case this ordered
4565 * extent has already been logged.
4567 if (ordered->file_offset > mod_start) {
4568 if (ordered_end >= mod_end)
4569 mod_len = ordered->file_offset - mod_start;
4571 * If we have this case
4573 * |--------- logged extent ---------|
4574 * |----- ordered extent ----|
4576 * Just don't mess with mod_start and mod_len, we'll
4577 * just end up logging more csums than we need and it
4581 if (ordered_end < mod_end) {
4582 mod_len = mod_end - ordered_end;
4583 mod_start = ordered_end;
4590 * To keep us from looping for the above case of an ordered
4591 * extent that falls inside of the logged extent.
4593 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4596 list_for_each_entry(sums, &ordered->list, list) {
4597 ret = log_csums(trans, inode, log_root, sums);
4603 /* We're done, found all csums in the ordered extents. */
4607 /* If we're compressed we have to save the entire range of csums. */
4608 if (em->compress_type) {
4610 csum_len = max(em->block_len, em->orig_block_len);
4612 csum_offset = mod_start - em->start;
4616 /* block start is already adjusted for the file extent offset. */
4617 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4618 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4619 em->block_start + csum_offset +
4620 csum_len - 1, &ordered_sums, 0, false);
4624 while (!list_empty(&ordered_sums)) {
4625 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4626 struct btrfs_ordered_sum,
4629 ret = log_csums(trans, inode, log_root, sums);
4630 list_del(&sums->list);
4637 static int log_one_extent(struct btrfs_trans_handle *trans,
4638 struct btrfs_inode *inode,
4639 const struct extent_map *em,
4640 struct btrfs_path *path,
4641 struct btrfs_log_ctx *ctx)
4643 struct btrfs_drop_extents_args drop_args = { 0 };
4644 struct btrfs_root *log = inode->root->log_root;
4645 struct btrfs_file_extent_item fi = { 0 };
4646 struct extent_buffer *leaf;
4647 struct btrfs_key key;
4648 u64 extent_offset = em->start - em->orig_start;
4652 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4653 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4654 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4656 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4658 block_len = max(em->block_len, em->orig_block_len);
4659 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4660 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4661 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4662 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4663 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4665 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4668 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4669 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4670 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4671 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4673 ret = log_extent_csums(trans, inode, log, em, ctx);
4678 * If this is the first time we are logging the inode in the current
4679 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4680 * because it does a deletion search, which always acquires write locks
4681 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4682 * but also adds significant contention in a log tree, since log trees
4683 * are small, with a root at level 2 or 3 at most, due to their short
4686 if (ctx->logged_before) {
4687 drop_args.path = path;
4688 drop_args.start = em->start;
4689 drop_args.end = em->start + em->len;
4690 drop_args.replace_extent = true;
4691 drop_args.extent_item_size = sizeof(fi);
4692 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4697 if (!drop_args.extent_inserted) {
4698 key.objectid = btrfs_ino(inode);
4699 key.type = BTRFS_EXTENT_DATA_KEY;
4700 key.offset = em->start;
4702 ret = btrfs_insert_empty_item(trans, log, path, &key,
4707 leaf = path->nodes[0];
4708 write_extent_buffer(leaf, &fi,
4709 btrfs_item_ptr_offset(leaf, path->slots[0]),
4711 btrfs_mark_buffer_dirty(leaf);
4713 btrfs_release_path(path);
4719 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4720 * lose them after doing a full/fast fsync and replaying the log. We scan the
4721 * subvolume's root instead of iterating the inode's extent map tree because
4722 * otherwise we can log incorrect extent items based on extent map conversion.
4723 * That can happen due to the fact that extent maps are merged when they
4724 * are not in the extent map tree's list of modified extents.
4726 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4727 struct btrfs_inode *inode,
4728 struct btrfs_path *path)
4730 struct btrfs_root *root = inode->root;
4731 struct btrfs_key key;
4732 const u64 i_size = i_size_read(&inode->vfs_inode);
4733 const u64 ino = btrfs_ino(inode);
4734 struct btrfs_path *dst_path = NULL;
4735 bool dropped_extents = false;
4736 u64 truncate_offset = i_size;
4737 struct extent_buffer *leaf;
4743 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4747 key.type = BTRFS_EXTENT_DATA_KEY;
4748 key.offset = i_size;
4749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4754 * We must check if there is a prealloc extent that starts before the
4755 * i_size and crosses the i_size boundary. This is to ensure later we
4756 * truncate down to the end of that extent and not to the i_size, as
4757 * otherwise we end up losing part of the prealloc extent after a log
4758 * replay and with an implicit hole if there is another prealloc extent
4759 * that starts at an offset beyond i_size.
4761 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4766 struct btrfs_file_extent_item *ei;
4768 leaf = path->nodes[0];
4769 slot = path->slots[0];
4770 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4772 if (btrfs_file_extent_type(leaf, ei) ==
4773 BTRFS_FILE_EXTENT_PREALLOC) {
4776 btrfs_item_key_to_cpu(leaf, &key, slot);
4777 extent_end = key.offset +
4778 btrfs_file_extent_num_bytes(leaf, ei);
4780 if (extent_end > i_size)
4781 truncate_offset = extent_end;
4788 leaf = path->nodes[0];
4789 slot = path->slots[0];
4791 if (slot >= btrfs_header_nritems(leaf)) {
4793 ret = copy_items(trans, inode, dst_path, path,
4794 start_slot, ins_nr, 1, 0);
4799 ret = btrfs_next_leaf(root, path);
4809 btrfs_item_key_to_cpu(leaf, &key, slot);
4810 if (key.objectid > ino)
4812 if (WARN_ON_ONCE(key.objectid < ino) ||
4813 key.type < BTRFS_EXTENT_DATA_KEY ||
4814 key.offset < i_size) {
4818 if (!dropped_extents) {
4820 * Avoid logging extent items logged in past fsync calls
4821 * and leading to duplicate keys in the log tree.
4823 ret = truncate_inode_items(trans, root->log_root, inode,
4825 BTRFS_EXTENT_DATA_KEY);
4828 dropped_extents = true;
4835 dst_path = btrfs_alloc_path();
4843 ret = copy_items(trans, inode, dst_path, path,
4844 start_slot, ins_nr, 1, 0);
4846 btrfs_release_path(path);
4847 btrfs_free_path(dst_path);
4851 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4852 struct btrfs_inode *inode,
4853 struct btrfs_path *path,
4854 struct btrfs_log_ctx *ctx)
4856 struct btrfs_ordered_extent *ordered;
4857 struct btrfs_ordered_extent *tmp;
4858 struct extent_map *em, *n;
4859 struct list_head extents;
4860 struct extent_map_tree *tree = &inode->extent_tree;
4864 INIT_LIST_HEAD(&extents);
4866 write_lock(&tree->lock);
4868 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4869 list_del_init(&em->list);
4871 * Just an arbitrary number, this can be really CPU intensive
4872 * once we start getting a lot of extents, and really once we
4873 * have a bunch of extents we just want to commit since it will
4876 if (++num > 32768) {
4877 list_del_init(&tree->modified_extents);
4882 if (em->generation < trans->transid)
4885 /* We log prealloc extents beyond eof later. */
4886 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4887 em->start >= i_size_read(&inode->vfs_inode))
4890 /* Need a ref to keep it from getting evicted from cache */
4891 refcount_inc(&em->refs);
4892 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4893 list_add_tail(&em->list, &extents);
4897 list_sort(NULL, &extents, extent_cmp);
4899 while (!list_empty(&extents)) {
4900 em = list_entry(extents.next, struct extent_map, list);
4902 list_del_init(&em->list);
4905 * If we had an error we just need to delete everybody from our
4909 clear_em_logging(tree, em);
4910 free_extent_map(em);
4914 write_unlock(&tree->lock);
4916 ret = log_one_extent(trans, inode, em, path, ctx);
4917 write_lock(&tree->lock);
4918 clear_em_logging(tree, em);
4919 free_extent_map(em);
4921 WARN_ON(!list_empty(&extents));
4922 write_unlock(&tree->lock);
4925 ret = btrfs_log_prealloc_extents(trans, inode, path);
4930 * We have logged all extents successfully, now make sure the commit of
4931 * the current transaction waits for the ordered extents to complete
4932 * before it commits and wipes out the log trees, otherwise we would
4933 * lose data if an ordered extents completes after the transaction
4934 * commits and a power failure happens after the transaction commit.
4936 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4937 list_del_init(&ordered->log_list);
4938 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4940 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4941 spin_lock_irq(&inode->ordered_tree.lock);
4942 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4943 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4944 atomic_inc(&trans->transaction->pending_ordered);
4946 spin_unlock_irq(&inode->ordered_tree.lock);
4948 btrfs_put_ordered_extent(ordered);
4954 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4955 struct btrfs_path *path, u64 *size_ret)
4957 struct btrfs_key key;
4960 key.objectid = btrfs_ino(inode);
4961 key.type = BTRFS_INODE_ITEM_KEY;
4964 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4967 } else if (ret > 0) {
4970 struct btrfs_inode_item *item;
4972 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4973 struct btrfs_inode_item);
4974 *size_ret = btrfs_inode_size(path->nodes[0], item);
4976 * If the in-memory inode's i_size is smaller then the inode
4977 * size stored in the btree, return the inode's i_size, so
4978 * that we get a correct inode size after replaying the log
4979 * when before a power failure we had a shrinking truncate
4980 * followed by addition of a new name (rename / new hard link).
4981 * Otherwise return the inode size from the btree, to avoid
4982 * data loss when replaying a log due to previously doing a
4983 * write that expands the inode's size and logging a new name
4984 * immediately after.
4986 if (*size_ret > inode->vfs_inode.i_size)
4987 *size_ret = inode->vfs_inode.i_size;
4990 btrfs_release_path(path);
4995 * At the moment we always log all xattrs. This is to figure out at log replay
4996 * time which xattrs must have their deletion replayed. If a xattr is missing
4997 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4998 * because if a xattr is deleted, the inode is fsynced and a power failure
4999 * happens, causing the log to be replayed the next time the fs is mounted,
5000 * we want the xattr to not exist anymore (same behaviour as other filesystems
5001 * with a journal, ext3/4, xfs, f2fs, etc).
5003 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5004 struct btrfs_inode *inode,
5005 struct btrfs_path *path,
5006 struct btrfs_path *dst_path)
5008 struct btrfs_root *root = inode->root;
5010 struct btrfs_key key;
5011 const u64 ino = btrfs_ino(inode);
5014 bool found_xattrs = false;
5016 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5020 key.type = BTRFS_XATTR_ITEM_KEY;
5023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028 int slot = path->slots[0];
5029 struct extent_buffer *leaf = path->nodes[0];
5030 int nritems = btrfs_header_nritems(leaf);
5032 if (slot >= nritems) {
5034 ret = copy_items(trans, inode, dst_path, path,
5035 start_slot, ins_nr, 1, 0);
5040 ret = btrfs_next_leaf(root, path);
5048 btrfs_item_key_to_cpu(leaf, &key, slot);
5049 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5056 found_xattrs = true;
5060 ret = copy_items(trans, inode, dst_path, path,
5061 start_slot, ins_nr, 1, 0);
5067 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5073 * When using the NO_HOLES feature if we punched a hole that causes the
5074 * deletion of entire leafs or all the extent items of the first leaf (the one
5075 * that contains the inode item and references) we may end up not processing
5076 * any extents, because there are no leafs with a generation matching the
5077 * current transaction that have extent items for our inode. So we need to find
5078 * if any holes exist and then log them. We also need to log holes after any
5079 * truncate operation that changes the inode's size.
5081 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5082 struct btrfs_inode *inode,
5083 struct btrfs_path *path)
5085 struct btrfs_root *root = inode->root;
5086 struct btrfs_fs_info *fs_info = root->fs_info;
5087 struct btrfs_key key;
5088 const u64 ino = btrfs_ino(inode);
5089 const u64 i_size = i_size_read(&inode->vfs_inode);
5090 u64 prev_extent_end = 0;
5093 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5097 key.type = BTRFS_EXTENT_DATA_KEY;
5100 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5105 struct extent_buffer *leaf = path->nodes[0];
5107 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5108 ret = btrfs_next_leaf(root, path);
5115 leaf = path->nodes[0];
5118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5119 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5122 /* We have a hole, log it. */
5123 if (prev_extent_end < key.offset) {
5124 const u64 hole_len = key.offset - prev_extent_end;
5127 * Release the path to avoid deadlocks with other code
5128 * paths that search the root while holding locks on
5129 * leafs from the log root.
5131 btrfs_release_path(path);
5132 ret = btrfs_insert_hole_extent(trans, root->log_root,
5133 ino, prev_extent_end,
5139 * Search for the same key again in the root. Since it's
5140 * an extent item and we are holding the inode lock, the
5141 * key must still exist. If it doesn't just emit warning
5142 * and return an error to fall back to a transaction
5145 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5148 if (WARN_ON(ret > 0))
5150 leaf = path->nodes[0];
5153 prev_extent_end = btrfs_file_extent_end(path);
5158 if (prev_extent_end < i_size) {
5161 btrfs_release_path(path);
5162 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5163 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5164 prev_extent_end, hole_len);
5173 * When we are logging a new inode X, check if it doesn't have a reference that
5174 * matches the reference from some other inode Y created in a past transaction
5175 * and that was renamed in the current transaction. If we don't do this, then at
5176 * log replay time we can lose inode Y (and all its files if it's a directory):
5179 * echo "hello world" > /mnt/x/foobar
5182 * mkdir /mnt/x # or touch /mnt/x
5183 * xfs_io -c fsync /mnt/x
5185 * mount fs, trigger log replay
5187 * After the log replay procedure, we would lose the first directory and all its
5188 * files (file foobar).
5189 * For the case where inode Y is not a directory we simply end up losing it:
5191 * echo "123" > /mnt/foo
5193 * mv /mnt/foo /mnt/bar
5194 * echo "abc" > /mnt/foo
5195 * xfs_io -c fsync /mnt/foo
5198 * We also need this for cases where a snapshot entry is replaced by some other
5199 * entry (file or directory) otherwise we end up with an unreplayable log due to
5200 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5201 * if it were a regular entry:
5204 * btrfs subvolume snapshot /mnt /mnt/x/snap
5205 * btrfs subvolume delete /mnt/x/snap
5208 * fsync /mnt/x or fsync some new file inside it
5211 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5212 * the same transaction.
5214 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5216 const struct btrfs_key *key,
5217 struct btrfs_inode *inode,
5218 u64 *other_ino, u64 *other_parent)
5221 struct btrfs_path *search_path;
5224 u32 item_size = btrfs_item_size(eb, slot);
5226 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5228 search_path = btrfs_alloc_path();
5231 search_path->search_commit_root = 1;
5232 search_path->skip_locking = 1;
5234 while (cur_offset < item_size) {
5238 unsigned long name_ptr;
5239 struct btrfs_dir_item *di;
5240 struct fscrypt_str name_str;
5242 if (key->type == BTRFS_INODE_REF_KEY) {
5243 struct btrfs_inode_ref *iref;
5245 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5246 parent = key->offset;
5247 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5248 name_ptr = (unsigned long)(iref + 1);
5249 this_len = sizeof(*iref) + this_name_len;
5251 struct btrfs_inode_extref *extref;
5253 extref = (struct btrfs_inode_extref *)(ptr +
5255 parent = btrfs_inode_extref_parent(eb, extref);
5256 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5257 name_ptr = (unsigned long)&extref->name;
5258 this_len = sizeof(*extref) + this_name_len;
5261 if (this_name_len > name_len) {
5264 new_name = krealloc(name, this_name_len, GFP_NOFS);
5269 name_len = this_name_len;
5273 read_extent_buffer(eb, name, name_ptr, this_name_len);
5275 name_str.name = name;
5276 name_str.len = this_name_len;
5277 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5278 parent, &name_str, 0);
5279 if (di && !IS_ERR(di)) {
5280 struct btrfs_key di_key;
5282 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5284 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5285 if (di_key.objectid != key->objectid) {
5287 *other_ino = di_key.objectid;
5288 *other_parent = parent;
5296 } else if (IS_ERR(di)) {
5300 btrfs_release_path(search_path);
5302 cur_offset += this_len;
5306 btrfs_free_path(search_path);
5312 * Check if we need to log an inode. This is used in contexts where while
5313 * logging an inode we need to log another inode (either that it exists or in
5314 * full mode). This is used instead of btrfs_inode_in_log() because the later
5315 * requires the inode to be in the log and have the log transaction committed,
5316 * while here we do not care if the log transaction was already committed - our
5317 * caller will commit the log later - and we want to avoid logging an inode
5318 * multiple times when multiple tasks have joined the same log transaction.
5320 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5321 const struct btrfs_inode *inode)
5324 * If a directory was not modified, no dentries added or removed, we can
5325 * and should avoid logging it.
5327 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5331 * If this inode does not have new/updated/deleted xattrs since the last
5332 * time it was logged and is flagged as logged in the current transaction,
5333 * we can skip logging it. As for new/deleted names, those are updated in
5334 * the log by link/unlink/rename operations.
5335 * In case the inode was logged and then evicted and reloaded, its
5336 * logged_trans will be 0, in which case we have to fully log it since
5337 * logged_trans is a transient field, not persisted.
5339 if (inode->logged_trans == trans->transid &&
5340 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5346 struct btrfs_dir_list {
5348 struct list_head list;
5352 * Log the inodes of the new dentries of a directory.
5353 * See process_dir_items_leaf() for details about why it is needed.
5354 * This is a recursive operation - if an existing dentry corresponds to a
5355 * directory, that directory's new entries are logged too (same behaviour as
5356 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5357 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5358 * complains about the following circular lock dependency / possible deadlock:
5362 * lock(&type->i_mutex_dir_key#3/2);
5363 * lock(sb_internal#2);
5364 * lock(&type->i_mutex_dir_key#3/2);
5365 * lock(&sb->s_type->i_mutex_key#14);
5367 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5368 * sb_start_intwrite() in btrfs_start_transaction().
5369 * Not acquiring the VFS lock of the inodes is still safe because:
5371 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5372 * that while logging the inode new references (names) are added or removed
5373 * from the inode, leaving the logged inode item with a link count that does
5374 * not match the number of logged inode reference items. This is fine because
5375 * at log replay time we compute the real number of links and correct the
5376 * link count in the inode item (see replay_one_buffer() and
5377 * link_to_fixup_dir());
5379 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5380 * while logging the inode's items new index items (key type
5381 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5382 * has a size that doesn't match the sum of the lengths of all the logged
5383 * names - this is ok, not a problem, because at log replay time we set the
5384 * directory's i_size to the correct value (see replay_one_name() and
5385 * overwrite_item()).
5387 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5388 struct btrfs_inode *start_inode,
5389 struct btrfs_log_ctx *ctx)
5391 struct btrfs_root *root = start_inode->root;
5392 struct btrfs_fs_info *fs_info = root->fs_info;
5393 struct btrfs_path *path;
5394 LIST_HEAD(dir_list);
5395 struct btrfs_dir_list *dir_elem;
5396 u64 ino = btrfs_ino(start_inode);
5400 * If we are logging a new name, as part of a link or rename operation,
5401 * don't bother logging new dentries, as we just want to log the names
5402 * of an inode and that any new parents exist.
5404 if (ctx->logging_new_name)
5407 path = btrfs_alloc_path();
5412 struct extent_buffer *leaf;
5413 struct btrfs_key min_key;
5414 bool continue_curr_inode = true;
5418 min_key.objectid = ino;
5419 min_key.type = BTRFS_DIR_INDEX_KEY;
5422 btrfs_release_path(path);
5423 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5426 } else if (ret > 0) {
5431 leaf = path->nodes[0];
5432 nritems = btrfs_header_nritems(leaf);
5433 for (i = path->slots[0]; i < nritems; i++) {
5434 struct btrfs_dir_item *di;
5435 struct btrfs_key di_key;
5436 struct inode *di_inode;
5437 int log_mode = LOG_INODE_EXISTS;
5440 btrfs_item_key_to_cpu(leaf, &min_key, i);
5441 if (min_key.objectid != ino ||
5442 min_key.type != BTRFS_DIR_INDEX_KEY) {
5443 continue_curr_inode = false;
5447 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5448 type = btrfs_dir_ftype(leaf, di);
5449 if (btrfs_dir_transid(leaf, di) < trans->transid)
5451 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5452 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5455 btrfs_release_path(path);
5456 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5457 if (IS_ERR(di_inode)) {
5458 ret = PTR_ERR(di_inode);
5462 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5463 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5467 ctx->log_new_dentries = false;
5468 if (type == BTRFS_FT_DIR)
5469 log_mode = LOG_INODE_ALL;
5470 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5472 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5475 if (ctx->log_new_dentries) {
5476 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5481 dir_elem->ino = di_key.objectid;
5482 list_add_tail(&dir_elem->list, &dir_list);
5487 if (continue_curr_inode && min_key.offset < (u64)-1) {
5493 if (list_empty(&dir_list))
5496 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5497 ino = dir_elem->ino;
5498 list_del(&dir_elem->list);
5502 btrfs_free_path(path);
5504 struct btrfs_dir_list *next;
5506 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5513 struct btrfs_ino_list {
5516 struct list_head list;
5519 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5521 struct btrfs_ino_list *curr;
5522 struct btrfs_ino_list *next;
5524 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5525 list_del(&curr->list);
5530 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5531 struct btrfs_path *path)
5533 struct btrfs_key key;
5537 key.type = BTRFS_INODE_ITEM_KEY;
5540 path->search_commit_root = 1;
5541 path->skip_locking = 1;
5543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5544 if (WARN_ON_ONCE(ret > 0)) {
5546 * We have previously found the inode through the commit root
5547 * so this should not happen. If it does, just error out and
5548 * fallback to a transaction commit.
5551 } else if (ret == 0) {
5552 struct btrfs_inode_item *item;
5554 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5555 struct btrfs_inode_item);
5556 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5560 btrfs_release_path(path);
5561 path->search_commit_root = 0;
5562 path->skip_locking = 0;
5567 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5568 struct btrfs_root *root,
5569 struct btrfs_path *path,
5570 u64 ino, u64 parent,
5571 struct btrfs_log_ctx *ctx)
5573 struct btrfs_ino_list *ino_elem;
5574 struct inode *inode;
5577 * It's rare to have a lot of conflicting inodes, in practice it is not
5578 * common to have more than 1 or 2. We don't want to collect too many,
5579 * as we could end up logging too many inodes (even if only in
5580 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5583 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5584 return BTRFS_LOG_FORCE_COMMIT;
5586 inode = btrfs_iget(root->fs_info->sb, ino, root);
5588 * If the other inode that had a conflicting dir entry was deleted in
5589 * the current transaction then we either:
5591 * 1) Log the parent directory (later after adding it to the list) if
5592 * the inode is a directory. This is because it may be a deleted
5593 * subvolume/snapshot or it may be a regular directory that had
5594 * deleted subvolumes/snapshots (or subdirectories that had them),
5595 * and at the moment we can't deal with dropping subvolumes/snapshots
5596 * during log replay. So we just log the parent, which will result in
5597 * a fallback to a transaction commit if we are dealing with those
5598 * cases (last_unlink_trans will match the current transaction);
5600 * 2) Do nothing if it's not a directory. During log replay we simply
5601 * unlink the conflicting dentry from the parent directory and then
5602 * add the dentry for our inode. Like this we can avoid logging the
5603 * parent directory (and maybe fallback to a transaction commit in
5604 * case it has a last_unlink_trans == trans->transid, due to moving
5605 * some inode from it to some other directory).
5607 if (IS_ERR(inode)) {
5608 int ret = PTR_ERR(inode);
5613 ret = conflicting_inode_is_dir(root, ino, path);
5614 /* Not a directory or we got an error. */
5618 /* Conflicting inode is a directory, so we'll log its parent. */
5619 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5622 ino_elem->ino = ino;
5623 ino_elem->parent = parent;
5624 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5625 ctx->num_conflict_inodes++;
5631 * If the inode was already logged skip it - otherwise we can hit an
5632 * infinite loop. Example:
5634 * From the commit root (previous transaction) we have the following
5637 * inode 257 a directory
5638 * inode 258 with references "zz" and "zz_link" on inode 257
5639 * inode 259 with reference "a" on inode 257
5641 * And in the current (uncommitted) transaction we have:
5643 * inode 257 a directory, unchanged
5644 * inode 258 with references "a" and "a2" on inode 257
5645 * inode 259 with reference "zz_link" on inode 257
5646 * inode 261 with reference "zz" on inode 257
5648 * When logging inode 261 the following infinite loop could
5649 * happen if we don't skip already logged inodes:
5651 * - we detect inode 258 as a conflicting inode, with inode 261
5652 * on reference "zz", and log it;
5654 * - we detect inode 259 as a conflicting inode, with inode 258
5655 * on reference "a", and log it;
5657 * - we detect inode 258 as a conflicting inode, with inode 259
5658 * on reference "zz_link", and log it - again! After this we
5659 * repeat the above steps forever.
5661 * Here we can use need_log_inode() because we only need to log the
5662 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5663 * so that the log ends up with the new name and without the old name.
5665 if (!need_log_inode(trans, BTRFS_I(inode))) {
5666 btrfs_add_delayed_iput(BTRFS_I(inode));
5670 btrfs_add_delayed_iput(BTRFS_I(inode));
5672 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5675 ino_elem->ino = ino;
5676 ino_elem->parent = parent;
5677 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5678 ctx->num_conflict_inodes++;
5683 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5684 struct btrfs_root *root,
5685 struct btrfs_log_ctx *ctx)
5687 struct btrfs_fs_info *fs_info = root->fs_info;
5691 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5692 * otherwise we could have unbounded recursion of btrfs_log_inode()
5693 * calls. This check guarantees we can have only 1 level of recursion.
5695 if (ctx->logging_conflict_inodes)
5698 ctx->logging_conflict_inodes = true;
5701 * New conflicting inodes may be found and added to the list while we
5702 * are logging a conflicting inode, so keep iterating while the list is
5705 while (!list_empty(&ctx->conflict_inodes)) {
5706 struct btrfs_ino_list *curr;
5707 struct inode *inode;
5711 curr = list_first_entry(&ctx->conflict_inodes,
5712 struct btrfs_ino_list, list);
5714 parent = curr->parent;
5715 list_del(&curr->list);
5718 inode = btrfs_iget(fs_info->sb, ino, root);
5720 * If the other inode that had a conflicting dir entry was
5721 * deleted in the current transaction, we need to log its parent
5722 * directory. See the comment at add_conflicting_inode().
5724 if (IS_ERR(inode)) {
5725 ret = PTR_ERR(inode);
5729 inode = btrfs_iget(fs_info->sb, parent, root);
5730 if (IS_ERR(inode)) {
5731 ret = PTR_ERR(inode);
5736 * Always log the directory, we cannot make this
5737 * conditional on need_log_inode() because the directory
5738 * might have been logged in LOG_INODE_EXISTS mode or
5739 * the dir index of the conflicting inode is not in a
5740 * dir index key range logged for the directory. So we
5741 * must make sure the deletion is recorded.
5743 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5744 LOG_INODE_ALL, ctx);
5745 btrfs_add_delayed_iput(BTRFS_I(inode));
5752 * Here we can use need_log_inode() because we only need to log
5753 * the inode in LOG_INODE_EXISTS mode and rename operations
5754 * update the log, so that the log ends up with the new name and
5755 * without the old name.
5757 * We did this check at add_conflicting_inode(), but here we do
5758 * it again because if some other task logged the inode after
5759 * that, we can avoid doing it again.
5761 if (!need_log_inode(trans, BTRFS_I(inode))) {
5762 btrfs_add_delayed_iput(BTRFS_I(inode));
5767 * We are safe logging the other inode without acquiring its
5768 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5769 * are safe against concurrent renames of the other inode as
5770 * well because during a rename we pin the log and update the
5771 * log with the new name before we unpin it.
5773 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5774 btrfs_add_delayed_iput(BTRFS_I(inode));
5779 ctx->logging_conflict_inodes = false;
5781 free_conflicting_inodes(ctx);
5786 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5787 struct btrfs_inode *inode,
5788 struct btrfs_key *min_key,
5789 const struct btrfs_key *max_key,
5790 struct btrfs_path *path,
5791 struct btrfs_path *dst_path,
5792 const u64 logged_isize,
5793 const int inode_only,
5794 struct btrfs_log_ctx *ctx,
5795 bool *need_log_inode_item)
5797 const u64 i_size = i_size_read(&inode->vfs_inode);
5798 struct btrfs_root *root = inode->root;
5799 int ins_start_slot = 0;
5804 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5812 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5813 if (min_key->objectid != max_key->objectid)
5815 if (min_key->type > max_key->type)
5818 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5819 *need_log_inode_item = false;
5820 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5821 min_key->offset >= i_size) {
5823 * Extents at and beyond eof are logged with
5824 * btrfs_log_prealloc_extents().
5825 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5826 * and no keys greater than that, so bail out.
5829 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5830 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5831 (inode->generation == trans->transid ||
5832 ctx->logging_conflict_inodes)) {
5834 u64 other_parent = 0;
5836 ret = btrfs_check_ref_name_override(path->nodes[0],
5837 path->slots[0], min_key, inode,
5838 &other_ino, &other_parent);
5841 } else if (ret > 0 &&
5842 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5847 ins_start_slot = path->slots[0];
5849 ret = copy_items(trans, inode, dst_path, path,
5850 ins_start_slot, ins_nr,
5851 inode_only, logged_isize);
5856 btrfs_release_path(path);
5857 ret = add_conflicting_inode(trans, root, path,
5864 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5865 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5868 ret = copy_items(trans, inode, dst_path, path,
5870 ins_nr, inode_only, logged_isize);
5877 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5880 } else if (!ins_nr) {
5881 ins_start_slot = path->slots[0];
5886 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5887 ins_nr, inode_only, logged_isize);
5891 ins_start_slot = path->slots[0];
5894 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5895 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5900 ret = copy_items(trans, inode, dst_path, path,
5901 ins_start_slot, ins_nr, inode_only,
5907 btrfs_release_path(path);
5909 if (min_key->offset < (u64)-1) {
5911 } else if (min_key->type < max_key->type) {
5913 min_key->offset = 0;
5919 * We may process many leaves full of items for our inode, so
5920 * avoid monopolizing a cpu for too long by rescheduling while
5921 * not holding locks on any tree.
5926 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5927 ins_nr, inode_only, logged_isize);
5932 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5934 * Release the path because otherwise we might attempt to double
5935 * lock the same leaf with btrfs_log_prealloc_extents() below.
5937 btrfs_release_path(path);
5938 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5944 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5945 struct btrfs_root *log,
5946 struct btrfs_path *path,
5947 const struct btrfs_item_batch *batch,
5948 const struct btrfs_delayed_item *first_item)
5950 const struct btrfs_delayed_item *curr = first_item;
5953 ret = btrfs_insert_empty_items(trans, log, path, batch);
5957 for (int i = 0; i < batch->nr; i++) {
5960 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5961 write_extent_buffer(path->nodes[0], &curr->data,
5962 (unsigned long)data_ptr, curr->data_len);
5963 curr = list_next_entry(curr, log_list);
5967 btrfs_release_path(path);
5972 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5973 struct btrfs_inode *inode,
5974 struct btrfs_path *path,
5975 const struct list_head *delayed_ins_list,
5976 struct btrfs_log_ctx *ctx)
5978 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5979 const int max_batch_size = 195;
5980 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5981 const u64 ino = btrfs_ino(inode);
5982 struct btrfs_root *log = inode->root->log_root;
5983 struct btrfs_item_batch batch = {
5985 .total_data_size = 0,
5987 const struct btrfs_delayed_item *first = NULL;
5988 const struct btrfs_delayed_item *curr;
5990 struct btrfs_key *ins_keys;
5992 u64 curr_batch_size = 0;
5996 /* We are adding dir index items to the log tree. */
5997 lockdep_assert_held(&inode->log_mutex);
6000 * We collect delayed items before copying index keys from the subvolume
6001 * to the log tree. However just after we collected them, they may have
6002 * been flushed (all of them or just some of them), and therefore we
6003 * could have copied them from the subvolume tree to the log tree.
6004 * So find the first delayed item that was not yet logged (they are
6005 * sorted by index number).
6007 list_for_each_entry(curr, delayed_ins_list, log_list) {
6008 if (curr->index > inode->last_dir_index_offset) {
6014 /* Empty list or all delayed items were already logged. */
6018 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6019 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6022 ins_sizes = (u32 *)ins_data;
6023 batch.data_sizes = ins_sizes;
6024 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6025 batch.keys = ins_keys;
6028 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6029 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6031 if (curr_batch_size + curr_size > leaf_data_size ||
6032 batch.nr == max_batch_size) {
6033 ret = insert_delayed_items_batch(trans, log, path,
6039 batch.total_data_size = 0;
6040 curr_batch_size = 0;
6044 ins_sizes[batch_idx] = curr->data_len;
6045 ins_keys[batch_idx].objectid = ino;
6046 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6047 ins_keys[batch_idx].offset = curr->index;
6048 curr_batch_size += curr_size;
6049 batch.total_data_size += curr->data_len;
6052 curr = list_next_entry(curr, log_list);
6055 ASSERT(batch.nr >= 1);
6056 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6058 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6060 inode->last_dir_index_offset = curr->index;
6067 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6068 struct btrfs_inode *inode,
6069 struct btrfs_path *path,
6070 const struct list_head *delayed_del_list,
6071 struct btrfs_log_ctx *ctx)
6073 const u64 ino = btrfs_ino(inode);
6074 const struct btrfs_delayed_item *curr;
6076 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6079 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6080 u64 first_dir_index = curr->index;
6082 const struct btrfs_delayed_item *next;
6086 * Find a range of consecutive dir index items to delete. Like
6087 * this we log a single dir range item spanning several contiguous
6088 * dir items instead of logging one range item per dir index item.
6090 next = list_next_entry(curr, log_list);
6091 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6092 if (next->index != curr->index + 1)
6095 next = list_next_entry(next, log_list);
6098 last_dir_index = curr->index;
6099 ASSERT(last_dir_index >= first_dir_index);
6101 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6102 ino, first_dir_index, last_dir_index);
6105 curr = list_next_entry(curr, log_list);
6111 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6112 struct btrfs_inode *inode,
6113 struct btrfs_path *path,
6114 struct btrfs_log_ctx *ctx,
6115 const struct list_head *delayed_del_list,
6116 const struct btrfs_delayed_item *first,
6117 const struct btrfs_delayed_item **last_ret)
6119 const struct btrfs_delayed_item *next;
6120 struct extent_buffer *leaf = path->nodes[0];
6121 const int last_slot = btrfs_header_nritems(leaf) - 1;
6122 int slot = path->slots[0] + 1;
6123 const u64 ino = btrfs_ino(inode);
6125 next = list_next_entry(first, log_list);
6127 while (slot < last_slot &&
6128 !list_entry_is_head(next, delayed_del_list, log_list)) {
6129 struct btrfs_key key;
6131 btrfs_item_key_to_cpu(leaf, &key, slot);
6132 if (key.objectid != ino ||
6133 key.type != BTRFS_DIR_INDEX_KEY ||
6134 key.offset != next->index)
6139 next = list_next_entry(next, log_list);
6142 return btrfs_del_items(trans, inode->root->log_root, path,
6143 path->slots[0], slot - path->slots[0]);
6146 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6147 struct btrfs_inode *inode,
6148 struct btrfs_path *path,
6149 const struct list_head *delayed_del_list,
6150 struct btrfs_log_ctx *ctx)
6152 struct btrfs_root *log = inode->root->log_root;
6153 const struct btrfs_delayed_item *curr;
6154 u64 last_range_start;
6155 u64 last_range_end = 0;
6156 struct btrfs_key key;
6158 key.objectid = btrfs_ino(inode);
6159 key.type = BTRFS_DIR_INDEX_KEY;
6160 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6163 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6164 const struct btrfs_delayed_item *last = curr;
6165 u64 first_dir_index = curr->index;
6167 bool deleted_items = false;
6170 key.offset = curr->index;
6171 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6174 } else if (ret == 0) {
6175 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6176 delayed_del_list, curr,
6180 deleted_items = true;
6183 btrfs_release_path(path);
6186 * If we deleted items from the leaf, it means we have a range
6187 * item logging their range, so no need to add one or update an
6188 * existing one. Otherwise we have to log a dir range item.
6193 last_dir_index = last->index;
6194 ASSERT(last_dir_index >= first_dir_index);
6196 * If this range starts right after where the previous one ends,
6197 * then we want to reuse the previous range item and change its
6198 * end offset to the end of this range. This is just to minimize
6199 * leaf space usage, by avoiding adding a new range item.
6201 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6202 first_dir_index = last_range_start;
6204 ret = insert_dir_log_key(trans, log, path, key.objectid,
6205 first_dir_index, last_dir_index);
6209 last_range_start = first_dir_index;
6210 last_range_end = last_dir_index;
6212 curr = list_next_entry(last, log_list);
6218 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6219 struct btrfs_inode *inode,
6220 struct btrfs_path *path,
6221 const struct list_head *delayed_del_list,
6222 struct btrfs_log_ctx *ctx)
6225 * We are deleting dir index items from the log tree or adding range
6228 lockdep_assert_held(&inode->log_mutex);
6230 if (list_empty(delayed_del_list))
6233 if (ctx->logged_before)
6234 return log_delayed_deletions_incremental(trans, inode, path,
6235 delayed_del_list, ctx);
6237 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6242 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6243 * items instead of the subvolume tree.
6245 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6246 struct btrfs_inode *inode,
6247 const struct list_head *delayed_ins_list,
6248 struct btrfs_log_ctx *ctx)
6250 const bool orig_log_new_dentries = ctx->log_new_dentries;
6251 struct btrfs_fs_info *fs_info = trans->fs_info;
6252 struct btrfs_delayed_item *item;
6256 * No need for the log mutex, plus to avoid potential deadlocks or
6257 * lockdep annotations due to nesting of delayed inode mutexes and log
6260 lockdep_assert_not_held(&inode->log_mutex);
6262 ASSERT(!ctx->logging_new_delayed_dentries);
6263 ctx->logging_new_delayed_dentries = true;
6265 list_for_each_entry(item, delayed_ins_list, log_list) {
6266 struct btrfs_dir_item *dir_item;
6267 struct inode *di_inode;
6268 struct btrfs_key key;
6269 int log_mode = LOG_INODE_EXISTS;
6271 dir_item = (struct btrfs_dir_item *)item->data;
6272 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6274 if (key.type == BTRFS_ROOT_ITEM_KEY)
6277 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6278 if (IS_ERR(di_inode)) {
6279 ret = PTR_ERR(di_inode);
6283 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6284 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6288 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6289 log_mode = LOG_INODE_ALL;
6291 ctx->log_new_dentries = false;
6292 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6294 if (!ret && ctx->log_new_dentries)
6295 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6297 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6303 ctx->log_new_dentries = orig_log_new_dentries;
6304 ctx->logging_new_delayed_dentries = false;
6309 /* log a single inode in the tree log.
6310 * At least one parent directory for this inode must exist in the tree
6311 * or be logged already.
6313 * Any items from this inode changed by the current transaction are copied
6314 * to the log tree. An extra reference is taken on any extents in this
6315 * file, allowing us to avoid a whole pile of corner cases around logging
6316 * blocks that have been removed from the tree.
6318 * See LOG_INODE_ALL and related defines for a description of what inode_only
6321 * This handles both files and directories.
6323 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6324 struct btrfs_inode *inode,
6326 struct btrfs_log_ctx *ctx)
6328 struct btrfs_path *path;
6329 struct btrfs_path *dst_path;
6330 struct btrfs_key min_key;
6331 struct btrfs_key max_key;
6332 struct btrfs_root *log = inode->root->log_root;
6334 bool fast_search = false;
6335 u64 ino = btrfs_ino(inode);
6336 struct extent_map_tree *em_tree = &inode->extent_tree;
6337 u64 logged_isize = 0;
6338 bool need_log_inode_item = true;
6339 bool xattrs_logged = false;
6340 bool inode_item_dropped = true;
6341 bool full_dir_logging = false;
6342 LIST_HEAD(delayed_ins_list);
6343 LIST_HEAD(delayed_del_list);
6345 path = btrfs_alloc_path();
6348 dst_path = btrfs_alloc_path();
6350 btrfs_free_path(path);
6354 min_key.objectid = ino;
6355 min_key.type = BTRFS_INODE_ITEM_KEY;
6358 max_key.objectid = ino;
6361 /* today the code can only do partial logging of directories */
6362 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6363 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6364 &inode->runtime_flags) &&
6365 inode_only >= LOG_INODE_EXISTS))
6366 max_key.type = BTRFS_XATTR_ITEM_KEY;
6368 max_key.type = (u8)-1;
6369 max_key.offset = (u64)-1;
6371 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6372 full_dir_logging = true;
6375 * If we are logging a directory while we are logging dentries of the
6376 * delayed items of some other inode, then we need to flush the delayed
6377 * items of this directory and not log the delayed items directly. This
6378 * is to prevent more than one level of recursion into btrfs_log_inode()
6379 * by having something like this:
6381 * $ mkdir -p a/b/c/d/e/f/g/h/...
6382 * $ xfs_io -c "fsync" a
6384 * Where all directories in the path did not exist before and are
6385 * created in the current transaction.
6386 * So in such a case we directly log the delayed items of the main
6387 * directory ("a") without flushing them first, while for each of its
6388 * subdirectories we flush their delayed items before logging them.
6389 * This prevents a potential unbounded recursion like this:
6392 * log_new_delayed_dentries()
6394 * log_new_delayed_dentries()
6396 * log_new_delayed_dentries()
6399 * We have thresholds for the maximum number of delayed items to have in
6400 * memory, and once they are hit, the items are flushed asynchronously.
6401 * However the limit is quite high, so lets prevent deep levels of
6402 * recursion to happen by limiting the maximum depth to be 1.
6404 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6405 ret = btrfs_commit_inode_delayed_items(trans, inode);
6410 mutex_lock(&inode->log_mutex);
6413 * For symlinks, we must always log their content, which is stored in an
6414 * inline extent, otherwise we could end up with an empty symlink after
6415 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6416 * one attempts to create an empty symlink).
6417 * We don't need to worry about flushing delalloc, because when we create
6418 * the inline extent when the symlink is created (we never have delalloc
6421 if (S_ISLNK(inode->vfs_inode.i_mode))
6422 inode_only = LOG_INODE_ALL;
6425 * Before logging the inode item, cache the value returned by
6426 * inode_logged(), because after that we have the need to figure out if
6427 * the inode was previously logged in this transaction.
6429 ret = inode_logged(trans, inode, path);
6432 ctx->logged_before = (ret == 1);
6436 * This is for cases where logging a directory could result in losing a
6437 * a file after replaying the log. For example, if we move a file from a
6438 * directory A to a directory B, then fsync directory A, we have no way
6439 * to known the file was moved from A to B, so logging just A would
6440 * result in losing the file after a log replay.
6442 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6443 btrfs_set_log_full_commit(trans);
6444 ret = BTRFS_LOG_FORCE_COMMIT;
6449 * a brute force approach to making sure we get the most uptodate
6450 * copies of everything.
6452 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6453 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6454 if (ctx->logged_before)
6455 ret = drop_inode_items(trans, log, path, inode,
6456 BTRFS_XATTR_ITEM_KEY);
6458 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6460 * Make sure the new inode item we write to the log has
6461 * the same isize as the current one (if it exists).
6462 * This is necessary to prevent data loss after log
6463 * replay, and also to prevent doing a wrong expanding
6464 * truncate - for e.g. create file, write 4K into offset
6465 * 0, fsync, write 4K into offset 4096, add hard link,
6466 * fsync some other file (to sync log), power fail - if
6467 * we use the inode's current i_size, after log replay
6468 * we get a 8Kb file, with the last 4Kb extent as a hole
6469 * (zeroes), as if an expanding truncate happened,
6470 * instead of getting a file of 4Kb only.
6472 ret = logged_inode_size(log, inode, path, &logged_isize);
6476 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6477 &inode->runtime_flags)) {
6478 if (inode_only == LOG_INODE_EXISTS) {
6479 max_key.type = BTRFS_XATTR_ITEM_KEY;
6480 if (ctx->logged_before)
6481 ret = drop_inode_items(trans, log, path,
6482 inode, max_key.type);
6484 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6485 &inode->runtime_flags);
6486 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6487 &inode->runtime_flags);
6488 if (ctx->logged_before)
6489 ret = truncate_inode_items(trans, log,
6492 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6493 &inode->runtime_flags) ||
6494 inode_only == LOG_INODE_EXISTS) {
6495 if (inode_only == LOG_INODE_ALL)
6497 max_key.type = BTRFS_XATTR_ITEM_KEY;
6498 if (ctx->logged_before)
6499 ret = drop_inode_items(trans, log, path, inode,
6502 if (inode_only == LOG_INODE_ALL)
6504 inode_item_dropped = false;
6513 * If we are logging a directory in full mode, collect the delayed items
6514 * before iterating the subvolume tree, so that we don't miss any new
6515 * dir index items in case they get flushed while or right after we are
6516 * iterating the subvolume tree.
6518 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6519 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6522 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6523 path, dst_path, logged_isize,
6525 &need_log_inode_item);
6529 btrfs_release_path(path);
6530 btrfs_release_path(dst_path);
6531 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6534 xattrs_logged = true;
6535 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6536 btrfs_release_path(path);
6537 btrfs_release_path(dst_path);
6538 ret = btrfs_log_holes(trans, inode, path);
6543 btrfs_release_path(path);
6544 btrfs_release_path(dst_path);
6545 if (need_log_inode_item) {
6546 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6550 * If we are doing a fast fsync and the inode was logged before
6551 * in this transaction, we don't need to log the xattrs because
6552 * they were logged before. If xattrs were added, changed or
6553 * deleted since the last time we logged the inode, then we have
6554 * already logged them because the inode had the runtime flag
6555 * BTRFS_INODE_COPY_EVERYTHING set.
6557 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6558 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6561 btrfs_release_path(path);
6565 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6568 } else if (inode_only == LOG_INODE_ALL) {
6569 struct extent_map *em, *n;
6571 write_lock(&em_tree->lock);
6572 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6573 list_del_init(&em->list);
6574 write_unlock(&em_tree->lock);
6577 if (full_dir_logging) {
6578 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6581 ret = log_delayed_insertion_items(trans, inode, path,
6582 &delayed_ins_list, ctx);
6585 ret = log_delayed_deletion_items(trans, inode, path,
6586 &delayed_del_list, ctx);
6591 spin_lock(&inode->lock);
6592 inode->logged_trans = trans->transid;
6594 * Don't update last_log_commit if we logged that an inode exists.
6595 * We do this for three reasons:
6597 * 1) We might have had buffered writes to this inode that were
6598 * flushed and had their ordered extents completed in this
6599 * transaction, but we did not previously log the inode with
6600 * LOG_INODE_ALL. Later the inode was evicted and after that
6601 * it was loaded again and this LOG_INODE_EXISTS log operation
6602 * happened. We must make sure that if an explicit fsync against
6603 * the inode is performed later, it logs the new extents, an
6604 * updated inode item, etc, and syncs the log. The same logic
6605 * applies to direct IO writes instead of buffered writes.
6607 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6608 * is logged with an i_size of 0 or whatever value was logged
6609 * before. If later the i_size of the inode is increased by a
6610 * truncate operation, the log is synced through an fsync of
6611 * some other inode and then finally an explicit fsync against
6612 * this inode is made, we must make sure this fsync logs the
6613 * inode with the new i_size, the hole between old i_size and
6614 * the new i_size, and syncs the log.
6616 * 3) If we are logging that an ancestor inode exists as part of
6617 * logging a new name from a link or rename operation, don't update
6618 * its last_log_commit - otherwise if an explicit fsync is made
6619 * against an ancestor, the fsync considers the inode in the log
6620 * and doesn't sync the log, resulting in the ancestor missing after
6621 * a power failure unless the log was synced as part of an fsync
6622 * against any other unrelated inode.
6624 if (inode_only != LOG_INODE_EXISTS)
6625 inode->last_log_commit = inode->last_sub_trans;
6626 spin_unlock(&inode->lock);
6629 * Reset the last_reflink_trans so that the next fsync does not need to
6630 * go through the slower path when logging extents and their checksums.
6632 if (inode_only == LOG_INODE_ALL)
6633 inode->last_reflink_trans = 0;
6636 mutex_unlock(&inode->log_mutex);
6638 btrfs_free_path(path);
6639 btrfs_free_path(dst_path);
6642 free_conflicting_inodes(ctx);
6644 ret = log_conflicting_inodes(trans, inode->root, ctx);
6646 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6648 ret = log_new_delayed_dentries(trans, inode,
6649 &delayed_ins_list, ctx);
6651 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6658 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6659 struct btrfs_inode *inode,
6660 struct btrfs_log_ctx *ctx)
6662 struct btrfs_fs_info *fs_info = trans->fs_info;
6664 struct btrfs_path *path;
6665 struct btrfs_key key;
6666 struct btrfs_root *root = inode->root;
6667 const u64 ino = btrfs_ino(inode);
6669 path = btrfs_alloc_path();
6672 path->skip_locking = 1;
6673 path->search_commit_root = 1;
6676 key.type = BTRFS_INODE_REF_KEY;
6678 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6683 struct extent_buffer *leaf = path->nodes[0];
6684 int slot = path->slots[0];
6689 if (slot >= btrfs_header_nritems(leaf)) {
6690 ret = btrfs_next_leaf(root, path);
6698 btrfs_item_key_to_cpu(leaf, &key, slot);
6699 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6700 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6703 item_size = btrfs_item_size(leaf, slot);
6704 ptr = btrfs_item_ptr_offset(leaf, slot);
6705 while (cur_offset < item_size) {
6706 struct btrfs_key inode_key;
6707 struct inode *dir_inode;
6709 inode_key.type = BTRFS_INODE_ITEM_KEY;
6710 inode_key.offset = 0;
6712 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6713 struct btrfs_inode_extref *extref;
6715 extref = (struct btrfs_inode_extref *)
6717 inode_key.objectid = btrfs_inode_extref_parent(
6719 cur_offset += sizeof(*extref);
6720 cur_offset += btrfs_inode_extref_name_len(leaf,
6723 inode_key.objectid = key.offset;
6724 cur_offset = item_size;
6727 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6730 * If the parent inode was deleted, return an error to
6731 * fallback to a transaction commit. This is to prevent
6732 * getting an inode that was moved from one parent A to
6733 * a parent B, got its former parent A deleted and then
6734 * it got fsync'ed, from existing at both parents after
6735 * a log replay (and the old parent still existing).
6742 * mv /mnt/B/bar /mnt/A/bar
6743 * mv -T /mnt/A /mnt/B
6747 * If we ignore the old parent B which got deleted,
6748 * after a log replay we would have file bar linked
6749 * at both parents and the old parent B would still
6752 if (IS_ERR(dir_inode)) {
6753 ret = PTR_ERR(dir_inode);
6757 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6758 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6762 ctx->log_new_dentries = false;
6763 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6764 LOG_INODE_ALL, ctx);
6765 if (!ret && ctx->log_new_dentries)
6766 ret = log_new_dir_dentries(trans,
6767 BTRFS_I(dir_inode), ctx);
6768 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6776 btrfs_free_path(path);
6780 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6781 struct btrfs_root *root,
6782 struct btrfs_path *path,
6783 struct btrfs_log_ctx *ctx)
6785 struct btrfs_key found_key;
6787 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6790 struct btrfs_fs_info *fs_info = root->fs_info;
6791 struct extent_buffer *leaf = path->nodes[0];
6792 int slot = path->slots[0];
6793 struct btrfs_key search_key;
6794 struct inode *inode;
6798 btrfs_release_path(path);
6800 ino = found_key.offset;
6802 search_key.objectid = found_key.offset;
6803 search_key.type = BTRFS_INODE_ITEM_KEY;
6804 search_key.offset = 0;
6805 inode = btrfs_iget(fs_info->sb, ino, root);
6807 return PTR_ERR(inode);
6809 if (BTRFS_I(inode)->generation >= trans->transid &&
6810 need_log_inode(trans, BTRFS_I(inode)))
6811 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6812 LOG_INODE_EXISTS, ctx);
6813 btrfs_add_delayed_iput(BTRFS_I(inode));
6817 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6820 search_key.type = BTRFS_INODE_REF_KEY;
6821 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6825 leaf = path->nodes[0];
6826 slot = path->slots[0];
6827 if (slot >= btrfs_header_nritems(leaf)) {
6828 ret = btrfs_next_leaf(root, path);
6833 leaf = path->nodes[0];
6834 slot = path->slots[0];
6837 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6838 if (found_key.objectid != search_key.objectid ||
6839 found_key.type != BTRFS_INODE_REF_KEY)
6845 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6846 struct btrfs_inode *inode,
6847 struct dentry *parent,
6848 struct btrfs_log_ctx *ctx)
6850 struct btrfs_root *root = inode->root;
6851 struct dentry *old_parent = NULL;
6852 struct super_block *sb = inode->vfs_inode.i_sb;
6856 if (!parent || d_really_is_negative(parent) ||
6860 inode = BTRFS_I(d_inode(parent));
6861 if (root != inode->root)
6864 if (inode->generation >= trans->transid &&
6865 need_log_inode(trans, inode)) {
6866 ret = btrfs_log_inode(trans, inode,
6867 LOG_INODE_EXISTS, ctx);
6871 if (IS_ROOT(parent))
6874 parent = dget_parent(parent);
6876 old_parent = parent;
6883 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6884 struct btrfs_inode *inode,
6885 struct dentry *parent,
6886 struct btrfs_log_ctx *ctx)
6888 struct btrfs_root *root = inode->root;
6889 const u64 ino = btrfs_ino(inode);
6890 struct btrfs_path *path;
6891 struct btrfs_key search_key;
6895 * For a single hard link case, go through a fast path that does not
6896 * need to iterate the fs/subvolume tree.
6898 if (inode->vfs_inode.i_nlink < 2)
6899 return log_new_ancestors_fast(trans, inode, parent, ctx);
6901 path = btrfs_alloc_path();
6905 search_key.objectid = ino;
6906 search_key.type = BTRFS_INODE_REF_KEY;
6907 search_key.offset = 0;
6909 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6916 struct extent_buffer *leaf = path->nodes[0];
6917 int slot = path->slots[0];
6918 struct btrfs_key found_key;
6920 if (slot >= btrfs_header_nritems(leaf)) {
6921 ret = btrfs_next_leaf(root, path);
6929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6930 if (found_key.objectid != ino ||
6931 found_key.type > BTRFS_INODE_EXTREF_KEY)
6935 * Don't deal with extended references because they are rare
6936 * cases and too complex to deal with (we would need to keep
6937 * track of which subitem we are processing for each item in
6938 * this loop, etc). So just return some error to fallback to
6939 * a transaction commit.
6941 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6947 * Logging ancestors needs to do more searches on the fs/subvol
6948 * tree, so it releases the path as needed to avoid deadlocks.
6949 * Keep track of the last inode ref key and resume from that key
6950 * after logging all new ancestors for the current hard link.
6952 memcpy(&search_key, &found_key, sizeof(search_key));
6954 ret = log_new_ancestors(trans, root, path, ctx);
6957 btrfs_release_path(path);
6962 btrfs_free_path(path);
6967 * helper function around btrfs_log_inode to make sure newly created
6968 * parent directories also end up in the log. A minimal inode and backref
6969 * only logging is done of any parent directories that are older than
6970 * the last committed transaction
6972 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6973 struct btrfs_inode *inode,
6974 struct dentry *parent,
6976 struct btrfs_log_ctx *ctx)
6978 struct btrfs_root *root = inode->root;
6979 struct btrfs_fs_info *fs_info = root->fs_info;
6981 bool log_dentries = false;
6983 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6984 ret = BTRFS_LOG_FORCE_COMMIT;
6988 if (btrfs_root_refs(&root->root_item) == 0) {
6989 ret = BTRFS_LOG_FORCE_COMMIT;
6994 * Skip already logged inodes or inodes corresponding to tmpfiles
6995 * (since logging them is pointless, a link count of 0 means they
6996 * will never be accessible).
6998 if ((btrfs_inode_in_log(inode, trans->transid) &&
6999 list_empty(&ctx->ordered_extents)) ||
7000 inode->vfs_inode.i_nlink == 0) {
7001 ret = BTRFS_NO_LOG_SYNC;
7005 ret = start_log_trans(trans, root, ctx);
7009 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7014 * for regular files, if its inode is already on disk, we don't
7015 * have to worry about the parents at all. This is because
7016 * we can use the last_unlink_trans field to record renames
7017 * and other fun in this file.
7019 if (S_ISREG(inode->vfs_inode.i_mode) &&
7020 inode->generation < trans->transid &&
7021 inode->last_unlink_trans < trans->transid) {
7026 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7027 log_dentries = true;
7030 * On unlink we must make sure all our current and old parent directory
7031 * inodes are fully logged. This is to prevent leaving dangling
7032 * directory index entries in directories that were our parents but are
7033 * not anymore. Not doing this results in old parent directory being
7034 * impossible to delete after log replay (rmdir will always fail with
7035 * error -ENOTEMPTY).
7041 * ln testdir/foo testdir/bar
7043 * unlink testdir/bar
7044 * xfs_io -c fsync testdir/foo
7046 * mount fs, triggers log replay
7048 * If we don't log the parent directory (testdir), after log replay the
7049 * directory still has an entry pointing to the file inode using the bar
7050 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7051 * the file inode has a link count of 1.
7057 * ln foo testdir/foo2
7058 * ln foo testdir/foo3
7060 * unlink testdir/foo3
7061 * xfs_io -c fsync foo
7063 * mount fs, triggers log replay
7065 * Similar as the first example, after log replay the parent directory
7066 * testdir still has an entry pointing to the inode file with name foo3
7067 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7068 * and has a link count of 2.
7070 if (inode->last_unlink_trans >= trans->transid) {
7071 ret = btrfs_log_all_parents(trans, inode, ctx);
7076 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7081 ret = log_new_dir_dentries(trans, inode, ctx);
7086 btrfs_set_log_full_commit(trans);
7087 ret = BTRFS_LOG_FORCE_COMMIT;
7091 btrfs_remove_log_ctx(root, ctx);
7092 btrfs_end_log_trans(root);
7098 * it is not safe to log dentry if the chunk root has added new
7099 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7100 * If this returns 1, you must commit the transaction to safely get your
7103 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7104 struct dentry *dentry,
7105 struct btrfs_log_ctx *ctx)
7107 struct dentry *parent = dget_parent(dentry);
7110 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7111 LOG_INODE_ALL, ctx);
7118 * should be called during mount to recover any replay any log trees
7121 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7124 struct btrfs_path *path;
7125 struct btrfs_trans_handle *trans;
7126 struct btrfs_key key;
7127 struct btrfs_key found_key;
7128 struct btrfs_root *log;
7129 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7130 struct walk_control wc = {
7131 .process_func = process_one_buffer,
7132 .stage = LOG_WALK_PIN_ONLY,
7135 path = btrfs_alloc_path();
7139 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7141 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7142 if (IS_ERR(trans)) {
7143 ret = PTR_ERR(trans);
7150 ret = walk_log_tree(trans, log_root_tree, &wc);
7152 btrfs_abort_transaction(trans, ret);
7157 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7158 key.offset = (u64)-1;
7159 key.type = BTRFS_ROOT_ITEM_KEY;
7162 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7165 btrfs_abort_transaction(trans, ret);
7169 if (path->slots[0] == 0)
7173 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7175 btrfs_release_path(path);
7176 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7179 log = btrfs_read_tree_root(log_root_tree, &found_key);
7182 btrfs_abort_transaction(trans, ret);
7186 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7188 if (IS_ERR(wc.replay_dest)) {
7189 ret = PTR_ERR(wc.replay_dest);
7192 * We didn't find the subvol, likely because it was
7193 * deleted. This is ok, simply skip this log and go to
7196 * We need to exclude the root because we can't have
7197 * other log replays overwriting this log as we'll read
7198 * it back in a few more times. This will keep our
7199 * block from being modified, and we'll just bail for
7200 * each subsequent pass.
7203 ret = btrfs_pin_extent_for_log_replay(trans,
7206 btrfs_put_root(log);
7210 btrfs_abort_transaction(trans, ret);
7214 wc.replay_dest->log_root = log;
7215 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7217 /* The loop needs to continue due to the root refs */
7218 btrfs_abort_transaction(trans, ret);
7220 ret = walk_log_tree(trans, log, &wc);
7222 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7223 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7226 btrfs_abort_transaction(trans, ret);
7229 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7230 struct btrfs_root *root = wc.replay_dest;
7232 btrfs_release_path(path);
7235 * We have just replayed everything, and the highest
7236 * objectid of fs roots probably has changed in case
7237 * some inode_item's got replayed.
7239 * root->objectid_mutex is not acquired as log replay
7240 * could only happen during mount.
7242 ret = btrfs_init_root_free_objectid(root);
7244 btrfs_abort_transaction(trans, ret);
7247 wc.replay_dest->log_root = NULL;
7248 btrfs_put_root(wc.replay_dest);
7249 btrfs_put_root(log);
7254 if (found_key.offset == 0)
7256 key.offset = found_key.offset - 1;
7258 btrfs_release_path(path);
7260 /* step one is to pin it all, step two is to replay just inodes */
7263 wc.process_func = replay_one_buffer;
7264 wc.stage = LOG_WALK_REPLAY_INODES;
7267 /* step three is to replay everything */
7268 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7273 btrfs_free_path(path);
7275 /* step 4: commit the transaction, which also unpins the blocks */
7276 ret = btrfs_commit_transaction(trans);
7280 log_root_tree->log_root = NULL;
7281 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7282 btrfs_put_root(log_root_tree);
7287 btrfs_end_transaction(wc.trans);
7288 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7289 btrfs_free_path(path);
7294 * there are some corner cases where we want to force a full
7295 * commit instead of allowing a directory to be logged.
7297 * They revolve around files there were unlinked from the directory, and
7298 * this function updates the parent directory so that a full commit is
7299 * properly done if it is fsync'd later after the unlinks are done.
7301 * Must be called before the unlink operations (updates to the subvolume tree,
7302 * inodes, etc) are done.
7304 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7305 struct btrfs_inode *dir, struct btrfs_inode *inode,
7309 * when we're logging a file, if it hasn't been renamed
7310 * or unlinked, and its inode is fully committed on disk,
7311 * we don't have to worry about walking up the directory chain
7312 * to log its parents.
7314 * So, we use the last_unlink_trans field to put this transid
7315 * into the file. When the file is logged we check it and
7316 * don't log the parents if the file is fully on disk.
7318 mutex_lock(&inode->log_mutex);
7319 inode->last_unlink_trans = trans->transid;
7320 mutex_unlock(&inode->log_mutex);
7323 * if this directory was already logged any new
7324 * names for this file/dir will get recorded
7326 if (dir->logged_trans == trans->transid)
7330 * if the inode we're about to unlink was logged,
7331 * the log will be properly updated for any new names
7333 if (inode->logged_trans == trans->transid)
7337 * when renaming files across directories, if the directory
7338 * there we're unlinking from gets fsync'd later on, there's
7339 * no way to find the destination directory later and fsync it
7340 * properly. So, we have to be conservative and force commits
7341 * so the new name gets discovered.
7346 /* we can safely do the unlink without any special recording */
7350 mutex_lock(&dir->log_mutex);
7351 dir->last_unlink_trans = trans->transid;
7352 mutex_unlock(&dir->log_mutex);
7356 * Make sure that if someone attempts to fsync the parent directory of a deleted
7357 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7358 * that after replaying the log tree of the parent directory's root we will not
7359 * see the snapshot anymore and at log replay time we will not see any log tree
7360 * corresponding to the deleted snapshot's root, which could lead to replaying
7361 * it after replaying the log tree of the parent directory (which would replay
7362 * the snapshot delete operation).
7364 * Must be called before the actual snapshot destroy operation (updates to the
7365 * parent root and tree of tree roots trees, etc) are done.
7367 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7368 struct btrfs_inode *dir)
7370 mutex_lock(&dir->log_mutex);
7371 dir->last_unlink_trans = trans->transid;
7372 mutex_unlock(&dir->log_mutex);
7376 * Update the log after adding a new name for an inode.
7378 * @trans: Transaction handle.
7379 * @old_dentry: The dentry associated with the old name and the old
7381 * @old_dir: The inode of the previous parent directory for the case
7382 * of a rename. For a link operation, it must be NULL.
7383 * @old_dir_index: The index number associated with the old name, meaningful
7384 * only for rename operations (when @old_dir is not NULL).
7385 * Ignored for link operations.
7386 * @parent: The dentry associated with the directory under which the
7387 * new name is located.
7389 * Call this after adding a new name for an inode, as a result of a link or
7390 * rename operation, and it will properly update the log to reflect the new name.
7392 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7393 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7394 u64 old_dir_index, struct dentry *parent)
7396 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7397 struct btrfs_root *root = inode->root;
7398 struct btrfs_log_ctx ctx;
7399 bool log_pinned = false;
7403 * this will force the logging code to walk the dentry chain
7406 if (!S_ISDIR(inode->vfs_inode.i_mode))
7407 inode->last_unlink_trans = trans->transid;
7410 * if this inode hasn't been logged and directory we're renaming it
7411 * from hasn't been logged, we don't need to log it
7413 ret = inode_logged(trans, inode, NULL);
7416 } else if (ret == 0) {
7420 * If the inode was not logged and we are doing a rename (old_dir is not
7421 * NULL), check if old_dir was logged - if it was not we can return and
7424 ret = inode_logged(trans, old_dir, NULL);
7433 * If we are doing a rename (old_dir is not NULL) from a directory that
7434 * was previously logged, make sure that on log replay we get the old
7435 * dir entry deleted. This is needed because we will also log the new
7436 * name of the renamed inode, so we need to make sure that after log
7437 * replay we don't end up with both the new and old dir entries existing.
7439 if (old_dir && old_dir->logged_trans == trans->transid) {
7440 struct btrfs_root *log = old_dir->root->log_root;
7441 struct btrfs_path *path;
7442 struct fscrypt_name fname;
7444 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7446 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7447 &old_dentry->d_name, 0, &fname);
7451 * We have two inodes to update in the log, the old directory and
7452 * the inode that got renamed, so we must pin the log to prevent
7453 * anyone from syncing the log until we have updated both inodes
7456 ret = join_running_log_trans(root);
7458 * At least one of the inodes was logged before, so this should
7459 * not fail, but if it does, it's not serious, just bail out and
7460 * mark the log for a full commit.
7462 if (WARN_ON_ONCE(ret < 0))
7466 path = btrfs_alloc_path();
7469 fscrypt_free_filename(&fname);
7474 * Other concurrent task might be logging the old directory,
7475 * as it can be triggered when logging other inode that had or
7476 * still has a dentry in the old directory. We lock the old
7477 * directory's log_mutex to ensure the deletion of the old
7478 * name is persisted, because during directory logging we
7479 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7480 * the old name's dir index item is in the delayed items, so
7481 * it could be missed by an in progress directory logging.
7483 mutex_lock(&old_dir->log_mutex);
7484 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7485 &fname.disk_name, old_dir_index);
7488 * The dentry does not exist in the log, so record its
7491 btrfs_release_path(path);
7492 ret = insert_dir_log_key(trans, log, path,
7494 old_dir_index, old_dir_index);
7496 mutex_unlock(&old_dir->log_mutex);
7498 btrfs_free_path(path);
7499 fscrypt_free_filename(&fname);
7504 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7505 ctx.logging_new_name = true;
7507 * We don't care about the return value. If we fail to log the new name
7508 * then we know the next attempt to sync the log will fallback to a full
7509 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7510 * we don't need to worry about getting a log committed that has an
7511 * inconsistent state after a rename operation.
7513 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7514 ASSERT(list_empty(&ctx.conflict_inodes));
7517 * If an error happened mark the log for a full commit because it's not
7518 * consistent and up to date or we couldn't find out if one of the
7519 * inodes was logged before in this transaction. Do it before unpinning
7520 * the log, to avoid any races with someone else trying to commit it.
7523 btrfs_set_log_full_commit(trans);
7525 btrfs_end_log_trans(root);