1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
9 #include "print-tree.h"
10 #include "transaction.h"
12 #include "accessors.h"
14 #include "delalloc-space.h"
17 #include "file-item.h"
20 static struct kmem_cache *btrfs_inode_defrag_cachep;
23 * When auto defrag is enabled we queue up these defrag structs to remember
24 * which inodes need defragging passes.
27 struct rb_node rb_node;
31 * Transid where the defrag was added, we search for extents newer than
40 * The extent size threshold for autodefrag.
42 * This value is different for compressed/non-compressed extents, thus
43 * needs to be passed from higher layer.
44 * (aka, inode_should_defrag())
49 static int __compare_inode_defrag(struct inode_defrag *defrag1,
50 struct inode_defrag *defrag2)
52 if (defrag1->root > defrag2->root)
54 else if (defrag1->root < defrag2->root)
56 else if (defrag1->ino > defrag2->ino)
58 else if (defrag1->ino < defrag2->ino)
65 * Pop a record for an inode into the defrag tree. The lock must be held
68 * If you're inserting a record for an older transid than an existing record,
69 * the transid already in the tree is lowered.
71 * If an existing record is found the defrag item you pass in is freed.
73 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74 struct inode_defrag *defrag)
76 struct btrfs_fs_info *fs_info = inode->root->fs_info;
77 struct inode_defrag *entry;
79 struct rb_node *parent = NULL;
82 p = &fs_info->defrag_inodes.rb_node;
85 entry = rb_entry(parent, struct inode_defrag, rb_node);
87 ret = __compare_inode_defrag(defrag, entry);
91 p = &parent->rb_right;
94 * If we're reinserting an entry for an old defrag run,
95 * make sure to lower the transid of our existing
98 if (defrag->transid < entry->transid)
99 entry->transid = defrag->transid;
100 entry->extent_thresh = min(defrag->extent_thresh,
101 entry->extent_thresh);
105 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106 rb_link_node(&defrag->rb_node, parent, p);
107 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
111 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
113 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
116 if (btrfs_fs_closing(fs_info))
123 * Insert a defrag record for this inode if auto defrag is enabled.
125 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126 struct btrfs_inode *inode, u32 extent_thresh)
128 struct btrfs_root *root = inode->root;
129 struct btrfs_fs_info *fs_info = root->fs_info;
130 struct inode_defrag *defrag;
134 if (!__need_auto_defrag(fs_info))
137 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
141 transid = trans->transid;
143 transid = inode->root->last_trans;
145 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
149 defrag->ino = btrfs_ino(inode);
150 defrag->transid = transid;
151 defrag->root = root->root_key.objectid;
152 defrag->extent_thresh = extent_thresh;
154 spin_lock(&fs_info->defrag_inodes_lock);
155 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
157 * If we set IN_DEFRAG flag and evict the inode from memory,
158 * and then re-read this inode, this new inode doesn't have
159 * IN_DEFRAG flag. At the case, we may find the existed defrag.
161 ret = __btrfs_add_inode_defrag(inode, defrag);
163 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
167 spin_unlock(&fs_info->defrag_inodes_lock);
172 * Pick the defragable inode that we want, if it doesn't exist, we will get the
175 static struct inode_defrag *btrfs_pick_defrag_inode(
176 struct btrfs_fs_info *fs_info, u64 root, u64 ino)
178 struct inode_defrag *entry = NULL;
179 struct inode_defrag tmp;
181 struct rb_node *parent = NULL;
187 spin_lock(&fs_info->defrag_inodes_lock);
188 p = fs_info->defrag_inodes.rb_node;
191 entry = rb_entry(parent, struct inode_defrag, rb_node);
193 ret = __compare_inode_defrag(&tmp, entry);
197 p = parent->rb_right;
202 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203 parent = rb_next(parent);
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
211 rb_erase(parent, &fs_info->defrag_inodes);
212 spin_unlock(&fs_info->defrag_inodes_lock);
216 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
218 struct inode_defrag *defrag;
219 struct rb_node *node;
221 spin_lock(&fs_info->defrag_inodes_lock);
222 node = rb_first(&fs_info->defrag_inodes);
224 rb_erase(node, &fs_info->defrag_inodes);
225 defrag = rb_entry(node, struct inode_defrag, rb_node);
226 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
228 cond_resched_lock(&fs_info->defrag_inodes_lock);
230 node = rb_first(&fs_info->defrag_inodes);
232 spin_unlock(&fs_info->defrag_inodes_lock);
235 #define BTRFS_DEFRAG_BATCH 1024
237 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238 struct inode_defrag *defrag)
240 struct btrfs_root *inode_root;
242 struct btrfs_ioctl_defrag_range_args range;
247 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
249 if (!__need_auto_defrag(fs_info))
253 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254 if (IS_ERR(inode_root)) {
255 ret = PTR_ERR(inode_root);
259 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260 btrfs_put_root(inode_root);
262 ret = PTR_ERR(inode);
266 if (cur >= i_size_read(inode)) {
271 /* Do a chunk of defrag */
272 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273 memset(&range, 0, sizeof(range));
276 range.extent_thresh = defrag->extent_thresh;
278 sb_start_write(fs_info->sb);
279 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
281 sb_end_write(fs_info->sb);
287 cur = max(cur + fs_info->sectorsize, range.start);
291 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
296 * Run through the list of inodes in the FS that need defragging.
298 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
300 struct inode_defrag *defrag;
302 u64 root_objectid = 0;
304 atomic_inc(&fs_info->defrag_running);
306 /* Pause the auto defragger. */
307 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
310 if (!__need_auto_defrag(fs_info))
313 /* find an inode to defrag */
314 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
316 if (root_objectid || first_ino) {
325 first_ino = defrag->ino + 1;
326 root_objectid = defrag->root;
328 __btrfs_run_defrag_inode(fs_info, defrag);
330 atomic_dec(&fs_info->defrag_running);
333 * During unmount, we use the transaction_wait queue to wait for the
336 wake_up(&fs_info->transaction_wait);
341 * Defrag all the leaves in a given btree.
342 * Read all the leaves and try to get key order to
343 * better reflect disk order
346 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
347 struct btrfs_root *root)
349 struct btrfs_path *path = NULL;
350 struct btrfs_key key;
354 int next_key_ret = 0;
357 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
360 path = btrfs_alloc_path();
364 level = btrfs_header_level(root->node);
369 if (root->defrag_progress.objectid == 0) {
370 struct extent_buffer *root_node;
373 root_node = btrfs_lock_root_node(root);
374 nritems = btrfs_header_nritems(root_node);
375 root->defrag_max.objectid = 0;
376 /* from above we know this is not a leaf */
377 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
379 btrfs_tree_unlock(root_node);
380 free_extent_buffer(root_node);
381 memset(&key, 0, sizeof(key));
383 memcpy(&key, &root->defrag_progress, sizeof(key));
386 path->keep_locks = 1;
388 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
395 btrfs_release_path(path);
397 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
398 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
399 * a deadlock (attempting to write lock an already write locked leaf).
401 path->lowest_level = 1;
402 wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
408 if (!path->nodes[1]) {
413 * The node at level 1 must always be locked when our path has
414 * keep_locks set and lowest_level is 1, regardless of the value of
417 BUG_ON(path->locks[1] == 0);
418 ret = btrfs_realloc_node(trans, root,
421 &root->defrag_progress);
423 WARN_ON(ret == -EAGAIN);
427 * Now that we reallocated the node we can find the next key. Note that
428 * btrfs_find_next_key() can release our path and do another search
429 * without COWing, this is because even with path->keep_locks = 1,
430 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
431 * node when path->slots[node_level - 1] does not point to the last
432 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
433 * we search for the next key after reallocating our node.
435 path->slots[1] = btrfs_header_nritems(path->nodes[1]);
436 next_key_ret = btrfs_find_next_key(root, path, &key, 1,
437 BTRFS_OLDEST_GENERATION);
438 if (next_key_ret == 0) {
439 memcpy(&root->defrag_progress, &key, sizeof(key));
443 btrfs_free_path(path);
444 if (ret == -EAGAIN) {
445 if (root->defrag_max.objectid > root->defrag_progress.objectid)
447 if (root->defrag_max.type > root->defrag_progress.type)
449 if (root->defrag_max.offset > root->defrag_progress.offset)
455 memset(&root->defrag_progress, 0,
456 sizeof(root->defrag_progress));
462 * Defrag specific helper to get an extent map.
464 * Differences between this and btrfs_get_extent() are:
466 * - No extent_map will be added to inode->extent_tree
467 * To reduce memory usage in the long run.
469 * - Extra optimization to skip file extents older than @newer_than
470 * By using btrfs_search_forward() we can skip entire file ranges that
471 * have extents created in past transactions, because btrfs_search_forward()
472 * will not visit leaves and nodes with a generation smaller than given
473 * minimal generation threshold (@newer_than).
475 * Return valid em if we find a file extent matching the requirement.
476 * Return NULL if we can not find a file extent matching the requirement.
478 * Return ERR_PTR() for error.
480 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
481 u64 start, u64 newer_than)
483 struct btrfs_root *root = inode->root;
484 struct btrfs_file_extent_item *fi;
485 struct btrfs_path path = { 0 };
486 struct extent_map *em;
487 struct btrfs_key key;
488 u64 ino = btrfs_ino(inode);
491 em = alloc_extent_map();
498 key.type = BTRFS_EXTENT_DATA_KEY;
502 ret = btrfs_search_forward(root, &key, &path, newer_than);
505 /* Can't find anything newer */
509 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
513 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
515 * If btrfs_search_slot() makes path to point beyond nritems,
516 * we should not have an empty leaf, as this inode must at
517 * least have its INODE_ITEM.
519 ASSERT(btrfs_header_nritems(path.nodes[0]));
520 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
522 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
523 /* Perfect match, no need to go one slot back */
524 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
528 /* We didn't find a perfect match, needs to go one slot back */
529 if (path.slots[0] > 0) {
530 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
531 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
536 /* Iterate through the path to find a file extent covering @start */
540 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
543 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
546 * We may go one slot back to INODE_REF/XATTR item, then
547 * need to go forward until we reach an EXTENT_DATA.
548 * But we should still has the correct ino as key.objectid.
550 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
553 /* It's beyond our target range, definitely not extent found */
554 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
558 * | |<- File extent ->|
561 * This means there is a hole between start and key.offset.
563 if (key.offset > start) {
565 em->orig_start = start;
566 em->block_start = EXTENT_MAP_HOLE;
567 em->len = key.offset - start;
571 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
572 struct btrfs_file_extent_item);
573 extent_end = btrfs_file_extent_end(&path);
576 * |<- file extent ->| |
579 * We haven't reached start, search next slot.
581 if (extent_end <= start)
584 /* Now this extent covers @start, convert it to em */
585 btrfs_extent_item_to_extent_map(inode, &path, fi, em);
588 ret = btrfs_next_item(root, &path);
594 btrfs_release_path(&path);
598 btrfs_release_path(&path);
603 btrfs_release_path(&path);
608 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
609 u64 newer_than, bool locked)
611 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
612 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
613 struct extent_map *em;
614 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
617 * Hopefully we have this extent in the tree already, try without the
620 read_lock(&em_tree->lock);
621 em = lookup_extent_mapping(em_tree, start, sectorsize);
622 read_unlock(&em_tree->lock);
625 * We can get a merged extent, in that case, we need to re-search
626 * tree to get the original em for defrag.
628 * If @newer_than is 0 or em::generation < newer_than, we can trust
629 * this em, as either we don't care about the generation, or the
630 * merged extent map will be rejected anyway.
632 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
633 newer_than && em->generation >= newer_than) {
639 struct extent_state *cached = NULL;
640 u64 end = start + sectorsize - 1;
642 /* Get the big lock and read metadata off disk. */
644 lock_extent(io_tree, start, end, &cached);
645 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
647 unlock_extent(io_tree, start, end, &cached);
656 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
657 const struct extent_map *em)
659 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
660 return BTRFS_MAX_COMPRESSED;
661 return fs_info->max_extent_size;
664 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
665 u32 extent_thresh, u64 newer_than, bool locked)
667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
668 struct extent_map *next;
671 /* This is the last extent */
672 if (em->start + em->len >= i_size_read(inode))
676 * Here we need to pass @newer_then when checking the next extent, or
677 * we will hit a case we mark current extent for defrag, but the next
678 * one will not be a target.
679 * This will just cause extra IO without really reducing the fragments.
681 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
682 /* No more em or hole */
683 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
685 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
688 * If the next extent is at its max capacity, defragging current extent
689 * makes no sense, as the total number of extents won't change.
691 if (next->len >= get_extent_max_capacity(fs_info, em))
693 /* Skip older extent */
694 if (next->generation < newer_than)
696 /* Also check extent size */
697 if (next->len >= extent_thresh)
702 free_extent_map(next);
707 * Prepare one page to be defragged.
711 * - Returned page is locked and has been set up properly.
712 * - No ordered extent exists in the page.
713 * - The page is uptodate.
715 * NOTE: Caller should also wait for page writeback after the cluster is
716 * prepared, here we don't do writeback wait for each page.
718 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
720 struct address_space *mapping = inode->vfs_inode.i_mapping;
721 gfp_t mask = btrfs_alloc_write_mask(mapping);
722 u64 page_start = (u64)index << PAGE_SHIFT;
723 u64 page_end = page_start + PAGE_SIZE - 1;
724 struct extent_state *cached_state = NULL;
729 page = find_or_create_page(mapping, index, mask);
731 return ERR_PTR(-ENOMEM);
734 * Since we can defragment files opened read-only, we can encounter
735 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
736 * can't do I/O using huge pages yet, so return an error for now.
737 * Filesystem transparent huge pages are typically only used for
738 * executables that explicitly enable them, so this isn't very
741 if (PageCompound(page)) {
744 return ERR_PTR(-ETXTBSY);
747 ret = set_page_extent_mapped(page);
754 /* Wait for any existing ordered extent in the range */
756 struct btrfs_ordered_extent *ordered;
758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
759 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
760 unlock_extent(&inode->io_tree, page_start, page_end,
766 btrfs_start_ordered_extent(ordered, 1);
767 btrfs_put_ordered_extent(ordered);
770 * We unlocked the page above, so we need check if it was
773 if (page->mapping != mapping || !PagePrivate(page)) {
781 * Now the page range has no ordered extent any more. Read the page to
784 if (!PageUptodate(page)) {
785 btrfs_read_folio(NULL, page_folio(page));
787 if (page->mapping != mapping || !PagePrivate(page)) {
792 if (!PageUptodate(page)) {
795 return ERR_PTR(-EIO);
801 struct defrag_target_range {
802 struct list_head list;
808 * Collect all valid target extents.
810 * @start: file offset to lookup
811 * @len: length to lookup
812 * @extent_thresh: file extent size threshold, any extent size >= this value
814 * @newer_than: only defrag extents newer than this value
815 * @do_compress: whether the defrag is doing compression
816 * if true, @extent_thresh will be ignored and all regular
817 * file extents meeting @newer_than will be targets.
818 * @locked: if the range has already held extent lock
819 * @target_list: list of targets file extents
821 static int defrag_collect_targets(struct btrfs_inode *inode,
822 u64 start, u64 len, u32 extent_thresh,
823 u64 newer_than, bool do_compress,
824 bool locked, struct list_head *target_list,
825 u64 *last_scanned_ret)
827 struct btrfs_fs_info *fs_info = inode->root->fs_info;
828 bool last_is_target = false;
832 while (cur < start + len) {
833 struct extent_map *em;
834 struct defrag_target_range *new;
835 bool next_mergeable = true;
838 last_is_target = false;
839 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
844 * If the file extent is an inlined one, we may still want to
845 * defrag it (fallthrough) if it will cause a regular extent.
846 * This is for users who want to convert inline extents to
847 * regular ones through max_inline= mount option.
849 if (em->block_start == EXTENT_MAP_INLINE &&
850 em->len <= inode->root->fs_info->max_inline)
853 /* Skip hole/delalloc/preallocated extents */
854 if (em->block_start == EXTENT_MAP_HOLE ||
855 em->block_start == EXTENT_MAP_DELALLOC ||
856 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
859 /* Skip older extent */
860 if (em->generation < newer_than)
863 /* This em is under writeback, no need to defrag */
864 if (em->generation == (u64)-1)
868 * Our start offset might be in the middle of an existing extent
869 * map, so take that into account.
871 range_len = em->len - (cur - em->start);
873 * If this range of the extent map is already flagged for delalloc,
876 * 1) We could deadlock later, when trying to reserve space for
877 * delalloc, because in case we can't immediately reserve space
878 * the flusher can start delalloc and wait for the respective
879 * ordered extents to complete. The deadlock would happen
880 * because we do the space reservation while holding the range
881 * locked, and starting writeback, or finishing an ordered
882 * extent, requires locking the range;
884 * 2) If there's delalloc there, it means there's dirty pages for
885 * which writeback has not started yet (we clean the delalloc
886 * flag when starting writeback and after creating an ordered
887 * extent). If we mark pages in an adjacent range for defrag,
888 * then we will have a larger contiguous range for delalloc,
889 * very likely resulting in a larger extent after writeback is
890 * triggered (except in a case of free space fragmentation).
892 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
893 EXTENT_DELALLOC, 0, NULL))
897 * For do_compress case, we want to compress all valid file
898 * extents, thus no @extent_thresh or mergeable check.
903 /* Skip too large extent */
904 if (range_len >= extent_thresh)
908 * Skip extents already at its max capacity, this is mostly for
909 * compressed extents, which max cap is only 128K.
911 if (em->len >= get_extent_max_capacity(fs_info, em))
915 * Normally there are no more extents after an inline one, thus
916 * @next_mergeable will normally be false and not defragged.
917 * So if an inline extent passed all above checks, just add it
918 * for defrag, and be converted to regular extents.
920 if (em->block_start == EXTENT_MAP_INLINE)
923 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
924 extent_thresh, newer_than, locked);
925 if (!next_mergeable) {
926 struct defrag_target_range *last;
928 /* Empty target list, no way to merge with last entry */
929 if (list_empty(target_list))
931 last = list_entry(target_list->prev,
932 struct defrag_target_range, list);
933 /* Not mergeable with last entry */
934 if (last->start + last->len != cur)
937 /* Mergeable, fall through to add it to @target_list. */
941 last_is_target = true;
942 range_len = min(extent_map_end(em), start + len) - cur;
944 * This one is a good target, check if it can be merged into
945 * last range of the target list.
947 if (!list_empty(target_list)) {
948 struct defrag_target_range *last;
950 last = list_entry(target_list->prev,
951 struct defrag_target_range, list);
952 ASSERT(last->start + last->len <= cur);
953 if (last->start + last->len == cur) {
954 /* Mergeable, enlarge the last entry */
955 last->len += range_len;
958 /* Fall through to allocate a new entry */
961 /* Allocate new defrag_target_range */
962 new = kmalloc(sizeof(*new), GFP_NOFS);
969 new->len = range_len;
970 list_add_tail(&new->list, target_list);
973 cur = extent_map_end(em);
977 struct defrag_target_range *entry;
978 struct defrag_target_range *tmp;
980 list_for_each_entry_safe(entry, tmp, target_list, list) {
981 list_del_init(&entry->list);
985 if (!ret && last_scanned_ret) {
987 * If the last extent is not a target, the caller can skip to
988 * the end of that extent.
989 * Otherwise, we can only go the end of the specified range.
992 *last_scanned_ret = max(cur, *last_scanned_ret);
994 *last_scanned_ret = max(start + len, *last_scanned_ret);
999 #define CLUSTER_SIZE (SZ_256K)
1000 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1003 * Defrag one contiguous target range.
1005 * @inode: target inode
1006 * @target: target range to defrag
1007 * @pages: locked pages covering the defrag range
1008 * @nr_pages: number of locked pages
1010 * Caller should ensure:
1012 * - Pages are prepared
1013 * Pages should be locked, no ordered extent in the pages range,
1016 * - Extent bits are locked
1018 static int defrag_one_locked_target(struct btrfs_inode *inode,
1019 struct defrag_target_range *target,
1020 struct page **pages, int nr_pages,
1021 struct extent_state **cached_state)
1023 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1024 struct extent_changeset *data_reserved = NULL;
1025 const u64 start = target->start;
1026 const u64 len = target->len;
1027 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1028 unsigned long start_index = start >> PAGE_SHIFT;
1029 unsigned long first_index = page_index(pages[0]);
1033 ASSERT(last_index - first_index + 1 <= nr_pages);
1035 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1038 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1039 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1040 EXTENT_DEFRAG, cached_state);
1041 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1043 /* Update the page status */
1044 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1045 ClearPageChecked(pages[i]);
1046 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1048 btrfs_delalloc_release_extents(inode, len);
1049 extent_changeset_free(data_reserved);
1054 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1055 u32 extent_thresh, u64 newer_than, bool do_compress,
1056 u64 *last_scanned_ret)
1058 struct extent_state *cached_state = NULL;
1059 struct defrag_target_range *entry;
1060 struct defrag_target_range *tmp;
1061 LIST_HEAD(target_list);
1062 struct page **pages;
1063 const u32 sectorsize = inode->root->fs_info->sectorsize;
1064 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1065 u64 start_index = start >> PAGE_SHIFT;
1066 unsigned int nr_pages = last_index - start_index + 1;
1070 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1071 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1073 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1077 /* Prepare all pages */
1078 for (i = 0; i < nr_pages; i++) {
1079 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1080 if (IS_ERR(pages[i])) {
1081 ret = PTR_ERR(pages[i]);
1086 for (i = 0; i < nr_pages; i++)
1087 wait_on_page_writeback(pages[i]);
1089 /* Lock the pages range */
1090 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1091 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1094 * Now we have a consistent view about the extent map, re-check
1095 * which range really needs to be defragged.
1097 * And this time we have extent locked already, pass @locked = true
1098 * so that we won't relock the extent range and cause deadlock.
1100 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1101 newer_than, do_compress, true,
1102 &target_list, last_scanned_ret);
1106 list_for_each_entry(entry, &target_list, list) {
1107 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1113 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1114 list_del_init(&entry->list);
1118 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1119 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1122 for (i = 0; i < nr_pages; i++) {
1124 unlock_page(pages[i]);
1132 static int defrag_one_cluster(struct btrfs_inode *inode,
1133 struct file_ra_state *ra,
1134 u64 start, u32 len, u32 extent_thresh,
1135 u64 newer_than, bool do_compress,
1136 unsigned long *sectors_defragged,
1137 unsigned long max_sectors,
1138 u64 *last_scanned_ret)
1140 const u32 sectorsize = inode->root->fs_info->sectorsize;
1141 struct defrag_target_range *entry;
1142 struct defrag_target_range *tmp;
1143 LIST_HEAD(target_list);
1146 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1147 newer_than, do_compress, false,
1148 &target_list, NULL);
1152 list_for_each_entry(entry, &target_list, list) {
1153 u32 range_len = entry->len;
1155 /* Reached or beyond the limit */
1156 if (max_sectors && *sectors_defragged >= max_sectors) {
1162 range_len = min_t(u32, range_len,
1163 (max_sectors - *sectors_defragged) * sectorsize);
1166 * If defrag_one_range() has updated last_scanned_ret,
1167 * our range may already be invalid (e.g. hole punched).
1168 * Skip if our range is before last_scanned_ret, as there is
1169 * no need to defrag the range anymore.
1171 if (entry->start + range_len <= *last_scanned_ret)
1175 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1176 ra, NULL, entry->start >> PAGE_SHIFT,
1177 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1178 (entry->start >> PAGE_SHIFT) + 1);
1180 * Here we may not defrag any range if holes are punched before
1181 * we locked the pages.
1182 * But that's fine, it only affects the @sectors_defragged
1185 ret = defrag_one_range(inode, entry->start, range_len,
1186 extent_thresh, newer_than, do_compress,
1190 *sectors_defragged += range_len >>
1191 inode->root->fs_info->sectorsize_bits;
1194 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1195 list_del_init(&entry->list);
1199 *last_scanned_ret = max(*last_scanned_ret, start + len);
1204 * Entry point to file defragmentation.
1206 * @inode: inode to be defragged
1207 * @ra: readahead state (can be NUL)
1208 * @range: defrag options including range and flags
1209 * @newer_than: minimum transid to defrag
1210 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1211 * will be defragged.
1213 * Return <0 for error.
1214 * Return >=0 for the number of sectors defragged, and range->start will be updated
1215 * to indicate the file offset where next defrag should be started at.
1216 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1217 * defragging all the range).
1219 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1220 struct btrfs_ioctl_defrag_range_args *range,
1221 u64 newer_than, unsigned long max_to_defrag)
1223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1224 unsigned long sectors_defragged = 0;
1225 u64 isize = i_size_read(inode);
1228 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1229 bool ra_allocated = false;
1230 int compress_type = BTRFS_COMPRESS_ZLIB;
1232 u32 extent_thresh = range->extent_thresh;
1233 pgoff_t start_index;
1238 if (range->start >= isize)
1242 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1244 if (range->compress_type)
1245 compress_type = range->compress_type;
1248 if (extent_thresh == 0)
1249 extent_thresh = SZ_256K;
1251 if (range->start + range->len > range->start) {
1252 /* Got a specific range */
1253 last_byte = min(isize, range->start + range->len);
1255 /* Defrag until file end */
1259 /* Align the range */
1260 cur = round_down(range->start, fs_info->sectorsize);
1261 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1264 * If we were not given a ra, allocate a readahead context. As
1265 * readahead is just an optimization, defrag will work without it so
1266 * we don't error out.
1269 ra_allocated = true;
1270 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1272 file_ra_state_init(ra, inode->i_mapping);
1276 * Make writeback start from the beginning of the range, so that the
1277 * defrag range can be written sequentially.
1279 start_index = cur >> PAGE_SHIFT;
1280 if (start_index < inode->i_mapping->writeback_index)
1281 inode->i_mapping->writeback_index = start_index;
1283 while (cur < last_byte) {
1284 const unsigned long prev_sectors_defragged = sectors_defragged;
1285 u64 last_scanned = cur;
1288 if (btrfs_defrag_cancelled(fs_info)) {
1293 /* We want the cluster end at page boundary when possible */
1294 cluster_end = (((cur >> PAGE_SHIFT) +
1295 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1296 cluster_end = min(cluster_end, last_byte);
1298 btrfs_inode_lock(BTRFS_I(inode), 0);
1299 if (IS_SWAPFILE(inode)) {
1301 btrfs_inode_unlock(BTRFS_I(inode), 0);
1304 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1305 btrfs_inode_unlock(BTRFS_I(inode), 0);
1309 BTRFS_I(inode)->defrag_compress = compress_type;
1310 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1311 cluster_end + 1 - cur, extent_thresh,
1312 newer_than, do_compress, §ors_defragged,
1313 max_to_defrag, &last_scanned);
1315 if (sectors_defragged > prev_sectors_defragged)
1316 balance_dirty_pages_ratelimited(inode->i_mapping);
1318 btrfs_inode_unlock(BTRFS_I(inode), 0);
1321 cur = max(cluster_end + 1, last_scanned);
1332 * Update range.start for autodefrag, this will indicate where to start
1336 if (sectors_defragged) {
1338 * We have defragged some sectors, for compression case they
1339 * need to be written back immediately.
1341 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1342 filemap_flush(inode->i_mapping);
1343 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1344 &BTRFS_I(inode)->runtime_flags))
1345 filemap_flush(inode->i_mapping);
1347 if (range->compress_type == BTRFS_COMPRESS_LZO)
1348 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1349 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1350 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1351 ret = sectors_defragged;
1354 btrfs_inode_lock(BTRFS_I(inode), 0);
1355 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1356 btrfs_inode_unlock(BTRFS_I(inode), 0);
1361 void __cold btrfs_auto_defrag_exit(void)
1363 kmem_cache_destroy(btrfs_inode_defrag_cachep);
1366 int __init btrfs_auto_defrag_init(void)
1368 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1369 sizeof(struct inode_defrag), 0,
1372 if (!btrfs_inode_defrag_cachep)