2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
104 #include "internal.h"
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
110 static struct kmem_cache *policy_cache;
111 static struct kmem_cache *sn_cache;
113 /* Highest zone. An specific allocation for a zone below that is not
115 enum zone_type policy_zone = 0;
118 * run-time system-wide default policy => local allocation
120 static struct mempolicy default_policy = {
121 .refcnt = ATOMIC_INIT(1), /* never free it */
122 .mode = MPOL_PREFERRED,
123 .flags = MPOL_F_LOCAL,
126 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128 struct mempolicy *get_task_policy(struct task_struct *p)
130 struct mempolicy *pol = p->mempolicy;
136 node = numa_node_id();
137 if (node != NUMA_NO_NODE) {
138 pol = &preferred_node_policy[node];
139 /* preferred_node_policy is not initialised early in boot */
144 return &default_policy;
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
150 } mpol_ops[MPOL_MAX];
152 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
154 return pol->flags & MPOL_MODE_FLAGS;
157 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
158 const nodemask_t *rel)
161 nodes_fold(tmp, *orig, nodes_weight(*rel));
162 nodes_onto(*ret, tmp, *rel);
165 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
167 if (nodes_empty(*nodes))
169 pol->v.nodes = *nodes;
173 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 pol->flags |= MPOL_F_LOCAL; /* local allocation */
177 else if (nodes_empty(*nodes))
178 return -EINVAL; /* no allowed nodes */
180 pol->v.preferred_node = first_node(*nodes);
184 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
186 if (nodes_empty(*nodes))
188 pol->v.nodes = *nodes;
193 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
194 * any, for the new policy. mpol_new() has already validated the nodes
195 * parameter with respect to the policy mode and flags. But, we need to
196 * handle an empty nodemask with MPOL_PREFERRED here.
198 * Must be called holding task's alloc_lock to protect task's mems_allowed
199 * and mempolicy. May also be called holding the mmap_semaphore for write.
201 static int mpol_set_nodemask(struct mempolicy *pol,
202 const nodemask_t *nodes, struct nodemask_scratch *nsc)
206 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
210 nodes_and(nsc->mask1,
211 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
215 nodes = NULL; /* explicit local allocation */
217 if (pol->flags & MPOL_F_RELATIVE_NODES)
218 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
220 nodes_and(nsc->mask2, *nodes, nsc->mask1);
222 if (mpol_store_user_nodemask(pol))
223 pol->w.user_nodemask = *nodes;
225 pol->w.cpuset_mems_allowed =
226 cpuset_current_mems_allowed;
230 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
232 ret = mpol_ops[pol->mode].create(pol, NULL);
237 * This function just creates a new policy, does some check and simple
238 * initialization. You must invoke mpol_set_nodemask() to set nodes.
240 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 struct mempolicy *policy;
245 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
246 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
248 if (mode == MPOL_DEFAULT) {
249 if (nodes && !nodes_empty(*nodes))
250 return ERR_PTR(-EINVAL);
256 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
257 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
258 * All other modes require a valid pointer to a non-empty nodemask.
260 if (mode == MPOL_PREFERRED) {
261 if (nodes_empty(*nodes)) {
262 if (((flags & MPOL_F_STATIC_NODES) ||
263 (flags & MPOL_F_RELATIVE_NODES)))
264 return ERR_PTR(-EINVAL);
266 } else if (mode == MPOL_LOCAL) {
267 if (!nodes_empty(*nodes) ||
268 (flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES))
270 return ERR_PTR(-EINVAL);
271 mode = MPOL_PREFERRED;
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
279 policy->flags = flags;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
287 if (!atomic_dec_and_test(&p->refcnt))
289 kmem_cache_free(policy_cache, p);
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
296 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
300 if (pol->flags & MPOL_F_STATIC_NODES)
301 nodes_and(tmp, pol->w.user_nodemask, *nodes);
302 else if (pol->flags & MPOL_F_RELATIVE_NODES)
303 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
305 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
307 pol->w.cpuset_mems_allowed = tmp;
310 if (nodes_empty(tmp))
316 static void mpol_rebind_preferred(struct mempolicy *pol,
317 const nodemask_t *nodes)
321 if (pol->flags & MPOL_F_STATIC_NODES) {
322 int node = first_node(pol->w.user_nodemask);
324 if (node_isset(node, *nodes)) {
325 pol->v.preferred_node = node;
326 pol->flags &= ~MPOL_F_LOCAL;
328 pol->flags |= MPOL_F_LOCAL;
329 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 pol->v.preferred_node = first_node(tmp);
332 } else if (!(pol->flags & MPOL_F_LOCAL)) {
333 pol->v.preferred_node = node_remap(pol->v.preferred_node,
334 pol->w.cpuset_mems_allowed,
336 pol->w.cpuset_mems_allowed = *nodes;
341 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 * Per-vma policies are protected by mmap_sem. Allocations using per-task
344 * policies are protected by task->mems_allowed_seq to prevent a premature
345 * OOM/allocation failure due to parallel nodemask modification.
347 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
351 if (!mpol_store_user_nodemask(pol) &&
352 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 mpol_ops[pol->mode].rebind(pol, newmask);
359 * Wrapper for mpol_rebind_policy() that just requires task
360 * pointer, and updates task mempolicy.
362 * Called with task's alloc_lock held.
365 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 mpol_rebind_policy(tsk->mempolicy, new);
371 * Rebind each vma in mm to new nodemask.
373 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 struct vm_area_struct *vma;
380 down_write(&mm->mmap_sem);
381 for (vma = mm->mmap; vma; vma = vma->vm_next)
382 mpol_rebind_policy(vma->vm_policy, new);
383 up_write(&mm->mmap_sem);
386 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 .rebind = mpol_rebind_default,
390 [MPOL_INTERLEAVE] = {
391 .create = mpol_new_interleave,
392 .rebind = mpol_rebind_nodemask,
395 .create = mpol_new_preferred,
396 .rebind = mpol_rebind_preferred,
399 .create = mpol_new_bind,
400 .rebind = mpol_rebind_nodemask,
404 static void migrate_page_add(struct page *page, struct list_head *pagelist,
405 unsigned long flags);
408 struct list_head *pagelist;
411 struct vm_area_struct *prev;
415 * Scan through pages checking if pages follow certain conditions,
416 * and move them to the pagelist if they do.
418 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
419 unsigned long end, struct mm_walk *walk)
421 struct vm_area_struct *vma = walk->vma;
423 struct queue_pages *qp = walk->private;
424 unsigned long flags = qp->flags;
429 if (pmd_trans_huge(*pmd)) {
430 ptl = pmd_lock(walk->mm, pmd);
431 if (pmd_trans_huge(*pmd)) {
432 page = pmd_page(*pmd);
433 if (is_huge_zero_page(page)) {
435 __split_huge_pmd(vma, pmd, addr, false, NULL);
440 ret = split_huge_page(page);
451 if (pmd_trans_unstable(pmd))
454 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
455 for (; addr != end; pte++, addr += PAGE_SIZE) {
456 if (!pte_present(*pte))
458 page = vm_normal_page(vma, addr, *pte);
462 * vm_normal_page() filters out zero pages, but there might
463 * still be PageReserved pages to skip, perhaps in a VDSO.
465 if (PageReserved(page))
467 nid = page_to_nid(page);
468 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
470 if (PageTransCompound(page)) {
472 pte_unmap_unlock(pte, ptl);
474 ret = split_huge_page(page);
477 /* Failed to split -- skip. */
479 pte = pte_offset_map_lock(walk->mm, pmd,
486 migrate_page_add(page, qp->pagelist, flags);
488 pte_unmap_unlock(pte - 1, ptl);
493 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
494 unsigned long addr, unsigned long end,
495 struct mm_walk *walk)
497 #ifdef CONFIG_HUGETLB_PAGE
498 struct queue_pages *qp = walk->private;
499 unsigned long flags = qp->flags;
505 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
506 entry = huge_ptep_get(pte);
507 if (!pte_present(entry))
509 page = pte_page(entry);
510 nid = page_to_nid(page);
511 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
513 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
514 if (flags & (MPOL_MF_MOVE_ALL) ||
515 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
516 isolate_huge_page(page, qp->pagelist);
525 #ifdef CONFIG_NUMA_BALANCING
527 * This is used to mark a range of virtual addresses to be inaccessible.
528 * These are later cleared by a NUMA hinting fault. Depending on these
529 * faults, pages may be migrated for better NUMA placement.
531 * This is assuming that NUMA faults are handled using PROT_NONE. If
532 * an architecture makes a different choice, it will need further
533 * changes to the core.
535 unsigned long change_prot_numa(struct vm_area_struct *vma,
536 unsigned long addr, unsigned long end)
540 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
542 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
547 static unsigned long change_prot_numa(struct vm_area_struct *vma,
548 unsigned long addr, unsigned long end)
552 #endif /* CONFIG_NUMA_BALANCING */
554 static int queue_pages_test_walk(unsigned long start, unsigned long end,
555 struct mm_walk *walk)
557 struct vm_area_struct *vma = walk->vma;
558 struct queue_pages *qp = walk->private;
559 unsigned long endvma = vma->vm_end;
560 unsigned long flags = qp->flags;
562 if (!vma_migratable(vma))
567 if (vma->vm_start > start)
568 start = vma->vm_start;
570 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
571 if (!vma->vm_next && vma->vm_end < end)
573 if (qp->prev && qp->prev->vm_end < vma->vm_start)
579 if (flags & MPOL_MF_LAZY) {
580 /* Similar to task_numa_work, skip inaccessible VMAs */
581 if (!is_vm_hugetlb_page(vma) &&
582 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
583 !(vma->vm_flags & VM_MIXEDMAP))
584 change_prot_numa(vma, start, endvma);
588 /* queue pages from current vma */
589 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
595 * Walk through page tables and collect pages to be migrated.
597 * If pages found in a given range are on a set of nodes (determined by
598 * @nodes and @flags,) it's isolated and queued to the pagelist which is
599 * passed via @private.)
602 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
603 nodemask_t *nodes, unsigned long flags,
604 struct list_head *pagelist)
606 struct queue_pages qp = {
607 .pagelist = pagelist,
612 struct mm_walk queue_pages_walk = {
613 .hugetlb_entry = queue_pages_hugetlb,
614 .pmd_entry = queue_pages_pte_range,
615 .test_walk = queue_pages_test_walk,
620 return walk_page_range(start, end, &queue_pages_walk);
624 * Apply policy to a single VMA
625 * This must be called with the mmap_sem held for writing.
627 static int vma_replace_policy(struct vm_area_struct *vma,
628 struct mempolicy *pol)
631 struct mempolicy *old;
632 struct mempolicy *new;
634 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
635 vma->vm_start, vma->vm_end, vma->vm_pgoff,
636 vma->vm_ops, vma->vm_file,
637 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
643 if (vma->vm_ops && vma->vm_ops->set_policy) {
644 err = vma->vm_ops->set_policy(vma, new);
649 old = vma->vm_policy;
650 vma->vm_policy = new; /* protected by mmap_sem */
659 /* Step 2: apply policy to a range and do splits. */
660 static int mbind_range(struct mm_struct *mm, unsigned long start,
661 unsigned long end, struct mempolicy *new_pol)
663 struct vm_area_struct *next;
664 struct vm_area_struct *prev;
665 struct vm_area_struct *vma;
668 unsigned long vmstart;
671 vma = find_vma(mm, start);
672 if (!vma || vma->vm_start > start)
676 if (start > vma->vm_start)
679 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
681 vmstart = max(start, vma->vm_start);
682 vmend = min(end, vma->vm_end);
684 if (mpol_equal(vma_policy(vma), new_pol))
687 pgoff = vma->vm_pgoff +
688 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
689 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
690 vma->anon_vma, vma->vm_file, pgoff,
691 new_pol, vma->vm_userfaultfd_ctx);
695 if (mpol_equal(vma_policy(vma), new_pol))
697 /* vma_merge() joined vma && vma->next, case 8 */
700 if (vma->vm_start != vmstart) {
701 err = split_vma(vma->vm_mm, vma, vmstart, 1);
705 if (vma->vm_end != vmend) {
706 err = split_vma(vma->vm_mm, vma, vmend, 0);
711 err = vma_replace_policy(vma, new_pol);
720 /* Set the process memory policy */
721 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
724 struct mempolicy *new, *old;
725 NODEMASK_SCRATCH(scratch);
731 new = mpol_new(mode, flags, nodes);
738 ret = mpol_set_nodemask(new, nodes, scratch);
740 task_unlock(current);
744 old = current->mempolicy;
745 current->mempolicy = new;
746 if (new && new->mode == MPOL_INTERLEAVE)
747 current->il_prev = MAX_NUMNODES-1;
748 task_unlock(current);
752 NODEMASK_SCRATCH_FREE(scratch);
757 * Return nodemask for policy for get_mempolicy() query
759 * Called with task's alloc_lock held
761 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
764 if (p == &default_policy)
770 case MPOL_INTERLEAVE:
774 if (!(p->flags & MPOL_F_LOCAL))
775 node_set(p->v.preferred_node, *nodes);
776 /* else return empty node mask for local allocation */
783 static int lookup_node(unsigned long addr)
788 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
790 err = page_to_nid(p);
796 /* Retrieve NUMA policy */
797 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
798 unsigned long addr, unsigned long flags)
801 struct mm_struct *mm = current->mm;
802 struct vm_area_struct *vma = NULL;
803 struct mempolicy *pol = current->mempolicy;
806 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
809 if (flags & MPOL_F_MEMS_ALLOWED) {
810 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
812 *policy = 0; /* just so it's initialized */
814 *nmask = cpuset_current_mems_allowed;
815 task_unlock(current);
819 if (flags & MPOL_F_ADDR) {
821 * Do NOT fall back to task policy if the
822 * vma/shared policy at addr is NULL. We
823 * want to return MPOL_DEFAULT in this case.
825 down_read(&mm->mmap_sem);
826 vma = find_vma_intersection(mm, addr, addr+1);
828 up_read(&mm->mmap_sem);
831 if (vma->vm_ops && vma->vm_ops->get_policy)
832 pol = vma->vm_ops->get_policy(vma, addr);
834 pol = vma->vm_policy;
839 pol = &default_policy; /* indicates default behavior */
841 if (flags & MPOL_F_NODE) {
842 if (flags & MPOL_F_ADDR) {
843 err = lookup_node(addr);
847 } else if (pol == current->mempolicy &&
848 pol->mode == MPOL_INTERLEAVE) {
849 *policy = next_node_in(current->il_prev, pol->v.nodes);
855 *policy = pol == &default_policy ? MPOL_DEFAULT :
858 * Internal mempolicy flags must be masked off before exposing
859 * the policy to userspace.
861 *policy |= (pol->flags & MPOL_MODE_FLAGS);
865 up_read(¤t->mm->mmap_sem);
871 if (mpol_store_user_nodemask(pol)) {
872 *nmask = pol->w.user_nodemask;
875 get_policy_nodemask(pol, nmask);
876 task_unlock(current);
883 up_read(¤t->mm->mmap_sem);
887 #ifdef CONFIG_MIGRATION
891 static void migrate_page_add(struct page *page, struct list_head *pagelist,
895 * Avoid migrating a page that is shared with others.
897 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
898 if (!isolate_lru_page(page)) {
899 list_add_tail(&page->lru, pagelist);
900 inc_node_page_state(page, NR_ISOLATED_ANON +
901 page_is_file_cache(page));
906 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
909 return alloc_huge_page_node(page_hstate(compound_head(page)),
912 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
917 * Migrate pages from one node to a target node.
918 * Returns error or the number of pages not migrated.
920 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
928 node_set(source, nmask);
931 * This does not "check" the range but isolates all pages that
932 * need migration. Between passing in the full user address
933 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
935 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
936 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
937 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
939 if (!list_empty(&pagelist)) {
940 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
941 MIGRATE_SYNC, MR_SYSCALL);
943 putback_movable_pages(&pagelist);
950 * Move pages between the two nodesets so as to preserve the physical
951 * layout as much as possible.
953 * Returns the number of page that could not be moved.
955 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
956 const nodemask_t *to, int flags)
962 err = migrate_prep();
966 down_read(&mm->mmap_sem);
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
1000 while (!nodes_empty(tmp)) {
1002 int source = NUMA_NO_NODE;
1005 for_each_node_mask(s, tmp) {
1008 * do_migrate_pages() tries to maintain the relative
1009 * node relationship of the pages established between
1010 * threads and memory areas.
1012 * However if the number of source nodes is not equal to
1013 * the number of destination nodes we can not preserve
1014 * this node relative relationship. In that case, skip
1015 * copying memory from a node that is in the destination
1018 * Example: [2,3,4] -> [3,4,5] moves everything.
1019 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1023 (node_isset(s, *to)))
1026 d = node_remap(s, *from, *to);
1030 source = s; /* Node moved. Memorize */
1033 /* dest not in remaining from nodes? */
1034 if (!node_isset(dest, tmp))
1037 if (source == NUMA_NO_NODE)
1040 node_clear(source, tmp);
1041 err = migrate_to_node(mm, source, dest, flags);
1047 up_read(&mm->mmap_sem);
1055 * Allocate a new page for page migration based on vma policy.
1056 * Start by assuming the page is mapped by the same vma as contains @start.
1057 * Search forward from there, if not. N.B., this assumes that the
1058 * list of pages handed to migrate_pages()--which is how we get here--
1059 * is in virtual address order.
1061 static struct page *new_page(struct page *page, unsigned long start, int **x)
1063 struct vm_area_struct *vma;
1064 unsigned long uninitialized_var(address);
1066 vma = find_vma(current->mm, start);
1068 address = page_address_in_vma(page, vma);
1069 if (address != -EFAULT)
1074 if (PageHuge(page)) {
1076 return alloc_huge_page_noerr(vma, address, 1);
1079 * if !vma, alloc_page_vma() will use task or system default policy
1081 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1085 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1086 unsigned long flags)
1090 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1091 const nodemask_t *to, int flags)
1096 static struct page *new_page(struct page *page, unsigned long start, int **x)
1102 static long do_mbind(unsigned long start, unsigned long len,
1103 unsigned short mode, unsigned short mode_flags,
1104 nodemask_t *nmask, unsigned long flags)
1106 struct mm_struct *mm = current->mm;
1107 struct mempolicy *new;
1110 LIST_HEAD(pagelist);
1112 if (flags & ~(unsigned long)MPOL_MF_VALID)
1114 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1117 if (start & ~PAGE_MASK)
1120 if (mode == MPOL_DEFAULT)
1121 flags &= ~MPOL_MF_STRICT;
1123 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1131 new = mpol_new(mode, mode_flags, nmask);
1133 return PTR_ERR(new);
1135 if (flags & MPOL_MF_LAZY)
1136 new->flags |= MPOL_F_MOF;
1139 * If we are using the default policy then operation
1140 * on discontinuous address spaces is okay after all
1143 flags |= MPOL_MF_DISCONTIG_OK;
1145 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1146 start, start + len, mode, mode_flags,
1147 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1149 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1151 err = migrate_prep();
1156 NODEMASK_SCRATCH(scratch);
1158 down_write(&mm->mmap_sem);
1160 err = mpol_set_nodemask(new, nmask, scratch);
1161 task_unlock(current);
1163 up_write(&mm->mmap_sem);
1166 NODEMASK_SCRATCH_FREE(scratch);
1171 err = queue_pages_range(mm, start, end, nmask,
1172 flags | MPOL_MF_INVERT, &pagelist);
1174 err = mbind_range(mm, start, end, new);
1179 if (!list_empty(&pagelist)) {
1180 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1181 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1182 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1184 putback_movable_pages(&pagelist);
1187 if (nr_failed && (flags & MPOL_MF_STRICT))
1190 putback_movable_pages(&pagelist);
1192 up_write(&mm->mmap_sem);
1199 * User space interface with variable sized bitmaps for nodelists.
1202 /* Copy a node mask from user space. */
1203 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1204 unsigned long maxnode)
1207 unsigned long nlongs;
1208 unsigned long endmask;
1211 nodes_clear(*nodes);
1212 if (maxnode == 0 || !nmask)
1214 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1217 nlongs = BITS_TO_LONGS(maxnode);
1218 if ((maxnode % BITS_PER_LONG) == 0)
1221 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1223 /* When the user specified more nodes than supported just check
1224 if the non supported part is all zero. */
1225 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1226 if (nlongs > PAGE_SIZE/sizeof(long))
1228 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1230 if (get_user(t, nmask + k))
1232 if (k == nlongs - 1) {
1238 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1242 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1244 nodes_addr(*nodes)[nlongs-1] &= endmask;
1248 /* Copy a kernel node mask to user space */
1249 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1252 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1253 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1255 if (copy > nbytes) {
1256 if (copy > PAGE_SIZE)
1258 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1262 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1265 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1266 unsigned long, mode, const unsigned long __user *, nmask,
1267 unsigned long, maxnode, unsigned, flags)
1271 unsigned short mode_flags;
1273 mode_flags = mode & MPOL_MODE_FLAGS;
1274 mode &= ~MPOL_MODE_FLAGS;
1275 if (mode >= MPOL_MAX)
1277 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1278 (mode_flags & MPOL_F_RELATIVE_NODES))
1280 err = get_nodes(&nodes, nmask, maxnode);
1283 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1286 /* Set the process memory policy */
1287 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1288 unsigned long, maxnode)
1292 unsigned short flags;
1294 flags = mode & MPOL_MODE_FLAGS;
1295 mode &= ~MPOL_MODE_FLAGS;
1296 if ((unsigned int)mode >= MPOL_MAX)
1298 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1300 err = get_nodes(&nodes, nmask, maxnode);
1303 return do_set_mempolicy(mode, flags, &nodes);
1306 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1307 const unsigned long __user *, old_nodes,
1308 const unsigned long __user *, new_nodes)
1310 const struct cred *cred = current_cred(), *tcred;
1311 struct mm_struct *mm = NULL;
1312 struct task_struct *task;
1313 nodemask_t task_nodes;
1317 NODEMASK_SCRATCH(scratch);
1322 old = &scratch->mask1;
1323 new = &scratch->mask2;
1325 err = get_nodes(old, old_nodes, maxnode);
1329 err = get_nodes(new, new_nodes, maxnode);
1333 /* Find the mm_struct */
1335 task = pid ? find_task_by_vpid(pid) : current;
1341 get_task_struct(task);
1346 * Check if this process has the right to modify the specified
1347 * process. The right exists if the process has administrative
1348 * capabilities, superuser privileges or the same
1349 * userid as the target process.
1351 tcred = __task_cred(task);
1352 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1353 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1354 !capable(CAP_SYS_NICE)) {
1361 task_nodes = cpuset_mems_allowed(task);
1362 /* Is the user allowed to access the target nodes? */
1363 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1368 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1373 err = security_task_movememory(task);
1377 mm = get_task_mm(task);
1378 put_task_struct(task);
1385 err = do_migrate_pages(mm, old, new,
1386 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1390 NODEMASK_SCRATCH_FREE(scratch);
1395 put_task_struct(task);
1401 /* Retrieve NUMA policy */
1402 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1403 unsigned long __user *, nmask, unsigned long, maxnode,
1404 unsigned long, addr, unsigned long, flags)
1407 int uninitialized_var(pval);
1410 if (nmask != NULL && maxnode < MAX_NUMNODES)
1413 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1418 if (policy && put_user(pval, policy))
1422 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1427 #ifdef CONFIG_COMPAT
1429 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1430 compat_ulong_t __user *, nmask,
1431 compat_ulong_t, maxnode,
1432 compat_ulong_t, addr, compat_ulong_t, flags)
1435 unsigned long __user *nm = NULL;
1436 unsigned long nr_bits, alloc_size;
1437 DECLARE_BITMAP(bm, MAX_NUMNODES);
1439 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1440 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1443 nm = compat_alloc_user_space(alloc_size);
1445 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1447 if (!err && nmask) {
1448 unsigned long copy_size;
1449 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1450 err = copy_from_user(bm, nm, copy_size);
1451 /* ensure entire bitmap is zeroed */
1452 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1453 err |= compat_put_bitmap(nmask, bm, nr_bits);
1459 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1460 compat_ulong_t, maxnode)
1462 unsigned long __user *nm = NULL;
1463 unsigned long nr_bits, alloc_size;
1464 DECLARE_BITMAP(bm, MAX_NUMNODES);
1466 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1467 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1470 if (compat_get_bitmap(bm, nmask, nr_bits))
1472 nm = compat_alloc_user_space(alloc_size);
1473 if (copy_to_user(nm, bm, alloc_size))
1477 return sys_set_mempolicy(mode, nm, nr_bits+1);
1480 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1481 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1482 compat_ulong_t, maxnode, compat_ulong_t, flags)
1484 unsigned long __user *nm = NULL;
1485 unsigned long nr_bits, alloc_size;
1488 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1489 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1492 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1494 nm = compat_alloc_user_space(alloc_size);
1495 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1499 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1504 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1507 struct mempolicy *pol = NULL;
1510 if (vma->vm_ops && vma->vm_ops->get_policy) {
1511 pol = vma->vm_ops->get_policy(vma, addr);
1512 } else if (vma->vm_policy) {
1513 pol = vma->vm_policy;
1516 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1517 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1518 * count on these policies which will be dropped by
1519 * mpol_cond_put() later
1521 if (mpol_needs_cond_ref(pol))
1530 * get_vma_policy(@vma, @addr)
1531 * @vma: virtual memory area whose policy is sought
1532 * @addr: address in @vma for shared policy lookup
1534 * Returns effective policy for a VMA at specified address.
1535 * Falls back to current->mempolicy or system default policy, as necessary.
1536 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1537 * count--added by the get_policy() vm_op, as appropriate--to protect against
1538 * freeing by another task. It is the caller's responsibility to free the
1539 * extra reference for shared policies.
1541 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1544 struct mempolicy *pol = __get_vma_policy(vma, addr);
1547 pol = get_task_policy(current);
1552 bool vma_policy_mof(struct vm_area_struct *vma)
1554 struct mempolicy *pol;
1556 if (vma->vm_ops && vma->vm_ops->get_policy) {
1559 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1560 if (pol && (pol->flags & MPOL_F_MOF))
1567 pol = vma->vm_policy;
1569 pol = get_task_policy(current);
1571 return pol->flags & MPOL_F_MOF;
1574 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1576 enum zone_type dynamic_policy_zone = policy_zone;
1578 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1581 * if policy->v.nodes has movable memory only,
1582 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1584 * policy->v.nodes is intersect with node_states[N_MEMORY].
1585 * so if the following test faile, it implies
1586 * policy->v.nodes has movable memory only.
1588 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1589 dynamic_policy_zone = ZONE_MOVABLE;
1591 return zone >= dynamic_policy_zone;
1595 * Return a nodemask representing a mempolicy for filtering nodes for
1598 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1600 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1601 if (unlikely(policy->mode == MPOL_BIND) &&
1602 apply_policy_zone(policy, gfp_zone(gfp)) &&
1603 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1604 return &policy->v.nodes;
1609 /* Return the node id preferred by the given mempolicy, or the given id */
1610 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1613 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1614 nd = policy->v.preferred_node;
1617 * __GFP_THISNODE shouldn't even be used with the bind policy
1618 * because we might easily break the expectation to stay on the
1619 * requested node and not break the policy.
1621 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1627 /* Do dynamic interleaving for a process */
1628 static unsigned interleave_nodes(struct mempolicy *policy)
1631 struct task_struct *me = current;
1633 next = next_node_in(me->il_prev, policy->v.nodes);
1634 if (next < MAX_NUMNODES)
1640 * Depending on the memory policy provide a node from which to allocate the
1643 unsigned int mempolicy_slab_node(void)
1645 struct mempolicy *policy;
1646 int node = numa_mem_id();
1651 policy = current->mempolicy;
1652 if (!policy || policy->flags & MPOL_F_LOCAL)
1655 switch (policy->mode) {
1656 case MPOL_PREFERRED:
1658 * handled MPOL_F_LOCAL above
1660 return policy->v.preferred_node;
1662 case MPOL_INTERLEAVE:
1663 return interleave_nodes(policy);
1669 * Follow bind policy behavior and start allocation at the
1672 struct zonelist *zonelist;
1673 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1674 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1675 z = first_zones_zonelist(zonelist, highest_zoneidx,
1677 return z->zone ? z->zone->node : node;
1686 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1687 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1688 * number of present nodes.
1690 static unsigned offset_il_node(struct mempolicy *pol,
1691 struct vm_area_struct *vma, unsigned long n)
1693 unsigned nnodes = nodes_weight(pol->v.nodes);
1699 return numa_node_id();
1700 target = (unsigned int)n % nnodes;
1701 nid = first_node(pol->v.nodes);
1702 for (i = 0; i < target; i++)
1703 nid = next_node(nid, pol->v.nodes);
1707 /* Determine a node number for interleave */
1708 static inline unsigned interleave_nid(struct mempolicy *pol,
1709 struct vm_area_struct *vma, unsigned long addr, int shift)
1715 * for small pages, there is no difference between
1716 * shift and PAGE_SHIFT, so the bit-shift is safe.
1717 * for huge pages, since vm_pgoff is in units of small
1718 * pages, we need to shift off the always 0 bits to get
1721 BUG_ON(shift < PAGE_SHIFT);
1722 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1723 off += (addr - vma->vm_start) >> shift;
1724 return offset_il_node(pol, vma, off);
1726 return interleave_nodes(pol);
1729 #ifdef CONFIG_HUGETLBFS
1731 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1732 * @vma: virtual memory area whose policy is sought
1733 * @addr: address in @vma for shared policy lookup and interleave policy
1734 * @gfp_flags: for requested zone
1735 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1736 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1738 * Returns a nid suitable for a huge page allocation and a pointer
1739 * to the struct mempolicy for conditional unref after allocation.
1740 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1741 * @nodemask for filtering the zonelist.
1743 * Must be protected by read_mems_allowed_begin()
1745 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1746 struct mempolicy **mpol, nodemask_t **nodemask)
1750 *mpol = get_vma_policy(vma, addr);
1751 *nodemask = NULL; /* assume !MPOL_BIND */
1753 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1754 nid = interleave_nid(*mpol, vma, addr,
1755 huge_page_shift(hstate_vma(vma)));
1757 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1758 if ((*mpol)->mode == MPOL_BIND)
1759 *nodemask = &(*mpol)->v.nodes;
1765 * init_nodemask_of_mempolicy
1767 * If the current task's mempolicy is "default" [NULL], return 'false'
1768 * to indicate default policy. Otherwise, extract the policy nodemask
1769 * for 'bind' or 'interleave' policy into the argument nodemask, or
1770 * initialize the argument nodemask to contain the single node for
1771 * 'preferred' or 'local' policy and return 'true' to indicate presence
1772 * of non-default mempolicy.
1774 * We don't bother with reference counting the mempolicy [mpol_get/put]
1775 * because the current task is examining it's own mempolicy and a task's
1776 * mempolicy is only ever changed by the task itself.
1778 * N.B., it is the caller's responsibility to free a returned nodemask.
1780 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1782 struct mempolicy *mempolicy;
1785 if (!(mask && current->mempolicy))
1789 mempolicy = current->mempolicy;
1790 switch (mempolicy->mode) {
1791 case MPOL_PREFERRED:
1792 if (mempolicy->flags & MPOL_F_LOCAL)
1793 nid = numa_node_id();
1795 nid = mempolicy->v.preferred_node;
1796 init_nodemask_of_node(mask, nid);
1801 case MPOL_INTERLEAVE:
1802 *mask = mempolicy->v.nodes;
1808 task_unlock(current);
1815 * mempolicy_nodemask_intersects
1817 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1818 * policy. Otherwise, check for intersection between mask and the policy
1819 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1820 * policy, always return true since it may allocate elsewhere on fallback.
1822 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1824 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1825 const nodemask_t *mask)
1827 struct mempolicy *mempolicy;
1833 mempolicy = tsk->mempolicy;
1837 switch (mempolicy->mode) {
1838 case MPOL_PREFERRED:
1840 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1841 * allocate from, they may fallback to other nodes when oom.
1842 * Thus, it's possible for tsk to have allocated memory from
1847 case MPOL_INTERLEAVE:
1848 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1858 /* Allocate a page in interleaved policy.
1859 Own path because it needs to do special accounting. */
1860 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1865 page = __alloc_pages(gfp, order, nid);
1866 if (page && page_to_nid(page) == nid)
1867 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1872 * alloc_pages_vma - Allocate a page for a VMA.
1875 * %GFP_USER user allocation.
1876 * %GFP_KERNEL kernel allocations,
1877 * %GFP_HIGHMEM highmem/user allocations,
1878 * %GFP_FS allocation should not call back into a file system.
1879 * %GFP_ATOMIC don't sleep.
1881 * @order:Order of the GFP allocation.
1882 * @vma: Pointer to VMA or NULL if not available.
1883 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1884 * @node: Which node to prefer for allocation (modulo policy).
1885 * @hugepage: for hugepages try only the preferred node if possible
1887 * This function allocates a page from the kernel page pool and applies
1888 * a NUMA policy associated with the VMA or the current process.
1889 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1890 * mm_struct of the VMA to prevent it from going away. Should be used for
1891 * all allocations for pages that will be mapped into user space. Returns
1892 * NULL when no page can be allocated.
1895 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1896 unsigned long addr, int node, bool hugepage)
1898 struct mempolicy *pol;
1903 pol = get_vma_policy(vma, addr);
1905 if (pol->mode == MPOL_INTERLEAVE) {
1908 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1910 page = alloc_page_interleave(gfp, order, nid);
1914 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1915 int hpage_node = node;
1918 * For hugepage allocation and non-interleave policy which
1919 * allows the current node (or other explicitly preferred
1920 * node) we only try to allocate from the current/preferred
1921 * node and don't fall back to other nodes, as the cost of
1922 * remote accesses would likely offset THP benefits.
1924 * If the policy is interleave, or does not allow the current
1925 * node in its nodemask, we allocate the standard way.
1927 if (pol->mode == MPOL_PREFERRED &&
1928 !(pol->flags & MPOL_F_LOCAL))
1929 hpage_node = pol->v.preferred_node;
1931 nmask = policy_nodemask(gfp, pol);
1932 if (!nmask || node_isset(hpage_node, *nmask)) {
1934 page = __alloc_pages_node(hpage_node,
1935 gfp | __GFP_THISNODE, order);
1940 nmask = policy_nodemask(gfp, pol);
1941 preferred_nid = policy_node(gfp, pol, node);
1942 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
1949 * alloc_pages_current - Allocate pages.
1952 * %GFP_USER user allocation,
1953 * %GFP_KERNEL kernel allocation,
1954 * %GFP_HIGHMEM highmem allocation,
1955 * %GFP_FS don't call back into a file system.
1956 * %GFP_ATOMIC don't sleep.
1957 * @order: Power of two of allocation size in pages. 0 is a single page.
1959 * Allocate a page from the kernel page pool. When not in
1960 * interrupt context and apply the current process NUMA policy.
1961 * Returns NULL when no page can be allocated.
1963 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1965 struct mempolicy *pol = &default_policy;
1968 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
1969 pol = get_task_policy(current);
1972 * No reference counting needed for current->mempolicy
1973 * nor system default_policy
1975 if (pol->mode == MPOL_INTERLEAVE)
1976 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1978 page = __alloc_pages_nodemask(gfp, order,
1979 policy_node(gfp, pol, numa_node_id()),
1980 policy_nodemask(gfp, pol));
1984 EXPORT_SYMBOL(alloc_pages_current);
1986 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
1988 struct mempolicy *pol = mpol_dup(vma_policy(src));
1991 return PTR_ERR(pol);
1992 dst->vm_policy = pol;
1997 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1998 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1999 * with the mems_allowed returned by cpuset_mems_allowed(). This
2000 * keeps mempolicies cpuset relative after its cpuset moves. See
2001 * further kernel/cpuset.c update_nodemask().
2003 * current's mempolicy may be rebinded by the other task(the task that changes
2004 * cpuset's mems), so we needn't do rebind work for current task.
2007 /* Slow path of a mempolicy duplicate */
2008 struct mempolicy *__mpol_dup(struct mempolicy *old)
2010 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2013 return ERR_PTR(-ENOMEM);
2015 /* task's mempolicy is protected by alloc_lock */
2016 if (old == current->mempolicy) {
2019 task_unlock(current);
2023 if (current_cpuset_is_being_rebound()) {
2024 nodemask_t mems = cpuset_mems_allowed(current);
2025 mpol_rebind_policy(new, &mems);
2027 atomic_set(&new->refcnt, 1);
2031 /* Slow path of a mempolicy comparison */
2032 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2036 if (a->mode != b->mode)
2038 if (a->flags != b->flags)
2040 if (mpol_store_user_nodemask(a))
2041 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2047 case MPOL_INTERLEAVE:
2048 return !!nodes_equal(a->v.nodes, b->v.nodes);
2049 case MPOL_PREFERRED:
2050 return a->v.preferred_node == b->v.preferred_node;
2058 * Shared memory backing store policy support.
2060 * Remember policies even when nobody has shared memory mapped.
2061 * The policies are kept in Red-Black tree linked from the inode.
2062 * They are protected by the sp->lock rwlock, which should be held
2063 * for any accesses to the tree.
2067 * lookup first element intersecting start-end. Caller holds sp->lock for
2068 * reading or for writing
2070 static struct sp_node *
2071 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2073 struct rb_node *n = sp->root.rb_node;
2076 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2078 if (start >= p->end)
2080 else if (end <= p->start)
2088 struct sp_node *w = NULL;
2089 struct rb_node *prev = rb_prev(n);
2092 w = rb_entry(prev, struct sp_node, nd);
2093 if (w->end <= start)
2097 return rb_entry(n, struct sp_node, nd);
2101 * Insert a new shared policy into the list. Caller holds sp->lock for
2104 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2106 struct rb_node **p = &sp->root.rb_node;
2107 struct rb_node *parent = NULL;
2112 nd = rb_entry(parent, struct sp_node, nd);
2113 if (new->start < nd->start)
2115 else if (new->end > nd->end)
2116 p = &(*p)->rb_right;
2120 rb_link_node(&new->nd, parent, p);
2121 rb_insert_color(&new->nd, &sp->root);
2122 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2123 new->policy ? new->policy->mode : 0);
2126 /* Find shared policy intersecting idx */
2128 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2130 struct mempolicy *pol = NULL;
2133 if (!sp->root.rb_node)
2135 read_lock(&sp->lock);
2136 sn = sp_lookup(sp, idx, idx+1);
2138 mpol_get(sn->policy);
2141 read_unlock(&sp->lock);
2145 static void sp_free(struct sp_node *n)
2147 mpol_put(n->policy);
2148 kmem_cache_free(sn_cache, n);
2152 * mpol_misplaced - check whether current page node is valid in policy
2154 * @page: page to be checked
2155 * @vma: vm area where page mapped
2156 * @addr: virtual address where page mapped
2158 * Lookup current policy node id for vma,addr and "compare to" page's
2162 * -1 - not misplaced, page is in the right node
2163 * node - node id where the page should be
2165 * Policy determination "mimics" alloc_page_vma().
2166 * Called from fault path where we know the vma and faulting address.
2168 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2170 struct mempolicy *pol;
2172 int curnid = page_to_nid(page);
2173 unsigned long pgoff;
2174 int thiscpu = raw_smp_processor_id();
2175 int thisnid = cpu_to_node(thiscpu);
2181 pol = get_vma_policy(vma, addr);
2182 if (!(pol->flags & MPOL_F_MOF))
2185 switch (pol->mode) {
2186 case MPOL_INTERLEAVE:
2187 BUG_ON(addr >= vma->vm_end);
2188 BUG_ON(addr < vma->vm_start);
2190 pgoff = vma->vm_pgoff;
2191 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2192 polnid = offset_il_node(pol, vma, pgoff);
2195 case MPOL_PREFERRED:
2196 if (pol->flags & MPOL_F_LOCAL)
2197 polnid = numa_node_id();
2199 polnid = pol->v.preferred_node;
2205 * allows binding to multiple nodes.
2206 * use current page if in policy nodemask,
2207 * else select nearest allowed node, if any.
2208 * If no allowed nodes, use current [!misplaced].
2210 if (node_isset(curnid, pol->v.nodes))
2212 z = first_zones_zonelist(
2213 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2214 gfp_zone(GFP_HIGHUSER),
2216 polnid = z->zone->node;
2223 /* Migrate the page towards the node whose CPU is referencing it */
2224 if (pol->flags & MPOL_F_MORON) {
2227 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2231 if (curnid != polnid)
2240 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2241 * dropped after task->mempolicy is set to NULL so that any allocation done as
2242 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2245 void mpol_put_task_policy(struct task_struct *task)
2247 struct mempolicy *pol;
2250 pol = task->mempolicy;
2251 task->mempolicy = NULL;
2256 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2258 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2259 rb_erase(&n->nd, &sp->root);
2263 static void sp_node_init(struct sp_node *node, unsigned long start,
2264 unsigned long end, struct mempolicy *pol)
2266 node->start = start;
2271 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2272 struct mempolicy *pol)
2275 struct mempolicy *newpol;
2277 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2281 newpol = mpol_dup(pol);
2282 if (IS_ERR(newpol)) {
2283 kmem_cache_free(sn_cache, n);
2286 newpol->flags |= MPOL_F_SHARED;
2287 sp_node_init(n, start, end, newpol);
2292 /* Replace a policy range. */
2293 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2294 unsigned long end, struct sp_node *new)
2297 struct sp_node *n_new = NULL;
2298 struct mempolicy *mpol_new = NULL;
2302 write_lock(&sp->lock);
2303 n = sp_lookup(sp, start, end);
2304 /* Take care of old policies in the same range. */
2305 while (n && n->start < end) {
2306 struct rb_node *next = rb_next(&n->nd);
2307 if (n->start >= start) {
2313 /* Old policy spanning whole new range. */
2318 *mpol_new = *n->policy;
2319 atomic_set(&mpol_new->refcnt, 1);
2320 sp_node_init(n_new, end, n->end, mpol_new);
2322 sp_insert(sp, n_new);
2331 n = rb_entry(next, struct sp_node, nd);
2335 write_unlock(&sp->lock);
2342 kmem_cache_free(sn_cache, n_new);
2347 write_unlock(&sp->lock);
2349 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2352 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2359 * mpol_shared_policy_init - initialize shared policy for inode
2360 * @sp: pointer to inode shared policy
2361 * @mpol: struct mempolicy to install
2363 * Install non-NULL @mpol in inode's shared policy rb-tree.
2364 * On entry, the current task has a reference on a non-NULL @mpol.
2365 * This must be released on exit.
2366 * This is called at get_inode() calls and we can use GFP_KERNEL.
2368 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2372 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2373 rwlock_init(&sp->lock);
2376 struct vm_area_struct pvma;
2377 struct mempolicy *new;
2378 NODEMASK_SCRATCH(scratch);
2382 /* contextualize the tmpfs mount point mempolicy */
2383 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2385 goto free_scratch; /* no valid nodemask intersection */
2388 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2389 task_unlock(current);
2393 /* Create pseudo-vma that contains just the policy */
2394 memset(&pvma, 0, sizeof(struct vm_area_struct));
2395 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2396 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2399 mpol_put(new); /* drop initial ref */
2401 NODEMASK_SCRATCH_FREE(scratch);
2403 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2407 int mpol_set_shared_policy(struct shared_policy *info,
2408 struct vm_area_struct *vma, struct mempolicy *npol)
2411 struct sp_node *new = NULL;
2412 unsigned long sz = vma_pages(vma);
2414 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2416 sz, npol ? npol->mode : -1,
2417 npol ? npol->flags : -1,
2418 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2421 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2425 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2431 /* Free a backing policy store on inode delete. */
2432 void mpol_free_shared_policy(struct shared_policy *p)
2435 struct rb_node *next;
2437 if (!p->root.rb_node)
2439 write_lock(&p->lock);
2440 next = rb_first(&p->root);
2442 n = rb_entry(next, struct sp_node, nd);
2443 next = rb_next(&n->nd);
2446 write_unlock(&p->lock);
2449 #ifdef CONFIG_NUMA_BALANCING
2450 static int __initdata numabalancing_override;
2452 static void __init check_numabalancing_enable(void)
2454 bool numabalancing_default = false;
2456 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2457 numabalancing_default = true;
2459 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2460 if (numabalancing_override)
2461 set_numabalancing_state(numabalancing_override == 1);
2463 if (num_online_nodes() > 1 && !numabalancing_override) {
2464 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2465 numabalancing_default ? "Enabling" : "Disabling");
2466 set_numabalancing_state(numabalancing_default);
2470 static int __init setup_numabalancing(char *str)
2476 if (!strcmp(str, "enable")) {
2477 numabalancing_override = 1;
2479 } else if (!strcmp(str, "disable")) {
2480 numabalancing_override = -1;
2485 pr_warn("Unable to parse numa_balancing=\n");
2489 __setup("numa_balancing=", setup_numabalancing);
2491 static inline void __init check_numabalancing_enable(void)
2494 #endif /* CONFIG_NUMA_BALANCING */
2496 /* assumes fs == KERNEL_DS */
2497 void __init numa_policy_init(void)
2499 nodemask_t interleave_nodes;
2500 unsigned long largest = 0;
2501 int nid, prefer = 0;
2503 policy_cache = kmem_cache_create("numa_policy",
2504 sizeof(struct mempolicy),
2505 0, SLAB_PANIC, NULL);
2507 sn_cache = kmem_cache_create("shared_policy_node",
2508 sizeof(struct sp_node),
2509 0, SLAB_PANIC, NULL);
2511 for_each_node(nid) {
2512 preferred_node_policy[nid] = (struct mempolicy) {
2513 .refcnt = ATOMIC_INIT(1),
2514 .mode = MPOL_PREFERRED,
2515 .flags = MPOL_F_MOF | MPOL_F_MORON,
2516 .v = { .preferred_node = nid, },
2521 * Set interleaving policy for system init. Interleaving is only
2522 * enabled across suitably sized nodes (default is >= 16MB), or
2523 * fall back to the largest node if they're all smaller.
2525 nodes_clear(interleave_nodes);
2526 for_each_node_state(nid, N_MEMORY) {
2527 unsigned long total_pages = node_present_pages(nid);
2529 /* Preserve the largest node */
2530 if (largest < total_pages) {
2531 largest = total_pages;
2535 /* Interleave this node? */
2536 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2537 node_set(nid, interleave_nodes);
2540 /* All too small, use the largest */
2541 if (unlikely(nodes_empty(interleave_nodes)))
2542 node_set(prefer, interleave_nodes);
2544 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2545 pr_err("%s: interleaving failed\n", __func__);
2547 check_numabalancing_enable();
2550 /* Reset policy of current process to default */
2551 void numa_default_policy(void)
2553 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2557 * Parse and format mempolicy from/to strings
2561 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2563 static const char * const policy_modes[] =
2565 [MPOL_DEFAULT] = "default",
2566 [MPOL_PREFERRED] = "prefer",
2567 [MPOL_BIND] = "bind",
2568 [MPOL_INTERLEAVE] = "interleave",
2569 [MPOL_LOCAL] = "local",
2575 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2576 * @str: string containing mempolicy to parse
2577 * @mpol: pointer to struct mempolicy pointer, returned on success.
2580 * <mode>[=<flags>][:<nodelist>]
2582 * On success, returns 0, else 1
2584 int mpol_parse_str(char *str, struct mempolicy **mpol)
2586 struct mempolicy *new = NULL;
2587 unsigned short mode;
2588 unsigned short mode_flags;
2590 char *nodelist = strchr(str, ':');
2591 char *flags = strchr(str, '=');
2595 /* NUL-terminate mode or flags string */
2597 if (nodelist_parse(nodelist, nodes))
2599 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2605 *flags++ = '\0'; /* terminate mode string */
2607 for (mode = 0; mode < MPOL_MAX; mode++) {
2608 if (!strcmp(str, policy_modes[mode])) {
2612 if (mode >= MPOL_MAX)
2616 case MPOL_PREFERRED:
2618 * Insist on a nodelist of one node only
2621 char *rest = nodelist;
2622 while (isdigit(*rest))
2628 case MPOL_INTERLEAVE:
2630 * Default to online nodes with memory if no nodelist
2633 nodes = node_states[N_MEMORY];
2637 * Don't allow a nodelist; mpol_new() checks flags
2641 mode = MPOL_PREFERRED;
2645 * Insist on a empty nodelist
2652 * Insist on a nodelist
2661 * Currently, we only support two mutually exclusive
2664 if (!strcmp(flags, "static"))
2665 mode_flags |= MPOL_F_STATIC_NODES;
2666 else if (!strcmp(flags, "relative"))
2667 mode_flags |= MPOL_F_RELATIVE_NODES;
2672 new = mpol_new(mode, mode_flags, &nodes);
2677 * Save nodes for mpol_to_str() to show the tmpfs mount options
2678 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2680 if (mode != MPOL_PREFERRED)
2681 new->v.nodes = nodes;
2683 new->v.preferred_node = first_node(nodes);
2685 new->flags |= MPOL_F_LOCAL;
2688 * Save nodes for contextualization: this will be used to "clone"
2689 * the mempolicy in a specific context [cpuset] at a later time.
2691 new->w.user_nodemask = nodes;
2696 /* Restore string for error message */
2705 #endif /* CONFIG_TMPFS */
2708 * mpol_to_str - format a mempolicy structure for printing
2709 * @buffer: to contain formatted mempolicy string
2710 * @maxlen: length of @buffer
2711 * @pol: pointer to mempolicy to be formatted
2713 * Convert @pol into a string. If @buffer is too short, truncate the string.
2714 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2715 * longest flag, "relative", and to display at least a few node ids.
2717 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2720 nodemask_t nodes = NODE_MASK_NONE;
2721 unsigned short mode = MPOL_DEFAULT;
2722 unsigned short flags = 0;
2724 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2732 case MPOL_PREFERRED:
2733 if (flags & MPOL_F_LOCAL)
2736 node_set(pol->v.preferred_node, nodes);
2739 case MPOL_INTERLEAVE:
2740 nodes = pol->v.nodes;
2744 snprintf(p, maxlen, "unknown");
2748 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2750 if (flags & MPOL_MODE_FLAGS) {
2751 p += snprintf(p, buffer + maxlen - p, "=");
2754 * Currently, the only defined flags are mutually exclusive
2756 if (flags & MPOL_F_STATIC_NODES)
2757 p += snprintf(p, buffer + maxlen - p, "static");
2758 else if (flags & MPOL_F_RELATIVE_NODES)
2759 p += snprintf(p, buffer + maxlen - p, "relative");
2762 if (!nodes_empty(nodes))
2763 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2764 nodemask_pr_args(&nodes));