1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
22 #include "print-tree.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
36 #include "rcu-string.h"
38 #include "dev-replace.h"
40 #include "accessors.h"
41 #include "extent-tree.h"
42 #include "root-tree.h"
43 #include "file-item.h"
45 #include "tree-checker.h"
47 #undef SCRAMBLE_DELAYED_REFS
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_delayed_ref_node *node, u64 parent,
52 u64 root_objectid, u64 owner_objectid,
53 u64 owner_offset, int refs_to_drop,
54 struct btrfs_delayed_extent_op *extra_op);
55 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
56 struct extent_buffer *leaf,
57 struct btrfs_extent_item *ei);
58 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
59 u64 parent, u64 root_objectid,
60 u64 flags, u64 owner, u64 offset,
61 struct btrfs_key *ins, int ref_mod);
62 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
63 struct btrfs_delayed_ref_node *node,
64 struct btrfs_delayed_extent_op *extent_op);
65 static int find_next_key(struct btrfs_path *path, int level,
66 struct btrfs_key *key);
68 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70 return (cache->flags & bits) == bits;
73 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
74 u64 start, u64 num_bytes)
76 u64 end = start + num_bytes - 1;
77 set_extent_bits(&fs_info->excluded_extents, start, end,
82 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
84 struct btrfs_fs_info *fs_info = cache->fs_info;
88 end = start + cache->length - 1;
90 clear_extent_bits(&fs_info->excluded_extents, start, end,
94 /* simple helper to search for an existing data extent at a given offset */
95 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
97 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
100 struct btrfs_path *path;
102 path = btrfs_alloc_path();
106 key.objectid = start;
108 key.type = BTRFS_EXTENT_ITEM_KEY;
109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
110 btrfs_free_path(path);
115 * helper function to lookup reference count and flags of a tree block.
117 * the head node for delayed ref is used to store the sum of all the
118 * reference count modifications queued up in the rbtree. the head
119 * node may also store the extent flags to set. This way you can check
120 * to see what the reference count and extent flags would be if all of
121 * the delayed refs are not processed.
123 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
124 struct btrfs_fs_info *fs_info, u64 bytenr,
125 u64 offset, int metadata, u64 *refs, u64 *flags)
127 struct btrfs_root *extent_root;
128 struct btrfs_delayed_ref_head *head;
129 struct btrfs_delayed_ref_root *delayed_refs;
130 struct btrfs_path *path;
131 struct btrfs_extent_item *ei;
132 struct extent_buffer *leaf;
133 struct btrfs_key key;
140 * If we don't have skinny metadata, don't bother doing anything
143 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
144 offset = fs_info->nodesize;
148 path = btrfs_alloc_path();
153 path->skip_locking = 1;
154 path->search_commit_root = 1;
158 key.objectid = bytenr;
161 key.type = BTRFS_METADATA_ITEM_KEY;
163 key.type = BTRFS_EXTENT_ITEM_KEY;
165 extent_root = btrfs_extent_root(fs_info, bytenr);
166 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
170 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
171 if (path->slots[0]) {
173 btrfs_item_key_to_cpu(path->nodes[0], &key,
175 if (key.objectid == bytenr &&
176 key.type == BTRFS_EXTENT_ITEM_KEY &&
177 key.offset == fs_info->nodesize)
183 leaf = path->nodes[0];
184 item_size = btrfs_item_size(leaf, path->slots[0]);
185 if (item_size >= sizeof(*ei)) {
186 ei = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_extent_item);
188 num_refs = btrfs_extent_refs(leaf, ei);
189 extent_flags = btrfs_extent_flags(leaf, ei);
192 btrfs_print_v0_err(fs_info);
194 btrfs_abort_transaction(trans, ret);
196 btrfs_handle_fs_error(fs_info, ret, NULL);
201 BUG_ON(num_refs == 0);
211 delayed_refs = &trans->transaction->delayed_refs;
212 spin_lock(&delayed_refs->lock);
213 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
215 if (!mutex_trylock(&head->mutex)) {
216 refcount_inc(&head->refs);
217 spin_unlock(&delayed_refs->lock);
219 btrfs_release_path(path);
222 * Mutex was contended, block until it's released and try
225 mutex_lock(&head->mutex);
226 mutex_unlock(&head->mutex);
227 btrfs_put_delayed_ref_head(head);
230 spin_lock(&head->lock);
231 if (head->extent_op && head->extent_op->update_flags)
232 extent_flags |= head->extent_op->flags_to_set;
234 BUG_ON(num_refs == 0);
236 num_refs += head->ref_mod;
237 spin_unlock(&head->lock);
238 mutex_unlock(&head->mutex);
240 spin_unlock(&delayed_refs->lock);
242 WARN_ON(num_refs == 0);
246 *flags = extent_flags;
248 btrfs_free_path(path);
253 * Back reference rules. Back refs have three main goals:
255 * 1) differentiate between all holders of references to an extent so that
256 * when a reference is dropped we can make sure it was a valid reference
257 * before freeing the extent.
259 * 2) Provide enough information to quickly find the holders of an extent
260 * if we notice a given block is corrupted or bad.
262 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
263 * maintenance. This is actually the same as #2, but with a slightly
264 * different use case.
266 * There are two kinds of back refs. The implicit back refs is optimized
267 * for pointers in non-shared tree blocks. For a given pointer in a block,
268 * back refs of this kind provide information about the block's owner tree
269 * and the pointer's key. These information allow us to find the block by
270 * b-tree searching. The full back refs is for pointers in tree blocks not
271 * referenced by their owner trees. The location of tree block is recorded
272 * in the back refs. Actually the full back refs is generic, and can be
273 * used in all cases the implicit back refs is used. The major shortcoming
274 * of the full back refs is its overhead. Every time a tree block gets
275 * COWed, we have to update back refs entry for all pointers in it.
277 * For a newly allocated tree block, we use implicit back refs for
278 * pointers in it. This means most tree related operations only involve
279 * implicit back refs. For a tree block created in old transaction, the
280 * only way to drop a reference to it is COW it. So we can detect the
281 * event that tree block loses its owner tree's reference and do the
282 * back refs conversion.
284 * When a tree block is COWed through a tree, there are four cases:
286 * The reference count of the block is one and the tree is the block's
287 * owner tree. Nothing to do in this case.
289 * The reference count of the block is one and the tree is not the
290 * block's owner tree. In this case, full back refs is used for pointers
291 * in the block. Remove these full back refs, add implicit back refs for
292 * every pointers in the new block.
294 * The reference count of the block is greater than one and the tree is
295 * the block's owner tree. In this case, implicit back refs is used for
296 * pointers in the block. Add full back refs for every pointers in the
297 * block, increase lower level extents' reference counts. The original
298 * implicit back refs are entailed to the new block.
300 * The reference count of the block is greater than one and the tree is
301 * not the block's owner tree. Add implicit back refs for every pointer in
302 * the new block, increase lower level extents' reference count.
304 * Back Reference Key composing:
306 * The key objectid corresponds to the first byte in the extent,
307 * The key type is used to differentiate between types of back refs.
308 * There are different meanings of the key offset for different types
311 * File extents can be referenced by:
313 * - multiple snapshots, subvolumes, or different generations in one subvol
314 * - different files inside a single subvolume
315 * - different offsets inside a file (bookend extents in file.c)
317 * The extent ref structure for the implicit back refs has fields for:
319 * - Objectid of the subvolume root
320 * - objectid of the file holding the reference
321 * - original offset in the file
322 * - how many bookend extents
324 * The key offset for the implicit back refs is hash of the first
327 * The extent ref structure for the full back refs has field for:
329 * - number of pointers in the tree leaf
331 * The key offset for the implicit back refs is the first byte of
334 * When a file extent is allocated, The implicit back refs is used.
335 * the fields are filled in:
337 * (root_key.objectid, inode objectid, offset in file, 1)
339 * When a file extent is removed file truncation, we find the
340 * corresponding implicit back refs and check the following fields:
342 * (btrfs_header_owner(leaf), inode objectid, offset in file)
344 * Btree extents can be referenced by:
346 * - Different subvolumes
348 * Both the implicit back refs and the full back refs for tree blocks
349 * only consist of key. The key offset for the implicit back refs is
350 * objectid of block's owner tree. The key offset for the full back refs
351 * is the first byte of parent block.
353 * When implicit back refs is used, information about the lowest key and
354 * level of the tree block are required. These information are stored in
355 * tree block info structure.
359 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
360 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
361 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
363 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
364 struct btrfs_extent_inline_ref *iref,
365 enum btrfs_inline_ref_type is_data)
367 int type = btrfs_extent_inline_ref_type(eb, iref);
368 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
370 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
371 type == BTRFS_SHARED_BLOCK_REF_KEY ||
372 type == BTRFS_SHARED_DATA_REF_KEY ||
373 type == BTRFS_EXTENT_DATA_REF_KEY) {
374 if (is_data == BTRFS_REF_TYPE_BLOCK) {
375 if (type == BTRFS_TREE_BLOCK_REF_KEY)
377 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
380 * Every shared one has parent tree block,
381 * which must be aligned to sector size.
384 IS_ALIGNED(offset, eb->fs_info->sectorsize))
387 } else if (is_data == BTRFS_REF_TYPE_DATA) {
388 if (type == BTRFS_EXTENT_DATA_REF_KEY)
390 if (type == BTRFS_SHARED_DATA_REF_KEY) {
393 * Every shared one has parent tree block,
394 * which must be aligned to sector size.
397 IS_ALIGNED(offset, eb->fs_info->sectorsize))
401 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
406 btrfs_print_leaf((struct extent_buffer *)eb);
407 btrfs_err(eb->fs_info,
408 "eb %llu iref 0x%lx invalid extent inline ref type %d",
409 eb->start, (unsigned long)iref, type);
412 return BTRFS_REF_TYPE_INVALID;
415 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
417 u32 high_crc = ~(u32)0;
418 u32 low_crc = ~(u32)0;
421 lenum = cpu_to_le64(root_objectid);
422 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
423 lenum = cpu_to_le64(owner);
424 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
425 lenum = cpu_to_le64(offset);
426 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
428 return ((u64)high_crc << 31) ^ (u64)low_crc;
431 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
432 struct btrfs_extent_data_ref *ref)
434 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
435 btrfs_extent_data_ref_objectid(leaf, ref),
436 btrfs_extent_data_ref_offset(leaf, ref));
439 static int match_extent_data_ref(struct extent_buffer *leaf,
440 struct btrfs_extent_data_ref *ref,
441 u64 root_objectid, u64 owner, u64 offset)
443 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
444 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
445 btrfs_extent_data_ref_offset(leaf, ref) != offset)
450 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
451 struct btrfs_path *path,
452 u64 bytenr, u64 parent,
454 u64 owner, u64 offset)
456 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
457 struct btrfs_key key;
458 struct btrfs_extent_data_ref *ref;
459 struct extent_buffer *leaf;
465 key.objectid = bytenr;
467 key.type = BTRFS_SHARED_DATA_REF_KEY;
470 key.type = BTRFS_EXTENT_DATA_REF_KEY;
471 key.offset = hash_extent_data_ref(root_objectid,
476 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
491 if (path->slots[0] >= nritems) {
492 ret = btrfs_next_leaf(root, path);
498 leaf = path->nodes[0];
499 nritems = btrfs_header_nritems(leaf);
503 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
504 if (key.objectid != bytenr ||
505 key.type != BTRFS_EXTENT_DATA_REF_KEY)
508 ref = btrfs_item_ptr(leaf, path->slots[0],
509 struct btrfs_extent_data_ref);
511 if (match_extent_data_ref(leaf, ref, root_objectid,
514 btrfs_release_path(path);
526 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
527 struct btrfs_path *path,
528 u64 bytenr, u64 parent,
529 u64 root_objectid, u64 owner,
530 u64 offset, int refs_to_add)
532 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
533 struct btrfs_key key;
534 struct extent_buffer *leaf;
539 key.objectid = bytenr;
541 key.type = BTRFS_SHARED_DATA_REF_KEY;
543 size = sizeof(struct btrfs_shared_data_ref);
545 key.type = BTRFS_EXTENT_DATA_REF_KEY;
546 key.offset = hash_extent_data_ref(root_objectid,
548 size = sizeof(struct btrfs_extent_data_ref);
551 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
552 if (ret && ret != -EEXIST)
555 leaf = path->nodes[0];
557 struct btrfs_shared_data_ref *ref;
558 ref = btrfs_item_ptr(leaf, path->slots[0],
559 struct btrfs_shared_data_ref);
561 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
563 num_refs = btrfs_shared_data_ref_count(leaf, ref);
564 num_refs += refs_to_add;
565 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
568 struct btrfs_extent_data_ref *ref;
569 while (ret == -EEXIST) {
570 ref = btrfs_item_ptr(leaf, path->slots[0],
571 struct btrfs_extent_data_ref);
572 if (match_extent_data_ref(leaf, ref, root_objectid,
575 btrfs_release_path(path);
577 ret = btrfs_insert_empty_item(trans, root, path, &key,
579 if (ret && ret != -EEXIST)
582 leaf = path->nodes[0];
584 ref = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_extent_data_ref);
587 btrfs_set_extent_data_ref_root(leaf, ref,
589 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
590 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
591 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
593 num_refs = btrfs_extent_data_ref_count(leaf, ref);
594 num_refs += refs_to_add;
595 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
598 btrfs_mark_buffer_dirty(leaf);
601 btrfs_release_path(path);
605 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
606 struct btrfs_root *root,
607 struct btrfs_path *path,
610 struct btrfs_key key;
611 struct btrfs_extent_data_ref *ref1 = NULL;
612 struct btrfs_shared_data_ref *ref2 = NULL;
613 struct extent_buffer *leaf;
617 leaf = path->nodes[0];
618 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
620 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
621 ref1 = btrfs_item_ptr(leaf, path->slots[0],
622 struct btrfs_extent_data_ref);
623 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
624 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
625 ref2 = btrfs_item_ptr(leaf, path->slots[0],
626 struct btrfs_shared_data_ref);
627 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
628 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
629 btrfs_print_v0_err(trans->fs_info);
630 btrfs_abort_transaction(trans, -EINVAL);
636 BUG_ON(num_refs < refs_to_drop);
637 num_refs -= refs_to_drop;
640 ret = btrfs_del_item(trans, root, path);
642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
643 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
644 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
645 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
646 btrfs_mark_buffer_dirty(leaf);
651 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
652 struct btrfs_extent_inline_ref *iref)
654 struct btrfs_key key;
655 struct extent_buffer *leaf;
656 struct btrfs_extent_data_ref *ref1;
657 struct btrfs_shared_data_ref *ref2;
661 leaf = path->nodes[0];
662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
664 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
667 * If type is invalid, we should have bailed out earlier than
670 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
671 ASSERT(type != BTRFS_REF_TYPE_INVALID);
672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
673 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
674 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
677 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
679 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
680 ref1 = btrfs_item_ptr(leaf, path->slots[0],
681 struct btrfs_extent_data_ref);
682 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
683 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
684 ref2 = btrfs_item_ptr(leaf, path->slots[0],
685 struct btrfs_shared_data_ref);
686 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
693 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
694 struct btrfs_path *path,
695 u64 bytenr, u64 parent,
698 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
699 struct btrfs_key key;
702 key.objectid = bytenr;
704 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
707 key.type = BTRFS_TREE_BLOCK_REF_KEY;
708 key.offset = root_objectid;
711 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
717 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
718 struct btrfs_path *path,
719 u64 bytenr, u64 parent,
722 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
723 struct btrfs_key key;
726 key.objectid = bytenr;
728 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
731 key.type = BTRFS_TREE_BLOCK_REF_KEY;
732 key.offset = root_objectid;
735 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
736 btrfs_release_path(path);
740 static inline int extent_ref_type(u64 parent, u64 owner)
743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
745 type = BTRFS_SHARED_BLOCK_REF_KEY;
747 type = BTRFS_TREE_BLOCK_REF_KEY;
750 type = BTRFS_SHARED_DATA_REF_KEY;
752 type = BTRFS_EXTENT_DATA_REF_KEY;
757 static int find_next_key(struct btrfs_path *path, int level,
758 struct btrfs_key *key)
761 for (; level < BTRFS_MAX_LEVEL; level++) {
762 if (!path->nodes[level])
764 if (path->slots[level] + 1 >=
765 btrfs_header_nritems(path->nodes[level]))
768 btrfs_item_key_to_cpu(path->nodes[level], key,
769 path->slots[level] + 1);
771 btrfs_node_key_to_cpu(path->nodes[level], key,
772 path->slots[level] + 1);
779 * look for inline back ref. if back ref is found, *ref_ret is set
780 * to the address of inline back ref, and 0 is returned.
782 * if back ref isn't found, *ref_ret is set to the address where it
783 * should be inserted, and -ENOENT is returned.
785 * if insert is true and there are too many inline back refs, the path
786 * points to the extent item, and -EAGAIN is returned.
788 * NOTE: inline back refs are ordered in the same way that back ref
789 * items in the tree are ordered.
791 static noinline_for_stack
792 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
793 struct btrfs_path *path,
794 struct btrfs_extent_inline_ref **ref_ret,
795 u64 bytenr, u64 num_bytes,
796 u64 parent, u64 root_objectid,
797 u64 owner, u64 offset, int insert)
799 struct btrfs_fs_info *fs_info = trans->fs_info;
800 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
801 struct btrfs_key key;
802 struct extent_buffer *leaf;
803 struct btrfs_extent_item *ei;
804 struct btrfs_extent_inline_ref *iref;
814 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
817 key.objectid = bytenr;
818 key.type = BTRFS_EXTENT_ITEM_KEY;
819 key.offset = num_bytes;
821 want = extent_ref_type(parent, owner);
823 extra_size = btrfs_extent_inline_ref_size(want);
824 path->search_for_extension = 1;
825 path->keep_locks = 1;
830 * Owner is our level, so we can just add one to get the level for the
831 * block we are interested in.
833 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
834 key.type = BTRFS_METADATA_ITEM_KEY;
839 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
846 * We may be a newly converted file system which still has the old fat
847 * extent entries for metadata, so try and see if we have one of those.
849 if (ret > 0 && skinny_metadata) {
850 skinny_metadata = false;
851 if (path->slots[0]) {
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == num_bytes)
861 key.objectid = bytenr;
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863 key.offset = num_bytes;
864 btrfs_release_path(path);
869 if (ret && !insert) {
872 } else if (WARN_ON(ret)) {
877 leaf = path->nodes[0];
878 item_size = btrfs_item_size(leaf, path->slots[0]);
879 if (unlikely(item_size < sizeof(*ei))) {
881 btrfs_print_v0_err(fs_info);
882 btrfs_abort_transaction(trans, err);
886 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
887 flags = btrfs_extent_flags(leaf, ei);
889 ptr = (unsigned long)(ei + 1);
890 end = (unsigned long)ei + item_size;
892 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
893 ptr += sizeof(struct btrfs_tree_block_info);
897 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
898 needed = BTRFS_REF_TYPE_DATA;
900 needed = BTRFS_REF_TYPE_BLOCK;
907 btrfs_print_leaf(path->nodes[0]);
909 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
910 path->slots[0], root_objectid, owner, offset, parent);
914 iref = (struct btrfs_extent_inline_ref *)ptr;
915 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
916 if (type == BTRFS_REF_TYPE_INVALID) {
924 ptr += btrfs_extent_inline_ref_size(type);
928 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
929 struct btrfs_extent_data_ref *dref;
930 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
931 if (match_extent_data_ref(leaf, dref, root_objectid,
936 if (hash_extent_data_ref_item(leaf, dref) <
937 hash_extent_data_ref(root_objectid, owner, offset))
941 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
943 if (parent == ref_offset) {
947 if (ref_offset < parent)
950 if (root_objectid == ref_offset) {
954 if (ref_offset < root_objectid)
958 ptr += btrfs_extent_inline_ref_size(type);
960 if (err == -ENOENT && insert) {
961 if (item_size + extra_size >=
962 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
967 * To add new inline back ref, we have to make sure
968 * there is no corresponding back ref item.
969 * For simplicity, we just do not add new inline back
970 * ref if there is any kind of item for this block
972 if (find_next_key(path, 0, &key) == 0 &&
973 key.objectid == bytenr &&
974 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
979 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
982 path->keep_locks = 0;
983 path->search_for_extension = 0;
984 btrfs_unlock_up_safe(path, 1);
990 * helper to add new inline back ref
992 static noinline_for_stack
993 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
994 struct btrfs_path *path,
995 struct btrfs_extent_inline_ref *iref,
996 u64 parent, u64 root_objectid,
997 u64 owner, u64 offset, int refs_to_add,
998 struct btrfs_delayed_extent_op *extent_op)
1000 struct extent_buffer *leaf;
1001 struct btrfs_extent_item *ei;
1004 unsigned long item_offset;
1009 leaf = path->nodes[0];
1010 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1011 item_offset = (unsigned long)iref - (unsigned long)ei;
1013 type = extent_ref_type(parent, owner);
1014 size = btrfs_extent_inline_ref_size(type);
1016 btrfs_extend_item(path, size);
1018 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019 refs = btrfs_extent_refs(leaf, ei);
1020 refs += refs_to_add;
1021 btrfs_set_extent_refs(leaf, ei, refs);
1023 __run_delayed_extent_op(extent_op, leaf, ei);
1025 ptr = (unsigned long)ei + item_offset;
1026 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1027 if (ptr < end - size)
1028 memmove_extent_buffer(leaf, ptr + size, ptr,
1031 iref = (struct btrfs_extent_inline_ref *)ptr;
1032 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1033 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1034 struct btrfs_extent_data_ref *dref;
1035 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1036 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1037 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1038 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1039 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1040 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1041 struct btrfs_shared_data_ref *sref;
1042 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1043 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1044 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1046 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 btrfs_mark_buffer_dirty(leaf);
1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054 struct btrfs_path *path,
1055 struct btrfs_extent_inline_ref **ref_ret,
1056 u64 bytenr, u64 num_bytes, u64 parent,
1057 u64 root_objectid, u64 owner, u64 offset)
1061 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062 num_bytes, parent, root_objectid,
1067 btrfs_release_path(path);
1070 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1074 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075 root_objectid, owner, offset);
1081 * helper to update/remove inline back ref
1083 static noinline_for_stack
1084 void update_inline_extent_backref(struct btrfs_path *path,
1085 struct btrfs_extent_inline_ref *iref,
1087 struct btrfs_delayed_extent_op *extent_op)
1089 struct extent_buffer *leaf = path->nodes[0];
1090 struct btrfs_extent_item *ei;
1091 struct btrfs_extent_data_ref *dref = NULL;
1092 struct btrfs_shared_data_ref *sref = NULL;
1100 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 refs = btrfs_extent_refs(leaf, ei);
1102 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1103 refs += refs_to_mod;
1104 btrfs_set_extent_refs(leaf, ei, refs);
1106 __run_delayed_extent_op(extent_op, leaf, ei);
1109 * If type is invalid, we should have bailed out after
1110 * lookup_inline_extent_backref().
1112 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1113 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1116 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1117 refs = btrfs_extent_data_ref_count(leaf, dref);
1118 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1119 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1120 refs = btrfs_shared_data_ref_count(leaf, sref);
1123 BUG_ON(refs_to_mod != -1);
1126 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1127 refs += refs_to_mod;
1130 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1131 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1133 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1135 size = btrfs_extent_inline_ref_size(type);
1136 item_size = btrfs_item_size(leaf, path->slots[0]);
1137 ptr = (unsigned long)iref;
1138 end = (unsigned long)ei + item_size;
1139 if (ptr + size < end)
1140 memmove_extent_buffer(leaf, ptr, ptr + size,
1143 btrfs_truncate_item(path, item_size, 1);
1145 btrfs_mark_buffer_dirty(leaf);
1148 static noinline_for_stack
1149 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 num_bytes, u64 parent,
1152 u64 root_objectid, u64 owner,
1153 u64 offset, int refs_to_add,
1154 struct btrfs_delayed_extent_op *extent_op)
1156 struct btrfs_extent_inline_ref *iref;
1159 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1160 num_bytes, parent, root_objectid,
1164 * We're adding refs to a tree block we already own, this
1165 * should not happen at all.
1167 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1168 btrfs_crit(trans->fs_info,
1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1170 bytenr, num_bytes, root_objectid);
1171 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1173 btrfs_crit(trans->fs_info,
1174 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1175 btrfs_print_leaf(path->nodes[0]);
1179 update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1180 } else if (ret == -ENOENT) {
1181 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1182 root_objectid, owner, offset,
1183 refs_to_add, extent_op);
1189 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 struct btrfs_path *path,
1192 struct btrfs_extent_inline_ref *iref,
1193 int refs_to_drop, int is_data)
1197 BUG_ON(!is_data && refs_to_drop != 1);
1199 update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1201 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1203 ret = btrfs_del_item(trans, root, path);
1207 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1208 u64 *discarded_bytes)
1211 u64 bytes_left, end;
1212 u64 aligned_start = ALIGN(start, 1 << 9);
1214 if (WARN_ON(start != aligned_start)) {
1215 len -= aligned_start - start;
1216 len = round_down(len, 1 << 9);
1217 start = aligned_start;
1220 *discarded_bytes = 0;
1228 /* Skip any superblocks on this device. */
1229 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1230 u64 sb_start = btrfs_sb_offset(j);
1231 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1232 u64 size = sb_start - start;
1234 if (!in_range(sb_start, start, bytes_left) &&
1235 !in_range(sb_end, start, bytes_left) &&
1236 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1240 * Superblock spans beginning of range. Adjust start and
1243 if (sb_start <= start) {
1244 start += sb_end - start;
1249 bytes_left = end - start;
1254 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1257 *discarded_bytes += size;
1258 else if (ret != -EOPNOTSUPP)
1267 bytes_left = end - start;
1271 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1274 *discarded_bytes += bytes_left;
1279 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1281 struct btrfs_device *dev = stripe->dev;
1282 struct btrfs_fs_info *fs_info = dev->fs_info;
1283 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1284 u64 phys = stripe->physical;
1285 u64 len = stripe->length;
1289 /* Zone reset on a zoned filesystem */
1290 if (btrfs_can_zone_reset(dev, phys, len)) {
1293 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1297 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1298 dev != dev_replace->srcdev)
1301 src_disc = discarded;
1303 /* Send to replace target as well */
1304 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1306 discarded += src_disc;
1307 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1308 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1319 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1320 u64 num_bytes, u64 *actual_bytes)
1323 u64 discarded_bytes = 0;
1324 u64 end = bytenr + num_bytes;
1328 * Avoid races with device replace and make sure the devices in the
1329 * stripes don't go away while we are discarding.
1331 btrfs_bio_counter_inc_blocked(fs_info);
1333 struct btrfs_discard_stripe *stripes;
1334 unsigned int num_stripes;
1337 num_bytes = end - cur;
1338 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1339 if (IS_ERR(stripes)) {
1340 ret = PTR_ERR(stripes);
1341 if (ret == -EOPNOTSUPP)
1346 for (i = 0; i < num_stripes; i++) {
1347 struct btrfs_discard_stripe *stripe = stripes + i;
1350 if (!stripe->dev->bdev) {
1351 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1355 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1356 &stripe->dev->dev_state))
1359 ret = do_discard_extent(stripe, &bytes);
1362 * Keep going if discard is not supported by the
1365 if (ret != -EOPNOTSUPP)
1369 discarded_bytes += bytes;
1377 btrfs_bio_counter_dec(fs_info);
1379 *actual_bytes = discarded_bytes;
1383 /* Can return -ENOMEM */
1384 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1385 struct btrfs_ref *generic_ref)
1387 struct btrfs_fs_info *fs_info = trans->fs_info;
1390 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1391 generic_ref->action);
1392 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1393 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1395 if (generic_ref->type == BTRFS_REF_METADATA)
1396 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1398 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1400 btrfs_ref_tree_mod(fs_info, generic_ref);
1406 * __btrfs_inc_extent_ref - insert backreference for a given extent
1408 * The counterpart is in __btrfs_free_extent(), with examples and more details
1411 * @trans: Handle of transaction
1413 * @node: The delayed ref node used to get the bytenr/length for
1414 * extent whose references are incremented.
1416 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1417 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1418 * bytenr of the parent block. Since new extents are always
1419 * created with indirect references, this will only be the case
1420 * when relocating a shared extent. In that case, root_objectid
1421 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1424 * @root_objectid: The id of the root where this modification has originated,
1425 * this can be either one of the well-known metadata trees or
1426 * the subvolume id which references this extent.
1428 * @owner: For data extents it is the inode number of the owning file.
1429 * For metadata extents this parameter holds the level in the
1430 * tree of the extent.
1432 * @offset: For metadata extents the offset is ignored and is currently
1433 * always passed as 0. For data extents it is the fileoffset
1434 * this extent belongs to.
1436 * @refs_to_add Number of references to add
1438 * @extent_op Pointer to a structure, holding information necessary when
1439 * updating a tree block's flags
1442 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1443 struct btrfs_delayed_ref_node *node,
1444 u64 parent, u64 root_objectid,
1445 u64 owner, u64 offset, int refs_to_add,
1446 struct btrfs_delayed_extent_op *extent_op)
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_extent_item *item;
1451 struct btrfs_key key;
1452 u64 bytenr = node->bytenr;
1453 u64 num_bytes = node->num_bytes;
1457 path = btrfs_alloc_path();
1461 /* this will setup the path even if it fails to insert the back ref */
1462 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1463 parent, root_objectid, owner,
1464 offset, refs_to_add, extent_op);
1465 if ((ret < 0 && ret != -EAGAIN) || !ret)
1469 * Ok we had -EAGAIN which means we didn't have space to insert and
1470 * inline extent ref, so just update the reference count and add a
1473 leaf = path->nodes[0];
1474 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1475 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1476 refs = btrfs_extent_refs(leaf, item);
1477 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1479 __run_delayed_extent_op(extent_op, leaf, item);
1481 btrfs_mark_buffer_dirty(leaf);
1482 btrfs_release_path(path);
1484 /* now insert the actual backref */
1485 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1486 BUG_ON(refs_to_add != 1);
1487 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1490 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1491 root_objectid, owner, offset,
1495 btrfs_abort_transaction(trans, ret);
1497 btrfs_free_path(path);
1501 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1502 struct btrfs_delayed_ref_node *node,
1503 struct btrfs_delayed_extent_op *extent_op,
1504 int insert_reserved)
1507 struct btrfs_delayed_data_ref *ref;
1508 struct btrfs_key ins;
1513 ins.objectid = node->bytenr;
1514 ins.offset = node->num_bytes;
1515 ins.type = BTRFS_EXTENT_ITEM_KEY;
1517 ref = btrfs_delayed_node_to_data_ref(node);
1518 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1520 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1521 parent = ref->parent;
1522 ref_root = ref->root;
1524 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1526 flags |= extent_op->flags_to_set;
1527 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1528 flags, ref->objectid,
1531 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1532 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1533 ref->objectid, ref->offset,
1534 node->ref_mod, extent_op);
1535 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1536 ret = __btrfs_free_extent(trans, node, parent,
1537 ref_root, ref->objectid,
1538 ref->offset, node->ref_mod,
1546 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1547 struct extent_buffer *leaf,
1548 struct btrfs_extent_item *ei)
1550 u64 flags = btrfs_extent_flags(leaf, ei);
1551 if (extent_op->update_flags) {
1552 flags |= extent_op->flags_to_set;
1553 btrfs_set_extent_flags(leaf, ei, flags);
1556 if (extent_op->update_key) {
1557 struct btrfs_tree_block_info *bi;
1558 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1559 bi = (struct btrfs_tree_block_info *)(ei + 1);
1560 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1564 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1565 struct btrfs_delayed_ref_head *head,
1566 struct btrfs_delayed_extent_op *extent_op)
1568 struct btrfs_fs_info *fs_info = trans->fs_info;
1569 struct btrfs_root *root;
1570 struct btrfs_key key;
1571 struct btrfs_path *path;
1572 struct btrfs_extent_item *ei;
1573 struct extent_buffer *leaf;
1579 if (TRANS_ABORTED(trans))
1582 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1585 path = btrfs_alloc_path();
1589 key.objectid = head->bytenr;
1592 key.type = BTRFS_METADATA_ITEM_KEY;
1593 key.offset = extent_op->level;
1595 key.type = BTRFS_EXTENT_ITEM_KEY;
1596 key.offset = head->num_bytes;
1599 root = btrfs_extent_root(fs_info, key.objectid);
1601 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1608 if (path->slots[0] > 0) {
1610 btrfs_item_key_to_cpu(path->nodes[0], &key,
1612 if (key.objectid == head->bytenr &&
1613 key.type == BTRFS_EXTENT_ITEM_KEY &&
1614 key.offset == head->num_bytes)
1618 btrfs_release_path(path);
1621 key.objectid = head->bytenr;
1622 key.offset = head->num_bytes;
1623 key.type = BTRFS_EXTENT_ITEM_KEY;
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size(leaf, path->slots[0]);
1635 if (unlikely(item_size < sizeof(*ei))) {
1637 btrfs_print_v0_err(fs_info);
1638 btrfs_abort_transaction(trans, err);
1642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1643 __run_delayed_extent_op(extent_op, leaf, ei);
1645 btrfs_mark_buffer_dirty(leaf);
1647 btrfs_free_path(path);
1651 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1652 struct btrfs_delayed_ref_node *node,
1653 struct btrfs_delayed_extent_op *extent_op,
1654 int insert_reserved)
1657 struct btrfs_delayed_tree_ref *ref;
1661 ref = btrfs_delayed_node_to_tree_ref(node);
1662 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1664 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1665 parent = ref->parent;
1666 ref_root = ref->root;
1668 if (node->ref_mod != 1) {
1669 btrfs_err(trans->fs_info,
1670 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1671 node->bytenr, node->ref_mod, node->action, ref_root,
1675 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1676 BUG_ON(!extent_op || !extent_op->update_flags);
1677 ret = alloc_reserved_tree_block(trans, node, extent_op);
1678 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1679 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1680 ref->level, 0, 1, extent_op);
1681 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1682 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1683 ref->level, 0, 1, extent_op);
1690 /* helper function to actually process a single delayed ref entry */
1691 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1692 struct btrfs_delayed_ref_node *node,
1693 struct btrfs_delayed_extent_op *extent_op,
1694 int insert_reserved)
1698 if (TRANS_ABORTED(trans)) {
1699 if (insert_reserved)
1700 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1704 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1705 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706 ret = run_delayed_tree_ref(trans, node, extent_op,
1708 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1709 node->type == BTRFS_SHARED_DATA_REF_KEY)
1710 ret = run_delayed_data_ref(trans, node, extent_op,
1714 if (ret && insert_reserved)
1715 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1719 static inline struct btrfs_delayed_ref_node *
1720 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1722 struct btrfs_delayed_ref_node *ref;
1724 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1728 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1729 * This is to prevent a ref count from going down to zero, which deletes
1730 * the extent item from the extent tree, when there still are references
1731 * to add, which would fail because they would not find the extent item.
1733 if (!list_empty(&head->ref_add_list))
1734 return list_first_entry(&head->ref_add_list,
1735 struct btrfs_delayed_ref_node, add_list);
1737 ref = rb_entry(rb_first_cached(&head->ref_tree),
1738 struct btrfs_delayed_ref_node, ref_node);
1739 ASSERT(list_empty(&ref->add_list));
1743 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1744 struct btrfs_delayed_ref_head *head)
1746 spin_lock(&delayed_refs->lock);
1747 head->processing = 0;
1748 delayed_refs->num_heads_ready++;
1749 spin_unlock(&delayed_refs->lock);
1750 btrfs_delayed_ref_unlock(head);
1753 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1754 struct btrfs_delayed_ref_head *head)
1756 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761 if (head->must_insert_reserved) {
1762 head->extent_op = NULL;
1763 btrfs_free_delayed_extent_op(extent_op);
1769 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1770 struct btrfs_delayed_ref_head *head)
1772 struct btrfs_delayed_extent_op *extent_op;
1775 extent_op = cleanup_extent_op(head);
1778 head->extent_op = NULL;
1779 spin_unlock(&head->lock);
1780 ret = run_delayed_extent_op(trans, head, extent_op);
1781 btrfs_free_delayed_extent_op(extent_op);
1782 return ret ? ret : 1;
1785 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1786 struct btrfs_delayed_ref_root *delayed_refs,
1787 struct btrfs_delayed_ref_head *head)
1789 int nr_items = 1; /* Dropping this ref head update. */
1792 * We had csum deletions accounted for in our delayed refs rsv, we need
1793 * to drop the csum leaves for this update from our delayed_refs_rsv.
1795 if (head->total_ref_mod < 0 && head->is_data) {
1796 spin_lock(&delayed_refs->lock);
1797 delayed_refs->pending_csums -= head->num_bytes;
1798 spin_unlock(&delayed_refs->lock);
1799 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1802 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1805 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1806 struct btrfs_delayed_ref_head *head)
1809 struct btrfs_fs_info *fs_info = trans->fs_info;
1810 struct btrfs_delayed_ref_root *delayed_refs;
1813 delayed_refs = &trans->transaction->delayed_refs;
1815 ret = run_and_cleanup_extent_op(trans, head);
1817 unselect_delayed_ref_head(delayed_refs, head);
1818 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1825 * Need to drop our head ref lock and re-acquire the delayed ref lock
1826 * and then re-check to make sure nobody got added.
1828 spin_unlock(&head->lock);
1829 spin_lock(&delayed_refs->lock);
1830 spin_lock(&head->lock);
1831 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1832 spin_unlock(&head->lock);
1833 spin_unlock(&delayed_refs->lock);
1836 btrfs_delete_ref_head(delayed_refs, head);
1837 spin_unlock(&head->lock);
1838 spin_unlock(&delayed_refs->lock);
1840 if (head->must_insert_reserved) {
1841 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1842 if (head->is_data) {
1843 struct btrfs_root *csum_root;
1845 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1846 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1851 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1853 trace_run_delayed_ref_head(fs_info, head, 0);
1854 btrfs_delayed_ref_unlock(head);
1855 btrfs_put_delayed_ref_head(head);
1859 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1860 struct btrfs_trans_handle *trans)
1862 struct btrfs_delayed_ref_root *delayed_refs =
1863 &trans->transaction->delayed_refs;
1864 struct btrfs_delayed_ref_head *head = NULL;
1867 spin_lock(&delayed_refs->lock);
1868 head = btrfs_select_ref_head(delayed_refs);
1870 spin_unlock(&delayed_refs->lock);
1875 * Grab the lock that says we are going to process all the refs for
1878 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1879 spin_unlock(&delayed_refs->lock);
1882 * We may have dropped the spin lock to get the head mutex lock, and
1883 * that might have given someone else time to free the head. If that's
1884 * true, it has been removed from our list and we can move on.
1887 head = ERR_PTR(-EAGAIN);
1892 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1893 struct btrfs_delayed_ref_head *locked_ref,
1894 unsigned long *run_refs)
1896 struct btrfs_fs_info *fs_info = trans->fs_info;
1897 struct btrfs_delayed_ref_root *delayed_refs;
1898 struct btrfs_delayed_extent_op *extent_op;
1899 struct btrfs_delayed_ref_node *ref;
1900 int must_insert_reserved = 0;
1903 delayed_refs = &trans->transaction->delayed_refs;
1905 lockdep_assert_held(&locked_ref->mutex);
1906 lockdep_assert_held(&locked_ref->lock);
1908 while ((ref = select_delayed_ref(locked_ref))) {
1910 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1911 spin_unlock(&locked_ref->lock);
1912 unselect_delayed_ref_head(delayed_refs, locked_ref);
1918 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1919 RB_CLEAR_NODE(&ref->ref_node);
1920 if (!list_empty(&ref->add_list))
1921 list_del(&ref->add_list);
1923 * When we play the delayed ref, also correct the ref_mod on
1926 switch (ref->action) {
1927 case BTRFS_ADD_DELAYED_REF:
1928 case BTRFS_ADD_DELAYED_EXTENT:
1929 locked_ref->ref_mod -= ref->ref_mod;
1931 case BTRFS_DROP_DELAYED_REF:
1932 locked_ref->ref_mod += ref->ref_mod;
1937 atomic_dec(&delayed_refs->num_entries);
1940 * Record the must_insert_reserved flag before we drop the
1943 must_insert_reserved = locked_ref->must_insert_reserved;
1944 locked_ref->must_insert_reserved = 0;
1946 extent_op = locked_ref->extent_op;
1947 locked_ref->extent_op = NULL;
1948 spin_unlock(&locked_ref->lock);
1950 ret = run_one_delayed_ref(trans, ref, extent_op,
1951 must_insert_reserved);
1953 btrfs_free_delayed_extent_op(extent_op);
1955 unselect_delayed_ref_head(delayed_refs, locked_ref);
1956 btrfs_put_delayed_ref(ref);
1957 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1962 btrfs_put_delayed_ref(ref);
1965 spin_lock(&locked_ref->lock);
1966 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1973 * Returns 0 on success or if called with an already aborted transaction.
1974 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1976 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1979 struct btrfs_fs_info *fs_info = trans->fs_info;
1980 struct btrfs_delayed_ref_root *delayed_refs;
1981 struct btrfs_delayed_ref_head *locked_ref = NULL;
1982 ktime_t start = ktime_get();
1984 unsigned long count = 0;
1985 unsigned long actual_count = 0;
1987 delayed_refs = &trans->transaction->delayed_refs;
1990 locked_ref = btrfs_obtain_ref_head(trans);
1991 if (IS_ERR_OR_NULL(locked_ref)) {
1992 if (PTR_ERR(locked_ref) == -EAGAIN) {
2001 * We need to try and merge add/drops of the same ref since we
2002 * can run into issues with relocate dropping the implicit ref
2003 * and then it being added back again before the drop can
2004 * finish. If we merged anything we need to re-loop so we can
2006 * Or we can get node references of the same type that weren't
2007 * merged when created due to bumps in the tree mod seq, and
2008 * we need to merge them to prevent adding an inline extent
2009 * backref before dropping it (triggering a BUG_ON at
2010 * insert_inline_extent_backref()).
2012 spin_lock(&locked_ref->lock);
2013 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2015 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2017 if (ret < 0 && ret != -EAGAIN) {
2019 * Error, btrfs_run_delayed_refs_for_head already
2020 * unlocked everything so just bail out
2025 * Success, perform the usual cleanup of a processed
2028 ret = cleanup_ref_head(trans, locked_ref);
2030 /* We dropped our lock, we need to loop. */
2039 * Either success case or btrfs_run_delayed_refs_for_head
2040 * returned -EAGAIN, meaning we need to select another head
2045 } while ((nr != -1 && count < nr) || locked_ref);
2048 * We don't want to include ref heads since we can have empty ref heads
2049 * and those will drastically skew our runtime down since we just do
2050 * accounting, no actual extent tree updates.
2052 if (actual_count > 0) {
2053 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2057 * We weigh the current average higher than our current runtime
2058 * to avoid large swings in the average.
2060 spin_lock(&delayed_refs->lock);
2061 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2062 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2063 spin_unlock(&delayed_refs->lock);
2068 #ifdef SCRAMBLE_DELAYED_REFS
2070 * Normally delayed refs get processed in ascending bytenr order. This
2071 * correlates in most cases to the order added. To expose dependencies on this
2072 * order, we start to process the tree in the middle instead of the beginning
2074 static u64 find_middle(struct rb_root *root)
2076 struct rb_node *n = root->rb_node;
2077 struct btrfs_delayed_ref_node *entry;
2080 u64 first = 0, last = 0;
2084 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2085 first = entry->bytenr;
2089 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090 last = entry->bytenr;
2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 WARN_ON(!entry->in_tree);
2098 middle = entry->bytenr;
2112 * this starts processing the delayed reference count updates and
2113 * extent insertions we have queued up so far. count can be
2114 * 0, which means to process everything in the tree at the start
2115 * of the run (but not newly added entries), or it can be some target
2116 * number you'd like to process.
2118 * Returns 0 on success or if called with an aborted transaction
2119 * Returns <0 on error and aborts the transaction
2121 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2122 unsigned long count)
2124 struct btrfs_fs_info *fs_info = trans->fs_info;
2125 struct rb_node *node;
2126 struct btrfs_delayed_ref_root *delayed_refs;
2127 struct btrfs_delayed_ref_head *head;
2129 int run_all = count == (unsigned long)-1;
2131 /* We'll clean this up in btrfs_cleanup_transaction */
2132 if (TRANS_ABORTED(trans))
2135 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2138 delayed_refs = &trans->transaction->delayed_refs;
2140 count = delayed_refs->num_heads_ready;
2143 #ifdef SCRAMBLE_DELAYED_REFS
2144 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2146 ret = __btrfs_run_delayed_refs(trans, count);
2148 btrfs_abort_transaction(trans, ret);
2153 btrfs_create_pending_block_groups(trans);
2155 spin_lock(&delayed_refs->lock);
2156 node = rb_first_cached(&delayed_refs->href_root);
2158 spin_unlock(&delayed_refs->lock);
2161 head = rb_entry(node, struct btrfs_delayed_ref_head,
2163 refcount_inc(&head->refs);
2164 spin_unlock(&delayed_refs->lock);
2166 /* Mutex was contended, block until it's released and retry. */
2167 mutex_lock(&head->mutex);
2168 mutex_unlock(&head->mutex);
2170 btrfs_put_delayed_ref_head(head);
2178 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2179 struct extent_buffer *eb, u64 flags,
2182 struct btrfs_delayed_extent_op *extent_op;
2185 extent_op = btrfs_alloc_delayed_extent_op();
2189 extent_op->flags_to_set = flags;
2190 extent_op->update_flags = true;
2191 extent_op->update_key = false;
2192 extent_op->level = level;
2194 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2196 btrfs_free_delayed_extent_op(extent_op);
2200 static noinline int check_delayed_ref(struct btrfs_root *root,
2201 struct btrfs_path *path,
2202 u64 objectid, u64 offset, u64 bytenr)
2204 struct btrfs_delayed_ref_head *head;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_data_ref *data_ref;
2207 struct btrfs_delayed_ref_root *delayed_refs;
2208 struct btrfs_transaction *cur_trans;
2209 struct rb_node *node;
2212 spin_lock(&root->fs_info->trans_lock);
2213 cur_trans = root->fs_info->running_transaction;
2215 refcount_inc(&cur_trans->use_count);
2216 spin_unlock(&root->fs_info->trans_lock);
2220 delayed_refs = &cur_trans->delayed_refs;
2221 spin_lock(&delayed_refs->lock);
2222 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2224 spin_unlock(&delayed_refs->lock);
2225 btrfs_put_transaction(cur_trans);
2229 if (!mutex_trylock(&head->mutex)) {
2231 spin_unlock(&delayed_refs->lock);
2232 btrfs_put_transaction(cur_trans);
2236 refcount_inc(&head->refs);
2237 spin_unlock(&delayed_refs->lock);
2239 btrfs_release_path(path);
2242 * Mutex was contended, block until it's released and let
2245 mutex_lock(&head->mutex);
2246 mutex_unlock(&head->mutex);
2247 btrfs_put_delayed_ref_head(head);
2248 btrfs_put_transaction(cur_trans);
2251 spin_unlock(&delayed_refs->lock);
2253 spin_lock(&head->lock);
2255 * XXX: We should replace this with a proper search function in the
2258 for (node = rb_first_cached(&head->ref_tree); node;
2259 node = rb_next(node)) {
2260 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2261 /* If it's a shared ref we know a cross reference exists */
2262 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2267 data_ref = btrfs_delayed_node_to_data_ref(ref);
2270 * If our ref doesn't match the one we're currently looking at
2271 * then we have a cross reference.
2273 if (data_ref->root != root->root_key.objectid ||
2274 data_ref->objectid != objectid ||
2275 data_ref->offset != offset) {
2280 spin_unlock(&head->lock);
2281 mutex_unlock(&head->mutex);
2282 btrfs_put_transaction(cur_trans);
2286 static noinline int check_committed_ref(struct btrfs_root *root,
2287 struct btrfs_path *path,
2288 u64 objectid, u64 offset, u64 bytenr,
2291 struct btrfs_fs_info *fs_info = root->fs_info;
2292 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2293 struct extent_buffer *leaf;
2294 struct btrfs_extent_data_ref *ref;
2295 struct btrfs_extent_inline_ref *iref;
2296 struct btrfs_extent_item *ei;
2297 struct btrfs_key key;
2302 key.objectid = bytenr;
2303 key.offset = (u64)-1;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2306 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2309 BUG_ON(ret == 0); /* Corruption */
2312 if (path->slots[0] == 0)
2316 leaf = path->nodes[0];
2317 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2319 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2323 item_size = btrfs_item_size(leaf, path->slots[0]);
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2326 /* If extent item has more than 1 inline ref then it's shared */
2327 if (item_size != sizeof(*ei) +
2328 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2332 * If extent created before last snapshot => it's shared unless the
2333 * snapshot has been deleted. Use the heuristic if strict is false.
2336 (btrfs_extent_generation(leaf, ei) <=
2337 btrfs_root_last_snapshot(&root->root_item)))
2340 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2342 /* If this extent has SHARED_DATA_REF then it's shared */
2343 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2344 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2347 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2348 if (btrfs_extent_refs(leaf, ei) !=
2349 btrfs_extent_data_ref_count(leaf, ref) ||
2350 btrfs_extent_data_ref_root(leaf, ref) !=
2351 root->root_key.objectid ||
2352 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2353 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2361 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2362 u64 bytenr, bool strict, struct btrfs_path *path)
2367 ret = check_committed_ref(root, path, objectid,
2368 offset, bytenr, strict);
2369 if (ret && ret != -ENOENT)
2372 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2373 } while (ret == -EAGAIN);
2376 btrfs_release_path(path);
2377 if (btrfs_is_data_reloc_root(root))
2382 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2383 struct btrfs_root *root,
2384 struct extent_buffer *buf,
2385 int full_backref, int inc)
2387 struct btrfs_fs_info *fs_info = root->fs_info;
2393 struct btrfs_key key;
2394 struct btrfs_file_extent_item *fi;
2395 struct btrfs_ref generic_ref = { 0 };
2396 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2402 if (btrfs_is_testing(fs_info))
2405 ref_root = btrfs_header_owner(buf);
2406 nritems = btrfs_header_nritems(buf);
2407 level = btrfs_header_level(buf);
2409 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413 parent = buf->start;
2417 action = BTRFS_ADD_DELAYED_REF;
2419 action = BTRFS_DROP_DELAYED_REF;
2421 for (i = 0; i < nritems; i++) {
2423 btrfs_item_key_to_cpu(buf, &key, i);
2424 if (key.type != BTRFS_EXTENT_DATA_KEY)
2426 fi = btrfs_item_ptr(buf, i,
2427 struct btrfs_file_extent_item);
2428 if (btrfs_file_extent_type(buf, fi) ==
2429 BTRFS_FILE_EXTENT_INLINE)
2431 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2436 key.offset -= btrfs_file_extent_offset(buf, fi);
2437 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2439 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2440 key.offset, root->root_key.objectid,
2443 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2445 ret = btrfs_free_extent(trans, &generic_ref);
2449 bytenr = btrfs_node_blockptr(buf, i);
2450 num_bytes = fs_info->nodesize;
2451 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2453 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2454 root->root_key.objectid, for_reloc);
2456 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2458 ret = btrfs_free_extent(trans, &generic_ref);
2468 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2469 struct extent_buffer *buf, int full_backref)
2471 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2474 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2475 struct extent_buffer *buf, int full_backref)
2477 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2480 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2482 struct btrfs_fs_info *fs_info = root->fs_info;
2487 flags = BTRFS_BLOCK_GROUP_DATA;
2488 else if (root == fs_info->chunk_root)
2489 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2491 flags = BTRFS_BLOCK_GROUP_METADATA;
2493 ret = btrfs_get_alloc_profile(fs_info, flags);
2497 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2499 struct rb_node *leftmost;
2502 read_lock(&fs_info->block_group_cache_lock);
2503 /* Get the block group with the lowest logical start address. */
2504 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2506 struct btrfs_block_group *bg;
2508 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2511 read_unlock(&fs_info->block_group_cache_lock);
2516 static int pin_down_extent(struct btrfs_trans_handle *trans,
2517 struct btrfs_block_group *cache,
2518 u64 bytenr, u64 num_bytes, int reserved)
2520 struct btrfs_fs_info *fs_info = cache->fs_info;
2522 spin_lock(&cache->space_info->lock);
2523 spin_lock(&cache->lock);
2524 cache->pinned += num_bytes;
2525 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2528 cache->reserved -= num_bytes;
2529 cache->space_info->bytes_reserved -= num_bytes;
2531 spin_unlock(&cache->lock);
2532 spin_unlock(&cache->space_info->lock);
2534 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2535 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2539 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2540 u64 bytenr, u64 num_bytes, int reserved)
2542 struct btrfs_block_group *cache;
2544 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2545 BUG_ON(!cache); /* Logic error */
2547 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2549 btrfs_put_block_group(cache);
2554 * this function must be called within transaction
2556 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2557 u64 bytenr, u64 num_bytes)
2559 struct btrfs_block_group *cache;
2562 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2567 * Fully cache the free space first so that our pin removes the free space
2570 ret = btrfs_cache_block_group(cache, true);
2574 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2576 /* remove us from the free space cache (if we're there at all) */
2577 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2579 btrfs_put_block_group(cache);
2583 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2584 u64 start, u64 num_bytes)
2587 struct btrfs_block_group *block_group;
2589 block_group = btrfs_lookup_block_group(fs_info, start);
2593 ret = btrfs_cache_block_group(block_group, true);
2597 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2599 btrfs_put_block_group(block_group);
2603 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2605 struct btrfs_fs_info *fs_info = eb->fs_info;
2606 struct btrfs_file_extent_item *item;
2607 struct btrfs_key key;
2612 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2615 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2616 btrfs_item_key_to_cpu(eb, &key, i);
2617 if (key.type != BTRFS_EXTENT_DATA_KEY)
2619 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2620 found_type = btrfs_file_extent_type(eb, item);
2621 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2623 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2625 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2626 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2627 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2636 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2638 atomic_inc(&bg->reservations);
2642 * Returns the free cluster for the given space info and sets empty_cluster to
2643 * what it should be based on the mount options.
2645 static struct btrfs_free_cluster *
2646 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2647 struct btrfs_space_info *space_info, u64 *empty_cluster)
2649 struct btrfs_free_cluster *ret = NULL;
2652 if (btrfs_mixed_space_info(space_info))
2655 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2656 ret = &fs_info->meta_alloc_cluster;
2657 if (btrfs_test_opt(fs_info, SSD))
2658 *empty_cluster = SZ_2M;
2660 *empty_cluster = SZ_64K;
2661 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2662 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2663 *empty_cluster = SZ_2M;
2664 ret = &fs_info->data_alloc_cluster;
2670 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2672 const bool return_free_space)
2674 struct btrfs_block_group *cache = NULL;
2675 struct btrfs_space_info *space_info;
2676 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2677 struct btrfs_free_cluster *cluster = NULL;
2679 u64 total_unpinned = 0;
2680 u64 empty_cluster = 0;
2683 while (start <= end) {
2686 start >= cache->start + cache->length) {
2688 btrfs_put_block_group(cache);
2690 cache = btrfs_lookup_block_group(fs_info, start);
2691 BUG_ON(!cache); /* Logic error */
2693 cluster = fetch_cluster_info(fs_info,
2696 empty_cluster <<= 1;
2699 len = cache->start + cache->length - start;
2700 len = min(len, end + 1 - start);
2702 if (return_free_space)
2703 btrfs_add_free_space(cache, start, len);
2706 total_unpinned += len;
2707 space_info = cache->space_info;
2710 * If this space cluster has been marked as fragmented and we've
2711 * unpinned enough in this block group to potentially allow a
2712 * cluster to be created inside of it go ahead and clear the
2715 if (cluster && cluster->fragmented &&
2716 total_unpinned > empty_cluster) {
2717 spin_lock(&cluster->lock);
2718 cluster->fragmented = 0;
2719 spin_unlock(&cluster->lock);
2722 spin_lock(&space_info->lock);
2723 spin_lock(&cache->lock);
2724 cache->pinned -= len;
2725 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2726 space_info->max_extent_size = 0;
2728 space_info->bytes_readonly += len;
2730 } else if (btrfs_is_zoned(fs_info)) {
2731 /* Need reset before reusing in a zoned block group */
2732 space_info->bytes_zone_unusable += len;
2735 spin_unlock(&cache->lock);
2736 if (!readonly && return_free_space &&
2737 global_rsv->space_info == space_info) {
2738 spin_lock(&global_rsv->lock);
2739 if (!global_rsv->full) {
2740 u64 to_add = min(len, global_rsv->size -
2741 global_rsv->reserved);
2743 global_rsv->reserved += to_add;
2744 btrfs_space_info_update_bytes_may_use(fs_info,
2745 space_info, to_add);
2746 if (global_rsv->reserved >= global_rsv->size)
2747 global_rsv->full = 1;
2750 spin_unlock(&global_rsv->lock);
2752 /* Add to any tickets we may have */
2753 if (!readonly && return_free_space && len)
2754 btrfs_try_granting_tickets(fs_info, space_info);
2755 spin_unlock(&space_info->lock);
2759 btrfs_put_block_group(cache);
2763 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2765 struct btrfs_fs_info *fs_info = trans->fs_info;
2766 struct btrfs_block_group *block_group, *tmp;
2767 struct list_head *deleted_bgs;
2768 struct extent_io_tree *unpin;
2773 unpin = &trans->transaction->pinned_extents;
2775 while (!TRANS_ABORTED(trans)) {
2776 struct extent_state *cached_state = NULL;
2778 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2779 ret = find_first_extent_bit(unpin, 0, &start, &end,
2780 EXTENT_DIRTY, &cached_state);
2782 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2786 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2787 ret = btrfs_discard_extent(fs_info, start,
2788 end + 1 - start, NULL);
2790 clear_extent_dirty(unpin, start, end, &cached_state);
2791 unpin_extent_range(fs_info, start, end, true);
2792 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2793 free_extent_state(cached_state);
2797 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2798 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2799 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2803 * Transaction is finished. We don't need the lock anymore. We
2804 * do need to clean up the block groups in case of a transaction
2807 deleted_bgs = &trans->transaction->deleted_bgs;
2808 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2812 if (!TRANS_ABORTED(trans))
2813 ret = btrfs_discard_extent(fs_info,
2815 block_group->length,
2818 list_del_init(&block_group->bg_list);
2819 btrfs_unfreeze_block_group(block_group);
2820 btrfs_put_block_group(block_group);
2823 const char *errstr = btrfs_decode_error(ret);
2825 "discard failed while removing blockgroup: errno=%d %s",
2833 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2834 u64 bytenr, u64 num_bytes, bool is_data)
2839 struct btrfs_root *csum_root;
2841 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2842 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2844 btrfs_abort_transaction(trans, ret);
2849 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2851 btrfs_abort_transaction(trans, ret);
2855 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2857 btrfs_abort_transaction(trans, ret);
2863 * Drop one or more refs of @node.
2865 * 1. Locate the extent refs.
2866 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2867 * Locate it, then reduce the refs number or remove the ref line completely.
2869 * 2. Update the refs count in EXTENT/METADATA_ITEM
2871 * Inline backref case:
2873 * in extent tree we have:
2875 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2876 * refs 2 gen 6 flags DATA
2877 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2878 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2880 * This function gets called with:
2882 * node->bytenr = 13631488
2883 * node->num_bytes = 1048576
2884 * root_objectid = FS_TREE
2885 * owner_objectid = 257
2889 * Then we should get some like:
2891 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2892 * refs 1 gen 6 flags DATA
2893 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2895 * Keyed backref case:
2897 * in extent tree we have:
2899 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2900 * refs 754 gen 6 flags DATA
2902 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2903 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2905 * This function get called with:
2907 * node->bytenr = 13631488
2908 * node->num_bytes = 1048576
2909 * root_objectid = FS_TREE
2910 * owner_objectid = 866
2914 * Then we should get some like:
2916 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2917 * refs 753 gen 6 flags DATA
2919 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2921 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2922 struct btrfs_delayed_ref_node *node, u64 parent,
2923 u64 root_objectid, u64 owner_objectid,
2924 u64 owner_offset, int refs_to_drop,
2925 struct btrfs_delayed_extent_op *extent_op)
2927 struct btrfs_fs_info *info = trans->fs_info;
2928 struct btrfs_key key;
2929 struct btrfs_path *path;
2930 struct btrfs_root *extent_root;
2931 struct extent_buffer *leaf;
2932 struct btrfs_extent_item *ei;
2933 struct btrfs_extent_inline_ref *iref;
2936 int extent_slot = 0;
2937 int found_extent = 0;
2941 u64 bytenr = node->bytenr;
2942 u64 num_bytes = node->num_bytes;
2943 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2945 extent_root = btrfs_extent_root(info, bytenr);
2946 ASSERT(extent_root);
2948 path = btrfs_alloc_path();
2952 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2954 if (!is_data && refs_to_drop != 1) {
2956 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2957 node->bytenr, refs_to_drop);
2959 btrfs_abort_transaction(trans, ret);
2964 skinny_metadata = false;
2966 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2967 parent, root_objectid, owner_objectid,
2971 * Either the inline backref or the SHARED_DATA_REF/
2972 * SHARED_BLOCK_REF is found
2974 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2975 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2977 extent_slot = path->slots[0];
2978 while (extent_slot >= 0) {
2979 btrfs_item_key_to_cpu(path->nodes[0], &key,
2981 if (key.objectid != bytenr)
2983 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2984 key.offset == num_bytes) {
2988 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2989 key.offset == owner_objectid) {
2994 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
2995 if (path->slots[0] - extent_slot > 5)
3000 if (!found_extent) {
3003 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3004 btrfs_abort_transaction(trans, -EUCLEAN);
3007 /* Must be SHARED_* item, remove the backref first */
3008 ret = remove_extent_backref(trans, extent_root, path,
3009 NULL, refs_to_drop, is_data);
3011 btrfs_abort_transaction(trans, ret);
3014 btrfs_release_path(path);
3016 /* Slow path to locate EXTENT/METADATA_ITEM */
3017 key.objectid = bytenr;
3018 key.type = BTRFS_EXTENT_ITEM_KEY;
3019 key.offset = num_bytes;
3021 if (!is_data && skinny_metadata) {
3022 key.type = BTRFS_METADATA_ITEM_KEY;
3023 key.offset = owner_objectid;
3026 ret = btrfs_search_slot(trans, extent_root,
3028 if (ret > 0 && skinny_metadata && path->slots[0]) {
3030 * Couldn't find our skinny metadata item,
3031 * see if we have ye olde extent item.
3034 btrfs_item_key_to_cpu(path->nodes[0], &key,
3036 if (key.objectid == bytenr &&
3037 key.type == BTRFS_EXTENT_ITEM_KEY &&
3038 key.offset == num_bytes)
3042 if (ret > 0 && skinny_metadata) {
3043 skinny_metadata = false;
3044 key.objectid = bytenr;
3045 key.type = BTRFS_EXTENT_ITEM_KEY;
3046 key.offset = num_bytes;
3047 btrfs_release_path(path);
3048 ret = btrfs_search_slot(trans, extent_root,
3054 "umm, got %d back from search, was looking for %llu",
3057 btrfs_print_leaf(path->nodes[0]);
3060 btrfs_abort_transaction(trans, ret);
3063 extent_slot = path->slots[0];
3065 } else if (WARN_ON(ret == -ENOENT)) {
3066 btrfs_print_leaf(path->nodes[0]);
3068 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3069 bytenr, parent, root_objectid, owner_objectid,
3071 btrfs_abort_transaction(trans, ret);
3074 btrfs_abort_transaction(trans, ret);
3078 leaf = path->nodes[0];
3079 item_size = btrfs_item_size(leaf, extent_slot);
3080 if (unlikely(item_size < sizeof(*ei))) {
3082 btrfs_print_v0_err(info);
3083 btrfs_abort_transaction(trans, ret);
3086 ei = btrfs_item_ptr(leaf, extent_slot,
3087 struct btrfs_extent_item);
3088 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3089 key.type == BTRFS_EXTENT_ITEM_KEY) {
3090 struct btrfs_tree_block_info *bi;
3091 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3093 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3094 key.objectid, key.type, key.offset,
3095 owner_objectid, item_size,
3096 sizeof(*ei) + sizeof(*bi));
3097 btrfs_abort_transaction(trans, -EUCLEAN);
3100 bi = (struct btrfs_tree_block_info *)(ei + 1);
3101 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3104 refs = btrfs_extent_refs(leaf, ei);
3105 if (refs < refs_to_drop) {
3107 "trying to drop %d refs but we only have %llu for bytenr %llu",
3108 refs_to_drop, refs, bytenr);
3109 btrfs_abort_transaction(trans, -EUCLEAN);
3112 refs -= refs_to_drop;
3116 __run_delayed_extent_op(extent_op, leaf, ei);
3118 * In the case of inline back ref, reference count will
3119 * be updated by remove_extent_backref
3122 if (!found_extent) {
3124 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3125 btrfs_abort_transaction(trans, -EUCLEAN);
3129 btrfs_set_extent_refs(leaf, ei, refs);
3130 btrfs_mark_buffer_dirty(leaf);
3133 ret = remove_extent_backref(trans, extent_root, path,
3134 iref, refs_to_drop, is_data);
3136 btrfs_abort_transaction(trans, ret);
3141 /* In this branch refs == 1 */
3143 if (is_data && refs_to_drop !=
3144 extent_data_ref_count(path, iref)) {
3146 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3147 extent_data_ref_count(path, iref),
3149 btrfs_abort_transaction(trans, -EUCLEAN);
3153 if (path->slots[0] != extent_slot) {
3155 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3156 key.objectid, key.type,
3158 btrfs_abort_transaction(trans, -EUCLEAN);
3163 * No inline ref, we must be at SHARED_* item,
3164 * And it's single ref, it must be:
3165 * | extent_slot ||extent_slot + 1|
3166 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3168 if (path->slots[0] != extent_slot + 1) {
3170 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3171 btrfs_abort_transaction(trans, -EUCLEAN);
3174 path->slots[0] = extent_slot;
3179 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3182 btrfs_abort_transaction(trans, ret);
3185 btrfs_release_path(path);
3187 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3189 btrfs_release_path(path);
3192 btrfs_free_path(path);
3196 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3197 * dump for debug build.
3199 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3200 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3201 path->slots[0], extent_slot);
3202 btrfs_print_leaf(path->nodes[0]);
3205 btrfs_free_path(path);
3210 * when we free an block, it is possible (and likely) that we free the last
3211 * delayed ref for that extent as well. This searches the delayed ref tree for
3212 * a given extent, and if there are no other delayed refs to be processed, it
3213 * removes it from the tree.
3215 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3218 struct btrfs_delayed_ref_head *head;
3219 struct btrfs_delayed_ref_root *delayed_refs;
3222 delayed_refs = &trans->transaction->delayed_refs;
3223 spin_lock(&delayed_refs->lock);
3224 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3226 goto out_delayed_unlock;
3228 spin_lock(&head->lock);
3229 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3232 if (cleanup_extent_op(head) != NULL)
3236 * waiting for the lock here would deadlock. If someone else has it
3237 * locked they are already in the process of dropping it anyway
3239 if (!mutex_trylock(&head->mutex))
3242 btrfs_delete_ref_head(delayed_refs, head);
3243 head->processing = 0;
3245 spin_unlock(&head->lock);
3246 spin_unlock(&delayed_refs->lock);
3248 BUG_ON(head->extent_op);
3249 if (head->must_insert_reserved)
3252 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3253 mutex_unlock(&head->mutex);
3254 btrfs_put_delayed_ref_head(head);
3257 spin_unlock(&head->lock);
3260 spin_unlock(&delayed_refs->lock);
3264 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3266 struct extent_buffer *buf,
3267 u64 parent, int last_ref)
3269 struct btrfs_fs_info *fs_info = trans->fs_info;
3270 struct btrfs_ref generic_ref = { 0 };
3273 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3274 buf->start, buf->len, parent);
3275 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3278 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3279 btrfs_ref_tree_mod(fs_info, &generic_ref);
3280 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3281 BUG_ON(ret); /* -ENOMEM */
3284 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3285 struct btrfs_block_group *cache;
3286 bool must_pin = false;
3288 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3289 ret = check_ref_cleanup(trans, buf->start);
3291 btrfs_redirty_list_add(trans->transaction, buf);
3296 cache = btrfs_lookup_block_group(fs_info, buf->start);
3298 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3299 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3300 btrfs_put_block_group(cache);
3305 * If there are tree mod log users we may have recorded mod log
3306 * operations for this node. If we re-allocate this node we
3307 * could replay operations on this node that happened when it
3308 * existed in a completely different root. For example if it
3309 * was part of root A, then was reallocated to root B, and we
3310 * are doing a btrfs_old_search_slot(root b), we could replay
3311 * operations that happened when the block was part of root A,
3312 * giving us an inconsistent view of the btree.
3314 * We are safe from races here because at this point no other
3315 * node or root points to this extent buffer, so if after this
3316 * check a new tree mod log user joins we will not have an
3317 * existing log of operations on this node that we have to
3320 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3323 if (must_pin || btrfs_is_zoned(fs_info)) {
3324 btrfs_redirty_list_add(trans->transaction, buf);
3325 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3326 btrfs_put_block_group(cache);
3330 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3332 btrfs_add_free_space(cache, buf->start, buf->len);
3333 btrfs_free_reserved_bytes(cache, buf->len, 0);
3334 btrfs_put_block_group(cache);
3335 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3340 * Deleting the buffer, clear the corrupt flag since it doesn't
3343 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3347 /* Can return -ENOMEM */
3348 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3350 struct btrfs_fs_info *fs_info = trans->fs_info;
3353 if (btrfs_is_testing(fs_info))
3357 * tree log blocks never actually go into the extent allocation
3358 * tree, just update pinning info and exit early.
3360 if ((ref->type == BTRFS_REF_METADATA &&
3361 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3362 (ref->type == BTRFS_REF_DATA &&
3363 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3364 /* unlocks the pinned mutex */
3365 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3367 } else if (ref->type == BTRFS_REF_METADATA) {
3368 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3370 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3373 if (!((ref->type == BTRFS_REF_METADATA &&
3374 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3375 (ref->type == BTRFS_REF_DATA &&
3376 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3377 btrfs_ref_tree_mod(fs_info, ref);
3382 enum btrfs_loop_type {
3383 LOOP_CACHING_NOWAIT,
3390 btrfs_lock_block_group(struct btrfs_block_group *cache,
3394 down_read(&cache->data_rwsem);
3397 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3400 btrfs_get_block_group(cache);
3402 down_read(&cache->data_rwsem);
3405 static struct btrfs_block_group *btrfs_lock_cluster(
3406 struct btrfs_block_group *block_group,
3407 struct btrfs_free_cluster *cluster,
3409 __acquires(&cluster->refill_lock)
3411 struct btrfs_block_group *used_bg = NULL;
3413 spin_lock(&cluster->refill_lock);
3415 used_bg = cluster->block_group;
3419 if (used_bg == block_group)
3422 btrfs_get_block_group(used_bg);
3427 if (down_read_trylock(&used_bg->data_rwsem))
3430 spin_unlock(&cluster->refill_lock);
3432 /* We should only have one-level nested. */
3433 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3435 spin_lock(&cluster->refill_lock);
3436 if (used_bg == cluster->block_group)
3439 up_read(&used_bg->data_rwsem);
3440 btrfs_put_block_group(used_bg);
3445 btrfs_release_block_group(struct btrfs_block_group *cache,
3449 up_read(&cache->data_rwsem);
3450 btrfs_put_block_group(cache);
3453 enum btrfs_extent_allocation_policy {
3454 BTRFS_EXTENT_ALLOC_CLUSTERED,
3455 BTRFS_EXTENT_ALLOC_ZONED,
3459 * Structure used internally for find_free_extent() function. Wraps needed
3462 struct find_free_extent_ctl {
3463 /* Basic allocation info */
3471 /* Where to start the search inside the bg */
3474 /* For clustered allocation */
3476 struct btrfs_free_cluster *last_ptr;
3479 bool have_caching_bg;
3480 bool orig_have_caching_bg;
3482 /* Allocation is called for tree-log */
3485 /* Allocation is called for data relocation */
3486 bool for_data_reloc;
3488 /* RAID index, converted from flags */
3492 * Current loop number, check find_free_extent_update_loop() for details
3497 * Whether we're refilling a cluster, if true we need to re-search
3498 * current block group but don't try to refill the cluster again.
3500 bool retry_clustered;
3503 * Whether we're updating free space cache, if true we need to re-search
3504 * current block group but don't try updating free space cache again.
3506 bool retry_unclustered;
3508 /* If current block group is cached */
3511 /* Max contiguous hole found */
3512 u64 max_extent_size;
3514 /* Total free space from free space cache, not always contiguous */
3515 u64 total_free_space;
3520 /* Hint where to start looking for an empty space */
3523 /* Allocation policy */
3524 enum btrfs_extent_allocation_policy policy;
3529 * Helper function for find_free_extent().
3531 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3532 * Return -EAGAIN to inform caller that we need to re-search this block group
3533 * Return >0 to inform caller that we find nothing
3534 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3536 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3537 struct find_free_extent_ctl *ffe_ctl,
3538 struct btrfs_block_group **cluster_bg_ret)
3540 struct btrfs_block_group *cluster_bg;
3541 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3542 u64 aligned_cluster;
3546 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3548 goto refill_cluster;
3549 if (cluster_bg != bg && (cluster_bg->ro ||
3550 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3551 goto release_cluster;
3553 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3554 ffe_ctl->num_bytes, cluster_bg->start,
3555 &ffe_ctl->max_extent_size);
3557 /* We have a block, we're done */
3558 spin_unlock(&last_ptr->refill_lock);
3559 trace_btrfs_reserve_extent_cluster(cluster_bg,
3560 ffe_ctl->search_start, ffe_ctl->num_bytes);
3561 *cluster_bg_ret = cluster_bg;
3562 ffe_ctl->found_offset = offset;
3565 WARN_ON(last_ptr->block_group != cluster_bg);
3569 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3570 * lets just skip it and let the allocator find whatever block it can
3571 * find. If we reach this point, we will have tried the cluster
3572 * allocator plenty of times and not have found anything, so we are
3573 * likely way too fragmented for the clustering stuff to find anything.
3575 * However, if the cluster is taken from the current block group,
3576 * release the cluster first, so that we stand a better chance of
3577 * succeeding in the unclustered allocation.
3579 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3580 spin_unlock(&last_ptr->refill_lock);
3581 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3585 /* This cluster didn't work out, free it and start over */
3586 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3588 if (cluster_bg != bg)
3589 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3592 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3593 spin_unlock(&last_ptr->refill_lock);
3597 aligned_cluster = max_t(u64,
3598 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3599 bg->full_stripe_len);
3600 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3601 ffe_ctl->num_bytes, aligned_cluster);
3603 /* Now pull our allocation out of this cluster */
3604 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3605 ffe_ctl->num_bytes, ffe_ctl->search_start,
3606 &ffe_ctl->max_extent_size);
3608 /* We found one, proceed */
3609 spin_unlock(&last_ptr->refill_lock);
3610 trace_btrfs_reserve_extent_cluster(bg,
3611 ffe_ctl->search_start,
3612 ffe_ctl->num_bytes);
3613 ffe_ctl->found_offset = offset;
3616 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3617 !ffe_ctl->retry_clustered) {
3618 spin_unlock(&last_ptr->refill_lock);
3620 ffe_ctl->retry_clustered = true;
3621 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3622 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3626 * At this point we either didn't find a cluster or we weren't able to
3627 * allocate a block from our cluster. Free the cluster we've been
3628 * trying to use, and go to the next block group.
3630 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3631 spin_unlock(&last_ptr->refill_lock);
3636 * Return >0 to inform caller that we find nothing
3637 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3638 * Return -EAGAIN to inform caller that we need to re-search this block group
3640 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3641 struct find_free_extent_ctl *ffe_ctl)
3643 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3647 * We are doing an unclustered allocation, set the fragmented flag so
3648 * we don't bother trying to setup a cluster again until we get more
3651 if (unlikely(last_ptr)) {
3652 spin_lock(&last_ptr->lock);
3653 last_ptr->fragmented = 1;
3654 spin_unlock(&last_ptr->lock);
3656 if (ffe_ctl->cached) {
3657 struct btrfs_free_space_ctl *free_space_ctl;
3659 free_space_ctl = bg->free_space_ctl;
3660 spin_lock(&free_space_ctl->tree_lock);
3661 if (free_space_ctl->free_space <
3662 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3663 ffe_ctl->empty_size) {
3664 ffe_ctl->total_free_space = max_t(u64,
3665 ffe_ctl->total_free_space,
3666 free_space_ctl->free_space);
3667 spin_unlock(&free_space_ctl->tree_lock);
3670 spin_unlock(&free_space_ctl->tree_lock);
3673 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3674 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3675 &ffe_ctl->max_extent_size);
3678 * If we didn't find a chunk, and we haven't failed on this block group
3679 * before, and this block group is in the middle of caching and we are
3680 * ok with waiting, then go ahead and wait for progress to be made, and
3681 * set @retry_unclustered to true.
3683 * If @retry_unclustered is true then we've already waited on this
3684 * block group once and should move on to the next block group.
3686 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3687 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3688 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3689 ffe_ctl->empty_size);
3690 ffe_ctl->retry_unclustered = true;
3692 } else if (!offset) {
3695 ffe_ctl->found_offset = offset;
3699 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3700 struct find_free_extent_ctl *ffe_ctl,
3701 struct btrfs_block_group **bg_ret)
3705 /* We want to try and use the cluster allocator, so lets look there */
3706 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3707 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3708 if (ret >= 0 || ret == -EAGAIN)
3710 /* ret == -ENOENT case falls through */
3713 return find_free_extent_unclustered(block_group, ffe_ctl);
3717 * Tree-log block group locking
3718 * ============================
3720 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3721 * indicates the starting address of a block group, which is reserved only
3722 * for tree-log metadata.
3729 * fs_info::treelog_bg_lock
3733 * Simple allocator for sequential-only block group. It only allows sequential
3734 * allocation. No need to play with trees. This function also reserves the
3735 * bytes as in btrfs_add_reserved_bytes.
3737 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3738 struct find_free_extent_ctl *ffe_ctl,
3739 struct btrfs_block_group **bg_ret)
3741 struct btrfs_fs_info *fs_info = block_group->fs_info;
3742 struct btrfs_space_info *space_info = block_group->space_info;
3743 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3744 u64 start = block_group->start;
3745 u64 num_bytes = ffe_ctl->num_bytes;
3747 u64 bytenr = block_group->start;
3749 u64 data_reloc_bytenr;
3753 ASSERT(btrfs_is_zoned(block_group->fs_info));
3756 * Do not allow non-tree-log blocks in the dedicated tree-log block
3757 * group, and vice versa.
3759 spin_lock(&fs_info->treelog_bg_lock);
3760 log_bytenr = fs_info->treelog_bg;
3761 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3762 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3764 spin_unlock(&fs_info->treelog_bg_lock);
3769 * Do not allow non-relocation blocks in the dedicated relocation block
3770 * group, and vice versa.
3772 spin_lock(&fs_info->relocation_bg_lock);
3773 data_reloc_bytenr = fs_info->data_reloc_bg;
3774 if (data_reloc_bytenr &&
3775 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3776 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3778 spin_unlock(&fs_info->relocation_bg_lock);
3782 /* Check RO and no space case before trying to activate it */
3783 spin_lock(&block_group->lock);
3784 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3787 * May need to clear fs_info->{treelog,data_reloc}_bg.
3788 * Return the error after taking the locks.
3791 spin_unlock(&block_group->lock);
3793 if (!ret && !btrfs_zone_activate(block_group)) {
3796 * May need to clear fs_info->{treelog,data_reloc}_bg.
3797 * Return the error after taking the locks.
3801 spin_lock(&space_info->lock);
3802 spin_lock(&block_group->lock);
3803 spin_lock(&fs_info->treelog_bg_lock);
3804 spin_lock(&fs_info->relocation_bg_lock);
3809 ASSERT(!ffe_ctl->for_treelog ||
3810 block_group->start == fs_info->treelog_bg ||
3811 fs_info->treelog_bg == 0);
3812 ASSERT(!ffe_ctl->for_data_reloc ||
3813 block_group->start == fs_info->data_reloc_bg ||
3814 fs_info->data_reloc_bg == 0);
3816 if (block_group->ro ||
3817 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3823 * Do not allow currently using block group to be tree-log dedicated
3826 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3827 (block_group->used || block_group->reserved)) {
3833 * Do not allow currently used block group to be the data relocation
3834 * dedicated block group.
3836 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3837 (block_group->used || block_group->reserved)) {
3842 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3843 avail = block_group->zone_capacity - block_group->alloc_offset;
3844 if (avail < num_bytes) {
3845 if (ffe_ctl->max_extent_size < avail) {
3847 * With sequential allocator, free space is always
3850 ffe_ctl->max_extent_size = avail;
3851 ffe_ctl->total_free_space = avail;
3857 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3858 fs_info->treelog_bg = block_group->start;
3860 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3861 fs_info->data_reloc_bg = block_group->start;
3863 ffe_ctl->found_offset = start + block_group->alloc_offset;
3864 block_group->alloc_offset += num_bytes;
3865 spin_lock(&ctl->tree_lock);
3866 ctl->free_space -= num_bytes;
3867 spin_unlock(&ctl->tree_lock);
3870 * We do not check if found_offset is aligned to stripesize. The
3871 * address is anyway rewritten when using zone append writing.
3874 ffe_ctl->search_start = ffe_ctl->found_offset;
3877 if (ret && ffe_ctl->for_treelog)
3878 fs_info->treelog_bg = 0;
3879 if (ret && ffe_ctl->for_data_reloc &&
3880 fs_info->data_reloc_bg == block_group->start) {
3882 * Do not allow further allocations from this block group.
3883 * Compared to increasing the ->ro, setting the
3884 * ->zoned_data_reloc_ongoing flag still allows nocow
3885 * writers to come in. See btrfs_inc_nocow_writers().
3887 * We need to disable an allocation to avoid an allocation of
3888 * regular (non-relocation data) extent. With mix of relocation
3889 * extents and regular extents, we can dispatch WRITE commands
3890 * (for relocation extents) and ZONE APPEND commands (for
3891 * regular extents) at the same time to the same zone, which
3892 * easily break the write pointer.
3894 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3895 fs_info->data_reloc_bg = 0;
3897 spin_unlock(&fs_info->relocation_bg_lock);
3898 spin_unlock(&fs_info->treelog_bg_lock);
3899 spin_unlock(&block_group->lock);
3900 spin_unlock(&space_info->lock);
3904 static int do_allocation(struct btrfs_block_group *block_group,
3905 struct find_free_extent_ctl *ffe_ctl,
3906 struct btrfs_block_group **bg_ret)
3908 switch (ffe_ctl->policy) {
3909 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3910 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3911 case BTRFS_EXTENT_ALLOC_ZONED:
3912 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3918 static void release_block_group(struct btrfs_block_group *block_group,
3919 struct find_free_extent_ctl *ffe_ctl,
3922 switch (ffe_ctl->policy) {
3923 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3924 ffe_ctl->retry_clustered = false;
3925 ffe_ctl->retry_unclustered = false;
3927 case BTRFS_EXTENT_ALLOC_ZONED:
3934 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3936 btrfs_release_block_group(block_group, delalloc);
3939 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3940 struct btrfs_key *ins)
3942 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3944 if (!ffe_ctl->use_cluster && last_ptr) {
3945 spin_lock(&last_ptr->lock);
3946 last_ptr->window_start = ins->objectid;
3947 spin_unlock(&last_ptr->lock);
3951 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3952 struct btrfs_key *ins)
3954 switch (ffe_ctl->policy) {
3955 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3956 found_extent_clustered(ffe_ctl, ins);
3958 case BTRFS_EXTENT_ALLOC_ZONED:
3966 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3967 struct find_free_extent_ctl *ffe_ctl)
3969 /* If we can activate new zone, just allocate a chunk and use it */
3970 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3974 * We already reached the max active zones. Try to finish one block
3975 * group to make a room for a new block group. This is only possible
3976 * for a data block group because btrfs_zone_finish() may need to wait
3977 * for a running transaction which can cause a deadlock for metadata
3980 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3981 int ret = btrfs_zone_finish_one_bg(fs_info);
3990 * If we have enough free space left in an already active block group
3991 * and we can't activate any other zone now, do not allow allocating a
3992 * new chunk and let find_free_extent() retry with a smaller size.
3994 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3998 * Even min_alloc_size is not left in any block groups. Since we cannot
3999 * activate a new block group, allocating it may not help. Let's tell a
4000 * caller to try again and hope it progress something by writing some
4001 * parts of the region. That is only possible for data block groups,
4002 * where a part of the region can be written.
4004 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4008 * We cannot activate a new block group and no enough space left in any
4009 * block groups. So, allocating a new block group may not help. But,
4010 * there is nothing to do anyway, so let's go with it.
4015 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4016 struct find_free_extent_ctl *ffe_ctl)
4018 switch (ffe_ctl->policy) {
4019 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4021 case BTRFS_EXTENT_ALLOC_ZONED:
4022 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4028 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4030 switch (ffe_ctl->policy) {
4031 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4033 * If we can't allocate a new chunk we've already looped through
4034 * at least once, move on to the NO_EMPTY_SIZE case.
4036 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4038 case BTRFS_EXTENT_ALLOC_ZONED:
4047 * Return >0 means caller needs to re-search for free extent
4048 * Return 0 means we have the needed free extent.
4049 * Return <0 means we failed to locate any free extent.
4051 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4052 struct btrfs_key *ins,
4053 struct find_free_extent_ctl *ffe_ctl,
4056 struct btrfs_root *root = fs_info->chunk_root;
4059 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4060 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4061 ffe_ctl->orig_have_caching_bg = true;
4063 if (ins->objectid) {
4064 found_extent(ffe_ctl, ins);
4068 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4072 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4076 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4077 * caching kthreads as we move along
4078 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4079 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4080 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4083 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4085 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4087 * We want to skip the LOOP_CACHING_WAIT step if we
4088 * don't have any uncached bgs and we've already done a
4089 * full search through.
4091 if (ffe_ctl->orig_have_caching_bg || !full_search)
4092 ffe_ctl->loop = LOOP_CACHING_WAIT;
4094 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4099 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4100 struct btrfs_trans_handle *trans;
4103 /*Check if allocation policy allows to create a new chunk */
4104 ret = can_allocate_chunk(fs_info, ffe_ctl);
4108 trans = current->journal_info;
4112 trans = btrfs_join_transaction(root);
4114 if (IS_ERR(trans)) {
4115 ret = PTR_ERR(trans);
4119 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4120 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4122 /* Do not bail out on ENOSPC since we can do more. */
4124 ret = chunk_allocation_failed(ffe_ctl);
4126 btrfs_abort_transaction(trans, ret);
4130 btrfs_end_transaction(trans);
4135 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4136 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4140 * Don't loop again if we already have no empty_size and
4143 if (ffe_ctl->empty_size == 0 &&
4144 ffe_ctl->empty_cluster == 0)
4146 ffe_ctl->empty_size = 0;
4147 ffe_ctl->empty_cluster = 0;
4154 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4155 struct find_free_extent_ctl *ffe_ctl,
4156 struct btrfs_space_info *space_info,
4157 struct btrfs_key *ins)
4160 * If our free space is heavily fragmented we may not be able to make
4161 * big contiguous allocations, so instead of doing the expensive search
4162 * for free space, simply return ENOSPC with our max_extent_size so we
4163 * can go ahead and search for a more manageable chunk.
4165 * If our max_extent_size is large enough for our allocation simply
4166 * disable clustering since we will likely not be able to find enough
4167 * space to create a cluster and induce latency trying.
4169 if (space_info->max_extent_size) {
4170 spin_lock(&space_info->lock);
4171 if (space_info->max_extent_size &&
4172 ffe_ctl->num_bytes > space_info->max_extent_size) {
4173 ins->offset = space_info->max_extent_size;
4174 spin_unlock(&space_info->lock);
4176 } else if (space_info->max_extent_size) {
4177 ffe_ctl->use_cluster = false;
4179 spin_unlock(&space_info->lock);
4182 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4183 &ffe_ctl->empty_cluster);
4184 if (ffe_ctl->last_ptr) {
4185 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4187 spin_lock(&last_ptr->lock);
4188 if (last_ptr->block_group)
4189 ffe_ctl->hint_byte = last_ptr->window_start;
4190 if (last_ptr->fragmented) {
4192 * We still set window_start so we can keep track of the
4193 * last place we found an allocation to try and save
4196 ffe_ctl->hint_byte = last_ptr->window_start;
4197 ffe_ctl->use_cluster = false;
4199 spin_unlock(&last_ptr->lock);
4205 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4206 struct find_free_extent_ctl *ffe_ctl,
4207 struct btrfs_space_info *space_info,
4208 struct btrfs_key *ins)
4210 switch (ffe_ctl->policy) {
4211 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4212 return prepare_allocation_clustered(fs_info, ffe_ctl,
4214 case BTRFS_EXTENT_ALLOC_ZONED:
4215 if (ffe_ctl->for_treelog) {
4216 spin_lock(&fs_info->treelog_bg_lock);
4217 if (fs_info->treelog_bg)
4218 ffe_ctl->hint_byte = fs_info->treelog_bg;
4219 spin_unlock(&fs_info->treelog_bg_lock);
4221 if (ffe_ctl->for_data_reloc) {
4222 spin_lock(&fs_info->relocation_bg_lock);
4223 if (fs_info->data_reloc_bg)
4224 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4225 spin_unlock(&fs_info->relocation_bg_lock);
4234 * walks the btree of allocated extents and find a hole of a given size.
4235 * The key ins is changed to record the hole:
4236 * ins->objectid == start position
4237 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4238 * ins->offset == the size of the hole.
4239 * Any available blocks before search_start are skipped.
4241 * If there is no suitable free space, we will record the max size of
4242 * the free space extent currently.
4244 * The overall logic and call chain:
4246 * find_free_extent()
4247 * |- Iterate through all block groups
4248 * | |- Get a valid block group
4249 * | |- Try to do clustered allocation in that block group
4250 * | |- Try to do unclustered allocation in that block group
4251 * | |- Check if the result is valid
4252 * | | |- If valid, then exit
4253 * | |- Jump to next block group
4255 * |- Push harder to find free extents
4256 * |- If not found, re-iterate all block groups
4258 static noinline int find_free_extent(struct btrfs_root *root,
4259 struct btrfs_key *ins,
4260 struct find_free_extent_ctl *ffe_ctl)
4262 struct btrfs_fs_info *fs_info = root->fs_info;
4264 int cache_block_group_error = 0;
4265 struct btrfs_block_group *block_group = NULL;
4266 struct btrfs_space_info *space_info;
4267 bool full_search = false;
4269 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4271 ffe_ctl->search_start = 0;
4272 /* For clustered allocation */
4273 ffe_ctl->empty_cluster = 0;
4274 ffe_ctl->last_ptr = NULL;
4275 ffe_ctl->use_cluster = true;
4276 ffe_ctl->have_caching_bg = false;
4277 ffe_ctl->orig_have_caching_bg = false;
4278 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4280 /* For clustered allocation */
4281 ffe_ctl->retry_clustered = false;
4282 ffe_ctl->retry_unclustered = false;
4283 ffe_ctl->cached = 0;
4284 ffe_ctl->max_extent_size = 0;
4285 ffe_ctl->total_free_space = 0;
4286 ffe_ctl->found_offset = 0;
4287 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4289 if (btrfs_is_zoned(fs_info))
4290 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4292 ins->type = BTRFS_EXTENT_ITEM_KEY;
4296 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4299 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4301 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4305 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4309 ffe_ctl->search_start = max(ffe_ctl->search_start,
4310 first_logical_byte(fs_info));
4311 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4312 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4313 block_group = btrfs_lookup_block_group(fs_info,
4314 ffe_ctl->search_start);
4316 * we don't want to use the block group if it doesn't match our
4317 * allocation bits, or if its not cached.
4319 * However if we are re-searching with an ideal block group
4320 * picked out then we don't care that the block group is cached.
4322 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4323 block_group->cached != BTRFS_CACHE_NO) {
4324 down_read(&space_info->groups_sem);
4325 if (list_empty(&block_group->list) ||
4328 * someone is removing this block group,
4329 * we can't jump into the have_block_group
4330 * target because our list pointers are not
4333 btrfs_put_block_group(block_group);
4334 up_read(&space_info->groups_sem);
4336 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4337 block_group->flags);
4338 btrfs_lock_block_group(block_group,
4340 goto have_block_group;
4342 } else if (block_group) {
4343 btrfs_put_block_group(block_group);
4347 ffe_ctl->have_caching_bg = false;
4348 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4349 ffe_ctl->index == 0)
4351 down_read(&space_info->groups_sem);
4352 list_for_each_entry(block_group,
4353 &space_info->block_groups[ffe_ctl->index], list) {
4354 struct btrfs_block_group *bg_ret;
4356 /* If the block group is read-only, we can skip it entirely. */
4357 if (unlikely(block_group->ro)) {
4358 if (ffe_ctl->for_treelog)
4359 btrfs_clear_treelog_bg(block_group);
4360 if (ffe_ctl->for_data_reloc)
4361 btrfs_clear_data_reloc_bg(block_group);
4365 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4366 ffe_ctl->search_start = block_group->start;
4369 * this can happen if we end up cycling through all the
4370 * raid types, but we want to make sure we only allocate
4371 * for the proper type.
4373 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4374 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4375 BTRFS_BLOCK_GROUP_RAID1_MASK |
4376 BTRFS_BLOCK_GROUP_RAID56_MASK |
4377 BTRFS_BLOCK_GROUP_RAID10;
4380 * if they asked for extra copies and this block group
4381 * doesn't provide them, bail. This does allow us to
4382 * fill raid0 from raid1.
4384 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4388 * This block group has different flags than we want.
4389 * It's possible that we have MIXED_GROUP flag but no
4390 * block group is mixed. Just skip such block group.
4392 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4397 ffe_ctl->cached = btrfs_block_group_done(block_group);
4398 if (unlikely(!ffe_ctl->cached)) {
4399 ffe_ctl->have_caching_bg = true;
4400 ret = btrfs_cache_block_group(block_group, false);
4403 * If we get ENOMEM here or something else we want to
4404 * try other block groups, because it may not be fatal.
4405 * However if we can't find anything else we need to
4406 * save our return here so that we return the actual
4407 * error that caused problems, not ENOSPC.
4410 if (!cache_block_group_error)
4411 cache_block_group_error = ret;
4418 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4422 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4424 if (bg_ret && bg_ret != block_group) {
4425 btrfs_release_block_group(block_group,
4427 block_group = bg_ret;
4429 } else if (ret == -EAGAIN) {
4430 goto have_block_group;
4431 } else if (ret > 0) {
4436 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4437 fs_info->stripesize);
4439 /* move on to the next group */
4440 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4441 block_group->start + block_group->length) {
4442 btrfs_add_free_space_unused(block_group,
4443 ffe_ctl->found_offset,
4444 ffe_ctl->num_bytes);
4448 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4449 btrfs_add_free_space_unused(block_group,
4450 ffe_ctl->found_offset,
4451 ffe_ctl->search_start - ffe_ctl->found_offset);
4453 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4456 if (ret == -EAGAIN) {
4457 btrfs_add_free_space_unused(block_group,
4458 ffe_ctl->found_offset,
4459 ffe_ctl->num_bytes);
4462 btrfs_inc_block_group_reservations(block_group);
4464 /* we are all good, lets return */
4465 ins->objectid = ffe_ctl->search_start;
4466 ins->offset = ffe_ctl->num_bytes;
4468 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4469 ffe_ctl->num_bytes);
4470 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4473 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4476 up_read(&space_info->groups_sem);
4478 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4482 if (ret == -ENOSPC && !cache_block_group_error) {
4484 * Use ffe_ctl->total_free_space as fallback if we can't find
4485 * any contiguous hole.
4487 if (!ffe_ctl->max_extent_size)
4488 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4489 spin_lock(&space_info->lock);
4490 space_info->max_extent_size = ffe_ctl->max_extent_size;
4491 spin_unlock(&space_info->lock);
4492 ins->offset = ffe_ctl->max_extent_size;
4493 } else if (ret == -ENOSPC) {
4494 ret = cache_block_group_error;
4500 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4501 * hole that is at least as big as @num_bytes.
4503 * @root - The root that will contain this extent
4505 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4506 * is used for accounting purposes. This value differs
4507 * from @num_bytes only in the case of compressed extents.
4509 * @num_bytes - Number of bytes to allocate on-disk.
4511 * @min_alloc_size - Indicates the minimum amount of space that the
4512 * allocator should try to satisfy. In some cases
4513 * @num_bytes may be larger than what is required and if
4514 * the filesystem is fragmented then allocation fails.
4515 * However, the presence of @min_alloc_size gives a
4516 * chance to try and satisfy the smaller allocation.
4518 * @empty_size - A hint that you plan on doing more COW. This is the
4519 * size in bytes the allocator should try to find free
4520 * next to the block it returns. This is just a hint and
4521 * may be ignored by the allocator.
4523 * @hint_byte - Hint to the allocator to start searching above the byte
4524 * address passed. It might be ignored.
4526 * @ins - This key is modified to record the found hole. It will
4527 * have the following values:
4528 * ins->objectid == start position
4529 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4530 * ins->offset == the size of the hole.
4532 * @is_data - Boolean flag indicating whether an extent is
4533 * allocated for data (true) or metadata (false)
4535 * @delalloc - Boolean flag indicating whether this allocation is for
4536 * delalloc or not. If 'true' data_rwsem of block groups
4537 * is going to be acquired.
4540 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4541 * case -ENOSPC is returned then @ins->offset will contain the size of the
4542 * largest available hole the allocator managed to find.
4544 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4545 u64 num_bytes, u64 min_alloc_size,
4546 u64 empty_size, u64 hint_byte,
4547 struct btrfs_key *ins, int is_data, int delalloc)
4549 struct btrfs_fs_info *fs_info = root->fs_info;
4550 struct find_free_extent_ctl ffe_ctl = {};
4551 bool final_tried = num_bytes == min_alloc_size;
4554 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4555 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4557 flags = get_alloc_profile_by_root(root, is_data);
4559 WARN_ON(num_bytes < fs_info->sectorsize);
4561 ffe_ctl.ram_bytes = ram_bytes;
4562 ffe_ctl.num_bytes = num_bytes;
4563 ffe_ctl.min_alloc_size = min_alloc_size;
4564 ffe_ctl.empty_size = empty_size;
4565 ffe_ctl.flags = flags;
4566 ffe_ctl.delalloc = delalloc;
4567 ffe_ctl.hint_byte = hint_byte;
4568 ffe_ctl.for_treelog = for_treelog;
4569 ffe_ctl.for_data_reloc = for_data_reloc;
4571 ret = find_free_extent(root, ins, &ffe_ctl);
4572 if (!ret && !is_data) {
4573 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4574 } else if (ret == -ENOSPC) {
4575 if (!final_tried && ins->offset) {
4576 num_bytes = min(num_bytes >> 1, ins->offset);
4577 num_bytes = round_down(num_bytes,
4578 fs_info->sectorsize);
4579 num_bytes = max(num_bytes, min_alloc_size);
4580 ram_bytes = num_bytes;
4581 if (num_bytes == min_alloc_size)
4584 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4585 struct btrfs_space_info *sinfo;
4587 sinfo = btrfs_find_space_info(fs_info, flags);
4589 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4590 flags, num_bytes, for_treelog, for_data_reloc);
4592 btrfs_dump_space_info(fs_info, sinfo,
4600 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4601 u64 start, u64 len, int delalloc)
4603 struct btrfs_block_group *cache;
4605 cache = btrfs_lookup_block_group(fs_info, start);
4607 btrfs_err(fs_info, "Unable to find block group for %llu",
4612 btrfs_add_free_space(cache, start, len);
4613 btrfs_free_reserved_bytes(cache, len, delalloc);
4614 trace_btrfs_reserved_extent_free(fs_info, start, len);
4616 btrfs_put_block_group(cache);
4620 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4623 struct btrfs_block_group *cache;
4626 cache = btrfs_lookup_block_group(trans->fs_info, start);
4628 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4633 ret = pin_down_extent(trans, cache, start, len, 1);
4634 btrfs_put_block_group(cache);
4638 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4641 struct btrfs_fs_info *fs_info = trans->fs_info;
4644 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4648 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4651 btrfs_err(fs_info, "update block group failed for %llu %llu",
4656 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4660 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4661 u64 parent, u64 root_objectid,
4662 u64 flags, u64 owner, u64 offset,
4663 struct btrfs_key *ins, int ref_mod)
4665 struct btrfs_fs_info *fs_info = trans->fs_info;
4666 struct btrfs_root *extent_root;
4668 struct btrfs_extent_item *extent_item;
4669 struct btrfs_extent_inline_ref *iref;
4670 struct btrfs_path *path;
4671 struct extent_buffer *leaf;
4676 type = BTRFS_SHARED_DATA_REF_KEY;
4678 type = BTRFS_EXTENT_DATA_REF_KEY;
4680 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4682 path = btrfs_alloc_path();
4686 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4687 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4689 btrfs_free_path(path);
4693 leaf = path->nodes[0];
4694 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4695 struct btrfs_extent_item);
4696 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4697 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4698 btrfs_set_extent_flags(leaf, extent_item,
4699 flags | BTRFS_EXTENT_FLAG_DATA);
4701 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4704 struct btrfs_shared_data_ref *ref;
4705 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4706 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4707 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4709 struct btrfs_extent_data_ref *ref;
4710 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4711 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4712 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4713 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4714 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4717 btrfs_mark_buffer_dirty(path->nodes[0]);
4718 btrfs_free_path(path);
4720 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4723 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4724 struct btrfs_delayed_ref_node *node,
4725 struct btrfs_delayed_extent_op *extent_op)
4727 struct btrfs_fs_info *fs_info = trans->fs_info;
4728 struct btrfs_root *extent_root;
4730 struct btrfs_extent_item *extent_item;
4731 struct btrfs_key extent_key;
4732 struct btrfs_tree_block_info *block_info;
4733 struct btrfs_extent_inline_ref *iref;
4734 struct btrfs_path *path;
4735 struct extent_buffer *leaf;
4736 struct btrfs_delayed_tree_ref *ref;
4737 u32 size = sizeof(*extent_item) + sizeof(*iref);
4738 u64 flags = extent_op->flags_to_set;
4739 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4741 ref = btrfs_delayed_node_to_tree_ref(node);
4743 extent_key.objectid = node->bytenr;
4744 if (skinny_metadata) {
4745 extent_key.offset = ref->level;
4746 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4748 extent_key.offset = node->num_bytes;
4749 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4750 size += sizeof(*block_info);
4753 path = btrfs_alloc_path();
4757 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4758 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4761 btrfs_free_path(path);
4765 leaf = path->nodes[0];
4766 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4767 struct btrfs_extent_item);
4768 btrfs_set_extent_refs(leaf, extent_item, 1);
4769 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4770 btrfs_set_extent_flags(leaf, extent_item,
4771 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4773 if (skinny_metadata) {
4774 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4776 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4777 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4778 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4779 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4782 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4783 btrfs_set_extent_inline_ref_type(leaf, iref,
4784 BTRFS_SHARED_BLOCK_REF_KEY);
4785 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4787 btrfs_set_extent_inline_ref_type(leaf, iref,
4788 BTRFS_TREE_BLOCK_REF_KEY);
4789 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4792 btrfs_mark_buffer_dirty(leaf);
4793 btrfs_free_path(path);
4795 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4798 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4799 struct btrfs_root *root, u64 owner,
4800 u64 offset, u64 ram_bytes,
4801 struct btrfs_key *ins)
4803 struct btrfs_ref generic_ref = { 0 };
4805 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4807 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4808 ins->objectid, ins->offset, 0);
4809 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4811 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4813 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4817 * this is used by the tree logging recovery code. It records that
4818 * an extent has been allocated and makes sure to clear the free
4819 * space cache bits as well
4821 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4822 u64 root_objectid, u64 owner, u64 offset,
4823 struct btrfs_key *ins)
4825 struct btrfs_fs_info *fs_info = trans->fs_info;
4827 struct btrfs_block_group *block_group;
4828 struct btrfs_space_info *space_info;
4831 * Mixed block groups will exclude before processing the log so we only
4832 * need to do the exclude dance if this fs isn't mixed.
4834 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4835 ret = __exclude_logged_extent(fs_info, ins->objectid,
4841 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4845 space_info = block_group->space_info;
4846 spin_lock(&space_info->lock);
4847 spin_lock(&block_group->lock);
4848 space_info->bytes_reserved += ins->offset;
4849 block_group->reserved += ins->offset;
4850 spin_unlock(&block_group->lock);
4851 spin_unlock(&space_info->lock);
4853 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4856 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4857 btrfs_put_block_group(block_group);
4861 static struct extent_buffer *
4862 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4863 u64 bytenr, int level, u64 owner,
4864 enum btrfs_lock_nesting nest)
4866 struct btrfs_fs_info *fs_info = root->fs_info;
4867 struct extent_buffer *buf;
4868 u64 lockdep_owner = owner;
4870 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4875 * Extra safety check in case the extent tree is corrupted and extent
4876 * allocator chooses to use a tree block which is already used and
4879 if (buf->lock_owner == current->pid) {
4880 btrfs_err_rl(fs_info,
4881 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4882 buf->start, btrfs_header_owner(buf), current->pid);
4883 free_extent_buffer(buf);
4884 return ERR_PTR(-EUCLEAN);
4888 * The reloc trees are just snapshots, so we need them to appear to be
4889 * just like any other fs tree WRT lockdep.
4891 * The exception however is in replace_path() in relocation, where we
4892 * hold the lock on the original fs root and then search for the reloc
4893 * root. At that point we need to make sure any reloc root buffers are
4894 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4897 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4898 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4899 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4901 /* btrfs_clean_tree_block() accesses generation field. */
4902 btrfs_set_header_generation(buf, trans->transid);
4905 * This needs to stay, because we could allocate a freed block from an
4906 * old tree into a new tree, so we need to make sure this new block is
4907 * set to the appropriate level and owner.
4909 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4911 __btrfs_tree_lock(buf, nest);
4912 btrfs_clean_tree_block(buf);
4913 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4914 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4916 set_extent_buffer_uptodate(buf);
4918 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4919 btrfs_set_header_level(buf, level);
4920 btrfs_set_header_bytenr(buf, buf->start);
4921 btrfs_set_header_generation(buf, trans->transid);
4922 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4923 btrfs_set_header_owner(buf, owner);
4924 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4925 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4926 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4927 buf->log_index = root->log_transid % 2;
4929 * we allow two log transactions at a time, use different
4930 * EXTENT bit to differentiate dirty pages.
4932 if (buf->log_index == 0)
4933 set_extent_dirty(&root->dirty_log_pages, buf->start,
4934 buf->start + buf->len - 1, GFP_NOFS);
4936 set_extent_new(&root->dirty_log_pages, buf->start,
4937 buf->start + buf->len - 1);
4939 buf->log_index = -1;
4940 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4941 buf->start + buf->len - 1, GFP_NOFS);
4943 /* this returns a buffer locked for blocking */
4948 * finds a free extent and does all the dirty work required for allocation
4949 * returns the tree buffer or an ERR_PTR on error.
4951 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4952 struct btrfs_root *root,
4953 u64 parent, u64 root_objectid,
4954 const struct btrfs_disk_key *key,
4955 int level, u64 hint,
4957 enum btrfs_lock_nesting nest)
4959 struct btrfs_fs_info *fs_info = root->fs_info;
4960 struct btrfs_key ins;
4961 struct btrfs_block_rsv *block_rsv;
4962 struct extent_buffer *buf;
4963 struct btrfs_delayed_extent_op *extent_op;
4964 struct btrfs_ref generic_ref = { 0 };
4967 u32 blocksize = fs_info->nodesize;
4968 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4970 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4971 if (btrfs_is_testing(fs_info)) {
4972 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4973 level, root_objectid, nest);
4975 root->alloc_bytenr += blocksize;
4980 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4981 if (IS_ERR(block_rsv))
4982 return ERR_CAST(block_rsv);
4984 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4985 empty_size, hint, &ins, 0, 0);
4989 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4990 root_objectid, nest);
4993 goto out_free_reserved;
4996 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4998 parent = ins.objectid;
4999 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5003 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5004 extent_op = btrfs_alloc_delayed_extent_op();
5010 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5012 memset(&extent_op->key, 0, sizeof(extent_op->key));
5013 extent_op->flags_to_set = flags;
5014 extent_op->update_key = skinny_metadata ? false : true;
5015 extent_op->update_flags = true;
5016 extent_op->level = level;
5018 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5019 ins.objectid, ins.offset, parent);
5020 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5021 root->root_key.objectid, false);
5022 btrfs_ref_tree_mod(fs_info, &generic_ref);
5023 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5025 goto out_free_delayed;
5030 btrfs_free_delayed_extent_op(extent_op);
5032 btrfs_tree_unlock(buf);
5033 free_extent_buffer(buf);
5035 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5037 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5038 return ERR_PTR(ret);
5041 struct walk_control {
5042 u64 refs[BTRFS_MAX_LEVEL];
5043 u64 flags[BTRFS_MAX_LEVEL];
5044 struct btrfs_key update_progress;
5045 struct btrfs_key drop_progress;
5057 #define DROP_REFERENCE 1
5058 #define UPDATE_BACKREF 2
5060 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5061 struct btrfs_root *root,
5062 struct walk_control *wc,
5063 struct btrfs_path *path)
5065 struct btrfs_fs_info *fs_info = root->fs_info;
5071 struct btrfs_key key;
5072 struct extent_buffer *eb;
5077 if (path->slots[wc->level] < wc->reada_slot) {
5078 wc->reada_count = wc->reada_count * 2 / 3;
5079 wc->reada_count = max(wc->reada_count, 2);
5081 wc->reada_count = wc->reada_count * 3 / 2;
5082 wc->reada_count = min_t(int, wc->reada_count,
5083 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5086 eb = path->nodes[wc->level];
5087 nritems = btrfs_header_nritems(eb);
5089 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5090 if (nread >= wc->reada_count)
5094 bytenr = btrfs_node_blockptr(eb, slot);
5095 generation = btrfs_node_ptr_generation(eb, slot);
5097 if (slot == path->slots[wc->level])
5100 if (wc->stage == UPDATE_BACKREF &&
5101 generation <= root->root_key.offset)
5104 /* We don't lock the tree block, it's OK to be racy here */
5105 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5106 wc->level - 1, 1, &refs,
5108 /* We don't care about errors in readahead. */
5113 if (wc->stage == DROP_REFERENCE) {
5117 if (wc->level == 1 &&
5118 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5120 if (!wc->update_ref ||
5121 generation <= root->root_key.offset)
5123 btrfs_node_key_to_cpu(eb, &key, slot);
5124 ret = btrfs_comp_cpu_keys(&key,
5125 &wc->update_progress);
5129 if (wc->level == 1 &&
5130 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5134 btrfs_readahead_node_child(eb, slot);
5137 wc->reada_slot = slot;
5141 * helper to process tree block while walking down the tree.
5143 * when wc->stage == UPDATE_BACKREF, this function updates
5144 * back refs for pointers in the block.
5146 * NOTE: return value 1 means we should stop walking down.
5148 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5149 struct btrfs_root *root,
5150 struct btrfs_path *path,
5151 struct walk_control *wc, int lookup_info)
5153 struct btrfs_fs_info *fs_info = root->fs_info;
5154 int level = wc->level;
5155 struct extent_buffer *eb = path->nodes[level];
5156 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5159 if (wc->stage == UPDATE_BACKREF &&
5160 btrfs_header_owner(eb) != root->root_key.objectid)
5164 * when reference count of tree block is 1, it won't increase
5165 * again. once full backref flag is set, we never clear it.
5168 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5169 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5170 BUG_ON(!path->locks[level]);
5171 ret = btrfs_lookup_extent_info(trans, fs_info,
5172 eb->start, level, 1,
5175 BUG_ON(ret == -ENOMEM);
5178 BUG_ON(wc->refs[level] == 0);
5181 if (wc->stage == DROP_REFERENCE) {
5182 if (wc->refs[level] > 1)
5185 if (path->locks[level] && !wc->keep_locks) {
5186 btrfs_tree_unlock_rw(eb, path->locks[level]);
5187 path->locks[level] = 0;
5192 /* wc->stage == UPDATE_BACKREF */
5193 if (!(wc->flags[level] & flag)) {
5194 BUG_ON(!path->locks[level]);
5195 ret = btrfs_inc_ref(trans, root, eb, 1);
5196 BUG_ON(ret); /* -ENOMEM */
5197 ret = btrfs_dec_ref(trans, root, eb, 0);
5198 BUG_ON(ret); /* -ENOMEM */
5199 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5200 btrfs_header_level(eb));
5201 BUG_ON(ret); /* -ENOMEM */
5202 wc->flags[level] |= flag;
5206 * the block is shared by multiple trees, so it's not good to
5207 * keep the tree lock
5209 if (path->locks[level] && level > 0) {
5210 btrfs_tree_unlock_rw(eb, path->locks[level]);
5211 path->locks[level] = 0;
5217 * This is used to verify a ref exists for this root to deal with a bug where we
5218 * would have a drop_progress key that hadn't been updated properly.
5220 static int check_ref_exists(struct btrfs_trans_handle *trans,
5221 struct btrfs_root *root, u64 bytenr, u64 parent,
5224 struct btrfs_path *path;
5225 struct btrfs_extent_inline_ref *iref;
5228 path = btrfs_alloc_path();
5232 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5233 root->fs_info->nodesize, parent,
5234 root->root_key.objectid, level, 0);
5235 btrfs_free_path(path);
5244 * helper to process tree block pointer.
5246 * when wc->stage == DROP_REFERENCE, this function checks
5247 * reference count of the block pointed to. if the block
5248 * is shared and we need update back refs for the subtree
5249 * rooted at the block, this function changes wc->stage to
5250 * UPDATE_BACKREF. if the block is shared and there is no
5251 * need to update back, this function drops the reference
5254 * NOTE: return value 1 means we should stop walking down.
5256 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5257 struct btrfs_root *root,
5258 struct btrfs_path *path,
5259 struct walk_control *wc, int *lookup_info)
5261 struct btrfs_fs_info *fs_info = root->fs_info;
5265 struct btrfs_tree_parent_check check = { 0 };
5266 struct btrfs_key key;
5267 struct btrfs_ref ref = { 0 };
5268 struct extent_buffer *next;
5269 int level = wc->level;
5272 bool need_account = false;
5274 generation = btrfs_node_ptr_generation(path->nodes[level],
5275 path->slots[level]);
5277 * if the lower level block was created before the snapshot
5278 * was created, we know there is no need to update back refs
5281 if (wc->stage == UPDATE_BACKREF &&
5282 generation <= root->root_key.offset) {
5287 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5289 check.level = level - 1;
5290 check.transid = generation;
5291 check.owner_root = root->root_key.objectid;
5292 check.has_first_key = true;
5293 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5294 path->slots[level]);
5296 next = find_extent_buffer(fs_info, bytenr);
5298 next = btrfs_find_create_tree_block(fs_info, bytenr,
5299 root->root_key.objectid, level - 1);
5301 return PTR_ERR(next);
5304 btrfs_tree_lock(next);
5306 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5307 &wc->refs[level - 1],
5308 &wc->flags[level - 1]);
5312 if (unlikely(wc->refs[level - 1] == 0)) {
5313 btrfs_err(fs_info, "Missing references.");
5319 if (wc->stage == DROP_REFERENCE) {
5320 if (wc->refs[level - 1] > 1) {
5321 need_account = true;
5323 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5326 if (!wc->update_ref ||
5327 generation <= root->root_key.offset)
5330 btrfs_node_key_to_cpu(path->nodes[level], &key,
5331 path->slots[level]);
5332 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5336 wc->stage = UPDATE_BACKREF;
5337 wc->shared_level = level - 1;
5341 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5345 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5346 btrfs_tree_unlock(next);
5347 free_extent_buffer(next);
5353 if (reada && level == 1)
5354 reada_walk_down(trans, root, wc, path);
5355 next = read_tree_block(fs_info, bytenr, &check);
5357 return PTR_ERR(next);
5358 } else if (!extent_buffer_uptodate(next)) {
5359 free_extent_buffer(next);
5362 btrfs_tree_lock(next);
5366 ASSERT(level == btrfs_header_level(next));
5367 if (level != btrfs_header_level(next)) {
5368 btrfs_err(root->fs_info, "mismatched level");
5372 path->nodes[level] = next;
5373 path->slots[level] = 0;
5374 path->locks[level] = BTRFS_WRITE_LOCK;
5380 wc->refs[level - 1] = 0;
5381 wc->flags[level - 1] = 0;
5382 if (wc->stage == DROP_REFERENCE) {
5383 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5384 parent = path->nodes[level]->start;
5386 ASSERT(root->root_key.objectid ==
5387 btrfs_header_owner(path->nodes[level]));
5388 if (root->root_key.objectid !=
5389 btrfs_header_owner(path->nodes[level])) {
5390 btrfs_err(root->fs_info,
5391 "mismatched block owner");
5399 * If we had a drop_progress we need to verify the refs are set
5400 * as expected. If we find our ref then we know that from here
5401 * on out everything should be correct, and we can clear the
5404 if (wc->restarted) {
5405 ret = check_ref_exists(trans, root, bytenr, parent,
5416 * Reloc tree doesn't contribute to qgroup numbers, and we have
5417 * already accounted them at merge time (replace_path),
5418 * thus we could skip expensive subtree trace here.
5420 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5422 ret = btrfs_qgroup_trace_subtree(trans, next,
5423 generation, level - 1);
5425 btrfs_err_rl(fs_info,
5426 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5432 * We need to update the next key in our walk control so we can
5433 * update the drop_progress key accordingly. We don't care if
5434 * find_next_key doesn't find a key because that means we're at
5435 * the end and are going to clean up now.
5437 wc->drop_level = level;
5438 find_next_key(path, level, &wc->drop_progress);
5440 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5441 fs_info->nodesize, parent);
5442 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5444 ret = btrfs_free_extent(trans, &ref);
5453 btrfs_tree_unlock(next);
5454 free_extent_buffer(next);
5460 * helper to process tree block while walking up the tree.
5462 * when wc->stage == DROP_REFERENCE, this function drops
5463 * reference count on the block.
5465 * when wc->stage == UPDATE_BACKREF, this function changes
5466 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5467 * to UPDATE_BACKREF previously while processing the block.
5469 * NOTE: return value 1 means we should stop walking up.
5471 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5472 struct btrfs_root *root,
5473 struct btrfs_path *path,
5474 struct walk_control *wc)
5476 struct btrfs_fs_info *fs_info = root->fs_info;
5478 int level = wc->level;
5479 struct extent_buffer *eb = path->nodes[level];
5482 if (wc->stage == UPDATE_BACKREF) {
5483 BUG_ON(wc->shared_level < level);
5484 if (level < wc->shared_level)
5487 ret = find_next_key(path, level + 1, &wc->update_progress);
5491 wc->stage = DROP_REFERENCE;
5492 wc->shared_level = -1;
5493 path->slots[level] = 0;
5496 * check reference count again if the block isn't locked.
5497 * we should start walking down the tree again if reference
5500 if (!path->locks[level]) {
5502 btrfs_tree_lock(eb);
5503 path->locks[level] = BTRFS_WRITE_LOCK;
5505 ret = btrfs_lookup_extent_info(trans, fs_info,
5506 eb->start, level, 1,
5510 btrfs_tree_unlock_rw(eb, path->locks[level]);
5511 path->locks[level] = 0;
5514 BUG_ON(wc->refs[level] == 0);
5515 if (wc->refs[level] == 1) {
5516 btrfs_tree_unlock_rw(eb, path->locks[level]);
5517 path->locks[level] = 0;
5523 /* wc->stage == DROP_REFERENCE */
5524 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5526 if (wc->refs[level] == 1) {
5528 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5529 ret = btrfs_dec_ref(trans, root, eb, 1);
5531 ret = btrfs_dec_ref(trans, root, eb, 0);
5532 BUG_ON(ret); /* -ENOMEM */
5533 if (is_fstree(root->root_key.objectid)) {
5534 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5536 btrfs_err_rl(fs_info,
5537 "error %d accounting leaf items, quota is out of sync, rescan required",
5542 /* make block locked assertion in btrfs_clean_tree_block happy */
5543 if (!path->locks[level] &&
5544 btrfs_header_generation(eb) == trans->transid) {
5545 btrfs_tree_lock(eb);
5546 path->locks[level] = BTRFS_WRITE_LOCK;
5548 btrfs_clean_tree_block(eb);
5551 if (eb == root->node) {
5552 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5554 else if (root->root_key.objectid != btrfs_header_owner(eb))
5555 goto owner_mismatch;
5557 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5558 parent = path->nodes[level + 1]->start;
5559 else if (root->root_key.objectid !=
5560 btrfs_header_owner(path->nodes[level + 1]))
5561 goto owner_mismatch;
5564 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5565 wc->refs[level] == 1);
5567 wc->refs[level] = 0;
5568 wc->flags[level] = 0;
5572 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5573 btrfs_header_owner(eb), root->root_key.objectid);
5577 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5578 struct btrfs_root *root,
5579 struct btrfs_path *path,
5580 struct walk_control *wc)
5582 int level = wc->level;
5583 int lookup_info = 1;
5586 while (level >= 0) {
5587 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5594 if (path->slots[level] >=
5595 btrfs_header_nritems(path->nodes[level]))
5598 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5600 path->slots[level]++;
5609 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5610 struct btrfs_root *root,
5611 struct btrfs_path *path,
5612 struct walk_control *wc, int max_level)
5614 int level = wc->level;
5617 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5618 while (level < max_level && path->nodes[level]) {
5620 if (path->slots[level] + 1 <
5621 btrfs_header_nritems(path->nodes[level])) {
5622 path->slots[level]++;
5625 ret = walk_up_proc(trans, root, path, wc);
5631 if (path->locks[level]) {
5632 btrfs_tree_unlock_rw(path->nodes[level],
5633 path->locks[level]);
5634 path->locks[level] = 0;
5636 free_extent_buffer(path->nodes[level]);
5637 path->nodes[level] = NULL;
5645 * drop a subvolume tree.
5647 * this function traverses the tree freeing any blocks that only
5648 * referenced by the tree.
5650 * when a shared tree block is found. this function decreases its
5651 * reference count by one. if update_ref is true, this function
5652 * also make sure backrefs for the shared block and all lower level
5653 * blocks are properly updated.
5655 * If called with for_reloc == 0, may exit early with -EAGAIN
5657 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5659 const bool is_reloc_root = (root->root_key.objectid ==
5660 BTRFS_TREE_RELOC_OBJECTID);
5661 struct btrfs_fs_info *fs_info = root->fs_info;
5662 struct btrfs_path *path;
5663 struct btrfs_trans_handle *trans;
5664 struct btrfs_root *tree_root = fs_info->tree_root;
5665 struct btrfs_root_item *root_item = &root->root_item;
5666 struct walk_control *wc;
5667 struct btrfs_key key;
5671 bool root_dropped = false;
5672 bool unfinished_drop = false;
5674 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5676 path = btrfs_alloc_path();
5682 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5684 btrfs_free_path(path);
5690 * Use join to avoid potential EINTR from transaction start. See
5691 * wait_reserve_ticket and the whole reservation callchain.
5694 trans = btrfs_join_transaction(tree_root);
5696 trans = btrfs_start_transaction(tree_root, 0);
5697 if (IS_ERR(trans)) {
5698 err = PTR_ERR(trans);
5702 err = btrfs_run_delayed_items(trans);
5707 * This will help us catch people modifying the fs tree while we're
5708 * dropping it. It is unsafe to mess with the fs tree while it's being
5709 * dropped as we unlock the root node and parent nodes as we walk down
5710 * the tree, assuming nothing will change. If something does change
5711 * then we'll have stale information and drop references to blocks we've
5714 set_bit(BTRFS_ROOT_DELETING, &root->state);
5715 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5717 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5718 level = btrfs_header_level(root->node);
5719 path->nodes[level] = btrfs_lock_root_node(root);
5720 path->slots[level] = 0;
5721 path->locks[level] = BTRFS_WRITE_LOCK;
5722 memset(&wc->update_progress, 0,
5723 sizeof(wc->update_progress));
5725 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5726 memcpy(&wc->update_progress, &key,
5727 sizeof(wc->update_progress));
5729 level = btrfs_root_drop_level(root_item);
5731 path->lowest_level = level;
5732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 path->lowest_level = 0;
5741 * unlock our path, this is safe because only this
5742 * function is allowed to delete this snapshot
5744 btrfs_unlock_up_safe(path, 0);
5746 level = btrfs_header_level(root->node);
5748 btrfs_tree_lock(path->nodes[level]);
5749 path->locks[level] = BTRFS_WRITE_LOCK;
5751 ret = btrfs_lookup_extent_info(trans, fs_info,
5752 path->nodes[level]->start,
5753 level, 1, &wc->refs[level],
5759 BUG_ON(wc->refs[level] == 0);
5761 if (level == btrfs_root_drop_level(root_item))
5764 btrfs_tree_unlock(path->nodes[level]);
5765 path->locks[level] = 0;
5766 WARN_ON(wc->refs[level] != 1);
5771 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5773 wc->shared_level = -1;
5774 wc->stage = DROP_REFERENCE;
5775 wc->update_ref = update_ref;
5777 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5781 ret = walk_down_tree(trans, root, path, wc);
5787 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5794 BUG_ON(wc->stage != DROP_REFERENCE);
5798 if (wc->stage == DROP_REFERENCE) {
5799 wc->drop_level = wc->level;
5800 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5802 path->slots[wc->drop_level]);
5804 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5805 &wc->drop_progress);
5806 btrfs_set_root_drop_level(root_item, wc->drop_level);
5808 BUG_ON(wc->level == 0);
5809 if (btrfs_should_end_transaction(trans) ||
5810 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5811 ret = btrfs_update_root(trans, tree_root,
5815 btrfs_abort_transaction(trans, ret);
5821 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5823 btrfs_end_transaction_throttle(trans);
5824 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5825 btrfs_debug(fs_info,
5826 "drop snapshot early exit");
5832 * Use join to avoid potential EINTR from transaction
5833 * start. See wait_reserve_ticket and the whole
5834 * reservation callchain.
5837 trans = btrfs_join_transaction(tree_root);
5839 trans = btrfs_start_transaction(tree_root, 0);
5840 if (IS_ERR(trans)) {
5841 err = PTR_ERR(trans);
5846 btrfs_release_path(path);
5850 ret = btrfs_del_root(trans, &root->root_key);
5852 btrfs_abort_transaction(trans, ret);
5857 if (!is_reloc_root) {
5858 ret = btrfs_find_root(tree_root, &root->root_key, path,
5861 btrfs_abort_transaction(trans, ret);
5864 } else if (ret > 0) {
5865 /* if we fail to delete the orphan item this time
5866 * around, it'll get picked up the next time.
5868 * The most common failure here is just -ENOENT.
5870 btrfs_del_orphan_item(trans, tree_root,
5871 root->root_key.objectid);
5876 * This subvolume is going to be completely dropped, and won't be
5877 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5878 * commit transaction time. So free it here manually.
5880 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5881 btrfs_qgroup_free_meta_all_pertrans(root);
5883 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5884 btrfs_add_dropped_root(trans, root);
5886 btrfs_put_root(root);
5887 root_dropped = true;
5890 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5892 btrfs_end_transaction_throttle(trans);
5895 btrfs_free_path(path);
5898 * We were an unfinished drop root, check to see if there are any
5899 * pending, and if not clear and wake up any waiters.
5901 if (!err && unfinished_drop)
5902 btrfs_maybe_wake_unfinished_drop(fs_info);
5905 * So if we need to stop dropping the snapshot for whatever reason we
5906 * need to make sure to add it back to the dead root list so that we
5907 * keep trying to do the work later. This also cleans up roots if we
5908 * don't have it in the radix (like when we recover after a power fail
5909 * or unmount) so we don't leak memory.
5911 if (!for_reloc && !root_dropped)
5912 btrfs_add_dead_root(root);
5917 * drop subtree rooted at tree block 'node'.
5919 * NOTE: this function will unlock and release tree block 'node'
5920 * only used by relocation code
5922 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5923 struct btrfs_root *root,
5924 struct extent_buffer *node,
5925 struct extent_buffer *parent)
5927 struct btrfs_fs_info *fs_info = root->fs_info;
5928 struct btrfs_path *path;
5929 struct walk_control *wc;
5935 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5937 path = btrfs_alloc_path();
5941 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5943 btrfs_free_path(path);
5947 btrfs_assert_tree_write_locked(parent);
5948 parent_level = btrfs_header_level(parent);
5949 atomic_inc(&parent->refs);
5950 path->nodes[parent_level] = parent;
5951 path->slots[parent_level] = btrfs_header_nritems(parent);
5953 btrfs_assert_tree_write_locked(node);
5954 level = btrfs_header_level(node);
5955 path->nodes[level] = node;
5956 path->slots[level] = 0;
5957 path->locks[level] = BTRFS_WRITE_LOCK;
5959 wc->refs[parent_level] = 1;
5960 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5962 wc->shared_level = -1;
5963 wc->stage = DROP_REFERENCE;
5966 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5969 wret = walk_down_tree(trans, root, path, wc);
5975 wret = walk_up_tree(trans, root, path, wc, parent_level);
5983 btrfs_free_path(path);
5987 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5990 return unpin_extent_range(fs_info, start, end, false);
5994 * It used to be that old block groups would be left around forever.
5995 * Iterating over them would be enough to trim unused space. Since we
5996 * now automatically remove them, we also need to iterate over unallocated
5999 * We don't want a transaction for this since the discard may take a
6000 * substantial amount of time. We don't require that a transaction be
6001 * running, but we do need to take a running transaction into account
6002 * to ensure that we're not discarding chunks that were released or
6003 * allocated in the current transaction.
6005 * Holding the chunks lock will prevent other threads from allocating
6006 * or releasing chunks, but it won't prevent a running transaction
6007 * from committing and releasing the memory that the pending chunks
6008 * list head uses. For that, we need to take a reference to the
6009 * transaction and hold the commit root sem. We only need to hold
6010 * it while performing the free space search since we have already
6011 * held back allocations.
6013 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6015 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6020 /* Discard not supported = nothing to do. */
6021 if (!bdev_max_discard_sectors(device->bdev))
6024 /* Not writable = nothing to do. */
6025 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6028 /* No free space = nothing to do. */
6029 if (device->total_bytes <= device->bytes_used)
6035 struct btrfs_fs_info *fs_info = device->fs_info;
6038 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6042 find_first_clear_extent_bit(&device->alloc_state, start,
6044 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6046 /* Check if there are any CHUNK_* bits left */
6047 if (start > device->total_bytes) {
6048 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6049 btrfs_warn_in_rcu(fs_info,
6050 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6051 start, end - start + 1,
6052 btrfs_dev_name(device),
6053 device->total_bytes);
6054 mutex_unlock(&fs_info->chunk_mutex);
6059 /* Ensure we skip the reserved space on each device. */
6060 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6063 * If find_first_clear_extent_bit find a range that spans the
6064 * end of the device it will set end to -1, in this case it's up
6065 * to the caller to trim the value to the size of the device.
6067 end = min(end, device->total_bytes - 1);
6069 len = end - start + 1;
6071 /* We didn't find any extents */
6073 mutex_unlock(&fs_info->chunk_mutex);
6078 ret = btrfs_issue_discard(device->bdev, start, len,
6081 set_extent_bits(&device->alloc_state, start,
6084 mutex_unlock(&fs_info->chunk_mutex);
6092 if (fatal_signal_pending(current)) {
6104 * Trim the whole filesystem by:
6105 * 1) trimming the free space in each block group
6106 * 2) trimming the unallocated space on each device
6108 * This will also continue trimming even if a block group or device encounters
6109 * an error. The return value will be the last error, or 0 if nothing bad
6112 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6114 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6115 struct btrfs_block_group *cache = NULL;
6116 struct btrfs_device *device;
6118 u64 range_end = U64_MAX;
6128 if (range->start == U64_MAX)
6132 * Check range overflow if range->len is set.
6133 * The default range->len is U64_MAX.
6135 if (range->len != U64_MAX &&
6136 check_add_overflow(range->start, range->len, &range_end))
6139 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6140 for (; cache; cache = btrfs_next_block_group(cache)) {
6141 if (cache->start >= range_end) {
6142 btrfs_put_block_group(cache);
6146 start = max(range->start, cache->start);
6147 end = min(range_end, cache->start + cache->length);
6149 if (end - start >= range->minlen) {
6150 if (!btrfs_block_group_done(cache)) {
6151 ret = btrfs_cache_block_group(cache, true);
6158 ret = btrfs_trim_block_group(cache,
6164 trimmed += group_trimmed;
6175 "failed to trim %llu block group(s), last error %d",
6178 mutex_lock(&fs_devices->device_list_mutex);
6179 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6180 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6183 ret = btrfs_trim_free_extents(device, &group_trimmed);
6190 trimmed += group_trimmed;
6192 mutex_unlock(&fs_devices->device_list_mutex);
6196 "failed to trim %llu device(s), last error %d",
6197 dev_failed, dev_ret);
6198 range->len = trimmed;