1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
6 * Copyright 2007 OpenVZ SWsoft Inc
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmalloc.h>
53 #include <linux/vmpressure.h>
54 #include <linux/mm_inline.h>
55 #include <linux/page_cgroup.h>
56 #include <linux/cpu.h>
57 #include <linux/oom.h>
58 #include <linux/lockdep.h>
59 #include <linux/file.h>
63 #include <net/tcp_memcontrol.h>
66 #include <asm/uaccess.h>
68 #include <trace/events/vmscan.h>
70 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
71 EXPORT_SYMBOL(mem_cgroup_subsys);
73 #define MEM_CGROUP_RECLAIM_RETRIES 5
74 static struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #ifdef CONFIG_MEMCG_SWAP
77 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
78 int do_swap_account __read_mostly;
80 /* for remember boot option*/
81 #ifdef CONFIG_MEMCG_SWAP_ENABLED
82 static int really_do_swap_account __initdata = 1;
84 static int really_do_swap_account __initdata = 0;
88 #define do_swap_account 0
92 static const char * const mem_cgroup_stat_names[] = {
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
109 static const char * const mem_cgroup_events_names[] = {
116 static const char * const mem_cgroup_lru_names[] = {
125 * Per memcg event counter is incremented at every pagein/pageout. With THP,
126 * it will be incremated by the number of pages. This counter is used for
127 * for trigger some periodic events. This is straightforward and better
128 * than using jiffies etc. to handle periodic memcg event.
130 enum mem_cgroup_events_target {
131 MEM_CGROUP_TARGET_THRESH,
132 MEM_CGROUP_TARGET_SOFTLIMIT,
133 MEM_CGROUP_TARGET_NUMAINFO,
136 #define THRESHOLDS_EVENTS_TARGET 128
137 #define SOFTLIMIT_EVENTS_TARGET 1024
138 #define NUMAINFO_EVENTS_TARGET 1024
140 struct mem_cgroup_stat_cpu {
141 long count[MEM_CGROUP_STAT_NSTATS];
142 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
143 unsigned long nr_page_events;
144 unsigned long targets[MEM_CGROUP_NTARGETS];
147 struct mem_cgroup_reclaim_iter {
149 * last scanned hierarchy member. Valid only if last_dead_count
150 * matches memcg->dead_count of the hierarchy root group.
152 struct mem_cgroup *last_visited;
153 unsigned long last_dead_count;
155 /* scan generation, increased every round-trip */
156 unsigned int generation;
160 * per-zone information in memory controller.
162 struct mem_cgroup_per_zone {
163 struct lruvec lruvec;
164 unsigned long lru_size[NR_LRU_LISTS];
166 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
168 struct rb_node tree_node; /* RB tree node */
169 unsigned long long usage_in_excess;/* Set to the value by which */
170 /* the soft limit is exceeded*/
172 struct mem_cgroup *memcg; /* Back pointer, we cannot */
173 /* use container_of */
176 struct mem_cgroup_per_node {
177 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
181 * Cgroups above their limits are maintained in a RB-Tree, independent of
182 * their hierarchy representation
185 struct mem_cgroup_tree_per_zone {
186 struct rb_root rb_root;
190 struct mem_cgroup_tree_per_node {
191 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
194 struct mem_cgroup_tree {
195 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
198 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
200 struct mem_cgroup_threshold {
201 struct eventfd_ctx *eventfd;
206 struct mem_cgroup_threshold_ary {
207 /* An array index points to threshold just below or equal to usage. */
208 int current_threshold;
209 /* Size of entries[] */
211 /* Array of thresholds */
212 struct mem_cgroup_threshold entries[0];
215 struct mem_cgroup_thresholds {
216 /* Primary thresholds array */
217 struct mem_cgroup_threshold_ary *primary;
219 * Spare threshold array.
220 * This is needed to make mem_cgroup_unregister_event() "never fail".
221 * It must be able to store at least primary->size - 1 entries.
223 struct mem_cgroup_threshold_ary *spare;
227 struct mem_cgroup_eventfd_list {
228 struct list_head list;
229 struct eventfd_ctx *eventfd;
233 * cgroup_event represents events which userspace want to receive.
235 struct mem_cgroup_event {
237 * memcg which the event belongs to.
239 struct mem_cgroup *memcg;
241 * eventfd to signal userspace about the event.
243 struct eventfd_ctx *eventfd;
245 * Each of these stored in a list by the cgroup.
247 struct list_head list;
249 * register_event() callback will be used to add new userspace
250 * waiter for changes related to this event. Use eventfd_signal()
251 * on eventfd to send notification to userspace.
253 int (*register_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd, const char *args);
256 * unregister_event() callback will be called when userspace closes
257 * the eventfd or on cgroup removing. This callback must be set,
258 * if you want provide notification functionality.
260 void (*unregister_event)(struct mem_cgroup *memcg,
261 struct eventfd_ctx *eventfd);
263 * All fields below needed to unregister event when
264 * userspace closes eventfd.
267 wait_queue_head_t *wqh;
269 struct work_struct remove;
272 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
273 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
276 * The memory controller data structure. The memory controller controls both
277 * page cache and RSS per cgroup. We would eventually like to provide
278 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
279 * to help the administrator determine what knobs to tune.
281 * TODO: Add a water mark for the memory controller. Reclaim will begin when
282 * we hit the water mark. May be even add a low water mark, such that
283 * no reclaim occurs from a cgroup at it's low water mark, this is
284 * a feature that will be implemented much later in the future.
287 struct cgroup_subsys_state css;
289 * the counter to account for memory usage
291 struct res_counter res;
293 /* vmpressure notifications */
294 struct vmpressure vmpressure;
297 * the counter to account for mem+swap usage.
299 struct res_counter memsw;
302 * the counter to account for kernel memory usage.
304 struct res_counter kmem;
306 * Should the accounting and control be hierarchical, per subtree?
309 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
313 atomic_t oom_wakeups;
316 /* OOM-Killer disable */
317 int oom_kill_disable;
319 /* set when res.limit == memsw.limit */
320 bool memsw_is_minimum;
322 /* protect arrays of thresholds */
323 struct mutex thresholds_lock;
325 /* thresholds for memory usage. RCU-protected */
326 struct mem_cgroup_thresholds thresholds;
328 /* thresholds for mem+swap usage. RCU-protected */
329 struct mem_cgroup_thresholds memsw_thresholds;
331 /* For oom notifier event fd */
332 struct list_head oom_notify;
335 * Should we move charges of a task when a task is moved into this
336 * mem_cgroup ? And what type of charges should we move ?
338 unsigned long move_charge_at_immigrate;
340 * set > 0 if pages under this cgroup are moving to other cgroup.
342 atomic_t moving_account;
343 /* taken only while moving_account > 0 */
344 spinlock_t move_lock;
348 struct mem_cgroup_stat_cpu __percpu *stat;
350 * used when a cpu is offlined or other synchronizations
351 * See mem_cgroup_read_stat().
353 struct mem_cgroup_stat_cpu nocpu_base;
354 spinlock_t pcp_counter_lock;
357 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
358 struct cg_proto tcp_mem;
360 #if defined(CONFIG_MEMCG_KMEM)
361 /* analogous to slab_common's slab_caches list. per-memcg */
362 struct list_head memcg_slab_caches;
363 /* Not a spinlock, we can take a lot of time walking the list */
364 struct mutex slab_caches_mutex;
365 /* Index in the kmem_cache->memcg_params->memcg_caches array */
369 int last_scanned_node;
371 nodemask_t scan_nodes;
372 atomic_t numainfo_events;
373 atomic_t numainfo_updating;
376 /* List of events which userspace want to receive */
377 struct list_head event_list;
378 spinlock_t event_list_lock;
380 struct mem_cgroup_per_node *nodeinfo[0];
381 /* WARNING: nodeinfo must be the last member here */
384 static size_t memcg_size(void)
386 return sizeof(struct mem_cgroup) +
387 nr_node_ids * sizeof(struct mem_cgroup_per_node);
390 /* internal only representation about the status of kmem accounting. */
392 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
393 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
394 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
397 /* We account when limit is on, but only after call sites are patched */
398 #define KMEM_ACCOUNTED_MASK \
399 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
401 #ifdef CONFIG_MEMCG_KMEM
402 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
404 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
407 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
409 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
412 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
414 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
417 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
419 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
422 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
425 * Our caller must use css_get() first, because memcg_uncharge_kmem()
426 * will call css_put() if it sees the memcg is dead.
429 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
430 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
433 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
435 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
436 &memcg->kmem_account_flags);
440 /* Stuffs for move charges at task migration. */
442 * Types of charges to be moved. "move_charge_at_immitgrate" and
443 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
446 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
447 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
451 /* "mc" and its members are protected by cgroup_mutex */
452 static struct move_charge_struct {
453 spinlock_t lock; /* for from, to */
454 struct mem_cgroup *from;
455 struct mem_cgroup *to;
456 unsigned long immigrate_flags;
457 unsigned long precharge;
458 unsigned long moved_charge;
459 unsigned long moved_swap;
460 struct task_struct *moving_task; /* a task moving charges */
461 wait_queue_head_t waitq; /* a waitq for other context */
463 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
464 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
467 static bool move_anon(void)
469 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
472 static bool move_file(void)
474 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
478 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
479 * limit reclaim to prevent infinite loops, if they ever occur.
481 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
482 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
485 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
486 MEM_CGROUP_CHARGE_TYPE_ANON,
487 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
488 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
492 /* for encoding cft->private value on file */
500 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
501 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
502 #define MEMFILE_ATTR(val) ((val) & 0xffff)
503 /* Used for OOM nofiier */
504 #define OOM_CONTROL (0)
507 * Reclaim flags for mem_cgroup_hierarchical_reclaim
509 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
510 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
511 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
512 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
515 * The memcg_create_mutex will be held whenever a new cgroup is created.
516 * As a consequence, any change that needs to protect against new child cgroups
517 * appearing has to hold it as well.
519 static DEFINE_MUTEX(memcg_create_mutex);
521 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
523 return s ? container_of(s, struct mem_cgroup, css) : NULL;
526 /* Some nice accessors for the vmpressure. */
527 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
530 memcg = root_mem_cgroup;
531 return &memcg->vmpressure;
534 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
536 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
539 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
541 return (memcg == root_mem_cgroup);
545 * We restrict the id in the range of [1, 65535], so it can fit into
548 #define MEM_CGROUP_ID_MAX USHRT_MAX
550 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
553 * The ID of the root cgroup is 0, but memcg treat 0 as an
554 * invalid ID, so we return (cgroup_id + 1).
556 return memcg->css.cgroup->id + 1;
559 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
561 struct cgroup_subsys_state *css;
563 css = css_from_id(id - 1, &mem_cgroup_subsys);
564 return mem_cgroup_from_css(css);
567 /* Writing them here to avoid exposing memcg's inner layout */
568 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
570 void sock_update_memcg(struct sock *sk)
572 if (mem_cgroup_sockets_enabled) {
573 struct mem_cgroup *memcg;
574 struct cg_proto *cg_proto;
576 BUG_ON(!sk->sk_prot->proto_cgroup);
578 /* Socket cloning can throw us here with sk_cgrp already
579 * filled. It won't however, necessarily happen from
580 * process context. So the test for root memcg given
581 * the current task's memcg won't help us in this case.
583 * Respecting the original socket's memcg is a better
584 * decision in this case.
587 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
588 css_get(&sk->sk_cgrp->memcg->css);
593 memcg = mem_cgroup_from_task(current);
594 cg_proto = sk->sk_prot->proto_cgroup(memcg);
595 if (!mem_cgroup_is_root(memcg) &&
596 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
597 sk->sk_cgrp = cg_proto;
602 EXPORT_SYMBOL(sock_update_memcg);
604 void sock_release_memcg(struct sock *sk)
606 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
607 struct mem_cgroup *memcg;
608 WARN_ON(!sk->sk_cgrp->memcg);
609 memcg = sk->sk_cgrp->memcg;
610 css_put(&sk->sk_cgrp->memcg->css);
614 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
616 if (!memcg || mem_cgroup_is_root(memcg))
619 return &memcg->tcp_mem;
621 EXPORT_SYMBOL(tcp_proto_cgroup);
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
625 if (!memcg_proto_activated(&memcg->tcp_mem))
627 static_key_slow_dec(&memcg_socket_limit_enabled);
630 static void disarm_sock_keys(struct mem_cgroup *memcg)
635 #ifdef CONFIG_MEMCG_KMEM
637 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
638 * The main reason for not using cgroup id for this:
639 * this works better in sparse environments, where we have a lot of memcgs,
640 * but only a few kmem-limited. Or also, if we have, for instance, 200
641 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
642 * 200 entry array for that.
644 * The current size of the caches array is stored in
645 * memcg_limited_groups_array_size. It will double each time we have to
648 static DEFINE_IDA(kmem_limited_groups);
649 int memcg_limited_groups_array_size;
652 * MIN_SIZE is different than 1, because we would like to avoid going through
653 * the alloc/free process all the time. In a small machine, 4 kmem-limited
654 * cgroups is a reasonable guess. In the future, it could be a parameter or
655 * tunable, but that is strictly not necessary.
657 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
658 * this constant directly from cgroup, but it is understandable that this is
659 * better kept as an internal representation in cgroup.c. In any case, the
660 * cgrp_id space is not getting any smaller, and we don't have to necessarily
661 * increase ours as well if it increases.
663 #define MEMCG_CACHES_MIN_SIZE 4
664 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
667 * A lot of the calls to the cache allocation functions are expected to be
668 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
669 * conditional to this static branch, we'll have to allow modules that does
670 * kmem_cache_alloc and the such to see this symbol as well
672 struct static_key memcg_kmem_enabled_key;
673 EXPORT_SYMBOL(memcg_kmem_enabled_key);
675 static void disarm_kmem_keys(struct mem_cgroup *memcg)
677 if (memcg_kmem_is_active(memcg)) {
678 static_key_slow_dec(&memcg_kmem_enabled_key);
679 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
682 * This check can't live in kmem destruction function,
683 * since the charges will outlive the cgroup
685 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
688 static void disarm_kmem_keys(struct mem_cgroup *memcg)
691 #endif /* CONFIG_MEMCG_KMEM */
693 static void disarm_static_keys(struct mem_cgroup *memcg)
695 disarm_sock_keys(memcg);
696 disarm_kmem_keys(memcg);
699 static void drain_all_stock_async(struct mem_cgroup *memcg);
701 static struct mem_cgroup_per_zone *
702 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
704 VM_BUG_ON((unsigned)nid >= nr_node_ids);
705 return &memcg->nodeinfo[nid]->zoneinfo[zid];
708 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
713 static struct mem_cgroup_per_zone *
714 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
716 int nid = page_to_nid(page);
717 int zid = page_zonenum(page);
719 return mem_cgroup_zoneinfo(memcg, nid, zid);
722 static struct mem_cgroup_tree_per_zone *
723 soft_limit_tree_node_zone(int nid, int zid)
725 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728 static struct mem_cgroup_tree_per_zone *
729 soft_limit_tree_from_page(struct page *page)
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
734 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
738 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
739 struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz,
741 unsigned long long new_usage_in_excess)
743 struct rb_node **p = &mctz->rb_root.rb_node;
744 struct rb_node *parent = NULL;
745 struct mem_cgroup_per_zone *mz_node;
750 mz->usage_in_excess = new_usage_in_excess;
751 if (!mz->usage_in_excess)
755 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
757 if (mz->usage_in_excess < mz_node->usage_in_excess)
760 * We can't avoid mem cgroups that are over their soft
761 * limit by the same amount
763 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
766 rb_link_node(&mz->tree_node, parent, p);
767 rb_insert_color(&mz->tree_node, &mctz->rb_root);
772 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
773 struct mem_cgroup_per_zone *mz,
774 struct mem_cgroup_tree_per_zone *mctz)
778 rb_erase(&mz->tree_node, &mctz->rb_root);
783 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
784 struct mem_cgroup_per_zone *mz,
785 struct mem_cgroup_tree_per_zone *mctz)
787 spin_lock(&mctz->lock);
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 spin_unlock(&mctz->lock);
793 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
795 unsigned long long excess;
796 struct mem_cgroup_per_zone *mz;
797 struct mem_cgroup_tree_per_zone *mctz;
798 int nid = page_to_nid(page);
799 int zid = page_zonenum(page);
800 mctz = soft_limit_tree_from_page(page);
803 * Necessary to update all ancestors when hierarchy is used.
804 * because their event counter is not touched.
806 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
807 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
808 excess = res_counter_soft_limit_excess(&memcg->res);
810 * We have to update the tree if mz is on RB-tree or
811 * mem is over its softlimit.
813 if (excess || mz->on_tree) {
814 spin_lock(&mctz->lock);
815 /* if on-tree, remove it */
817 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
819 * Insert again. mz->usage_in_excess will be updated.
820 * If excess is 0, no tree ops.
822 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
823 spin_unlock(&mctz->lock);
828 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
831 struct mem_cgroup_per_zone *mz;
832 struct mem_cgroup_tree_per_zone *mctz;
834 for_each_node(node) {
835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
836 mz = mem_cgroup_zoneinfo(memcg, node, zone);
837 mctz = soft_limit_tree_node_zone(node, zone);
838 mem_cgroup_remove_exceeded(memcg, mz, mctz);
843 static struct mem_cgroup_per_zone *
844 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
846 struct rb_node *rightmost = NULL;
847 struct mem_cgroup_per_zone *mz;
851 rightmost = rb_last(&mctz->rb_root);
853 goto done; /* Nothing to reclaim from */
855 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
857 * Remove the node now but someone else can add it back,
858 * we will to add it back at the end of reclaim to its correct
859 * position in the tree.
861 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
862 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
863 !css_tryget(&mz->memcg->css))
869 static struct mem_cgroup_per_zone *
870 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
872 struct mem_cgroup_per_zone *mz;
874 spin_lock(&mctz->lock);
875 mz = __mem_cgroup_largest_soft_limit_node(mctz);
876 spin_unlock(&mctz->lock);
881 * Implementation Note: reading percpu statistics for memcg.
883 * Both of vmstat[] and percpu_counter has threshold and do periodic
884 * synchronization to implement "quick" read. There are trade-off between
885 * reading cost and precision of value. Then, we may have a chance to implement
886 * a periodic synchronizion of counter in memcg's counter.
888 * But this _read() function is used for user interface now. The user accounts
889 * memory usage by memory cgroup and he _always_ requires exact value because
890 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
891 * have to visit all online cpus and make sum. So, for now, unnecessary
892 * synchronization is not implemented. (just implemented for cpu hotplug)
894 * If there are kernel internal actions which can make use of some not-exact
895 * value, and reading all cpu value can be performance bottleneck in some
896 * common workload, threashold and synchonization as vmstat[] should be
899 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
900 enum mem_cgroup_stat_index idx)
906 for_each_online_cpu(cpu)
907 val += per_cpu(memcg->stat->count[idx], cpu);
908 #ifdef CONFIG_HOTPLUG_CPU
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.count[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
917 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
920 int val = (charge) ? 1 : -1;
921 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
924 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
925 enum mem_cgroup_events_index idx)
927 unsigned long val = 0;
931 for_each_online_cpu(cpu)
932 val += per_cpu(memcg->stat->events[idx], cpu);
933 #ifdef CONFIG_HOTPLUG_CPU
934 spin_lock(&memcg->pcp_counter_lock);
935 val += memcg->nocpu_base.events[idx];
936 spin_unlock(&memcg->pcp_counter_lock);
942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
944 bool anon, int nr_pages)
949 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
950 * counted as CACHE even if it's on ANON LRU.
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
956 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
959 if (PageTransHuge(page))
960 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
963 /* pagein of a big page is an event. So, ignore page size */
965 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
967 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
968 nr_pages = -nr_pages; /* for event */
971 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
977 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
979 struct mem_cgroup_per_zone *mz;
981 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
982 return mz->lru_size[lru];
986 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
987 unsigned int lru_mask)
989 struct mem_cgroup_per_zone *mz;
991 unsigned long ret = 0;
993 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
996 if (BIT(lru) & lru_mask)
997 ret += mz->lru_size[lru];
1002 static unsigned long
1003 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1004 int nid, unsigned int lru_mask)
1009 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1010 total += mem_cgroup_zone_nr_lru_pages(memcg,
1011 nid, zid, lru_mask);
1016 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1017 unsigned int lru_mask)
1022 for_each_node_state(nid, N_MEMORY)
1023 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1027 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1028 enum mem_cgroup_events_target target)
1030 unsigned long val, next;
1032 val = __this_cpu_read(memcg->stat->nr_page_events);
1033 next = __this_cpu_read(memcg->stat->targets[target]);
1034 /* from time_after() in jiffies.h */
1035 if ((long)next - (long)val < 0) {
1037 case MEM_CGROUP_TARGET_THRESH:
1038 next = val + THRESHOLDS_EVENTS_TARGET;
1040 case MEM_CGROUP_TARGET_SOFTLIMIT:
1041 next = val + SOFTLIMIT_EVENTS_TARGET;
1043 case MEM_CGROUP_TARGET_NUMAINFO:
1044 next = val + NUMAINFO_EVENTS_TARGET;
1049 __this_cpu_write(memcg->stat->targets[target], next);
1056 * Check events in order.
1059 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1062 /* threshold event is triggered in finer grain than soft limit */
1063 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_THRESH))) {
1066 bool do_numainfo __maybe_unused;
1068 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1069 MEM_CGROUP_TARGET_SOFTLIMIT);
1070 #if MAX_NUMNODES > 1
1071 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1072 MEM_CGROUP_TARGET_NUMAINFO);
1076 mem_cgroup_threshold(memcg);
1077 if (unlikely(do_softlimit))
1078 mem_cgroup_update_tree(memcg, page);
1079 #if MAX_NUMNODES > 1
1080 if (unlikely(do_numainfo))
1081 atomic_inc(&memcg->numainfo_events);
1087 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1090 * mm_update_next_owner() may clear mm->owner to NULL
1091 * if it races with swapoff, page migration, etc.
1092 * So this can be called with p == NULL.
1097 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1100 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1102 struct mem_cgroup *memcg = NULL;
1107 * Because we have no locks, mm->owner's may be being moved to other
1108 * cgroup. We use css_tryget() here even if this looks
1109 * pessimistic (rather than adding locks here).
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (unlikely(!memcg))
1116 } while (!css_tryget(&memcg->css));
1122 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1123 * ref. count) or NULL if the whole root's subtree has been visited.
1125 * helper function to be used by mem_cgroup_iter
1127 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1128 struct mem_cgroup *last_visited)
1130 struct cgroup_subsys_state *prev_css, *next_css;
1132 prev_css = last_visited ? &last_visited->css : NULL;
1134 next_css = css_next_descendant_pre(prev_css, &root->css);
1137 * Even if we found a group we have to make sure it is
1138 * alive. css && !memcg means that the groups should be
1139 * skipped and we should continue the tree walk.
1140 * last_visited css is safe to use because it is
1141 * protected by css_get and the tree walk is rcu safe.
1144 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1146 if (css_tryget(&mem->css))
1149 prev_css = next_css;
1157 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1160 * When a group in the hierarchy below root is destroyed, the
1161 * hierarchy iterator can no longer be trusted since it might
1162 * have pointed to the destroyed group. Invalidate it.
1164 atomic_inc(&root->dead_count);
1167 static struct mem_cgroup *
1168 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *root,
1172 struct mem_cgroup *position = NULL;
1174 * A cgroup destruction happens in two stages: offlining and
1175 * release. They are separated by a RCU grace period.
1177 * If the iterator is valid, we may still race with an
1178 * offlining. The RCU lock ensures the object won't be
1179 * released, tryget will fail if we lost the race.
1181 *sequence = atomic_read(&root->dead_count);
1182 if (iter->last_dead_count == *sequence) {
1184 position = iter->last_visited;
1185 if (position && !css_tryget(&position->css))
1191 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1192 struct mem_cgroup *last_visited,
1193 struct mem_cgroup *new_position,
1197 css_put(&last_visited->css);
1199 * We store the sequence count from the time @last_visited was
1200 * loaded successfully instead of rereading it here so that we
1201 * don't lose destruction events in between. We could have
1202 * raced with the destruction of @new_position after all.
1204 iter->last_visited = new_position;
1206 iter->last_dead_count = sequence;
1210 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1211 * @root: hierarchy root
1212 * @prev: previously returned memcg, NULL on first invocation
1213 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1215 * Returns references to children of the hierarchy below @root, or
1216 * @root itself, or %NULL after a full round-trip.
1218 * Caller must pass the return value in @prev on subsequent
1219 * invocations for reference counting, or use mem_cgroup_iter_break()
1220 * to cancel a hierarchy walk before the round-trip is complete.
1222 * Reclaimers can specify a zone and a priority level in @reclaim to
1223 * divide up the memcgs in the hierarchy among all concurrent
1224 * reclaimers operating on the same zone and priority.
1226 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1227 struct mem_cgroup *prev,
1228 struct mem_cgroup_reclaim_cookie *reclaim)
1230 struct mem_cgroup *memcg = NULL;
1231 struct mem_cgroup *last_visited = NULL;
1233 if (mem_cgroup_disabled())
1237 root = root_mem_cgroup;
1239 if (prev && !reclaim)
1240 last_visited = prev;
1242 if (!root->use_hierarchy && root != root_mem_cgroup) {
1250 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1251 int uninitialized_var(seq);
1254 int nid = zone_to_nid(reclaim->zone);
1255 int zid = zone_idx(reclaim->zone);
1256 struct mem_cgroup_per_zone *mz;
1258 mz = mem_cgroup_zoneinfo(root, nid, zid);
1259 iter = &mz->reclaim_iter[reclaim->priority];
1260 if (prev && reclaim->generation != iter->generation) {
1261 iter->last_visited = NULL;
1265 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1268 memcg = __mem_cgroup_iter_next(root, last_visited);
1271 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1275 else if (!prev && memcg)
1276 reclaim->generation = iter->generation;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1292 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1293 * @root: hierarchy root
1294 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1296 void mem_cgroup_iter_break(struct mem_cgroup *root,
1297 struct mem_cgroup *prev)
1300 root = root_mem_cgroup;
1301 if (prev && prev != root)
1302 css_put(&prev->css);
1306 * Iteration constructs for visiting all cgroups (under a tree). If
1307 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1308 * be used for reference counting.
1310 #define for_each_mem_cgroup_tree(iter, root) \
1311 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1313 iter = mem_cgroup_iter(root, iter, NULL))
1315 #define for_each_mem_cgroup(iter) \
1316 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1318 iter = mem_cgroup_iter(NULL, iter, NULL))
1320 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1322 struct mem_cgroup *memcg;
1325 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1326 if (unlikely(!memcg))
1331 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1334 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1342 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1345 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1346 * @zone: zone of the wanted lruvec
1347 * @memcg: memcg of the wanted lruvec
1349 * Returns the lru list vector holding pages for the given @zone and
1350 * @mem. This can be the global zone lruvec, if the memory controller
1353 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1354 struct mem_cgroup *memcg)
1356 struct mem_cgroup_per_zone *mz;
1357 struct lruvec *lruvec;
1359 if (mem_cgroup_disabled()) {
1360 lruvec = &zone->lruvec;
1364 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1365 lruvec = &mz->lruvec;
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1378 * Following LRU functions are allowed to be used without PCG_LOCK.
1379 * Operations are called by routine of global LRU independently from memcg.
1380 * What we have to take care of here is validness of pc->mem_cgroup.
1382 * Changes to pc->mem_cgroup happens when
1385 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1386 * It is added to LRU before charge.
1387 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1388 * When moving account, the page is not on LRU. It's isolated.
1392 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1394 * @zone: zone of the page
1396 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1398 struct mem_cgroup_per_zone *mz;
1399 struct mem_cgroup *memcg;
1400 struct page_cgroup *pc;
1401 struct lruvec *lruvec;
1403 if (mem_cgroup_disabled()) {
1404 lruvec = &zone->lruvec;
1408 pc = lookup_page_cgroup(page);
1409 memcg = pc->mem_cgroup;
1412 * Surreptitiously switch any uncharged offlist page to root:
1413 * an uncharged page off lru does nothing to secure
1414 * its former mem_cgroup from sudden removal.
1416 * Our caller holds lru_lock, and PageCgroupUsed is updated
1417 * under page_cgroup lock: between them, they make all uses
1418 * of pc->mem_cgroup safe.
1420 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1421 pc->mem_cgroup = memcg = root_mem_cgroup;
1423 mz = page_cgroup_zoneinfo(memcg, page);
1424 lruvec = &mz->lruvec;
1427 * Since a node can be onlined after the mem_cgroup was created,
1428 * we have to be prepared to initialize lruvec->zone here;
1429 * and if offlined then reonlined, we need to reinitialize it.
1431 if (unlikely(lruvec->zone != zone))
1432 lruvec->zone = zone;
1437 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1438 * @lruvec: mem_cgroup per zone lru vector
1439 * @lru: index of lru list the page is sitting on
1440 * @nr_pages: positive when adding or negative when removing
1442 * This function must be called when a page is added to or removed from an
1445 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1448 struct mem_cgroup_per_zone *mz;
1449 unsigned long *lru_size;
1451 if (mem_cgroup_disabled())
1454 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1455 lru_size = mz->lru_size + lru;
1456 *lru_size += nr_pages;
1457 VM_BUG_ON((long)(*lru_size) < 0);
1461 * Checks whether given mem is same or in the root_mem_cgroup's
1464 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1465 struct mem_cgroup *memcg)
1467 if (root_memcg == memcg)
1469 if (!root_memcg->use_hierarchy || !memcg)
1471 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1474 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1475 struct mem_cgroup *memcg)
1480 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1485 bool task_in_mem_cgroup(struct task_struct *task,
1486 const struct mem_cgroup *memcg)
1488 struct mem_cgroup *curr = NULL;
1489 struct task_struct *p;
1492 p = find_lock_task_mm(task);
1494 curr = try_get_mem_cgroup_from_mm(p->mm);
1498 * All threads may have already detached their mm's, but the oom
1499 * killer still needs to detect if they have already been oom
1500 * killed to prevent needlessly killing additional tasks.
1503 curr = mem_cgroup_from_task(task);
1505 css_get(&curr->css);
1511 * We should check use_hierarchy of "memcg" not "curr". Because checking
1512 * use_hierarchy of "curr" here make this function true if hierarchy is
1513 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1514 * hierarchy(even if use_hierarchy is disabled in "memcg").
1516 ret = mem_cgroup_same_or_subtree(memcg, curr);
1517 css_put(&curr->css);
1521 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1523 unsigned long inactive_ratio;
1524 unsigned long inactive;
1525 unsigned long active;
1528 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1529 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1531 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1533 inactive_ratio = int_sqrt(10 * gb);
1537 return inactive * inactive_ratio < active;
1540 #define mem_cgroup_from_res_counter(counter, member) \
1541 container_of(counter, struct mem_cgroup, member)
1544 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1545 * @memcg: the memory cgroup
1547 * Returns the maximum amount of memory @mem can be charged with, in
1550 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1552 unsigned long long margin;
1554 margin = res_counter_margin(&memcg->res);
1555 if (do_swap_account)
1556 margin = min(margin, res_counter_margin(&memcg->memsw));
1557 return margin >> PAGE_SHIFT;
1560 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1563 if (!css_parent(&memcg->css))
1564 return vm_swappiness;
1566 return memcg->swappiness;
1570 * memcg->moving_account is used for checking possibility that some thread is
1571 * calling move_account(). When a thread on CPU-A starts moving pages under
1572 * a memcg, other threads should check memcg->moving_account under
1573 * rcu_read_lock(), like this:
1577 * memcg->moving_account+1 if (memcg->mocing_account)
1579 * synchronize_rcu() update something.
1584 /* for quick checking without looking up memcg */
1585 atomic_t memcg_moving __read_mostly;
1587 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1589 atomic_inc(&memcg_moving);
1590 atomic_inc(&memcg->moving_account);
1594 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1597 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1598 * We check NULL in callee rather than caller.
1601 atomic_dec(&memcg_moving);
1602 atomic_dec(&memcg->moving_account);
1607 * 2 routines for checking "mem" is under move_account() or not.
1609 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1610 * is used for avoiding races in accounting. If true,
1611 * pc->mem_cgroup may be overwritten.
1613 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1614 * under hierarchy of moving cgroups. This is for
1615 * waiting at hith-memory prressure caused by "move".
1618 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1620 VM_BUG_ON(!rcu_read_lock_held());
1621 return atomic_read(&memcg->moving_account) > 0;
1624 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1626 struct mem_cgroup *from;
1627 struct mem_cgroup *to;
1630 * Unlike task_move routines, we access mc.to, mc.from not under
1631 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1633 spin_lock(&mc.lock);
1639 ret = mem_cgroup_same_or_subtree(memcg, from)
1640 || mem_cgroup_same_or_subtree(memcg, to);
1642 spin_unlock(&mc.lock);
1646 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1648 if (mc.moving_task && current != mc.moving_task) {
1649 if (mem_cgroup_under_move(memcg)) {
1651 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1652 /* moving charge context might have finished. */
1655 finish_wait(&mc.waitq, &wait);
1663 * Take this lock when
1664 * - a code tries to modify page's memcg while it's USED.
1665 * - a code tries to modify page state accounting in a memcg.
1666 * see mem_cgroup_stolen(), too.
1668 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1669 unsigned long *flags)
1671 spin_lock_irqsave(&memcg->move_lock, *flags);
1674 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1675 unsigned long *flags)
1677 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1680 #define K(x) ((x) << (PAGE_SHIFT-10))
1682 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1689 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
1694 * Need a buffer in BSS, can't rely on allocations. The code relies
1695 * on the assumption that OOM is serialized for memory controller.
1696 * If this assumption is broken, revisit this code.
1698 static char memcg_name[PATH_MAX];
1700 struct mem_cgroup *iter;
1708 mem_cgrp = memcg->css.cgroup;
1709 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1711 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1714 * Unfortunately, we are unable to convert to a useful name
1715 * But we'll still print out the usage information
1722 pr_info("Task in %s killed", memcg_name);
1725 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1733 * Continues from above, so we don't need an KERN_ level
1735 pr_cont(" as a result of limit of %s\n", memcg_name);
1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1739 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1742 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1743 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1746 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1747 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1748 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1749 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1751 for_each_mem_cgroup_tree(iter, memcg) {
1752 pr_info("Memory cgroup stats");
1755 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1757 pr_cont(" for %s", memcg_name);
1761 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1762 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1764 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1765 K(mem_cgroup_read_stat(iter, i)));
1768 for (i = 0; i < NR_LRU_LISTS; i++)
1769 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1770 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1777 * This function returns the number of memcg under hierarchy tree. Returns
1778 * 1(self count) if no children.
1780 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1783 struct mem_cgroup *iter;
1785 for_each_mem_cgroup_tree(iter, memcg)
1791 * Return the memory (and swap, if configured) limit for a memcg.
1793 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1797 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1800 * Do not consider swap space if we cannot swap due to swappiness
1802 if (mem_cgroup_swappiness(memcg)) {
1805 limit += total_swap_pages << PAGE_SHIFT;
1806 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1809 * If memsw is finite and limits the amount of swap space
1810 * available to this memcg, return that limit.
1812 limit = min(limit, memsw);
1818 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1821 struct mem_cgroup *iter;
1822 unsigned long chosen_points = 0;
1823 unsigned long totalpages;
1824 unsigned int points = 0;
1825 struct task_struct *chosen = NULL;
1828 * If current has a pending SIGKILL or is exiting, then automatically
1829 * select it. The goal is to allow it to allocate so that it may
1830 * quickly exit and free its memory.
1832 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1833 set_thread_flag(TIF_MEMDIE);
1837 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1838 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1839 for_each_mem_cgroup_tree(iter, memcg) {
1840 struct css_task_iter it;
1841 struct task_struct *task;
1843 css_task_iter_start(&iter->css, &it);
1844 while ((task = css_task_iter_next(&it))) {
1845 switch (oom_scan_process_thread(task, totalpages, NULL,
1847 case OOM_SCAN_SELECT:
1849 put_task_struct(chosen);
1851 chosen_points = ULONG_MAX;
1852 get_task_struct(chosen);
1854 case OOM_SCAN_CONTINUE:
1856 case OOM_SCAN_ABORT:
1857 css_task_iter_end(&it);
1858 mem_cgroup_iter_break(memcg, iter);
1860 put_task_struct(chosen);
1865 points = oom_badness(task, memcg, NULL, totalpages);
1866 if (points > chosen_points) {
1868 put_task_struct(chosen);
1870 chosen_points = points;
1871 get_task_struct(chosen);
1874 css_task_iter_end(&it);
1879 points = chosen_points * 1000 / totalpages;
1880 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1881 NULL, "Memory cgroup out of memory");
1884 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1886 unsigned long flags)
1888 unsigned long total = 0;
1889 bool noswap = false;
1892 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1894 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1899 drain_all_stock_async(memcg);
1900 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1902 * Allow limit shrinkers, which are triggered directly
1903 * by userspace, to catch signals and stop reclaim
1904 * after minimal progress, regardless of the margin.
1906 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1908 if (mem_cgroup_margin(memcg))
1911 * If nothing was reclaimed after two attempts, there
1912 * may be no reclaimable pages in this hierarchy.
1921 * test_mem_cgroup_node_reclaimable
1922 * @memcg: the target memcg
1923 * @nid: the node ID to be checked.
1924 * @noswap : specify true here if the user wants flle only information.
1926 * This function returns whether the specified memcg contains any
1927 * reclaimable pages on a node. Returns true if there are any reclaimable
1928 * pages in the node.
1930 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1931 int nid, bool noswap)
1933 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1935 if (noswap || !total_swap_pages)
1937 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1942 #if MAX_NUMNODES > 1
1945 * Always updating the nodemask is not very good - even if we have an empty
1946 * list or the wrong list here, we can start from some node and traverse all
1947 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1954 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1955 * pagein/pageout changes since the last update.
1957 if (!atomic_read(&memcg->numainfo_events))
1959 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962 /* make a nodemask where this memcg uses memory from */
1963 memcg->scan_nodes = node_states[N_MEMORY];
1965 for_each_node_mask(nid, node_states[N_MEMORY]) {
1967 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1968 node_clear(nid, memcg->scan_nodes);
1971 atomic_set(&memcg->numainfo_events, 0);
1972 atomic_set(&memcg->numainfo_updating, 0);
1976 * Selecting a node where we start reclaim from. Because what we need is just
1977 * reducing usage counter, start from anywhere is O,K. Considering
1978 * memory reclaim from current node, there are pros. and cons.
1980 * Freeing memory from current node means freeing memory from a node which
1981 * we'll use or we've used. So, it may make LRU bad. And if several threads
1982 * hit limits, it will see a contention on a node. But freeing from remote
1983 * node means more costs for memory reclaim because of memory latency.
1985 * Now, we use round-robin. Better algorithm is welcomed.
1987 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1991 mem_cgroup_may_update_nodemask(memcg);
1992 node = memcg->last_scanned_node;
1994 node = next_node(node, memcg->scan_nodes);
1995 if (node == MAX_NUMNODES)
1996 node = first_node(memcg->scan_nodes);
1998 * We call this when we hit limit, not when pages are added to LRU.
1999 * No LRU may hold pages because all pages are UNEVICTABLE or
2000 * memcg is too small and all pages are not on LRU. In that case,
2001 * we use curret node.
2003 if (unlikely(node == MAX_NUMNODES))
2004 node = numa_node_id();
2006 memcg->last_scanned_node = node;
2011 * Check all nodes whether it contains reclaimable pages or not.
2012 * For quick scan, we make use of scan_nodes. This will allow us to skip
2013 * unused nodes. But scan_nodes is lazily updated and may not cotain
2014 * enough new information. We need to do double check.
2016 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2021 * quick check...making use of scan_node.
2022 * We can skip unused nodes.
2024 if (!nodes_empty(memcg->scan_nodes)) {
2025 for (nid = first_node(memcg->scan_nodes);
2027 nid = next_node(nid, memcg->scan_nodes)) {
2029 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2034 * Check rest of nodes.
2036 for_each_node_state(nid, N_MEMORY) {
2037 if (node_isset(nid, memcg->scan_nodes))
2039 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2046 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2051 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2053 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2057 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060 unsigned long *total_scanned)
2062 struct mem_cgroup *victim = NULL;
2065 unsigned long excess;
2066 unsigned long nr_scanned;
2067 struct mem_cgroup_reclaim_cookie reclaim = {
2072 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2080 * If we have not been able to reclaim
2081 * anything, it might because there are
2082 * no reclaimable pages under this hierarchy
2087 * We want to do more targeted reclaim.
2088 * excess >> 2 is not to excessive so as to
2089 * reclaim too much, nor too less that we keep
2090 * coming back to reclaim from this cgroup
2092 if (total >= (excess >> 2) ||
2093 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2098 if (!mem_cgroup_reclaimable(victim, false))
2100 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2102 *total_scanned += nr_scanned;
2103 if (!res_counter_soft_limit_excess(&root_memcg->res))
2106 mem_cgroup_iter_break(root_memcg, victim);
2110 #ifdef CONFIG_LOCKDEP
2111 static struct lockdep_map memcg_oom_lock_dep_map = {
2112 .name = "memcg_oom_lock",
2116 static DEFINE_SPINLOCK(memcg_oom_lock);
2119 * Check OOM-Killer is already running under our hierarchy.
2120 * If someone is running, return false.
2122 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2124 struct mem_cgroup *iter, *failed = NULL;
2126 spin_lock(&memcg_oom_lock);
2128 for_each_mem_cgroup_tree(iter, memcg) {
2129 if (iter->oom_lock) {
2131 * this subtree of our hierarchy is already locked
2132 * so we cannot give a lock.
2135 mem_cgroup_iter_break(memcg, iter);
2138 iter->oom_lock = true;
2143 * OK, we failed to lock the whole subtree so we have
2144 * to clean up what we set up to the failing subtree
2146 for_each_mem_cgroup_tree(iter, memcg) {
2147 if (iter == failed) {
2148 mem_cgroup_iter_break(memcg, iter);
2151 iter->oom_lock = false;
2154 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2156 spin_unlock(&memcg_oom_lock);
2161 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2163 struct mem_cgroup *iter;
2165 spin_lock(&memcg_oom_lock);
2166 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2167 for_each_mem_cgroup_tree(iter, memcg)
2168 iter->oom_lock = false;
2169 spin_unlock(&memcg_oom_lock);
2172 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2174 struct mem_cgroup *iter;
2176 for_each_mem_cgroup_tree(iter, memcg)
2177 atomic_inc(&iter->under_oom);
2180 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2182 struct mem_cgroup *iter;
2185 * When a new child is created while the hierarchy is under oom,
2186 * mem_cgroup_oom_lock() may not be called. We have to use
2187 * atomic_add_unless() here.
2189 for_each_mem_cgroup_tree(iter, memcg)
2190 atomic_add_unless(&iter->under_oom, -1, 0);
2193 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2195 struct oom_wait_info {
2196 struct mem_cgroup *memcg;
2200 static int memcg_oom_wake_function(wait_queue_t *wait,
2201 unsigned mode, int sync, void *arg)
2203 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2204 struct mem_cgroup *oom_wait_memcg;
2205 struct oom_wait_info *oom_wait_info;
2207 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2208 oom_wait_memcg = oom_wait_info->memcg;
2211 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2212 * Then we can use css_is_ancestor without taking care of RCU.
2214 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2215 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2217 return autoremove_wake_function(wait, mode, sync, arg);
2220 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2222 atomic_inc(&memcg->oom_wakeups);
2223 /* for filtering, pass "memcg" as argument. */
2224 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2227 static void memcg_oom_recover(struct mem_cgroup *memcg)
2229 if (memcg && atomic_read(&memcg->under_oom))
2230 memcg_wakeup_oom(memcg);
2233 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2235 if (!current->memcg_oom.may_oom)
2238 * We are in the middle of the charge context here, so we
2239 * don't want to block when potentially sitting on a callstack
2240 * that holds all kinds of filesystem and mm locks.
2242 * Also, the caller may handle a failed allocation gracefully
2243 * (like optional page cache readahead) and so an OOM killer
2244 * invocation might not even be necessary.
2246 * That's why we don't do anything here except remember the
2247 * OOM context and then deal with it at the end of the page
2248 * fault when the stack is unwound, the locks are released,
2249 * and when we know whether the fault was overall successful.
2251 css_get(&memcg->css);
2252 current->memcg_oom.memcg = memcg;
2253 current->memcg_oom.gfp_mask = mask;
2254 current->memcg_oom.order = order;
2258 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2259 * @handle: actually kill/wait or just clean up the OOM state
2261 * This has to be called at the end of a page fault if the memcg OOM
2262 * handler was enabled.
2264 * Memcg supports userspace OOM handling where failed allocations must
2265 * sleep on a waitqueue until the userspace task resolves the
2266 * situation. Sleeping directly in the charge context with all kinds
2267 * of locks held is not a good idea, instead we remember an OOM state
2268 * in the task and mem_cgroup_oom_synchronize() has to be called at
2269 * the end of the page fault to complete the OOM handling.
2271 * Returns %true if an ongoing memcg OOM situation was detected and
2272 * completed, %false otherwise.
2274 bool mem_cgroup_oom_synchronize(bool handle)
2276 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2277 struct oom_wait_info owait;
2280 /* OOM is global, do not handle */
2287 owait.memcg = memcg;
2288 owait.wait.flags = 0;
2289 owait.wait.func = memcg_oom_wake_function;
2290 owait.wait.private = current;
2291 INIT_LIST_HEAD(&owait.wait.task_list);
2293 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2294 mem_cgroup_mark_under_oom(memcg);
2296 locked = mem_cgroup_oom_trylock(memcg);
2299 mem_cgroup_oom_notify(memcg);
2301 if (locked && !memcg->oom_kill_disable) {
2302 mem_cgroup_unmark_under_oom(memcg);
2303 finish_wait(&memcg_oom_waitq, &owait.wait);
2304 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2305 current->memcg_oom.order);
2308 mem_cgroup_unmark_under_oom(memcg);
2309 finish_wait(&memcg_oom_waitq, &owait.wait);
2313 mem_cgroup_oom_unlock(memcg);
2315 * There is no guarantee that an OOM-lock contender
2316 * sees the wakeups triggered by the OOM kill
2317 * uncharges. Wake any sleepers explicitely.
2319 memcg_oom_recover(memcg);
2322 current->memcg_oom.memcg = NULL;
2323 css_put(&memcg->css);
2328 * Currently used to update mapped file statistics, but the routine can be
2329 * generalized to update other statistics as well.
2331 * Notes: Race condition
2333 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2334 * it tends to be costly. But considering some conditions, we doesn't need
2335 * to do so _always_.
2337 * Considering "charge", lock_page_cgroup() is not required because all
2338 * file-stat operations happen after a page is attached to radix-tree. There
2339 * are no race with "charge".
2341 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2342 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2343 * if there are race with "uncharge". Statistics itself is properly handled
2346 * Considering "move", this is an only case we see a race. To make the race
2347 * small, we check mm->moving_account and detect there are possibility of race
2348 * If there is, we take a lock.
2351 void __mem_cgroup_begin_update_page_stat(struct page *page,
2352 bool *locked, unsigned long *flags)
2354 struct mem_cgroup *memcg;
2355 struct page_cgroup *pc;
2357 pc = lookup_page_cgroup(page);
2359 memcg = pc->mem_cgroup;
2360 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 * If this memory cgroup is not under account moving, we don't
2364 * need to take move_lock_mem_cgroup(). Because we already hold
2365 * rcu_read_lock(), any calls to move_account will be delayed until
2366 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2368 if (!mem_cgroup_stolen(memcg))
2371 move_lock_mem_cgroup(memcg, flags);
2372 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2373 move_unlock_mem_cgroup(memcg, flags);
2379 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2381 struct page_cgroup *pc = lookup_page_cgroup(page);
2384 * It's guaranteed that pc->mem_cgroup never changes while
2385 * lock is held because a routine modifies pc->mem_cgroup
2386 * should take move_lock_mem_cgroup().
2388 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391 void mem_cgroup_update_page_stat(struct page *page,
2392 enum mem_cgroup_stat_index idx, int val)
2394 struct mem_cgroup *memcg;
2395 struct page_cgroup *pc = lookup_page_cgroup(page);
2396 unsigned long uninitialized_var(flags);
2398 if (mem_cgroup_disabled())
2401 VM_BUG_ON(!rcu_read_lock_held());
2402 memcg = pc->mem_cgroup;
2403 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406 this_cpu_add(memcg->stat->count[idx], val);
2410 * size of first charge trial. "32" comes from vmscan.c's magic value.
2411 * TODO: maybe necessary to use big numbers in big irons.
2413 #define CHARGE_BATCH 32U
2414 struct memcg_stock_pcp {
2415 struct mem_cgroup *cached; /* this never be root cgroup */
2416 unsigned int nr_pages;
2417 struct work_struct work;
2418 unsigned long flags;
2419 #define FLUSHING_CACHED_CHARGE 0
2421 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2422 static DEFINE_MUTEX(percpu_charge_mutex);
2425 * consume_stock: Try to consume stocked charge on this cpu.
2426 * @memcg: memcg to consume from.
2427 * @nr_pages: how many pages to charge.
2429 * The charges will only happen if @memcg matches the current cpu's memcg
2430 * stock, and at least @nr_pages are available in that stock. Failure to
2431 * service an allocation will refill the stock.
2433 * returns true if successful, false otherwise.
2435 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 struct memcg_stock_pcp *stock;
2440 if (nr_pages > CHARGE_BATCH)
2443 stock = &get_cpu_var(memcg_stock);
2444 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2445 stock->nr_pages -= nr_pages;
2446 else /* need to call res_counter_charge */
2448 put_cpu_var(memcg_stock);
2453 * Returns stocks cached in percpu to res_counter and reset cached information.
2455 static void drain_stock(struct memcg_stock_pcp *stock)
2457 struct mem_cgroup *old = stock->cached;
2459 if (stock->nr_pages) {
2460 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2462 res_counter_uncharge(&old->res, bytes);
2463 if (do_swap_account)
2464 res_counter_uncharge(&old->memsw, bytes);
2465 stock->nr_pages = 0;
2467 stock->cached = NULL;
2471 * This must be called under preempt disabled or must be called by
2472 * a thread which is pinned to local cpu.
2474 static void drain_local_stock(struct work_struct *dummy)
2476 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2478 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481 static void __init memcg_stock_init(void)
2485 for_each_possible_cpu(cpu) {
2486 struct memcg_stock_pcp *stock =
2487 &per_cpu(memcg_stock, cpu);
2488 INIT_WORK(&stock->work, drain_local_stock);
2493 * Cache charges(val) which is from res_counter, to local per_cpu area.
2494 * This will be consumed by consume_stock() function, later.
2496 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2498 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2500 if (stock->cached != memcg) { /* reset if necessary */
2502 stock->cached = memcg;
2504 stock->nr_pages += nr_pages;
2505 put_cpu_var(memcg_stock);
2509 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2510 * of the hierarchy under it. sync flag says whether we should block
2511 * until the work is done.
2513 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2517 /* Notify other cpus that system-wide "drain" is running */
2520 for_each_online_cpu(cpu) {
2521 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2522 struct mem_cgroup *memcg;
2524 memcg = stock->cached;
2525 if (!memcg || !stock->nr_pages)
2527 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2529 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2531 drain_local_stock(&stock->work);
2533 schedule_work_on(cpu, &stock->work);
2541 for_each_online_cpu(cpu) {
2542 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2543 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2544 flush_work(&stock->work);
2551 * Tries to drain stocked charges in other cpus. This function is asynchronous
2552 * and just put a work per cpu for draining localy on each cpu. Caller can
2553 * expects some charges will be back to res_counter later but cannot wait for
2556 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559 * If someone calls draining, avoid adding more kworker runs.
2561 if (!mutex_trylock(&percpu_charge_mutex))
2563 drain_all_stock(root_memcg, false);
2564 mutex_unlock(&percpu_charge_mutex);
2567 /* This is a synchronous drain interface. */
2568 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2570 /* called when force_empty is called */
2571 mutex_lock(&percpu_charge_mutex);
2572 drain_all_stock(root_memcg, true);
2573 mutex_unlock(&percpu_charge_mutex);
2577 * This function drains percpu counter value from DEAD cpu and
2578 * move it to local cpu. Note that this function can be preempted.
2580 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2584 spin_lock(&memcg->pcp_counter_lock);
2585 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2586 long x = per_cpu(memcg->stat->count[i], cpu);
2588 per_cpu(memcg->stat->count[i], cpu) = 0;
2589 memcg->nocpu_base.count[i] += x;
2591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2592 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2594 per_cpu(memcg->stat->events[i], cpu) = 0;
2595 memcg->nocpu_base.events[i] += x;
2597 spin_unlock(&memcg->pcp_counter_lock);
2600 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2601 unsigned long action,
2604 int cpu = (unsigned long)hcpu;
2605 struct memcg_stock_pcp *stock;
2606 struct mem_cgroup *iter;
2608 if (action == CPU_ONLINE)
2611 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614 for_each_mem_cgroup(iter)
2615 mem_cgroup_drain_pcp_counter(iter, cpu);
2617 stock = &per_cpu(memcg_stock, cpu);
2623 /* See __mem_cgroup_try_charge() for details */
2625 CHARGE_OK, /* success */
2626 CHARGE_RETRY, /* need to retry but retry is not bad */
2627 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2628 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2631 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages, unsigned int min_pages,
2635 unsigned long csize = nr_pages * PAGE_SIZE;
2636 struct mem_cgroup *mem_over_limit;
2637 struct res_counter *fail_res;
2638 unsigned long flags = 0;
2641 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644 if (!do_swap_account)
2646 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2650 res_counter_uncharge(&memcg->res, csize);
2651 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2652 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2654 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2656 * Never reclaim on behalf of optional batching, retry with a
2657 * single page instead.
2659 if (nr_pages > min_pages)
2660 return CHARGE_RETRY;
2662 if (!(gfp_mask & __GFP_WAIT))
2663 return CHARGE_WOULDBLOCK;
2665 if (gfp_mask & __GFP_NORETRY)
2666 return CHARGE_NOMEM;
2668 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2669 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2670 return CHARGE_RETRY;
2672 * Even though the limit is exceeded at this point, reclaim
2673 * may have been able to free some pages. Retry the charge
2674 * before killing the task.
2676 * Only for regular pages, though: huge pages are rather
2677 * unlikely to succeed so close to the limit, and we fall back
2678 * to regular pages anyway in case of failure.
2680 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2681 return CHARGE_RETRY;
2684 * At task move, charge accounts can be doubly counted. So, it's
2685 * better to wait until the end of task_move if something is going on.
2687 if (mem_cgroup_wait_acct_move(mem_over_limit))
2688 return CHARGE_RETRY;
2691 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2693 return CHARGE_NOMEM;
2697 * __mem_cgroup_try_charge() does
2698 * 1. detect memcg to be charged against from passed *mm and *ptr,
2699 * 2. update res_counter
2700 * 3. call memory reclaim if necessary.
2702 * In some special case, if the task is fatal, fatal_signal_pending() or
2703 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2704 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2705 * as possible without any hazards. 2: all pages should have a valid
2706 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2707 * pointer, that is treated as a charge to root_mem_cgroup.
2709 * So __mem_cgroup_try_charge() will return
2710 * 0 ... on success, filling *ptr with a valid memcg pointer.
2711 * -ENOMEM ... charge failure because of resource limits.
2712 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2714 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2715 * the oom-killer can be invoked.
2717 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2719 unsigned int nr_pages,
2720 struct mem_cgroup **ptr,
2723 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2724 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2725 struct mem_cgroup *memcg = NULL;
2729 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2730 * in system level. So, allow to go ahead dying process in addition to
2733 if (unlikely(test_thread_flag(TIF_MEMDIE)
2734 || fatal_signal_pending(current)))
2737 if (unlikely(task_in_memcg_oom(current)))
2741 * We always charge the cgroup the mm_struct belongs to.
2742 * The mm_struct's mem_cgroup changes on task migration if the
2743 * thread group leader migrates. It's possible that mm is not
2744 * set, if so charge the root memcg (happens for pagecache usage).
2747 *ptr = root_mem_cgroup;
2749 if (*ptr) { /* css should be a valid one */
2751 if (mem_cgroup_is_root(memcg))
2753 if (consume_stock(memcg, nr_pages))
2755 css_get(&memcg->css);
2757 struct task_struct *p;
2760 p = rcu_dereference(mm->owner);
2762 * Because we don't have task_lock(), "p" can exit.
2763 * In that case, "memcg" can point to root or p can be NULL with
2764 * race with swapoff. Then, we have small risk of mis-accouning.
2765 * But such kind of mis-account by race always happens because
2766 * we don't have cgroup_mutex(). It's overkill and we allo that
2768 * (*) swapoff at el will charge against mm-struct not against
2769 * task-struct. So, mm->owner can be NULL.
2771 memcg = mem_cgroup_from_task(p);
2773 memcg = root_mem_cgroup;
2774 if (mem_cgroup_is_root(memcg)) {
2778 if (consume_stock(memcg, nr_pages)) {
2780 * It seems dagerous to access memcg without css_get().
2781 * But considering how consume_stok works, it's not
2782 * necessary. If consume_stock success, some charges
2783 * from this memcg are cached on this cpu. So, we
2784 * don't need to call css_get()/css_tryget() before
2785 * calling consume_stock().
2790 /* after here, we may be blocked. we need to get refcnt */
2791 if (!css_tryget(&memcg->css)) {
2799 bool invoke_oom = oom && !nr_oom_retries;
2801 /* If killed, bypass charge */
2802 if (fatal_signal_pending(current)) {
2803 css_put(&memcg->css);
2807 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2808 nr_pages, invoke_oom);
2812 case CHARGE_RETRY: /* not in OOM situation but retry */
2814 css_put(&memcg->css);
2817 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2818 css_put(&memcg->css);
2820 case CHARGE_NOMEM: /* OOM routine works */
2821 if (!oom || invoke_oom) {
2822 css_put(&memcg->css);
2828 } while (ret != CHARGE_OK);
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
2832 css_put(&memcg->css);
2837 if (!(gfp_mask & __GFP_NOFAIL)) {
2842 *ptr = root_mem_cgroup;
2847 * Somemtimes we have to undo a charge we got by try_charge().
2848 * This function is for that and do uncharge, put css's refcnt.
2849 * gotten by try_charge().
2851 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2852 unsigned int nr_pages)
2854 if (!mem_cgroup_is_root(memcg)) {
2855 unsigned long bytes = nr_pages * PAGE_SIZE;
2857 res_counter_uncharge(&memcg->res, bytes);
2858 if (do_swap_account)
2859 res_counter_uncharge(&memcg->memsw, bytes);
2864 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2865 * This is useful when moving usage to parent cgroup.
2867 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2868 unsigned int nr_pages)
2870 unsigned long bytes = nr_pages * PAGE_SIZE;
2872 if (mem_cgroup_is_root(memcg))
2875 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2876 if (do_swap_account)
2877 res_counter_uncharge_until(&memcg->memsw,
2878 memcg->memsw.parent, bytes);
2882 * A helper function to get mem_cgroup from ID. must be called under
2883 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2884 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2885 * called against removed memcg.)
2887 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2889 /* ID 0 is unused ID */
2892 return mem_cgroup_from_id(id);
2895 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2897 struct mem_cgroup *memcg = NULL;
2898 struct page_cgroup *pc;
2902 VM_BUG_ON(!PageLocked(page));
2904 pc = lookup_page_cgroup(page);
2905 lock_page_cgroup(pc);
2906 if (PageCgroupUsed(pc)) {
2907 memcg = pc->mem_cgroup;
2908 if (memcg && !css_tryget(&memcg->css))
2910 } else if (PageSwapCache(page)) {
2911 ent.val = page_private(page);
2912 id = lookup_swap_cgroup_id(ent);
2914 memcg = mem_cgroup_lookup(id);
2915 if (memcg && !css_tryget(&memcg->css))
2919 unlock_page_cgroup(pc);
2923 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2925 unsigned int nr_pages,
2926 enum charge_type ctype,
2929 struct page_cgroup *pc = lookup_page_cgroup(page);
2930 struct zone *uninitialized_var(zone);
2931 struct lruvec *lruvec;
2932 bool was_on_lru = false;
2935 lock_page_cgroup(pc);
2936 VM_BUG_ON(PageCgroupUsed(pc));
2938 * we don't need page_cgroup_lock about tail pages, becase they are not
2939 * accessed by any other context at this point.
2943 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2944 * may already be on some other mem_cgroup's LRU. Take care of it.
2947 zone = page_zone(page);
2948 spin_lock_irq(&zone->lru_lock);
2949 if (PageLRU(page)) {
2950 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2952 del_page_from_lru_list(page, lruvec, page_lru(page));
2957 pc->mem_cgroup = memcg;
2959 * We access a page_cgroup asynchronously without lock_page_cgroup().
2960 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2961 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2962 * before USED bit, we need memory barrier here.
2963 * See mem_cgroup_add_lru_list(), etc.
2966 SetPageCgroupUsed(pc);
2970 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2971 VM_BUG_ON(PageLRU(page));
2973 add_page_to_lru_list(page, lruvec, page_lru(page));
2975 spin_unlock_irq(&zone->lru_lock);
2978 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2983 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2984 unlock_page_cgroup(pc);
2987 * "charge_statistics" updated event counter. Then, check it.
2988 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2989 * if they exceeds softlimit.
2991 memcg_check_events(memcg, page);
2994 static DEFINE_MUTEX(set_limit_mutex);
2996 #ifdef CONFIG_MEMCG_KMEM
2997 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2999 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3000 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
3004 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3005 * in the memcg_cache_params struct.
3007 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3009 struct kmem_cache *cachep;
3011 VM_BUG_ON(p->is_root_cache);
3012 cachep = p->root_cache;
3013 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3016 #ifdef CONFIG_SLABINFO
3017 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
3018 struct cftype *cft, struct seq_file *m)
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021 struct memcg_cache_params *params;
3023 if (!memcg_can_account_kmem(memcg))
3026 print_slabinfo_header(m);
3028 mutex_lock(&memcg->slab_caches_mutex);
3029 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3030 cache_show(memcg_params_to_cache(params), m);
3031 mutex_unlock(&memcg->slab_caches_mutex);
3037 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3039 struct res_counter *fail_res;
3040 struct mem_cgroup *_memcg;
3043 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3048 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3049 &_memcg, oom_gfp_allowed(gfp));
3051 if (ret == -EINTR) {
3053 * __mem_cgroup_try_charge() chosed to bypass to root due to
3054 * OOM kill or fatal signal. Since our only options are to
3055 * either fail the allocation or charge it to this cgroup, do
3056 * it as a temporary condition. But we can't fail. From a
3057 * kmem/slab perspective, the cache has already been selected,
3058 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3061 * This condition will only trigger if the task entered
3062 * memcg_charge_kmem in a sane state, but was OOM-killed during
3063 * __mem_cgroup_try_charge() above. Tasks that were already
3064 * dying when the allocation triggers should have been already
3065 * directed to the root cgroup in memcontrol.h
3067 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3068 if (do_swap_account)
3069 res_counter_charge_nofail(&memcg->memsw, size,
3073 res_counter_uncharge(&memcg->kmem, size);
3078 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3080 res_counter_uncharge(&memcg->res, size);
3081 if (do_swap_account)
3082 res_counter_uncharge(&memcg->memsw, size);
3085 if (res_counter_uncharge(&memcg->kmem, size))
3089 * Releases a reference taken in kmem_cgroup_css_offline in case
3090 * this last uncharge is racing with the offlining code or it is
3091 * outliving the memcg existence.
3093 * The memory barrier imposed by test&clear is paired with the
3094 * explicit one in memcg_kmem_mark_dead().
3096 if (memcg_kmem_test_and_clear_dead(memcg))
3097 css_put(&memcg->css);
3100 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3105 mutex_lock(&memcg->slab_caches_mutex);
3106 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3107 mutex_unlock(&memcg->slab_caches_mutex);
3111 * helper for acessing a memcg's index. It will be used as an index in the
3112 * child cache array in kmem_cache, and also to derive its name. This function
3113 * will return -1 when this is not a kmem-limited memcg.
3115 int memcg_cache_id(struct mem_cgroup *memcg)
3117 return memcg ? memcg->kmemcg_id : -1;
3121 * This ends up being protected by the set_limit mutex, during normal
3122 * operation, because that is its main call site.
3124 * But when we create a new cache, we can call this as well if its parent
3125 * is kmem-limited. That will have to hold set_limit_mutex as well.
3127 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3131 num = ida_simple_get(&kmem_limited_groups,
3132 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3136 * After this point, kmem_accounted (that we test atomically in
3137 * the beginning of this conditional), is no longer 0. This
3138 * guarantees only one process will set the following boolean
3139 * to true. We don't need test_and_set because we're protected
3140 * by the set_limit_mutex anyway.
3142 memcg_kmem_set_activated(memcg);
3144 ret = memcg_update_all_caches(num+1);
3146 ida_simple_remove(&kmem_limited_groups, num);
3147 memcg_kmem_clear_activated(memcg);
3151 memcg->kmemcg_id = num;
3152 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3153 mutex_init(&memcg->slab_caches_mutex);
3157 static size_t memcg_caches_array_size(int num_groups)
3160 if (num_groups <= 0)
3163 size = 2 * num_groups;
3164 if (size < MEMCG_CACHES_MIN_SIZE)
3165 size = MEMCG_CACHES_MIN_SIZE;
3166 else if (size > MEMCG_CACHES_MAX_SIZE)
3167 size = MEMCG_CACHES_MAX_SIZE;
3173 * We should update the current array size iff all caches updates succeed. This
3174 * can only be done from the slab side. The slab mutex needs to be held when
3177 void memcg_update_array_size(int num)
3179 if (num > memcg_limited_groups_array_size)
3180 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3183 static void kmem_cache_destroy_work_func(struct work_struct *w);
3185 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3187 struct memcg_cache_params *cur_params = s->memcg_params;
3189 VM_BUG_ON(!is_root_cache(s));
3191 if (num_groups > memcg_limited_groups_array_size) {
3193 ssize_t size = memcg_caches_array_size(num_groups);
3195 size *= sizeof(void *);
3196 size += offsetof(struct memcg_cache_params, memcg_caches);
3198 s->memcg_params = kzalloc(size, GFP_KERNEL);
3199 if (!s->memcg_params) {
3200 s->memcg_params = cur_params;
3204 s->memcg_params->is_root_cache = true;
3207 * There is the chance it will be bigger than
3208 * memcg_limited_groups_array_size, if we failed an allocation
3209 * in a cache, in which case all caches updated before it, will
3210 * have a bigger array.
3212 * But if that is the case, the data after
3213 * memcg_limited_groups_array_size is certainly unused
3215 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3216 if (!cur_params->memcg_caches[i])
3218 s->memcg_params->memcg_caches[i] =
3219 cur_params->memcg_caches[i];
3223 * Ideally, we would wait until all caches succeed, and only
3224 * then free the old one. But this is not worth the extra
3225 * pointer per-cache we'd have to have for this.
3227 * It is not a big deal if some caches are left with a size
3228 * bigger than the others. And all updates will reset this
3236 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3237 struct kmem_cache *root_cache)
3241 if (!memcg_kmem_enabled())
3245 size = offsetof(struct memcg_cache_params, memcg_caches);
3246 size += memcg_limited_groups_array_size * sizeof(void *);
3248 size = sizeof(struct memcg_cache_params);
3250 s->memcg_params = kzalloc(size, GFP_KERNEL);
3251 if (!s->memcg_params)
3255 s->memcg_params->memcg = memcg;
3256 s->memcg_params->root_cache = root_cache;
3257 INIT_WORK(&s->memcg_params->destroy,
3258 kmem_cache_destroy_work_func);
3260 s->memcg_params->is_root_cache = true;
3265 void memcg_release_cache(struct kmem_cache *s)
3267 struct kmem_cache *root;
3268 struct mem_cgroup *memcg;
3272 * This happens, for instance, when a root cache goes away before we
3275 if (!s->memcg_params)
3278 if (s->memcg_params->is_root_cache)
3281 memcg = s->memcg_params->memcg;
3282 id = memcg_cache_id(memcg);
3284 root = s->memcg_params->root_cache;
3285 root->memcg_params->memcg_caches[id] = NULL;
3287 mutex_lock(&memcg->slab_caches_mutex);
3288 list_del(&s->memcg_params->list);
3289 mutex_unlock(&memcg->slab_caches_mutex);
3291 css_put(&memcg->css);
3293 kfree(s->memcg_params);
3297 * During the creation a new cache, we need to disable our accounting mechanism
3298 * altogether. This is true even if we are not creating, but rather just
3299 * enqueing new caches to be created.
3301 * This is because that process will trigger allocations; some visible, like
3302 * explicit kmallocs to auxiliary data structures, name strings and internal
3303 * cache structures; some well concealed, like INIT_WORK() that can allocate
3304 * objects during debug.
3306 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3307 * to it. This may not be a bounded recursion: since the first cache creation
3308 * failed to complete (waiting on the allocation), we'll just try to create the
3309 * cache again, failing at the same point.
3311 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3312 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3313 * inside the following two functions.
3315 static inline void memcg_stop_kmem_account(void)
3317 VM_BUG_ON(!current->mm);
3318 current->memcg_kmem_skip_account++;
3321 static inline void memcg_resume_kmem_account(void)
3323 VM_BUG_ON(!current->mm);
3324 current->memcg_kmem_skip_account--;
3327 static void kmem_cache_destroy_work_func(struct work_struct *w)
3329 struct kmem_cache *cachep;
3330 struct memcg_cache_params *p;
3332 p = container_of(w, struct memcg_cache_params, destroy);
3334 cachep = memcg_params_to_cache(p);
3337 * If we get down to 0 after shrink, we could delete right away.
3338 * However, memcg_release_pages() already puts us back in the workqueue
3339 * in that case. If we proceed deleting, we'll get a dangling
3340 * reference, and removing the object from the workqueue in that case
3341 * is unnecessary complication. We are not a fast path.
3343 * Note that this case is fundamentally different from racing with
3344 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3345 * kmem_cache_shrink, not only we would be reinserting a dead cache
3346 * into the queue, but doing so from inside the worker racing to
3349 * So if we aren't down to zero, we'll just schedule a worker and try
3352 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3353 kmem_cache_shrink(cachep);
3354 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3357 kmem_cache_destroy(cachep);
3360 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3362 if (!cachep->memcg_params->dead)
3366 * There are many ways in which we can get here.
3368 * We can get to a memory-pressure situation while the delayed work is
3369 * still pending to run. The vmscan shrinkers can then release all
3370 * cache memory and get us to destruction. If this is the case, we'll
3371 * be executed twice, which is a bug (the second time will execute over
3372 * bogus data). In this case, cancelling the work should be fine.
3374 * But we can also get here from the worker itself, if
3375 * kmem_cache_shrink is enough to shake all the remaining objects and
3376 * get the page count to 0. In this case, we'll deadlock if we try to
3377 * cancel the work (the worker runs with an internal lock held, which
3378 * is the same lock we would hold for cancel_work_sync().)
3380 * Since we can't possibly know who got us here, just refrain from
3381 * running if there is already work pending
3383 if (work_pending(&cachep->memcg_params->destroy))
3386 * We have to defer the actual destroying to a workqueue, because
3387 * we might currently be in a context that cannot sleep.
3389 schedule_work(&cachep->memcg_params->destroy);
3393 * This lock protects updaters, not readers. We want readers to be as fast as
3394 * they can, and they will either see NULL or a valid cache value. Our model
3395 * allow them to see NULL, in which case the root memcg will be selected.
3397 * We need this lock because multiple allocations to the same cache from a non
3398 * will span more than one worker. Only one of them can create the cache.
3400 static DEFINE_MUTEX(memcg_cache_mutex);
3403 * Called with memcg_cache_mutex held
3405 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3406 struct kmem_cache *s)
3408 struct kmem_cache *new;
3409 static char *tmp_name = NULL;
3411 lockdep_assert_held(&memcg_cache_mutex);
3414 * kmem_cache_create_memcg duplicates the given name and
3415 * cgroup_name for this name requires RCU context.
3416 * This static temporary buffer is used to prevent from
3417 * pointless shortliving allocation.
3420 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3426 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3427 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3430 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3431 (s->flags & ~SLAB_PANIC), s->ctor, s);
3434 new->allocflags |= __GFP_KMEMCG;
3439 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3440 struct kmem_cache *cachep)
3442 struct kmem_cache *new_cachep;
3445 BUG_ON(!memcg_can_account_kmem(memcg));
3447 idx = memcg_cache_id(memcg);
3449 mutex_lock(&memcg_cache_mutex);
3450 new_cachep = cache_from_memcg_idx(cachep, idx);
3452 css_put(&memcg->css);
3456 new_cachep = kmem_cache_dup(memcg, cachep);
3457 if (new_cachep == NULL) {
3458 new_cachep = cachep;
3459 css_put(&memcg->css);
3463 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3465 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3467 * the readers won't lock, make sure everybody sees the updated value,
3468 * so they won't put stuff in the queue again for no reason
3472 mutex_unlock(&memcg_cache_mutex);
3476 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3478 struct kmem_cache *c;
3481 if (!s->memcg_params)
3483 if (!s->memcg_params->is_root_cache)
3487 * If the cache is being destroyed, we trust that there is no one else
3488 * requesting objects from it. Even if there are, the sanity checks in
3489 * kmem_cache_destroy should caught this ill-case.
3491 * Still, we don't want anyone else freeing memcg_caches under our
3492 * noses, which can happen if a new memcg comes to life. As usual,
3493 * we'll take the set_limit_mutex to protect ourselves against this.
3495 mutex_lock(&set_limit_mutex);
3496 for_each_memcg_cache_index(i) {
3497 c = cache_from_memcg_idx(s, i);
3502 * We will now manually delete the caches, so to avoid races
3503 * we need to cancel all pending destruction workers and
3504 * proceed with destruction ourselves.
3506 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3507 * and that could spawn the workers again: it is likely that
3508 * the cache still have active pages until this very moment.
3509 * This would lead us back to mem_cgroup_destroy_cache.
3511 * But that will not execute at all if the "dead" flag is not
3512 * set, so flip it down to guarantee we are in control.
3514 c->memcg_params->dead = false;
3515 cancel_work_sync(&c->memcg_params->destroy);
3516 kmem_cache_destroy(c);
3518 mutex_unlock(&set_limit_mutex);
3521 struct create_work {
3522 struct mem_cgroup *memcg;
3523 struct kmem_cache *cachep;
3524 struct work_struct work;
3527 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3529 struct kmem_cache *cachep;
3530 struct memcg_cache_params *params;
3532 if (!memcg_kmem_is_active(memcg))
3535 mutex_lock(&memcg->slab_caches_mutex);
3536 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3537 cachep = memcg_params_to_cache(params);
3538 cachep->memcg_params->dead = true;
3539 schedule_work(&cachep->memcg_params->destroy);
3541 mutex_unlock(&memcg->slab_caches_mutex);
3544 static void memcg_create_cache_work_func(struct work_struct *w)
3546 struct create_work *cw;
3548 cw = container_of(w, struct create_work, work);
3549 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3554 * Enqueue the creation of a per-memcg kmem_cache.
3556 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3557 struct kmem_cache *cachep)
3559 struct create_work *cw;
3561 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3563 css_put(&memcg->css);
3568 cw->cachep = cachep;
3570 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3571 schedule_work(&cw->work);
3574 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3575 struct kmem_cache *cachep)
3578 * We need to stop accounting when we kmalloc, because if the
3579 * corresponding kmalloc cache is not yet created, the first allocation
3580 * in __memcg_create_cache_enqueue will recurse.
3582 * However, it is better to enclose the whole function. Depending on
3583 * the debugging options enabled, INIT_WORK(), for instance, can
3584 * trigger an allocation. This too, will make us recurse. Because at
3585 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3586 * the safest choice is to do it like this, wrapping the whole function.
3588 memcg_stop_kmem_account();
3589 __memcg_create_cache_enqueue(memcg, cachep);
3590 memcg_resume_kmem_account();
3593 * Return the kmem_cache we're supposed to use for a slab allocation.
3594 * We try to use the current memcg's version of the cache.
3596 * If the cache does not exist yet, if we are the first user of it,
3597 * we either create it immediately, if possible, or create it asynchronously
3599 * In the latter case, we will let the current allocation go through with
3600 * the original cache.
3602 * Can't be called in interrupt context or from kernel threads.
3603 * This function needs to be called with rcu_read_lock() held.
3605 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3608 struct mem_cgroup *memcg;
3611 VM_BUG_ON(!cachep->memcg_params);
3612 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3614 if (!current->mm || current->memcg_kmem_skip_account)
3618 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3620 if (!memcg_can_account_kmem(memcg))
3623 idx = memcg_cache_id(memcg);
3626 * barrier to mare sure we're always seeing the up to date value. The
3627 * code updating memcg_caches will issue a write barrier to match this.
3629 read_barrier_depends();
3630 if (likely(cache_from_memcg_idx(cachep, idx))) {
3631 cachep = cache_from_memcg_idx(cachep, idx);
3635 /* The corresponding put will be done in the workqueue. */
3636 if (!css_tryget(&memcg->css))
3641 * If we are in a safe context (can wait, and not in interrupt
3642 * context), we could be be predictable and return right away.
3643 * This would guarantee that the allocation being performed
3644 * already belongs in the new cache.
3646 * However, there are some clashes that can arrive from locking.
3647 * For instance, because we acquire the slab_mutex while doing
3648 * kmem_cache_dup, this means no further allocation could happen
3649 * with the slab_mutex held.
3651 * Also, because cache creation issue get_online_cpus(), this
3652 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3653 * that ends up reversed during cpu hotplug. (cpuset allocates
3654 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3655 * better to defer everything.
3657 memcg_create_cache_enqueue(memcg, cachep);
3663 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3666 * We need to verify if the allocation against current->mm->owner's memcg is
3667 * possible for the given order. But the page is not allocated yet, so we'll
3668 * need a further commit step to do the final arrangements.
3670 * It is possible for the task to switch cgroups in this mean time, so at
3671 * commit time, we can't rely on task conversion any longer. We'll then use
3672 * the handle argument to return to the caller which cgroup we should commit
3673 * against. We could also return the memcg directly and avoid the pointer
3674 * passing, but a boolean return value gives better semantics considering
3675 * the compiled-out case as well.
3677 * Returning true means the allocation is possible.
3680 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3682 struct mem_cgroup *memcg;
3688 * Disabling accounting is only relevant for some specific memcg
3689 * internal allocations. Therefore we would initially not have such
3690 * check here, since direct calls to the page allocator that are marked
3691 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3692 * concerned with cache allocations, and by having this test at
3693 * memcg_kmem_get_cache, we are already able to relay the allocation to
3694 * the root cache and bypass the memcg cache altogether.
3696 * There is one exception, though: the SLUB allocator does not create
3697 * large order caches, but rather service large kmallocs directly from
3698 * the page allocator. Therefore, the following sequence when backed by
3699 * the SLUB allocator:
3701 * memcg_stop_kmem_account();
3702 * kmalloc(<large_number>)
3703 * memcg_resume_kmem_account();
3705 * would effectively ignore the fact that we should skip accounting,
3706 * since it will drive us directly to this function without passing
3707 * through the cache selector memcg_kmem_get_cache. Such large
3708 * allocations are extremely rare but can happen, for instance, for the
3709 * cache arrays. We bring this test here.
3711 if (!current->mm || current->memcg_kmem_skip_account)
3714 memcg = try_get_mem_cgroup_from_mm(current->mm);
3717 * very rare case described in mem_cgroup_from_task. Unfortunately there
3718 * isn't much we can do without complicating this too much, and it would
3719 * be gfp-dependent anyway. Just let it go
3721 if (unlikely(!memcg))
3724 if (!memcg_can_account_kmem(memcg)) {
3725 css_put(&memcg->css);
3729 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3733 css_put(&memcg->css);
3737 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3740 struct page_cgroup *pc;
3742 VM_BUG_ON(mem_cgroup_is_root(memcg));
3744 /* The page allocation failed. Revert */
3746 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3750 pc = lookup_page_cgroup(page);
3751 lock_page_cgroup(pc);
3752 pc->mem_cgroup = memcg;
3753 SetPageCgroupUsed(pc);
3754 unlock_page_cgroup(pc);
3757 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3759 struct mem_cgroup *memcg = NULL;
3760 struct page_cgroup *pc;
3763 pc = lookup_page_cgroup(page);
3765 * Fast unlocked return. Theoretically might have changed, have to
3766 * check again after locking.
3768 if (!PageCgroupUsed(pc))
3771 lock_page_cgroup(pc);
3772 if (PageCgroupUsed(pc)) {
3773 memcg = pc->mem_cgroup;
3774 ClearPageCgroupUsed(pc);
3776 unlock_page_cgroup(pc);
3779 * We trust that only if there is a memcg associated with the page, it
3780 * is a valid allocation
3785 VM_BUG_ON(mem_cgroup_is_root(memcg));
3786 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3789 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3792 #endif /* CONFIG_MEMCG_KMEM */
3794 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3796 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3798 * Because tail pages are not marked as "used", set it. We're under
3799 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3800 * charge/uncharge will be never happen and move_account() is done under
3801 * compound_lock(), so we don't have to take care of races.
3803 void mem_cgroup_split_huge_fixup(struct page *head)
3805 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3806 struct page_cgroup *pc;
3807 struct mem_cgroup *memcg;
3810 if (mem_cgroup_disabled())
3813 memcg = head_pc->mem_cgroup;
3814 for (i = 1; i < HPAGE_PMD_NR; i++) {
3816 pc->mem_cgroup = memcg;
3817 smp_wmb();/* see __commit_charge() */
3818 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3820 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3823 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3826 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3827 struct mem_cgroup *to,
3828 unsigned int nr_pages,
3829 enum mem_cgroup_stat_index idx)
3831 /* Update stat data for mem_cgroup */
3833 __this_cpu_sub(from->stat->count[idx], nr_pages);
3834 __this_cpu_add(to->stat->count[idx], nr_pages);
3839 * mem_cgroup_move_account - move account of the page
3841 * @nr_pages: number of regular pages (>1 for huge pages)
3842 * @pc: page_cgroup of the page.
3843 * @from: mem_cgroup which the page is moved from.
3844 * @to: mem_cgroup which the page is moved to. @from != @to.
3846 * The caller must confirm following.
3847 * - page is not on LRU (isolate_page() is useful.)
3848 * - compound_lock is held when nr_pages > 1
3850 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3853 static int mem_cgroup_move_account(struct page *page,
3854 unsigned int nr_pages,
3855 struct page_cgroup *pc,
3856 struct mem_cgroup *from,
3857 struct mem_cgroup *to)
3859 unsigned long flags;
3861 bool anon = PageAnon(page);
3863 VM_BUG_ON(from == to);
3864 VM_BUG_ON(PageLRU(page));
3866 * The page is isolated from LRU. So, collapse function
3867 * will not handle this page. But page splitting can happen.
3868 * Do this check under compound_page_lock(). The caller should
3872 if (nr_pages > 1 && !PageTransHuge(page))
3875 lock_page_cgroup(pc);
3878 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3881 move_lock_mem_cgroup(from, &flags);
3883 if (!anon && page_mapped(page))
3884 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3885 MEM_CGROUP_STAT_FILE_MAPPED);
3887 if (PageWriteback(page))
3888 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3889 MEM_CGROUP_STAT_WRITEBACK);
3891 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3893 /* caller should have done css_get */
3894 pc->mem_cgroup = to;
3895 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3896 move_unlock_mem_cgroup(from, &flags);
3899 unlock_page_cgroup(pc);
3903 memcg_check_events(to, page);
3904 memcg_check_events(from, page);
3910 * mem_cgroup_move_parent - moves page to the parent group
3911 * @page: the page to move
3912 * @pc: page_cgroup of the page
3913 * @child: page's cgroup
3915 * move charges to its parent or the root cgroup if the group has no
3916 * parent (aka use_hierarchy==0).
3917 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3918 * mem_cgroup_move_account fails) the failure is always temporary and
3919 * it signals a race with a page removal/uncharge or migration. In the
3920 * first case the page is on the way out and it will vanish from the LRU
3921 * on the next attempt and the call should be retried later.
3922 * Isolation from the LRU fails only if page has been isolated from
3923 * the LRU since we looked at it and that usually means either global
3924 * reclaim or migration going on. The page will either get back to the
3926 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3927 * (!PageCgroupUsed) or moved to a different group. The page will
3928 * disappear in the next attempt.
3930 static int mem_cgroup_move_parent(struct page *page,
3931 struct page_cgroup *pc,
3932 struct mem_cgroup *child)
3934 struct mem_cgroup *parent;
3935 unsigned int nr_pages;
3936 unsigned long uninitialized_var(flags);
3939 VM_BUG_ON(mem_cgroup_is_root(child));
3942 if (!get_page_unless_zero(page))
3944 if (isolate_lru_page(page))
3947 nr_pages = hpage_nr_pages(page);
3949 parent = parent_mem_cgroup(child);
3951 * If no parent, move charges to root cgroup.
3954 parent = root_mem_cgroup;
3957 VM_BUG_ON(!PageTransHuge(page));
3958 flags = compound_lock_irqsave(page);
3961 ret = mem_cgroup_move_account(page, nr_pages,
3964 __mem_cgroup_cancel_local_charge(child, nr_pages);
3967 compound_unlock_irqrestore(page, flags);
3968 putback_lru_page(page);
3976 * Charge the memory controller for page usage.
3978 * 0 if the charge was successful
3979 * < 0 if the cgroup is over its limit
3981 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3982 gfp_t gfp_mask, enum charge_type ctype)
3984 struct mem_cgroup *memcg = NULL;
3985 unsigned int nr_pages = 1;
3989 if (PageTransHuge(page)) {
3990 nr_pages <<= compound_order(page);
3991 VM_BUG_ON(!PageTransHuge(page));
3993 * Never OOM-kill a process for a huge page. The
3994 * fault handler will fall back to regular pages.
3999 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
4002 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4006 int mem_cgroup_newpage_charge(struct page *page,
4007 struct mm_struct *mm, gfp_t gfp_mask)
4009 if (mem_cgroup_disabled())
4011 VM_BUG_ON(page_mapped(page));
4012 VM_BUG_ON(page->mapping && !PageAnon(page));
4014 return mem_cgroup_charge_common(page, mm, gfp_mask,
4015 MEM_CGROUP_CHARGE_TYPE_ANON);
4019 * While swap-in, try_charge -> commit or cancel, the page is locked.
4020 * And when try_charge() successfully returns, one refcnt to memcg without
4021 * struct page_cgroup is acquired. This refcnt will be consumed by
4022 * "commit()" or removed by "cancel()"
4024 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4027 struct mem_cgroup **memcgp)
4029 struct mem_cgroup *memcg;
4030 struct page_cgroup *pc;
4033 pc = lookup_page_cgroup(page);
4035 * Every swap fault against a single page tries to charge the
4036 * page, bail as early as possible. shmem_unuse() encounters
4037 * already charged pages, too. The USED bit is protected by
4038 * the page lock, which serializes swap cache removal, which
4039 * in turn serializes uncharging.
4041 if (PageCgroupUsed(pc))
4043 if (!do_swap_account)
4045 memcg = try_get_mem_cgroup_from_page(page);
4049 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4050 css_put(&memcg->css);
4055 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4061 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4062 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4065 if (mem_cgroup_disabled())
4068 * A racing thread's fault, or swapoff, may have already
4069 * updated the pte, and even removed page from swap cache: in
4070 * those cases unuse_pte()'s pte_same() test will fail; but
4071 * there's also a KSM case which does need to charge the page.
4073 if (!PageSwapCache(page)) {
4076 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4081 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4084 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4086 if (mem_cgroup_disabled())
4090 __mem_cgroup_cancel_charge(memcg, 1);
4094 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4095 enum charge_type ctype)
4097 if (mem_cgroup_disabled())
4102 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4104 * Now swap is on-memory. This means this page may be
4105 * counted both as mem and swap....double count.
4106 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4107 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4108 * may call delete_from_swap_cache() before reach here.
4110 if (do_swap_account && PageSwapCache(page)) {
4111 swp_entry_t ent = {.val = page_private(page)};
4112 mem_cgroup_uncharge_swap(ent);
4116 void mem_cgroup_commit_charge_swapin(struct page *page,
4117 struct mem_cgroup *memcg)
4119 __mem_cgroup_commit_charge_swapin(page, memcg,
4120 MEM_CGROUP_CHARGE_TYPE_ANON);
4123 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4126 struct mem_cgroup *memcg = NULL;
4127 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4130 if (mem_cgroup_disabled())
4132 if (PageCompound(page))
4135 if (!PageSwapCache(page))
4136 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4137 else { /* page is swapcache/shmem */
4138 ret = __mem_cgroup_try_charge_swapin(mm, page,
4141 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4146 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4147 unsigned int nr_pages,
4148 const enum charge_type ctype)
4150 struct memcg_batch_info *batch = NULL;
4151 bool uncharge_memsw = true;
4153 /* If swapout, usage of swap doesn't decrease */
4154 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4155 uncharge_memsw = false;
4157 batch = ¤t->memcg_batch;
4159 * In usual, we do css_get() when we remember memcg pointer.
4160 * But in this case, we keep res->usage until end of a series of
4161 * uncharges. Then, it's ok to ignore memcg's refcnt.
4164 batch->memcg = memcg;
4166 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4167 * In those cases, all pages freed continuously can be expected to be in
4168 * the same cgroup and we have chance to coalesce uncharges.
4169 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4170 * because we want to do uncharge as soon as possible.
4173 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4174 goto direct_uncharge;
4177 goto direct_uncharge;
4180 * In typical case, batch->memcg == mem. This means we can
4181 * merge a series of uncharges to an uncharge of res_counter.
4182 * If not, we uncharge res_counter ony by one.
4184 if (batch->memcg != memcg)
4185 goto direct_uncharge;
4186 /* remember freed charge and uncharge it later */
4189 batch->memsw_nr_pages++;
4192 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4194 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4195 if (unlikely(batch->memcg != memcg))
4196 memcg_oom_recover(memcg);
4200 * uncharge if !page_mapped(page)
4202 static struct mem_cgroup *
4203 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4206 struct mem_cgroup *memcg = NULL;
4207 unsigned int nr_pages = 1;
4208 struct page_cgroup *pc;
4211 if (mem_cgroup_disabled())
4214 if (PageTransHuge(page)) {
4215 nr_pages <<= compound_order(page);
4216 VM_BUG_ON(!PageTransHuge(page));
4219 * Check if our page_cgroup is valid
4221 pc = lookup_page_cgroup(page);
4222 if (unlikely(!PageCgroupUsed(pc)))
4225 lock_page_cgroup(pc);
4227 memcg = pc->mem_cgroup;
4229 if (!PageCgroupUsed(pc))
4232 anon = PageAnon(page);
4235 case MEM_CGROUP_CHARGE_TYPE_ANON:
4237 * Generally PageAnon tells if it's the anon statistics to be
4238 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4239 * used before page reached the stage of being marked PageAnon.
4243 case MEM_CGROUP_CHARGE_TYPE_DROP:
4244 /* See mem_cgroup_prepare_migration() */
4245 if (page_mapped(page))
4248 * Pages under migration may not be uncharged. But
4249 * end_migration() /must/ be the one uncharging the
4250 * unused post-migration page and so it has to call
4251 * here with the migration bit still set. See the
4252 * res_counter handling below.
4254 if (!end_migration && PageCgroupMigration(pc))
4257 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4258 if (!PageAnon(page)) { /* Shared memory */
4259 if (page->mapping && !page_is_file_cache(page))
4261 } else if (page_mapped(page)) /* Anon */
4268 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4270 ClearPageCgroupUsed(pc);
4272 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4273 * freed from LRU. This is safe because uncharged page is expected not
4274 * to be reused (freed soon). Exception is SwapCache, it's handled by
4275 * special functions.
4278 unlock_page_cgroup(pc);
4280 * even after unlock, we have memcg->res.usage here and this memcg
4281 * will never be freed, so it's safe to call css_get().
4283 memcg_check_events(memcg, page);
4284 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4285 mem_cgroup_swap_statistics(memcg, true);
4286 css_get(&memcg->css);
4289 * Migration does not charge the res_counter for the
4290 * replacement page, so leave it alone when phasing out the
4291 * page that is unused after the migration.
4293 if (!end_migration && !mem_cgroup_is_root(memcg))
4294 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4299 unlock_page_cgroup(pc);
4303 void mem_cgroup_uncharge_page(struct page *page)
4306 if (page_mapped(page))
4308 VM_BUG_ON(page->mapping && !PageAnon(page));
4310 * If the page is in swap cache, uncharge should be deferred
4311 * to the swap path, which also properly accounts swap usage
4312 * and handles memcg lifetime.
4314 * Note that this check is not stable and reclaim may add the
4315 * page to swap cache at any time after this. However, if the
4316 * page is not in swap cache by the time page->mapcount hits
4317 * 0, there won't be any page table references to the swap
4318 * slot, and reclaim will free it and not actually write the
4321 if (PageSwapCache(page))
4323 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4326 void mem_cgroup_uncharge_cache_page(struct page *page)
4328 VM_BUG_ON(page_mapped(page));
4329 VM_BUG_ON(page->mapping);
4330 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4334 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4335 * In that cases, pages are freed continuously and we can expect pages
4336 * are in the same memcg. All these calls itself limits the number of
4337 * pages freed at once, then uncharge_start/end() is called properly.
4338 * This may be called prural(2) times in a context,
4341 void mem_cgroup_uncharge_start(void)
4343 current->memcg_batch.do_batch++;
4344 /* We can do nest. */
4345 if (current->memcg_batch.do_batch == 1) {
4346 current->memcg_batch.memcg = NULL;
4347 current->memcg_batch.nr_pages = 0;
4348 current->memcg_batch.memsw_nr_pages = 0;
4352 void mem_cgroup_uncharge_end(void)
4354 struct memcg_batch_info *batch = ¤t->memcg_batch;
4356 if (!batch->do_batch)
4360 if (batch->do_batch) /* If stacked, do nothing. */
4366 * This "batch->memcg" is valid without any css_get/put etc...
4367 * bacause we hide charges behind us.
4369 if (batch->nr_pages)
4370 res_counter_uncharge(&batch->memcg->res,
4371 batch->nr_pages * PAGE_SIZE);
4372 if (batch->memsw_nr_pages)
4373 res_counter_uncharge(&batch->memcg->memsw,
4374 batch->memsw_nr_pages * PAGE_SIZE);
4375 memcg_oom_recover(batch->memcg);
4376 /* forget this pointer (for sanity check) */
4377 batch->memcg = NULL;
4382 * called after __delete_from_swap_cache() and drop "page" account.
4383 * memcg information is recorded to swap_cgroup of "ent"
4386 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4388 struct mem_cgroup *memcg;
4389 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4391 if (!swapout) /* this was a swap cache but the swap is unused ! */
4392 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4394 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4397 * record memcg information, if swapout && memcg != NULL,
4398 * css_get() was called in uncharge().
4400 if (do_swap_account && swapout && memcg)
4401 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4405 #ifdef CONFIG_MEMCG_SWAP
4407 * called from swap_entry_free(). remove record in swap_cgroup and
4408 * uncharge "memsw" account.
4410 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4412 struct mem_cgroup *memcg;
4415 if (!do_swap_account)
4418 id = swap_cgroup_record(ent, 0);
4420 memcg = mem_cgroup_lookup(id);
4423 * We uncharge this because swap is freed.
4424 * This memcg can be obsolete one. We avoid calling css_tryget
4426 if (!mem_cgroup_is_root(memcg))
4427 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4428 mem_cgroup_swap_statistics(memcg, false);
4429 css_put(&memcg->css);
4435 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4436 * @entry: swap entry to be moved
4437 * @from: mem_cgroup which the entry is moved from
4438 * @to: mem_cgroup which the entry is moved to
4440 * It succeeds only when the swap_cgroup's record for this entry is the same
4441 * as the mem_cgroup's id of @from.
4443 * Returns 0 on success, -EINVAL on failure.
4445 * The caller must have charged to @to, IOW, called res_counter_charge() about
4446 * both res and memsw, and called css_get().
4448 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4449 struct mem_cgroup *from, struct mem_cgroup *to)
4451 unsigned short old_id, new_id;
4453 old_id = mem_cgroup_id(from);
4454 new_id = mem_cgroup_id(to);
4456 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4457 mem_cgroup_swap_statistics(from, false);
4458 mem_cgroup_swap_statistics(to, true);
4460 * This function is only called from task migration context now.
4461 * It postpones res_counter and refcount handling till the end
4462 * of task migration(mem_cgroup_clear_mc()) for performance
4463 * improvement. But we cannot postpone css_get(to) because if
4464 * the process that has been moved to @to does swap-in, the
4465 * refcount of @to might be decreased to 0.
4467 * We are in attach() phase, so the cgroup is guaranteed to be
4468 * alive, so we can just call css_get().
4476 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4477 struct mem_cgroup *from, struct mem_cgroup *to)
4484 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4487 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4488 struct mem_cgroup **memcgp)
4490 struct mem_cgroup *memcg = NULL;
4491 unsigned int nr_pages = 1;
4492 struct page_cgroup *pc;
4493 enum charge_type ctype;
4497 if (mem_cgroup_disabled())
4500 if (PageTransHuge(page))
4501 nr_pages <<= compound_order(page);
4503 pc = lookup_page_cgroup(page);
4504 lock_page_cgroup(pc);
4505 if (PageCgroupUsed(pc)) {
4506 memcg = pc->mem_cgroup;
4507 css_get(&memcg->css);
4509 * At migrating an anonymous page, its mapcount goes down
4510 * to 0 and uncharge() will be called. But, even if it's fully
4511 * unmapped, migration may fail and this page has to be
4512 * charged again. We set MIGRATION flag here and delay uncharge
4513 * until end_migration() is called
4515 * Corner Case Thinking
4517 * When the old page was mapped as Anon and it's unmap-and-freed
4518 * while migration was ongoing.
4519 * If unmap finds the old page, uncharge() of it will be delayed
4520 * until end_migration(). If unmap finds a new page, it's
4521 * uncharged when it make mapcount to be 1->0. If unmap code
4522 * finds swap_migration_entry, the new page will not be mapped
4523 * and end_migration() will find it(mapcount==0).
4526 * When the old page was mapped but migraion fails, the kernel
4527 * remaps it. A charge for it is kept by MIGRATION flag even
4528 * if mapcount goes down to 0. We can do remap successfully
4529 * without charging it again.
4532 * The "old" page is under lock_page() until the end of
4533 * migration, so, the old page itself will not be swapped-out.
4534 * If the new page is swapped out before end_migraton, our
4535 * hook to usual swap-out path will catch the event.
4538 SetPageCgroupMigration(pc);
4540 unlock_page_cgroup(pc);
4542 * If the page is not charged at this point,
4550 * We charge new page before it's used/mapped. So, even if unlock_page()
4551 * is called before end_migration, we can catch all events on this new
4552 * page. In the case new page is migrated but not remapped, new page's
4553 * mapcount will be finally 0 and we call uncharge in end_migration().
4556 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4558 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4560 * The page is committed to the memcg, but it's not actually
4561 * charged to the res_counter since we plan on replacing the
4562 * old one and only one page is going to be left afterwards.
4564 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4567 /* remove redundant charge if migration failed*/
4568 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4569 struct page *oldpage, struct page *newpage, bool migration_ok)
4571 struct page *used, *unused;
4572 struct page_cgroup *pc;
4578 if (!migration_ok) {
4585 anon = PageAnon(used);
4586 __mem_cgroup_uncharge_common(unused,
4587 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4588 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4590 css_put(&memcg->css);
4592 * We disallowed uncharge of pages under migration because mapcount
4593 * of the page goes down to zero, temporarly.
4594 * Clear the flag and check the page should be charged.
4596 pc = lookup_page_cgroup(oldpage);
4597 lock_page_cgroup(pc);
4598 ClearPageCgroupMigration(pc);
4599 unlock_page_cgroup(pc);
4602 * If a page is a file cache, radix-tree replacement is very atomic
4603 * and we can skip this check. When it was an Anon page, its mapcount
4604 * goes down to 0. But because we added MIGRATION flage, it's not
4605 * uncharged yet. There are several case but page->mapcount check
4606 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4607 * check. (see prepare_charge() also)
4610 mem_cgroup_uncharge_page(used);
4614 * At replace page cache, newpage is not under any memcg but it's on
4615 * LRU. So, this function doesn't touch res_counter but handles LRU
4616 * in correct way. Both pages are locked so we cannot race with uncharge.
4618 void mem_cgroup_replace_page_cache(struct page *oldpage,
4619 struct page *newpage)
4621 struct mem_cgroup *memcg = NULL;
4622 struct page_cgroup *pc;
4623 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4625 if (mem_cgroup_disabled())
4628 pc = lookup_page_cgroup(oldpage);
4629 /* fix accounting on old pages */
4630 lock_page_cgroup(pc);
4631 if (PageCgroupUsed(pc)) {
4632 memcg = pc->mem_cgroup;
4633 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4634 ClearPageCgroupUsed(pc);
4636 unlock_page_cgroup(pc);
4639 * When called from shmem_replace_page(), in some cases the
4640 * oldpage has already been charged, and in some cases not.
4645 * Even if newpage->mapping was NULL before starting replacement,
4646 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4647 * LRU while we overwrite pc->mem_cgroup.
4649 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4652 #ifdef CONFIG_DEBUG_VM
4653 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4655 struct page_cgroup *pc;
4657 pc = lookup_page_cgroup(page);
4659 * Can be NULL while feeding pages into the page allocator for
4660 * the first time, i.e. during boot or memory hotplug;
4661 * or when mem_cgroup_disabled().
4663 if (likely(pc) && PageCgroupUsed(pc))
4668 bool mem_cgroup_bad_page_check(struct page *page)
4670 if (mem_cgroup_disabled())
4673 return lookup_page_cgroup_used(page) != NULL;
4676 void mem_cgroup_print_bad_page(struct page *page)
4678 struct page_cgroup *pc;
4680 pc = lookup_page_cgroup_used(page);
4682 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4683 pc, pc->flags, pc->mem_cgroup);
4688 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4689 unsigned long long val)
4692 u64 memswlimit, memlimit;
4694 int children = mem_cgroup_count_children(memcg);
4695 u64 curusage, oldusage;
4699 * For keeping hierarchical_reclaim simple, how long we should retry
4700 * is depends on callers. We set our retry-count to be function
4701 * of # of children which we should visit in this loop.
4703 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4705 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4708 while (retry_count) {
4709 if (signal_pending(current)) {
4714 * Rather than hide all in some function, I do this in
4715 * open coded manner. You see what this really does.
4716 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4718 mutex_lock(&set_limit_mutex);
4719 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4720 if (memswlimit < val) {
4722 mutex_unlock(&set_limit_mutex);
4726 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4730 ret = res_counter_set_limit(&memcg->res, val);
4732 if (memswlimit == val)
4733 memcg->memsw_is_minimum = true;
4735 memcg->memsw_is_minimum = false;
4737 mutex_unlock(&set_limit_mutex);
4742 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4743 MEM_CGROUP_RECLAIM_SHRINK);
4744 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4745 /* Usage is reduced ? */
4746 if (curusage >= oldusage)
4749 oldusage = curusage;
4751 if (!ret && enlarge)
4752 memcg_oom_recover(memcg);
4757 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4758 unsigned long long val)
4761 u64 memlimit, memswlimit, oldusage, curusage;
4762 int children = mem_cgroup_count_children(memcg);
4766 /* see mem_cgroup_resize_res_limit */
4767 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4768 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4769 while (retry_count) {
4770 if (signal_pending(current)) {
4775 * Rather than hide all in some function, I do this in
4776 * open coded manner. You see what this really does.
4777 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4779 mutex_lock(&set_limit_mutex);
4780 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4781 if (memlimit > val) {
4783 mutex_unlock(&set_limit_mutex);
4786 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4787 if (memswlimit < val)
4789 ret = res_counter_set_limit(&memcg->memsw, val);
4791 if (memlimit == val)
4792 memcg->memsw_is_minimum = true;
4794 memcg->memsw_is_minimum = false;
4796 mutex_unlock(&set_limit_mutex);
4801 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4802 MEM_CGROUP_RECLAIM_NOSWAP |
4803 MEM_CGROUP_RECLAIM_SHRINK);
4804 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4805 /* Usage is reduced ? */
4806 if (curusage >= oldusage)
4809 oldusage = curusage;
4811 if (!ret && enlarge)
4812 memcg_oom_recover(memcg);
4816 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4818 unsigned long *total_scanned)
4820 unsigned long nr_reclaimed = 0;
4821 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4822 unsigned long reclaimed;
4824 struct mem_cgroup_tree_per_zone *mctz;
4825 unsigned long long excess;
4826 unsigned long nr_scanned;
4831 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4833 * This loop can run a while, specially if mem_cgroup's continuously
4834 * keep exceeding their soft limit and putting the system under
4841 mz = mem_cgroup_largest_soft_limit_node(mctz);
4846 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4847 gfp_mask, &nr_scanned);
4848 nr_reclaimed += reclaimed;
4849 *total_scanned += nr_scanned;
4850 spin_lock(&mctz->lock);
4853 * If we failed to reclaim anything from this memory cgroup
4854 * it is time to move on to the next cgroup
4860 * Loop until we find yet another one.
4862 * By the time we get the soft_limit lock
4863 * again, someone might have aded the
4864 * group back on the RB tree. Iterate to
4865 * make sure we get a different mem.
4866 * mem_cgroup_largest_soft_limit_node returns
4867 * NULL if no other cgroup is present on
4871 __mem_cgroup_largest_soft_limit_node(mctz);
4873 css_put(&next_mz->memcg->css);
4874 else /* next_mz == NULL or other memcg */
4878 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4879 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4881 * One school of thought says that we should not add
4882 * back the node to the tree if reclaim returns 0.
4883 * But our reclaim could return 0, simply because due
4884 * to priority we are exposing a smaller subset of
4885 * memory to reclaim from. Consider this as a longer
4888 /* If excess == 0, no tree ops */
4889 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4890 spin_unlock(&mctz->lock);
4891 css_put(&mz->memcg->css);
4894 * Could not reclaim anything and there are no more
4895 * mem cgroups to try or we seem to be looping without
4896 * reclaiming anything.
4898 if (!nr_reclaimed &&
4900 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4902 } while (!nr_reclaimed);
4904 css_put(&next_mz->memcg->css);
4905 return nr_reclaimed;
4909 * mem_cgroup_force_empty_list - clears LRU of a group
4910 * @memcg: group to clear
4913 * @lru: lru to to clear
4915 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4916 * reclaim the pages page themselves - pages are moved to the parent (or root)
4919 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4920 int node, int zid, enum lru_list lru)
4922 struct lruvec *lruvec;
4923 unsigned long flags;
4924 struct list_head *list;
4928 zone = &NODE_DATA(node)->node_zones[zid];
4929 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4930 list = &lruvec->lists[lru];
4934 struct page_cgroup *pc;
4937 spin_lock_irqsave(&zone->lru_lock, flags);
4938 if (list_empty(list)) {
4939 spin_unlock_irqrestore(&zone->lru_lock, flags);
4942 page = list_entry(list->prev, struct page, lru);
4944 list_move(&page->lru, list);
4946 spin_unlock_irqrestore(&zone->lru_lock, flags);
4949 spin_unlock_irqrestore(&zone->lru_lock, flags);
4951 pc = lookup_page_cgroup(page);
4953 if (mem_cgroup_move_parent(page, pc, memcg)) {
4954 /* found lock contention or "pc" is obsolete. */
4959 } while (!list_empty(list));
4963 * make mem_cgroup's charge to be 0 if there is no task by moving
4964 * all the charges and pages to the parent.
4965 * This enables deleting this mem_cgroup.
4967 * Caller is responsible for holding css reference on the memcg.
4969 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4975 /* This is for making all *used* pages to be on LRU. */
4976 lru_add_drain_all();
4977 drain_all_stock_sync(memcg);
4978 mem_cgroup_start_move(memcg);
4979 for_each_node_state(node, N_MEMORY) {
4980 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4983 mem_cgroup_force_empty_list(memcg,
4988 mem_cgroup_end_move(memcg);
4989 memcg_oom_recover(memcg);
4993 * Kernel memory may not necessarily be trackable to a specific
4994 * process. So they are not migrated, and therefore we can't
4995 * expect their value to drop to 0 here.
4996 * Having res filled up with kmem only is enough.
4998 * This is a safety check because mem_cgroup_force_empty_list
4999 * could have raced with mem_cgroup_replace_page_cache callers
5000 * so the lru seemed empty but the page could have been added
5001 * right after the check. RES_USAGE should be safe as we always
5002 * charge before adding to the LRU.
5004 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5005 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5006 } while (usage > 0);
5009 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5011 lockdep_assert_held(&memcg_create_mutex);
5013 * The lock does not prevent addition or deletion to the list
5014 * of children, but it prevents a new child from being
5015 * initialized based on this parent in css_online(), so it's
5016 * enough to decide whether hierarchically inherited
5017 * attributes can still be changed or not.
5019 return memcg->use_hierarchy &&
5020 !list_empty(&memcg->css.cgroup->children);
5024 * Reclaims as many pages from the given memcg as possible and moves
5025 * the rest to the parent.
5027 * Caller is responsible for holding css reference for memcg.
5029 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5031 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5032 struct cgroup *cgrp = memcg->css.cgroup;
5034 /* returns EBUSY if there is a task or if we come here twice. */
5035 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5038 /* we call try-to-free pages for make this cgroup empty */
5039 lru_add_drain_all();
5040 /* try to free all pages in this cgroup */
5041 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5044 if (signal_pending(current))
5047 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5051 /* maybe some writeback is necessary */
5052 congestion_wait(BLK_RW_ASYNC, HZ/10);
5057 mem_cgroup_reparent_charges(memcg);
5062 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5067 if (mem_cgroup_is_root(memcg))
5069 return mem_cgroup_force_empty(memcg);
5072 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5075 return mem_cgroup_from_css(css)->use_hierarchy;
5078 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5079 struct cftype *cft, u64 val)
5082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5085 mutex_lock(&memcg_create_mutex);
5087 if (memcg->use_hierarchy == val)
5091 * If parent's use_hierarchy is set, we can't make any modifications
5092 * in the child subtrees. If it is unset, then the change can
5093 * occur, provided the current cgroup has no children.
5095 * For the root cgroup, parent_mem is NULL, we allow value to be
5096 * set if there are no children.
5098 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5099 (val == 1 || val == 0)) {
5100 if (list_empty(&memcg->css.cgroup->children))
5101 memcg->use_hierarchy = val;
5108 mutex_unlock(&memcg_create_mutex);
5114 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5115 enum mem_cgroup_stat_index idx)
5117 struct mem_cgroup *iter;
5120 /* Per-cpu values can be negative, use a signed accumulator */
5121 for_each_mem_cgroup_tree(iter, memcg)
5122 val += mem_cgroup_read_stat(iter, idx);
5124 if (val < 0) /* race ? */
5129 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5133 if (!mem_cgroup_is_root(memcg)) {
5135 return res_counter_read_u64(&memcg->res, RES_USAGE);
5137 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5141 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5142 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5144 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5145 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5148 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5150 return val << PAGE_SHIFT;
5153 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5154 struct cftype *cft, struct file *file,
5155 char __user *buf, size_t nbytes, loff_t *ppos)
5157 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5163 type = MEMFILE_TYPE(cft->private);
5164 name = MEMFILE_ATTR(cft->private);
5168 if (name == RES_USAGE)
5169 val = mem_cgroup_usage(memcg, false);
5171 val = res_counter_read_u64(&memcg->res, name);
5174 if (name == RES_USAGE)
5175 val = mem_cgroup_usage(memcg, true);
5177 val = res_counter_read_u64(&memcg->memsw, name);
5180 val = res_counter_read_u64(&memcg->kmem, name);
5186 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5187 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5190 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5193 #ifdef CONFIG_MEMCG_KMEM
5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196 * For simplicity, we won't allow this to be disabled. It also can't
5197 * be changed if the cgroup has children already, or if tasks had
5200 * If tasks join before we set the limit, a person looking at
5201 * kmem.usage_in_bytes will have no way to determine when it took
5202 * place, which makes the value quite meaningless.
5204 * After it first became limited, changes in the value of the limit are
5205 * of course permitted.
5207 mutex_lock(&memcg_create_mutex);
5208 mutex_lock(&set_limit_mutex);
5209 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5210 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5214 ret = res_counter_set_limit(&memcg->kmem, val);
5217 ret = memcg_update_cache_sizes(memcg);
5219 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5222 static_key_slow_inc(&memcg_kmem_enabled_key);
5224 * setting the active bit after the inc will guarantee no one
5225 * starts accounting before all call sites are patched
5227 memcg_kmem_set_active(memcg);
5229 ret = res_counter_set_limit(&memcg->kmem, val);
5231 mutex_unlock(&set_limit_mutex);
5232 mutex_unlock(&memcg_create_mutex);
5237 #ifdef CONFIG_MEMCG_KMEM
5238 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5241 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5245 memcg->kmem_account_flags = parent->kmem_account_flags;
5247 * When that happen, we need to disable the static branch only on those
5248 * memcgs that enabled it. To achieve this, we would be forced to
5249 * complicate the code by keeping track of which memcgs were the ones
5250 * that actually enabled limits, and which ones got it from its
5253 * It is a lot simpler just to do static_key_slow_inc() on every child
5254 * that is accounted.
5256 if (!memcg_kmem_is_active(memcg))
5260 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5261 * memcg is active already. If the later initialization fails then the
5262 * cgroup core triggers the cleanup so we do not have to do it here.
5264 static_key_slow_inc(&memcg_kmem_enabled_key);
5266 mutex_lock(&set_limit_mutex);
5267 memcg_stop_kmem_account();
5268 ret = memcg_update_cache_sizes(memcg);
5269 memcg_resume_kmem_account();
5270 mutex_unlock(&set_limit_mutex);
5274 #endif /* CONFIG_MEMCG_KMEM */
5277 * The user of this function is...
5280 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5286 unsigned long long val;
5289 type = MEMFILE_TYPE(cft->private);
5290 name = MEMFILE_ATTR(cft->private);
5294 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5298 /* This function does all necessary parse...reuse it */
5299 ret = res_counter_memparse_write_strategy(buffer, &val);
5303 ret = mem_cgroup_resize_limit(memcg, val);
5304 else if (type == _MEMSWAP)
5305 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5306 else if (type == _KMEM)
5307 ret = memcg_update_kmem_limit(css, val);
5311 case RES_SOFT_LIMIT:
5312 ret = res_counter_memparse_write_strategy(buffer, &val);
5316 * For memsw, soft limits are hard to implement in terms
5317 * of semantics, for now, we support soft limits for
5318 * control without swap
5321 ret = res_counter_set_soft_limit(&memcg->res, val);
5326 ret = -EINVAL; /* should be BUG() ? */
5332 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5333 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5335 unsigned long long min_limit, min_memsw_limit, tmp;
5337 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5338 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5339 if (!memcg->use_hierarchy)
5342 while (css_parent(&memcg->css)) {
5343 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5344 if (!memcg->use_hierarchy)
5346 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5347 min_limit = min(min_limit, tmp);
5348 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5349 min_memsw_limit = min(min_memsw_limit, tmp);
5352 *mem_limit = min_limit;
5353 *memsw_limit = min_memsw_limit;
5356 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362 type = MEMFILE_TYPE(event);
5363 name = MEMFILE_ATTR(event);
5368 res_counter_reset_max(&memcg->res);
5369 else if (type == _MEMSWAP)
5370 res_counter_reset_max(&memcg->memsw);
5371 else if (type == _KMEM)
5372 res_counter_reset_max(&memcg->kmem);
5378 res_counter_reset_failcnt(&memcg->res);
5379 else if (type == _MEMSWAP)
5380 res_counter_reset_failcnt(&memcg->memsw);
5381 else if (type == _KMEM)
5382 res_counter_reset_failcnt(&memcg->kmem);
5391 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5394 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5398 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5399 struct cftype *cft, u64 val)
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5403 if (val >= (1 << NR_MOVE_TYPE))
5407 * No kind of locking is needed in here, because ->can_attach() will
5408 * check this value once in the beginning of the process, and then carry
5409 * on with stale data. This means that changes to this value will only
5410 * affect task migrations starting after the change.
5412 memcg->move_charge_at_immigrate = val;
5416 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5417 struct cftype *cft, u64 val)
5424 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5425 struct cftype *cft, struct seq_file *m)
5429 unsigned int lru_mask;
5432 static const struct numa_stat stats[] = {
5433 { "total", LRU_ALL },
5434 { "file", LRU_ALL_FILE },
5435 { "anon", LRU_ALL_ANON },
5436 { "unevictable", BIT(LRU_UNEVICTABLE) },
5438 const struct numa_stat *stat;
5441 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5444 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5445 seq_printf(m, "%s=%lu", stat->name, nr);
5446 for_each_node_state(nid, N_MEMORY) {
5447 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5449 seq_printf(m, " N%d=%lu", nid, nr);
5454 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5455 struct mem_cgroup *iter;
5458 for_each_mem_cgroup_tree(iter, memcg)
5459 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5460 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5461 for_each_node_state(nid, N_MEMORY) {
5463 for_each_mem_cgroup_tree(iter, memcg)
5464 nr += mem_cgroup_node_nr_lru_pages(
5465 iter, nid, stat->lru_mask);
5466 seq_printf(m, " N%d=%lu", nid, nr);
5473 #endif /* CONFIG_NUMA */
5475 static inline void mem_cgroup_lru_names_not_uptodate(void)
5477 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5480 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5483 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5484 struct mem_cgroup *mi;
5487 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5490 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5491 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5495 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5496 mem_cgroup_read_events(memcg, i));
5498 for (i = 0; i < NR_LRU_LISTS; i++)
5499 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5500 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5502 /* Hierarchical information */
5504 unsigned long long limit, memsw_limit;
5505 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5506 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5507 if (do_swap_account)
5508 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5515 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5517 for_each_mem_cgroup_tree(mi, memcg)
5518 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5519 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5522 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5523 unsigned long long val = 0;
5525 for_each_mem_cgroup_tree(mi, memcg)
5526 val += mem_cgroup_read_events(mi, i);
5527 seq_printf(m, "total_%s %llu\n",
5528 mem_cgroup_events_names[i], val);
5531 for (i = 0; i < NR_LRU_LISTS; i++) {
5532 unsigned long long val = 0;
5534 for_each_mem_cgroup_tree(mi, memcg)
5535 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5536 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5539 #ifdef CONFIG_DEBUG_VM
5542 struct mem_cgroup_per_zone *mz;
5543 struct zone_reclaim_stat *rstat;
5544 unsigned long recent_rotated[2] = {0, 0};
5545 unsigned long recent_scanned[2] = {0, 0};
5547 for_each_online_node(nid)
5548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5549 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5550 rstat = &mz->lruvec.reclaim_stat;
5552 recent_rotated[0] += rstat->recent_rotated[0];
5553 recent_rotated[1] += rstat->recent_rotated[1];
5554 recent_scanned[0] += rstat->recent_scanned[0];
5555 recent_scanned[1] += rstat->recent_scanned[1];
5557 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5558 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5559 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5560 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5567 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5570 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5572 return mem_cgroup_swappiness(memcg);
5575 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5576 struct cftype *cft, u64 val)
5578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5579 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5581 if (val > 100 || !parent)
5584 mutex_lock(&memcg_create_mutex);
5586 /* If under hierarchy, only empty-root can set this value */
5587 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5588 mutex_unlock(&memcg_create_mutex);
5592 memcg->swappiness = val;
5594 mutex_unlock(&memcg_create_mutex);
5599 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5601 struct mem_cgroup_threshold_ary *t;
5607 t = rcu_dereference(memcg->thresholds.primary);
5609 t = rcu_dereference(memcg->memsw_thresholds.primary);
5614 usage = mem_cgroup_usage(memcg, swap);
5617 * current_threshold points to threshold just below or equal to usage.
5618 * If it's not true, a threshold was crossed after last
5619 * call of __mem_cgroup_threshold().
5621 i = t->current_threshold;
5624 * Iterate backward over array of thresholds starting from
5625 * current_threshold and check if a threshold is crossed.
5626 * If none of thresholds below usage is crossed, we read
5627 * only one element of the array here.
5629 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5630 eventfd_signal(t->entries[i].eventfd, 1);
5632 /* i = current_threshold + 1 */
5636 * Iterate forward over array of thresholds starting from
5637 * current_threshold+1 and check if a threshold is crossed.
5638 * If none of thresholds above usage is crossed, we read
5639 * only one element of the array here.
5641 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5642 eventfd_signal(t->entries[i].eventfd, 1);
5644 /* Update current_threshold */
5645 t->current_threshold = i - 1;
5650 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5653 __mem_cgroup_threshold(memcg, false);
5654 if (do_swap_account)
5655 __mem_cgroup_threshold(memcg, true);
5657 memcg = parent_mem_cgroup(memcg);
5661 static int compare_thresholds(const void *a, const void *b)
5663 const struct mem_cgroup_threshold *_a = a;
5664 const struct mem_cgroup_threshold *_b = b;
5666 if (_a->threshold > _b->threshold)
5669 if (_a->threshold < _b->threshold)
5675 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5677 struct mem_cgroup_eventfd_list *ev;
5679 list_for_each_entry(ev, &memcg->oom_notify, list)
5680 eventfd_signal(ev->eventfd, 1);
5684 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5686 struct mem_cgroup *iter;
5688 for_each_mem_cgroup_tree(iter, memcg)
5689 mem_cgroup_oom_notify_cb(iter);
5692 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5693 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5695 struct mem_cgroup_thresholds *thresholds;
5696 struct mem_cgroup_threshold_ary *new;
5697 u64 threshold, usage;
5700 ret = res_counter_memparse_write_strategy(args, &threshold);
5704 mutex_lock(&memcg->thresholds_lock);
5707 thresholds = &memcg->thresholds;
5708 else if (type == _MEMSWAP)
5709 thresholds = &memcg->memsw_thresholds;
5713 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5715 /* Check if a threshold crossed before adding a new one */
5716 if (thresholds->primary)
5717 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5719 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5721 /* Allocate memory for new array of thresholds */
5722 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5730 /* Copy thresholds (if any) to new array */
5731 if (thresholds->primary) {
5732 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5733 sizeof(struct mem_cgroup_threshold));
5736 /* Add new threshold */
5737 new->entries[size - 1].eventfd = eventfd;
5738 new->entries[size - 1].threshold = threshold;
5740 /* Sort thresholds. Registering of new threshold isn't time-critical */
5741 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5742 compare_thresholds, NULL);
5744 /* Find current threshold */
5745 new->current_threshold = -1;
5746 for (i = 0; i < size; i++) {
5747 if (new->entries[i].threshold <= usage) {
5749 * new->current_threshold will not be used until
5750 * rcu_assign_pointer(), so it's safe to increment
5753 ++new->current_threshold;
5758 /* Free old spare buffer and save old primary buffer as spare */
5759 kfree(thresholds->spare);
5760 thresholds->spare = thresholds->primary;
5762 rcu_assign_pointer(thresholds->primary, new);
5764 /* To be sure that nobody uses thresholds */
5768 mutex_unlock(&memcg->thresholds_lock);
5773 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5774 struct eventfd_ctx *eventfd, const char *args)
5776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5779 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5780 struct eventfd_ctx *eventfd, const char *args)
5782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5785 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5786 struct eventfd_ctx *eventfd, enum res_type type)
5788 struct mem_cgroup_thresholds *thresholds;
5789 struct mem_cgroup_threshold_ary *new;
5793 mutex_lock(&memcg->thresholds_lock);
5795 thresholds = &memcg->thresholds;
5796 else if (type == _MEMSWAP)
5797 thresholds = &memcg->memsw_thresholds;
5801 if (!thresholds->primary)
5804 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5806 /* Check if a threshold crossed before removing */
5807 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5809 /* Calculate new number of threshold */
5811 for (i = 0; i < thresholds->primary->size; i++) {
5812 if (thresholds->primary->entries[i].eventfd != eventfd)
5816 new = thresholds->spare;
5818 /* Set thresholds array to NULL if we don't have thresholds */
5827 /* Copy thresholds and find current threshold */
5828 new->current_threshold = -1;
5829 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5830 if (thresholds->primary->entries[i].eventfd == eventfd)
5833 new->entries[j] = thresholds->primary->entries[i];
5834 if (new->entries[j].threshold <= usage) {
5836 * new->current_threshold will not be used
5837 * until rcu_assign_pointer(), so it's safe to increment
5840 ++new->current_threshold;
5846 /* Swap primary and spare array */
5847 thresholds->spare = thresholds->primary;
5848 /* If all events are unregistered, free the spare array */
5850 kfree(thresholds->spare);
5851 thresholds->spare = NULL;
5854 rcu_assign_pointer(thresholds->primary, new);
5856 /* To be sure that nobody uses thresholds */
5859 mutex_unlock(&memcg->thresholds_lock);
5862 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5863 struct eventfd_ctx *eventfd)
5865 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5868 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5869 struct eventfd_ctx *eventfd)
5871 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5874 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5875 struct eventfd_ctx *eventfd, const char *args)
5877 struct mem_cgroup_eventfd_list *event;
5879 event = kmalloc(sizeof(*event), GFP_KERNEL);
5883 spin_lock(&memcg_oom_lock);
5885 event->eventfd = eventfd;
5886 list_add(&event->list, &memcg->oom_notify);
5888 /* already in OOM ? */
5889 if (atomic_read(&memcg->under_oom))
5890 eventfd_signal(eventfd, 1);
5891 spin_unlock(&memcg_oom_lock);
5896 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5897 struct eventfd_ctx *eventfd)
5899 struct mem_cgroup_eventfd_list *ev, *tmp;
5901 spin_lock(&memcg_oom_lock);
5903 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5904 if (ev->eventfd == eventfd) {
5905 list_del(&ev->list);
5910 spin_unlock(&memcg_oom_lock);
5913 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5914 struct cftype *cft, struct cgroup_map_cb *cb)
5916 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5918 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5920 if (atomic_read(&memcg->under_oom))
5921 cb->fill(cb, "under_oom", 1);
5923 cb->fill(cb, "under_oom", 0);
5927 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5928 struct cftype *cft, u64 val)
5930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5931 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5933 /* cannot set to root cgroup and only 0 and 1 are allowed */
5934 if (!parent || !((val == 0) || (val == 1)))
5937 mutex_lock(&memcg_create_mutex);
5938 /* oom-kill-disable is a flag for subhierarchy. */
5939 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5940 mutex_unlock(&memcg_create_mutex);
5943 memcg->oom_kill_disable = val;
5945 memcg_oom_recover(memcg);
5946 mutex_unlock(&memcg_create_mutex);
5950 #ifdef CONFIG_MEMCG_KMEM
5951 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5955 memcg->kmemcg_id = -1;
5956 ret = memcg_propagate_kmem(memcg);
5960 return mem_cgroup_sockets_init(memcg, ss);
5963 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5965 mem_cgroup_sockets_destroy(memcg);
5968 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5970 if (!memcg_kmem_is_active(memcg))
5974 * kmem charges can outlive the cgroup. In the case of slab
5975 * pages, for instance, a page contain objects from various
5976 * processes. As we prevent from taking a reference for every
5977 * such allocation we have to be careful when doing uncharge
5978 * (see memcg_uncharge_kmem) and here during offlining.
5980 * The idea is that that only the _last_ uncharge which sees
5981 * the dead memcg will drop the last reference. An additional
5982 * reference is taken here before the group is marked dead
5983 * which is then paired with css_put during uncharge resp. here.
5985 * Although this might sound strange as this path is called from
5986 * css_offline() when the referencemight have dropped down to 0
5987 * and shouldn't be incremented anymore (css_tryget would fail)
5988 * we do not have other options because of the kmem allocations
5991 css_get(&memcg->css);
5993 memcg_kmem_mark_dead(memcg);
5995 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5998 if (memcg_kmem_test_and_clear_dead(memcg))
5999 css_put(&memcg->css);
6002 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
6007 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6011 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6017 * DO NOT USE IN NEW FILES.
6019 * "cgroup.event_control" implementation.
6021 * This is way over-engineered. It tries to support fully configurable
6022 * events for each user. Such level of flexibility is completely
6023 * unnecessary especially in the light of the planned unified hierarchy.
6025 * Please deprecate this and replace with something simpler if at all
6030 * Unregister event and free resources.
6032 * Gets called from workqueue.
6034 static void memcg_event_remove(struct work_struct *work)
6036 struct mem_cgroup_event *event =
6037 container_of(work, struct mem_cgroup_event, remove);
6038 struct mem_cgroup *memcg = event->memcg;
6040 remove_wait_queue(event->wqh, &event->wait);
6042 event->unregister_event(memcg, event->eventfd);
6044 /* Notify userspace the event is going away. */
6045 eventfd_signal(event->eventfd, 1);
6047 eventfd_ctx_put(event->eventfd);
6049 css_put(&memcg->css);
6053 * Gets called on POLLHUP on eventfd when user closes it.
6055 * Called with wqh->lock held and interrupts disabled.
6057 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6058 int sync, void *key)
6060 struct mem_cgroup_event *event =
6061 container_of(wait, struct mem_cgroup_event, wait);
6062 struct mem_cgroup *memcg = event->memcg;
6063 unsigned long flags = (unsigned long)key;
6065 if (flags & POLLHUP) {
6067 * If the event has been detached at cgroup removal, we
6068 * can simply return knowing the other side will cleanup
6071 * We can't race against event freeing since the other
6072 * side will require wqh->lock via remove_wait_queue(),
6075 spin_lock(&memcg->event_list_lock);
6076 if (!list_empty(&event->list)) {
6077 list_del_init(&event->list);
6079 * We are in atomic context, but cgroup_event_remove()
6080 * may sleep, so we have to call it in workqueue.
6082 schedule_work(&event->remove);
6084 spin_unlock(&memcg->event_list_lock);
6090 static void memcg_event_ptable_queue_proc(struct file *file,
6091 wait_queue_head_t *wqh, poll_table *pt)
6093 struct mem_cgroup_event *event =
6094 container_of(pt, struct mem_cgroup_event, pt);
6097 add_wait_queue(wqh, &event->wait);
6101 * DO NOT USE IN NEW FILES.
6103 * Parse input and register new cgroup event handler.
6105 * Input must be in format '<event_fd> <control_fd> <args>'.
6106 * Interpretation of args is defined by control file implementation.
6108 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6109 struct cftype *cft, const char *buffer)
6111 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6112 struct mem_cgroup_event *event;
6113 struct cgroup_subsys_state *cfile_css;
6114 unsigned int efd, cfd;
6121 efd = simple_strtoul(buffer, &endp, 10);
6126 cfd = simple_strtoul(buffer, &endp, 10);
6127 if ((*endp != ' ') && (*endp != '\0'))
6131 event = kzalloc(sizeof(*event), GFP_KERNEL);
6135 event->memcg = memcg;
6136 INIT_LIST_HEAD(&event->list);
6137 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6138 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6139 INIT_WORK(&event->remove, memcg_event_remove);
6147 event->eventfd = eventfd_ctx_fileget(efile.file);
6148 if (IS_ERR(event->eventfd)) {
6149 ret = PTR_ERR(event->eventfd);
6156 goto out_put_eventfd;
6159 /* the process need read permission on control file */
6160 /* AV: shouldn't we check that it's been opened for read instead? */
6161 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6166 * Determine the event callbacks and set them in @event. This used
6167 * to be done via struct cftype but cgroup core no longer knows
6168 * about these events. The following is crude but the whole thing
6169 * is for compatibility anyway.
6171 * DO NOT ADD NEW FILES.
6173 name = cfile.file->f_dentry->d_name.name;
6175 if (!strcmp(name, "memory.usage_in_bytes")) {
6176 event->register_event = mem_cgroup_usage_register_event;
6177 event->unregister_event = mem_cgroup_usage_unregister_event;
6178 } else if (!strcmp(name, "memory.oom_control")) {
6179 event->register_event = mem_cgroup_oom_register_event;
6180 event->unregister_event = mem_cgroup_oom_unregister_event;
6181 } else if (!strcmp(name, "memory.pressure_level")) {
6182 event->register_event = vmpressure_register_event;
6183 event->unregister_event = vmpressure_unregister_event;
6184 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6185 event->register_event = memsw_cgroup_usage_register_event;
6186 event->unregister_event = memsw_cgroup_usage_unregister_event;
6193 * Verify @cfile should belong to @css. Also, remaining events are
6194 * automatically removed on cgroup destruction but the removal is
6195 * asynchronous, so take an extra ref on @css.
6200 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6201 &mem_cgroup_subsys);
6202 if (cfile_css == css && css_tryget(css))
6209 ret = event->register_event(memcg, event->eventfd, buffer);
6213 efile.file->f_op->poll(efile.file, &event->pt);
6215 spin_lock(&memcg->event_list_lock);
6216 list_add(&event->list, &memcg->event_list);
6217 spin_unlock(&memcg->event_list_lock);
6229 eventfd_ctx_put(event->eventfd);
6238 static struct cftype mem_cgroup_files[] = {
6240 .name = "usage_in_bytes",
6241 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6242 .read = mem_cgroup_read,
6245 .name = "max_usage_in_bytes",
6246 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6247 .trigger = mem_cgroup_reset,
6248 .read = mem_cgroup_read,
6251 .name = "limit_in_bytes",
6252 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6253 .write_string = mem_cgroup_write,
6254 .read = mem_cgroup_read,
6257 .name = "soft_limit_in_bytes",
6258 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6259 .write_string = mem_cgroup_write,
6260 .read = mem_cgroup_read,
6264 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6265 .trigger = mem_cgroup_reset,
6266 .read = mem_cgroup_read,
6270 .read_seq_string = memcg_stat_show,
6273 .name = "force_empty",
6274 .trigger = mem_cgroup_force_empty_write,
6277 .name = "use_hierarchy",
6278 .flags = CFTYPE_INSANE,
6279 .write_u64 = mem_cgroup_hierarchy_write,
6280 .read_u64 = mem_cgroup_hierarchy_read,
6283 .name = "cgroup.event_control", /* XXX: for compat */
6284 .write_string = memcg_write_event_control,
6285 .flags = CFTYPE_NO_PREFIX,
6289 .name = "swappiness",
6290 .read_u64 = mem_cgroup_swappiness_read,
6291 .write_u64 = mem_cgroup_swappiness_write,
6294 .name = "move_charge_at_immigrate",
6295 .read_u64 = mem_cgroup_move_charge_read,
6296 .write_u64 = mem_cgroup_move_charge_write,
6299 .name = "oom_control",
6300 .read_map = mem_cgroup_oom_control_read,
6301 .write_u64 = mem_cgroup_oom_control_write,
6302 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6305 .name = "pressure_level",
6309 .name = "numa_stat",
6310 .read_seq_string = memcg_numa_stat_show,
6313 #ifdef CONFIG_MEMCG_KMEM
6315 .name = "kmem.limit_in_bytes",
6316 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6317 .write_string = mem_cgroup_write,
6318 .read = mem_cgroup_read,
6321 .name = "kmem.usage_in_bytes",
6322 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6323 .read = mem_cgroup_read,
6326 .name = "kmem.failcnt",
6327 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6328 .trigger = mem_cgroup_reset,
6329 .read = mem_cgroup_read,
6332 .name = "kmem.max_usage_in_bytes",
6333 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6334 .trigger = mem_cgroup_reset,
6335 .read = mem_cgroup_read,
6337 #ifdef CONFIG_SLABINFO
6339 .name = "kmem.slabinfo",
6340 .read_seq_string = mem_cgroup_slabinfo_read,
6344 { }, /* terminate */
6347 #ifdef CONFIG_MEMCG_SWAP
6348 static struct cftype memsw_cgroup_files[] = {
6350 .name = "memsw.usage_in_bytes",
6351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6352 .read = mem_cgroup_read,
6355 .name = "memsw.max_usage_in_bytes",
6356 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6357 .trigger = mem_cgroup_reset,
6358 .read = mem_cgroup_read,
6361 .name = "memsw.limit_in_bytes",
6362 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6363 .write_string = mem_cgroup_write,
6364 .read = mem_cgroup_read,
6367 .name = "memsw.failcnt",
6368 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6369 .trigger = mem_cgroup_reset,
6370 .read = mem_cgroup_read,
6372 { }, /* terminate */
6375 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6377 struct mem_cgroup_per_node *pn;
6378 struct mem_cgroup_per_zone *mz;
6379 int zone, tmp = node;
6381 * This routine is called against possible nodes.
6382 * But it's BUG to call kmalloc() against offline node.
6384 * TODO: this routine can waste much memory for nodes which will
6385 * never be onlined. It's better to use memory hotplug callback
6388 if (!node_state(node, N_NORMAL_MEMORY))
6390 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6394 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6395 mz = &pn->zoneinfo[zone];
6396 lruvec_init(&mz->lruvec);
6397 mz->usage_in_excess = 0;
6398 mz->on_tree = false;
6401 memcg->nodeinfo[node] = pn;
6405 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6407 kfree(memcg->nodeinfo[node]);
6410 static struct mem_cgroup *mem_cgroup_alloc(void)
6412 struct mem_cgroup *memcg;
6413 size_t size = memcg_size();
6415 /* Can be very big if nr_node_ids is very big */
6416 if (size < PAGE_SIZE)
6417 memcg = kzalloc(size, GFP_KERNEL);
6419 memcg = vzalloc(size);
6424 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6427 spin_lock_init(&memcg->pcp_counter_lock);
6431 if (size < PAGE_SIZE)
6439 * At destroying mem_cgroup, references from swap_cgroup can remain.
6440 * (scanning all at force_empty is too costly...)
6442 * Instead of clearing all references at force_empty, we remember
6443 * the number of reference from swap_cgroup and free mem_cgroup when
6444 * it goes down to 0.
6446 * Removal of cgroup itself succeeds regardless of refs from swap.
6449 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6452 size_t size = memcg_size();
6454 mem_cgroup_remove_from_trees(memcg);
6457 free_mem_cgroup_per_zone_info(memcg, node);
6459 free_percpu(memcg->stat);
6462 * We need to make sure that (at least for now), the jump label
6463 * destruction code runs outside of the cgroup lock. This is because
6464 * get_online_cpus(), which is called from the static_branch update,
6465 * can't be called inside the cgroup_lock. cpusets are the ones
6466 * enforcing this dependency, so if they ever change, we might as well.
6468 * schedule_work() will guarantee this happens. Be careful if you need
6469 * to move this code around, and make sure it is outside
6472 disarm_static_keys(memcg);
6473 if (size < PAGE_SIZE)
6480 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6482 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6484 if (!memcg->res.parent)
6486 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6488 EXPORT_SYMBOL(parent_mem_cgroup);
6490 static void __init mem_cgroup_soft_limit_tree_init(void)
6492 struct mem_cgroup_tree_per_node *rtpn;
6493 struct mem_cgroup_tree_per_zone *rtpz;
6494 int tmp, node, zone;
6496 for_each_node(node) {
6498 if (!node_state(node, N_NORMAL_MEMORY))
6500 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6503 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6505 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6506 rtpz = &rtpn->rb_tree_per_zone[zone];
6507 rtpz->rb_root = RB_ROOT;
6508 spin_lock_init(&rtpz->lock);
6513 static struct cgroup_subsys_state * __ref
6514 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6516 struct mem_cgroup *memcg;
6517 long error = -ENOMEM;
6520 memcg = mem_cgroup_alloc();
6522 return ERR_PTR(error);
6525 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6529 if (parent_css == NULL) {
6530 root_mem_cgroup = memcg;
6531 res_counter_init(&memcg->res, NULL);
6532 res_counter_init(&memcg->memsw, NULL);
6533 res_counter_init(&memcg->kmem, NULL);
6536 memcg->last_scanned_node = MAX_NUMNODES;
6537 INIT_LIST_HEAD(&memcg->oom_notify);
6538 memcg->move_charge_at_immigrate = 0;
6539 mutex_init(&memcg->thresholds_lock);
6540 spin_lock_init(&memcg->move_lock);
6541 vmpressure_init(&memcg->vmpressure);
6542 INIT_LIST_HEAD(&memcg->event_list);
6543 spin_lock_init(&memcg->event_list_lock);
6548 __mem_cgroup_free(memcg);
6549 return ERR_PTR(error);
6553 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6556 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6559 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6565 mutex_lock(&memcg_create_mutex);
6567 memcg->use_hierarchy = parent->use_hierarchy;
6568 memcg->oom_kill_disable = parent->oom_kill_disable;
6569 memcg->swappiness = mem_cgroup_swappiness(parent);
6571 if (parent->use_hierarchy) {
6572 res_counter_init(&memcg->res, &parent->res);
6573 res_counter_init(&memcg->memsw, &parent->memsw);
6574 res_counter_init(&memcg->kmem, &parent->kmem);
6577 * No need to take a reference to the parent because cgroup
6578 * core guarantees its existence.
6581 res_counter_init(&memcg->res, NULL);
6582 res_counter_init(&memcg->memsw, NULL);
6583 res_counter_init(&memcg->kmem, NULL);
6585 * Deeper hierachy with use_hierarchy == false doesn't make
6586 * much sense so let cgroup subsystem know about this
6587 * unfortunate state in our controller.
6589 if (parent != root_mem_cgroup)
6590 mem_cgroup_subsys.broken_hierarchy = true;
6593 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6594 mutex_unlock(&memcg_create_mutex);
6599 * Announce all parents that a group from their hierarchy is gone.
6601 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6603 struct mem_cgroup *parent = memcg;
6605 while ((parent = parent_mem_cgroup(parent)))
6606 mem_cgroup_iter_invalidate(parent);
6609 * if the root memcg is not hierarchical we have to check it
6612 if (!root_mem_cgroup->use_hierarchy)
6613 mem_cgroup_iter_invalidate(root_mem_cgroup);
6616 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6618 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6619 struct mem_cgroup_event *event, *tmp;
6622 * Unregister events and notify userspace.
6623 * Notify userspace about cgroup removing only after rmdir of cgroup
6624 * directory to avoid race between userspace and kernelspace.
6626 spin_lock(&memcg->event_list_lock);
6627 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6628 list_del_init(&event->list);
6629 schedule_work(&event->remove);
6631 spin_unlock(&memcg->event_list_lock);
6633 kmem_cgroup_css_offline(memcg);
6635 mem_cgroup_invalidate_reclaim_iterators(memcg);
6636 mem_cgroup_reparent_charges(memcg);
6637 mem_cgroup_destroy_all_caches(memcg);
6638 vmpressure_cleanup(&memcg->vmpressure);
6641 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6643 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6645 memcg_destroy_kmem(memcg);
6646 __mem_cgroup_free(memcg);
6650 /* Handlers for move charge at task migration. */
6651 #define PRECHARGE_COUNT_AT_ONCE 256
6652 static int mem_cgroup_do_precharge(unsigned long count)
6655 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6656 struct mem_cgroup *memcg = mc.to;
6658 if (mem_cgroup_is_root(memcg)) {
6659 mc.precharge += count;
6660 /* we don't need css_get for root */
6663 /* try to charge at once */
6665 struct res_counter *dummy;
6667 * "memcg" cannot be under rmdir() because we've already checked
6668 * by cgroup_lock_live_cgroup() that it is not removed and we
6669 * are still under the same cgroup_mutex. So we can postpone
6672 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6674 if (do_swap_account && res_counter_charge(&memcg->memsw,
6675 PAGE_SIZE * count, &dummy)) {
6676 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6679 mc.precharge += count;
6683 /* fall back to one by one charge */
6685 if (signal_pending(current)) {
6689 if (!batch_count--) {
6690 batch_count = PRECHARGE_COUNT_AT_ONCE;
6693 ret = __mem_cgroup_try_charge(NULL,
6694 GFP_KERNEL, 1, &memcg, false);
6696 /* mem_cgroup_clear_mc() will do uncharge later */
6704 * get_mctgt_type - get target type of moving charge
6705 * @vma: the vma the pte to be checked belongs
6706 * @addr: the address corresponding to the pte to be checked
6707 * @ptent: the pte to be checked
6708 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6711 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6712 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6713 * move charge. if @target is not NULL, the page is stored in target->page
6714 * with extra refcnt got(Callers should handle it).
6715 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6716 * target for charge migration. if @target is not NULL, the entry is stored
6719 * Called with pte lock held.
6726 enum mc_target_type {
6732 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6733 unsigned long addr, pte_t ptent)
6735 struct page *page = vm_normal_page(vma, addr, ptent);
6737 if (!page || !page_mapped(page))
6739 if (PageAnon(page)) {
6740 /* we don't move shared anon */
6743 } else if (!move_file())
6744 /* we ignore mapcount for file pages */
6746 if (!get_page_unless_zero(page))
6753 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6754 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6756 struct page *page = NULL;
6757 swp_entry_t ent = pte_to_swp_entry(ptent);
6759 if (!move_anon() || non_swap_entry(ent))
6762 * Because lookup_swap_cache() updates some statistics counter,
6763 * we call find_get_page() with swapper_space directly.
6765 page = find_get_page(swap_address_space(ent), ent.val);
6766 if (do_swap_account)
6767 entry->val = ent.val;
6772 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6773 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6779 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6780 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6782 struct page *page = NULL;
6783 struct address_space *mapping;
6786 if (!vma->vm_file) /* anonymous vma */
6791 mapping = vma->vm_file->f_mapping;
6792 if (pte_none(ptent))
6793 pgoff = linear_page_index(vma, addr);
6794 else /* pte_file(ptent) is true */
6795 pgoff = pte_to_pgoff(ptent);
6797 /* page is moved even if it's not RSS of this task(page-faulted). */
6798 page = find_get_page(mapping, pgoff);
6801 /* shmem/tmpfs may report page out on swap: account for that too. */
6802 if (radix_tree_exceptional_entry(page)) {
6803 swp_entry_t swap = radix_to_swp_entry(page);
6804 if (do_swap_account)
6806 page = find_get_page(swap_address_space(swap), swap.val);
6812 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6813 unsigned long addr, pte_t ptent, union mc_target *target)
6815 struct page *page = NULL;
6816 struct page_cgroup *pc;
6817 enum mc_target_type ret = MC_TARGET_NONE;
6818 swp_entry_t ent = { .val = 0 };
6820 if (pte_present(ptent))
6821 page = mc_handle_present_pte(vma, addr, ptent);
6822 else if (is_swap_pte(ptent))
6823 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6824 else if (pte_none(ptent) || pte_file(ptent))
6825 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6827 if (!page && !ent.val)
6830 pc = lookup_page_cgroup(page);
6832 * Do only loose check w/o page_cgroup lock.
6833 * mem_cgroup_move_account() checks the pc is valid or not under
6836 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6837 ret = MC_TARGET_PAGE;
6839 target->page = page;
6841 if (!ret || !target)
6844 /* There is a swap entry and a page doesn't exist or isn't charged */
6845 if (ent.val && !ret &&
6846 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6847 ret = MC_TARGET_SWAP;
6854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6856 * We don't consider swapping or file mapped pages because THP does not
6857 * support them for now.
6858 * Caller should make sure that pmd_trans_huge(pmd) is true.
6860 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6861 unsigned long addr, pmd_t pmd, union mc_target *target)
6863 struct page *page = NULL;
6864 struct page_cgroup *pc;
6865 enum mc_target_type ret = MC_TARGET_NONE;
6867 page = pmd_page(pmd);
6868 VM_BUG_ON(!page || !PageHead(page));
6871 pc = lookup_page_cgroup(page);
6872 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6873 ret = MC_TARGET_PAGE;
6876 target->page = page;
6882 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6883 unsigned long addr, pmd_t pmd, union mc_target *target)
6885 return MC_TARGET_NONE;
6889 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6890 unsigned long addr, unsigned long end,
6891 struct mm_walk *walk)
6893 struct vm_area_struct *vma = walk->private;
6897 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6898 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6899 mc.precharge += HPAGE_PMD_NR;
6904 if (pmd_trans_unstable(pmd))
6906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6907 for (; addr != end; pte++, addr += PAGE_SIZE)
6908 if (get_mctgt_type(vma, addr, *pte, NULL))
6909 mc.precharge++; /* increment precharge temporarily */
6910 pte_unmap_unlock(pte - 1, ptl);
6916 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6918 unsigned long precharge;
6919 struct vm_area_struct *vma;
6921 down_read(&mm->mmap_sem);
6922 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6923 struct mm_walk mem_cgroup_count_precharge_walk = {
6924 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6928 if (is_vm_hugetlb_page(vma))
6930 walk_page_range(vma->vm_start, vma->vm_end,
6931 &mem_cgroup_count_precharge_walk);
6933 up_read(&mm->mmap_sem);
6935 precharge = mc.precharge;
6941 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6943 unsigned long precharge = mem_cgroup_count_precharge(mm);
6945 VM_BUG_ON(mc.moving_task);
6946 mc.moving_task = current;
6947 return mem_cgroup_do_precharge(precharge);
6950 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6951 static void __mem_cgroup_clear_mc(void)
6953 struct mem_cgroup *from = mc.from;
6954 struct mem_cgroup *to = mc.to;
6957 /* we must uncharge all the leftover precharges from mc.to */
6959 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6963 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6964 * we must uncharge here.
6966 if (mc.moved_charge) {
6967 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6968 mc.moved_charge = 0;
6970 /* we must fixup refcnts and charges */
6971 if (mc.moved_swap) {
6972 /* uncharge swap account from the old cgroup */
6973 if (!mem_cgroup_is_root(mc.from))
6974 res_counter_uncharge(&mc.from->memsw,
6975 PAGE_SIZE * mc.moved_swap);
6977 for (i = 0; i < mc.moved_swap; i++)
6978 css_put(&mc.from->css);
6980 if (!mem_cgroup_is_root(mc.to)) {
6982 * we charged both to->res and to->memsw, so we should
6985 res_counter_uncharge(&mc.to->res,
6986 PAGE_SIZE * mc.moved_swap);
6988 /* we've already done css_get(mc.to) */
6991 memcg_oom_recover(from);
6992 memcg_oom_recover(to);
6993 wake_up_all(&mc.waitq);
6996 static void mem_cgroup_clear_mc(void)
6998 struct mem_cgroup *from = mc.from;
7001 * we must clear moving_task before waking up waiters at the end of
7004 mc.moving_task = NULL;
7005 __mem_cgroup_clear_mc();
7006 spin_lock(&mc.lock);
7009 spin_unlock(&mc.lock);
7010 mem_cgroup_end_move(from);
7013 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7014 struct cgroup_taskset *tset)
7016 struct task_struct *p = cgroup_taskset_first(tset);
7018 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7019 unsigned long move_charge_at_immigrate;
7022 * We are now commited to this value whatever it is. Changes in this
7023 * tunable will only affect upcoming migrations, not the current one.
7024 * So we need to save it, and keep it going.
7026 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7027 if (move_charge_at_immigrate) {
7028 struct mm_struct *mm;
7029 struct mem_cgroup *from = mem_cgroup_from_task(p);
7031 VM_BUG_ON(from == memcg);
7033 mm = get_task_mm(p);
7036 /* We move charges only when we move a owner of the mm */
7037 if (mm->owner == p) {
7040 VM_BUG_ON(mc.precharge);
7041 VM_BUG_ON(mc.moved_charge);
7042 VM_BUG_ON(mc.moved_swap);
7043 mem_cgroup_start_move(from);
7044 spin_lock(&mc.lock);
7047 mc.immigrate_flags = move_charge_at_immigrate;
7048 spin_unlock(&mc.lock);
7049 /* We set mc.moving_task later */
7051 ret = mem_cgroup_precharge_mc(mm);
7053 mem_cgroup_clear_mc();
7060 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7061 struct cgroup_taskset *tset)
7063 mem_cgroup_clear_mc();
7066 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7067 unsigned long addr, unsigned long end,
7068 struct mm_walk *walk)
7071 struct vm_area_struct *vma = walk->private;
7074 enum mc_target_type target_type;
7075 union mc_target target;
7077 struct page_cgroup *pc;
7080 * We don't take compound_lock() here but no race with splitting thp
7082 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7083 * under splitting, which means there's no concurrent thp split,
7084 * - if another thread runs into split_huge_page() just after we
7085 * entered this if-block, the thread must wait for page table lock
7086 * to be unlocked in __split_huge_page_splitting(), where the main
7087 * part of thp split is not executed yet.
7089 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7090 if (mc.precharge < HPAGE_PMD_NR) {
7094 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7095 if (target_type == MC_TARGET_PAGE) {
7097 if (!isolate_lru_page(page)) {
7098 pc = lookup_page_cgroup(page);
7099 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7100 pc, mc.from, mc.to)) {
7101 mc.precharge -= HPAGE_PMD_NR;
7102 mc.moved_charge += HPAGE_PMD_NR;
7104 putback_lru_page(page);
7112 if (pmd_trans_unstable(pmd))
7115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7116 for (; addr != end; addr += PAGE_SIZE) {
7117 pte_t ptent = *(pte++);
7123 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7124 case MC_TARGET_PAGE:
7126 if (isolate_lru_page(page))
7128 pc = lookup_page_cgroup(page);
7129 if (!mem_cgroup_move_account(page, 1, pc,
7132 /* we uncharge from mc.from later. */
7135 putback_lru_page(page);
7136 put: /* get_mctgt_type() gets the page */
7139 case MC_TARGET_SWAP:
7141 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7143 /* we fixup refcnts and charges later. */
7151 pte_unmap_unlock(pte - 1, ptl);
7156 * We have consumed all precharges we got in can_attach().
7157 * We try charge one by one, but don't do any additional
7158 * charges to mc.to if we have failed in charge once in attach()
7161 ret = mem_cgroup_do_precharge(1);
7169 static void mem_cgroup_move_charge(struct mm_struct *mm)
7171 struct vm_area_struct *vma;
7173 lru_add_drain_all();
7175 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7177 * Someone who are holding the mmap_sem might be waiting in
7178 * waitq. So we cancel all extra charges, wake up all waiters,
7179 * and retry. Because we cancel precharges, we might not be able
7180 * to move enough charges, but moving charge is a best-effort
7181 * feature anyway, so it wouldn't be a big problem.
7183 __mem_cgroup_clear_mc();
7187 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7189 struct mm_walk mem_cgroup_move_charge_walk = {
7190 .pmd_entry = mem_cgroup_move_charge_pte_range,
7194 if (is_vm_hugetlb_page(vma))
7196 ret = walk_page_range(vma->vm_start, vma->vm_end,
7197 &mem_cgroup_move_charge_walk);
7200 * means we have consumed all precharges and failed in
7201 * doing additional charge. Just abandon here.
7205 up_read(&mm->mmap_sem);
7208 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7209 struct cgroup_taskset *tset)
7211 struct task_struct *p = cgroup_taskset_first(tset);
7212 struct mm_struct *mm = get_task_mm(p);
7216 mem_cgroup_move_charge(mm);
7220 mem_cgroup_clear_mc();
7222 #else /* !CONFIG_MMU */
7223 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7224 struct cgroup_taskset *tset)
7228 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7229 struct cgroup_taskset *tset)
7232 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7233 struct cgroup_taskset *tset)
7239 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7240 * to verify sane_behavior flag on each mount attempt.
7242 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7245 * use_hierarchy is forced with sane_behavior. cgroup core
7246 * guarantees that @root doesn't have any children, so turning it
7247 * on for the root memcg is enough.
7249 if (cgroup_sane_behavior(root_css->cgroup))
7250 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7253 struct cgroup_subsys mem_cgroup_subsys = {
7255 .subsys_id = mem_cgroup_subsys_id,
7256 .css_alloc = mem_cgroup_css_alloc,
7257 .css_online = mem_cgroup_css_online,
7258 .css_offline = mem_cgroup_css_offline,
7259 .css_free = mem_cgroup_css_free,
7260 .can_attach = mem_cgroup_can_attach,
7261 .cancel_attach = mem_cgroup_cancel_attach,
7262 .attach = mem_cgroup_move_task,
7263 .bind = mem_cgroup_bind,
7264 .base_cftypes = mem_cgroup_files,
7268 #ifdef CONFIG_MEMCG_SWAP
7269 static int __init enable_swap_account(char *s)
7271 if (!strcmp(s, "1"))
7272 really_do_swap_account = 1;
7273 else if (!strcmp(s, "0"))
7274 really_do_swap_account = 0;
7277 __setup("swapaccount=", enable_swap_account);
7279 static void __init memsw_file_init(void)
7281 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7284 static void __init enable_swap_cgroup(void)
7286 if (!mem_cgroup_disabled() && really_do_swap_account) {
7287 do_swap_account = 1;
7293 static void __init enable_swap_cgroup(void)
7299 * subsys_initcall() for memory controller.
7301 * Some parts like hotcpu_notifier() have to be initialized from this context
7302 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7303 * everything that doesn't depend on a specific mem_cgroup structure should
7304 * be initialized from here.
7306 static int __init mem_cgroup_init(void)
7308 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7309 enable_swap_cgroup();
7310 mem_cgroup_soft_limit_tree_init();
7314 subsys_initcall(mem_cgroup_init);