]> Git Repo - linux.git/blob - drivers/nvme/target/tcp.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / drivers / nvme / target / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17
18 #include "nvmet.h"
19
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE  (4 * PAGE_SIZE)
21
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31
32 #define NVMET_TCP_RECV_BUDGET           8
33 #define NVMET_TCP_SEND_BUDGET           8
34 #define NVMET_TCP_IO_WORK_BUDGET        64
35
36 enum nvmet_tcp_send_state {
37         NVMET_TCP_SEND_DATA_PDU,
38         NVMET_TCP_SEND_DATA,
39         NVMET_TCP_SEND_R2T,
40         NVMET_TCP_SEND_DDGST,
41         NVMET_TCP_SEND_RESPONSE
42 };
43
44 enum nvmet_tcp_recv_state {
45         NVMET_TCP_RECV_PDU,
46         NVMET_TCP_RECV_DATA,
47         NVMET_TCP_RECV_DDGST,
48         NVMET_TCP_RECV_ERR,
49 };
50
51 enum {
52         NVMET_TCP_F_INIT_FAILED = (1 << 0),
53 };
54
55 struct nvmet_tcp_cmd {
56         struct nvmet_tcp_queue          *queue;
57         struct nvmet_req                req;
58
59         struct nvme_tcp_cmd_pdu         *cmd_pdu;
60         struct nvme_tcp_rsp_pdu         *rsp_pdu;
61         struct nvme_tcp_data_pdu        *data_pdu;
62         struct nvme_tcp_r2t_pdu         *r2t_pdu;
63
64         u32                             rbytes_done;
65         u32                             wbytes_done;
66
67         u32                             pdu_len;
68         u32                             pdu_recv;
69         int                             sg_idx;
70         int                             nr_mapped;
71         struct msghdr                   recv_msg;
72         struct kvec                     *iov;
73         u32                             flags;
74
75         struct list_head                entry;
76         struct llist_node               lentry;
77
78         /* send state */
79         u32                             offset;
80         struct scatterlist              *cur_sg;
81         enum nvmet_tcp_send_state       state;
82
83         __le32                          exp_ddgst;
84         __le32                          recv_ddgst;
85 };
86
87 enum nvmet_tcp_queue_state {
88         NVMET_TCP_Q_CONNECTING,
89         NVMET_TCP_Q_LIVE,
90         NVMET_TCP_Q_DISCONNECTING,
91 };
92
93 struct nvmet_tcp_queue {
94         struct socket           *sock;
95         struct nvmet_tcp_port   *port;
96         struct work_struct      io_work;
97         struct nvmet_cq         nvme_cq;
98         struct nvmet_sq         nvme_sq;
99
100         /* send state */
101         struct nvmet_tcp_cmd    *cmds;
102         unsigned int            nr_cmds;
103         struct list_head        free_list;
104         struct llist_head       resp_list;
105         struct list_head        resp_send_list;
106         int                     send_list_len;
107         struct nvmet_tcp_cmd    *snd_cmd;
108
109         /* recv state */
110         int                     offset;
111         int                     left;
112         enum nvmet_tcp_recv_state rcv_state;
113         struct nvmet_tcp_cmd    *cmd;
114         union nvme_tcp_pdu      pdu;
115
116         /* digest state */
117         bool                    hdr_digest;
118         bool                    data_digest;
119         struct ahash_request    *snd_hash;
120         struct ahash_request    *rcv_hash;
121
122         spinlock_t              state_lock;
123         enum nvmet_tcp_queue_state state;
124
125         struct sockaddr_storage sockaddr;
126         struct sockaddr_storage sockaddr_peer;
127         struct work_struct      release_work;
128
129         int                     idx;
130         struct list_head        queue_list;
131
132         struct nvmet_tcp_cmd    connect;
133
134         struct page_frag_cache  pf_cache;
135
136         void (*data_ready)(struct sock *);
137         void (*state_change)(struct sock *);
138         void (*write_space)(struct sock *);
139 };
140
141 struct nvmet_tcp_port {
142         struct socket           *sock;
143         struct work_struct      accept_work;
144         struct nvmet_port       *nport;
145         struct sockaddr_storage addr;
146         void (*data_ready)(struct sock *);
147 };
148
149 static DEFINE_IDA(nvmet_tcp_queue_ida);
150 static LIST_HEAD(nvmet_tcp_queue_list);
151 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
152
153 static struct workqueue_struct *nvmet_tcp_wq;
154 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
155 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
156 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
157
158 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
159                 struct nvmet_tcp_cmd *cmd)
160 {
161         if (unlikely(!queue->nr_cmds)) {
162                 /* We didn't allocate cmds yet, send 0xffff */
163                 return USHRT_MAX;
164         }
165
166         return cmd - queue->cmds;
167 }
168
169 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
170 {
171         return nvme_is_write(cmd->req.cmd) &&
172                 cmd->rbytes_done < cmd->req.transfer_len;
173 }
174
175 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
176 {
177         return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
178 }
179
180 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
181 {
182         return !nvme_is_write(cmd->req.cmd) &&
183                 cmd->req.transfer_len > 0 &&
184                 !cmd->req.cqe->status;
185 }
186
187 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
188 {
189         return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
190                 !cmd->rbytes_done;
191 }
192
193 static inline struct nvmet_tcp_cmd *
194 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
195 {
196         struct nvmet_tcp_cmd *cmd;
197
198         cmd = list_first_entry_or_null(&queue->free_list,
199                                 struct nvmet_tcp_cmd, entry);
200         if (!cmd)
201                 return NULL;
202         list_del_init(&cmd->entry);
203
204         cmd->rbytes_done = cmd->wbytes_done = 0;
205         cmd->pdu_len = 0;
206         cmd->pdu_recv = 0;
207         cmd->iov = NULL;
208         cmd->flags = 0;
209         return cmd;
210 }
211
212 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
213 {
214         if (unlikely(cmd == &cmd->queue->connect))
215                 return;
216
217         list_add_tail(&cmd->entry, &cmd->queue->free_list);
218 }
219
220 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
221 {
222         return queue->sock->sk->sk_incoming_cpu;
223 }
224
225 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
226 {
227         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
228 }
229
230 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
231 {
232         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
233 }
234
235 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
236                 void *pdu, size_t len)
237 {
238         struct scatterlist sg;
239
240         sg_init_one(&sg, pdu, len);
241         ahash_request_set_crypt(hash, &sg, pdu + len, len);
242         crypto_ahash_digest(hash);
243 }
244
245 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
246         void *pdu, size_t len)
247 {
248         struct nvme_tcp_hdr *hdr = pdu;
249         __le32 recv_digest;
250         __le32 exp_digest;
251
252         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
253                 pr_err("queue %d: header digest enabled but no header digest\n",
254                         queue->idx);
255                 return -EPROTO;
256         }
257
258         recv_digest = *(__le32 *)(pdu + hdr->hlen);
259         nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
260         exp_digest = *(__le32 *)(pdu + hdr->hlen);
261         if (recv_digest != exp_digest) {
262                 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
263                         queue->idx, le32_to_cpu(recv_digest),
264                         le32_to_cpu(exp_digest));
265                 return -EPROTO;
266         }
267
268         return 0;
269 }
270
271 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
272 {
273         struct nvme_tcp_hdr *hdr = pdu;
274         u8 digest_len = nvmet_tcp_hdgst_len(queue);
275         u32 len;
276
277         len = le32_to_cpu(hdr->plen) - hdr->hlen -
278                 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
279
280         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
281                 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
282                 return -EPROTO;
283         }
284
285         return 0;
286 }
287
288 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
289 {
290         struct scatterlist *sg;
291         int i;
292
293         sg = &cmd->req.sg[cmd->sg_idx];
294
295         for (i = 0; i < cmd->nr_mapped; i++)
296                 kunmap(sg_page(&sg[i]));
297 }
298
299 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
300 {
301         struct kvec *iov = cmd->iov;
302         struct scatterlist *sg;
303         u32 length, offset, sg_offset;
304
305         length = cmd->pdu_len;
306         cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
307         offset = cmd->rbytes_done;
308         cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
309         sg_offset = offset % PAGE_SIZE;
310         sg = &cmd->req.sg[cmd->sg_idx];
311
312         while (length) {
313                 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
314
315                 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
316                 iov->iov_len = iov_len;
317
318                 length -= iov_len;
319                 sg = sg_next(sg);
320                 iov++;
321         }
322
323         iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
324                 cmd->nr_mapped, cmd->pdu_len);
325 }
326
327 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
328 {
329         queue->rcv_state = NVMET_TCP_RECV_ERR;
330         if (queue->nvme_sq.ctrl)
331                 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
332         else
333                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
334 }
335
336 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
337 {
338         if (status == -EPIPE || status == -ECONNRESET)
339                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
340         else
341                 nvmet_tcp_fatal_error(queue);
342 }
343
344 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
345 {
346         struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
347         u32 len = le32_to_cpu(sgl->length);
348
349         if (!len)
350                 return 0;
351
352         if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
353                           NVME_SGL_FMT_OFFSET)) {
354                 if (!nvme_is_write(cmd->req.cmd))
355                         return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
356
357                 if (len > cmd->req.port->inline_data_size)
358                         return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
359                 cmd->pdu_len = len;
360         }
361         cmd->req.transfer_len += len;
362
363         cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
364         if (!cmd->req.sg)
365                 return NVME_SC_INTERNAL;
366         cmd->cur_sg = cmd->req.sg;
367
368         if (nvmet_tcp_has_data_in(cmd)) {
369                 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
370                                 sizeof(*cmd->iov), GFP_KERNEL);
371                 if (!cmd->iov)
372                         goto err;
373         }
374
375         return 0;
376 err:
377         sgl_free(cmd->req.sg);
378         return NVME_SC_INTERNAL;
379 }
380
381 static void nvmet_tcp_ddgst(struct ahash_request *hash,
382                 struct nvmet_tcp_cmd *cmd)
383 {
384         ahash_request_set_crypt(hash, cmd->req.sg,
385                 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
386         crypto_ahash_digest(hash);
387 }
388
389 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
390 {
391         struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
392         struct nvmet_tcp_queue *queue = cmd->queue;
393         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
394         u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
395
396         cmd->offset = 0;
397         cmd->state = NVMET_TCP_SEND_DATA_PDU;
398
399         pdu->hdr.type = nvme_tcp_c2h_data;
400         pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
401                                                 NVME_TCP_F_DATA_SUCCESS : 0);
402         pdu->hdr.hlen = sizeof(*pdu);
403         pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
404         pdu->hdr.plen =
405                 cpu_to_le32(pdu->hdr.hlen + hdgst +
406                                 cmd->req.transfer_len + ddgst);
407         pdu->command_id = cmd->req.cqe->command_id;
408         pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
409         pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
410
411         if (queue->data_digest) {
412                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
413                 nvmet_tcp_ddgst(queue->snd_hash, cmd);
414         }
415
416         if (cmd->queue->hdr_digest) {
417                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
418                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
419         }
420 }
421
422 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
423 {
424         struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
425         struct nvmet_tcp_queue *queue = cmd->queue;
426         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
427
428         cmd->offset = 0;
429         cmd->state = NVMET_TCP_SEND_R2T;
430
431         pdu->hdr.type = nvme_tcp_r2t;
432         pdu->hdr.flags = 0;
433         pdu->hdr.hlen = sizeof(*pdu);
434         pdu->hdr.pdo = 0;
435         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
436
437         pdu->command_id = cmd->req.cmd->common.command_id;
438         pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
439         pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
440         pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
441         if (cmd->queue->hdr_digest) {
442                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
443                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
444         }
445 }
446
447 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
448 {
449         struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
450         struct nvmet_tcp_queue *queue = cmd->queue;
451         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
452
453         cmd->offset = 0;
454         cmd->state = NVMET_TCP_SEND_RESPONSE;
455
456         pdu->hdr.type = nvme_tcp_rsp;
457         pdu->hdr.flags = 0;
458         pdu->hdr.hlen = sizeof(*pdu);
459         pdu->hdr.pdo = 0;
460         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
461         if (cmd->queue->hdr_digest) {
462                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
463                 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
464         }
465 }
466
467 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
468 {
469         struct llist_node *node;
470         struct nvmet_tcp_cmd *cmd;
471
472         for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
473                 cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
474                 list_add(&cmd->entry, &queue->resp_send_list);
475                 queue->send_list_len++;
476         }
477 }
478
479 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
480 {
481         queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
482                                 struct nvmet_tcp_cmd, entry);
483         if (!queue->snd_cmd) {
484                 nvmet_tcp_process_resp_list(queue);
485                 queue->snd_cmd =
486                         list_first_entry_or_null(&queue->resp_send_list,
487                                         struct nvmet_tcp_cmd, entry);
488                 if (unlikely(!queue->snd_cmd))
489                         return NULL;
490         }
491
492         list_del_init(&queue->snd_cmd->entry);
493         queue->send_list_len--;
494
495         if (nvmet_tcp_need_data_out(queue->snd_cmd))
496                 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
497         else if (nvmet_tcp_need_data_in(queue->snd_cmd))
498                 nvmet_setup_r2t_pdu(queue->snd_cmd);
499         else
500                 nvmet_setup_response_pdu(queue->snd_cmd);
501
502         return queue->snd_cmd;
503 }
504
505 static void nvmet_tcp_queue_response(struct nvmet_req *req)
506 {
507         struct nvmet_tcp_cmd *cmd =
508                 container_of(req, struct nvmet_tcp_cmd, req);
509         struct nvmet_tcp_queue  *queue = cmd->queue;
510
511         llist_add(&cmd->lentry, &queue->resp_list);
512         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
513 }
514
515 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
516 {
517         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
518         int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
519         int ret;
520
521         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
522                         offset_in_page(cmd->data_pdu) + cmd->offset,
523                         left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
524         if (ret <= 0)
525                 return ret;
526
527         cmd->offset += ret;
528         left -= ret;
529
530         if (left)
531                 return -EAGAIN;
532
533         cmd->state = NVMET_TCP_SEND_DATA;
534         cmd->offset  = 0;
535         return 1;
536 }
537
538 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
539 {
540         struct nvmet_tcp_queue *queue = cmd->queue;
541         int ret;
542
543         while (cmd->cur_sg) {
544                 struct page *page = sg_page(cmd->cur_sg);
545                 u32 left = cmd->cur_sg->length - cmd->offset;
546                 int flags = MSG_DONTWAIT;
547
548                 if ((!last_in_batch && cmd->queue->send_list_len) ||
549                     cmd->wbytes_done + left < cmd->req.transfer_len ||
550                     queue->data_digest || !queue->nvme_sq.sqhd_disabled)
551                         flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
552
553                 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
554                                         left, flags);
555                 if (ret <= 0)
556                         return ret;
557
558                 cmd->offset += ret;
559                 cmd->wbytes_done += ret;
560
561                 /* Done with sg?*/
562                 if (cmd->offset == cmd->cur_sg->length) {
563                         cmd->cur_sg = sg_next(cmd->cur_sg);
564                         cmd->offset = 0;
565                 }
566         }
567
568         if (queue->data_digest) {
569                 cmd->state = NVMET_TCP_SEND_DDGST;
570                 cmd->offset = 0;
571         } else {
572                 if (queue->nvme_sq.sqhd_disabled) {
573                         cmd->queue->snd_cmd = NULL;
574                         nvmet_tcp_put_cmd(cmd);
575                 } else {
576                         nvmet_setup_response_pdu(cmd);
577                 }
578         }
579
580         if (queue->nvme_sq.sqhd_disabled) {
581                 kfree(cmd->iov);
582                 sgl_free(cmd->req.sg);
583         }
584
585         return 1;
586
587 }
588
589 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
590                 bool last_in_batch)
591 {
592         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
593         int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
594         int flags = MSG_DONTWAIT;
595         int ret;
596
597         if (!last_in_batch && cmd->queue->send_list_len)
598                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
599         else
600                 flags |= MSG_EOR;
601
602         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
603                 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
604         if (ret <= 0)
605                 return ret;
606         cmd->offset += ret;
607         left -= ret;
608
609         if (left)
610                 return -EAGAIN;
611
612         kfree(cmd->iov);
613         sgl_free(cmd->req.sg);
614         cmd->queue->snd_cmd = NULL;
615         nvmet_tcp_put_cmd(cmd);
616         return 1;
617 }
618
619 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
620 {
621         u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
622         int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
623         int flags = MSG_DONTWAIT;
624         int ret;
625
626         if (!last_in_batch && cmd->queue->send_list_len)
627                 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
628         else
629                 flags |= MSG_EOR;
630
631         ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
632                 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
633         if (ret <= 0)
634                 return ret;
635         cmd->offset += ret;
636         left -= ret;
637
638         if (left)
639                 return -EAGAIN;
640
641         cmd->queue->snd_cmd = NULL;
642         return 1;
643 }
644
645 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
646 {
647         struct nvmet_tcp_queue *queue = cmd->queue;
648         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
649         struct kvec iov = {
650                 .iov_base = &cmd->exp_ddgst + cmd->offset,
651                 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
652         };
653         int ret;
654
655         if (!last_in_batch && cmd->queue->send_list_len)
656                 msg.msg_flags |= MSG_MORE;
657         else
658                 msg.msg_flags |= MSG_EOR;
659
660         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
661         if (unlikely(ret <= 0))
662                 return ret;
663
664         cmd->offset += ret;
665
666         if (queue->nvme_sq.sqhd_disabled) {
667                 cmd->queue->snd_cmd = NULL;
668                 nvmet_tcp_put_cmd(cmd);
669         } else {
670                 nvmet_setup_response_pdu(cmd);
671         }
672         return 1;
673 }
674
675 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
676                 bool last_in_batch)
677 {
678         struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
679         int ret = 0;
680
681         if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
682                 cmd = nvmet_tcp_fetch_cmd(queue);
683                 if (unlikely(!cmd))
684                         return 0;
685         }
686
687         if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
688                 ret = nvmet_try_send_data_pdu(cmd);
689                 if (ret <= 0)
690                         goto done_send;
691         }
692
693         if (cmd->state == NVMET_TCP_SEND_DATA) {
694                 ret = nvmet_try_send_data(cmd, last_in_batch);
695                 if (ret <= 0)
696                         goto done_send;
697         }
698
699         if (cmd->state == NVMET_TCP_SEND_DDGST) {
700                 ret = nvmet_try_send_ddgst(cmd, last_in_batch);
701                 if (ret <= 0)
702                         goto done_send;
703         }
704
705         if (cmd->state == NVMET_TCP_SEND_R2T) {
706                 ret = nvmet_try_send_r2t(cmd, last_in_batch);
707                 if (ret <= 0)
708                         goto done_send;
709         }
710
711         if (cmd->state == NVMET_TCP_SEND_RESPONSE)
712                 ret = nvmet_try_send_response(cmd, last_in_batch);
713
714 done_send:
715         if (ret < 0) {
716                 if (ret == -EAGAIN)
717                         return 0;
718                 return ret;
719         }
720
721         return 1;
722 }
723
724 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
725                 int budget, int *sends)
726 {
727         int i, ret = 0;
728
729         for (i = 0; i < budget; i++) {
730                 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
731                 if (unlikely(ret < 0)) {
732                         nvmet_tcp_socket_error(queue, ret);
733                         goto done;
734                 } else if (ret == 0) {
735                         break;
736                 }
737                 (*sends)++;
738         }
739 done:
740         return ret;
741 }
742
743 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
744 {
745         queue->offset = 0;
746         queue->left = sizeof(struct nvme_tcp_hdr);
747         queue->cmd = NULL;
748         queue->rcv_state = NVMET_TCP_RECV_PDU;
749 }
750
751 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
752 {
753         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
754
755         ahash_request_free(queue->rcv_hash);
756         ahash_request_free(queue->snd_hash);
757         crypto_free_ahash(tfm);
758 }
759
760 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
761 {
762         struct crypto_ahash *tfm;
763
764         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
765         if (IS_ERR(tfm))
766                 return PTR_ERR(tfm);
767
768         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
769         if (!queue->snd_hash)
770                 goto free_tfm;
771         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
772
773         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
774         if (!queue->rcv_hash)
775                 goto free_snd_hash;
776         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
777
778         return 0;
779 free_snd_hash:
780         ahash_request_free(queue->snd_hash);
781 free_tfm:
782         crypto_free_ahash(tfm);
783         return -ENOMEM;
784 }
785
786
787 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
788 {
789         struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
790         struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
791         struct msghdr msg = {};
792         struct kvec iov;
793         int ret;
794
795         if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
796                 pr_err("bad nvme-tcp pdu length (%d)\n",
797                         le32_to_cpu(icreq->hdr.plen));
798                 nvmet_tcp_fatal_error(queue);
799         }
800
801         if (icreq->pfv != NVME_TCP_PFV_1_0) {
802                 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
803                 return -EPROTO;
804         }
805
806         if (icreq->hpda != 0) {
807                 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
808                         icreq->hpda);
809                 return -EPROTO;
810         }
811
812         queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
813         queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
814         if (queue->hdr_digest || queue->data_digest) {
815                 ret = nvmet_tcp_alloc_crypto(queue);
816                 if (ret)
817                         return ret;
818         }
819
820         memset(icresp, 0, sizeof(*icresp));
821         icresp->hdr.type = nvme_tcp_icresp;
822         icresp->hdr.hlen = sizeof(*icresp);
823         icresp->hdr.pdo = 0;
824         icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
825         icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
826         icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
827         icresp->cpda = 0;
828         if (queue->hdr_digest)
829                 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
830         if (queue->data_digest)
831                 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
832
833         iov.iov_base = icresp;
834         iov.iov_len = sizeof(*icresp);
835         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
836         if (ret < 0)
837                 goto free_crypto;
838
839         queue->state = NVMET_TCP_Q_LIVE;
840         nvmet_prepare_receive_pdu(queue);
841         return 0;
842 free_crypto:
843         if (queue->hdr_digest || queue->data_digest)
844                 nvmet_tcp_free_crypto(queue);
845         return ret;
846 }
847
848 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
849                 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
850 {
851         size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
852         int ret;
853
854         if (!nvme_is_write(cmd->req.cmd) ||
855             data_len > cmd->req.port->inline_data_size) {
856                 nvmet_prepare_receive_pdu(queue);
857                 return;
858         }
859
860         ret = nvmet_tcp_map_data(cmd);
861         if (unlikely(ret)) {
862                 pr_err("queue %d: failed to map data\n", queue->idx);
863                 nvmet_tcp_fatal_error(queue);
864                 return;
865         }
866
867         queue->rcv_state = NVMET_TCP_RECV_DATA;
868         nvmet_tcp_map_pdu_iovec(cmd);
869         cmd->flags |= NVMET_TCP_F_INIT_FAILED;
870 }
871
872 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
873 {
874         struct nvme_tcp_data_pdu *data = &queue->pdu.data;
875         struct nvmet_tcp_cmd *cmd;
876
877         if (likely(queue->nr_cmds))
878                 cmd = &queue->cmds[data->ttag];
879         else
880                 cmd = &queue->connect;
881
882         if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
883                 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
884                         data->ttag, le32_to_cpu(data->data_offset),
885                         cmd->rbytes_done);
886                 /* FIXME: use path and transport errors */
887                 nvmet_req_complete(&cmd->req,
888                         NVME_SC_INVALID_FIELD | NVME_SC_DNR);
889                 return -EPROTO;
890         }
891
892         cmd->pdu_len = le32_to_cpu(data->data_length);
893         cmd->pdu_recv = 0;
894         nvmet_tcp_map_pdu_iovec(cmd);
895         queue->cmd = cmd;
896         queue->rcv_state = NVMET_TCP_RECV_DATA;
897
898         return 0;
899 }
900
901 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
902 {
903         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
904         struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
905         struct nvmet_req *req;
906         int ret;
907
908         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
909                 if (hdr->type != nvme_tcp_icreq) {
910                         pr_err("unexpected pdu type (%d) before icreq\n",
911                                 hdr->type);
912                         nvmet_tcp_fatal_error(queue);
913                         return -EPROTO;
914                 }
915                 return nvmet_tcp_handle_icreq(queue);
916         }
917
918         if (hdr->type == nvme_tcp_h2c_data) {
919                 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
920                 if (unlikely(ret))
921                         return ret;
922                 return 0;
923         }
924
925         queue->cmd = nvmet_tcp_get_cmd(queue);
926         if (unlikely(!queue->cmd)) {
927                 /* This should never happen */
928                 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
929                         queue->idx, queue->nr_cmds, queue->send_list_len,
930                         nvme_cmd->common.opcode);
931                 nvmet_tcp_fatal_error(queue);
932                 return -ENOMEM;
933         }
934
935         req = &queue->cmd->req;
936         memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
937
938         if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
939                         &queue->nvme_sq, &nvmet_tcp_ops))) {
940                 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
941                         req->cmd, req->cmd->common.command_id,
942                         req->cmd->common.opcode,
943                         le32_to_cpu(req->cmd->common.dptr.sgl.length));
944
945                 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
946                 return -EAGAIN;
947         }
948
949         ret = nvmet_tcp_map_data(queue->cmd);
950         if (unlikely(ret)) {
951                 pr_err("queue %d: failed to map data\n", queue->idx);
952                 if (nvmet_tcp_has_inline_data(queue->cmd))
953                         nvmet_tcp_fatal_error(queue);
954                 else
955                         nvmet_req_complete(req, ret);
956                 ret = -EAGAIN;
957                 goto out;
958         }
959
960         if (nvmet_tcp_need_data_in(queue->cmd)) {
961                 if (nvmet_tcp_has_inline_data(queue->cmd)) {
962                         queue->rcv_state = NVMET_TCP_RECV_DATA;
963                         nvmet_tcp_map_pdu_iovec(queue->cmd);
964                         return 0;
965                 }
966                 /* send back R2T */
967                 nvmet_tcp_queue_response(&queue->cmd->req);
968                 goto out;
969         }
970
971         queue->cmd->req.execute(&queue->cmd->req);
972 out:
973         nvmet_prepare_receive_pdu(queue);
974         return ret;
975 }
976
977 static const u8 nvme_tcp_pdu_sizes[] = {
978         [nvme_tcp_icreq]        = sizeof(struct nvme_tcp_icreq_pdu),
979         [nvme_tcp_cmd]          = sizeof(struct nvme_tcp_cmd_pdu),
980         [nvme_tcp_h2c_data]     = sizeof(struct nvme_tcp_data_pdu),
981 };
982
983 static inline u8 nvmet_tcp_pdu_size(u8 type)
984 {
985         size_t idx = type;
986
987         return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
988                 nvme_tcp_pdu_sizes[idx]) ?
989                         nvme_tcp_pdu_sizes[idx] : 0;
990 }
991
992 static inline bool nvmet_tcp_pdu_valid(u8 type)
993 {
994         switch (type) {
995         case nvme_tcp_icreq:
996         case nvme_tcp_cmd:
997         case nvme_tcp_h2c_data:
998                 /* fallthru */
999                 return true;
1000         }
1001
1002         return false;
1003 }
1004
1005 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1006 {
1007         struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1008         int len;
1009         struct kvec iov;
1010         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1011
1012 recv:
1013         iov.iov_base = (void *)&queue->pdu + queue->offset;
1014         iov.iov_len = queue->left;
1015         len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1016                         iov.iov_len, msg.msg_flags);
1017         if (unlikely(len < 0))
1018                 return len;
1019
1020         queue->offset += len;
1021         queue->left -= len;
1022         if (queue->left)
1023                 return -EAGAIN;
1024
1025         if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1026                 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1027
1028                 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1029                         pr_err("unexpected pdu type %d\n", hdr->type);
1030                         nvmet_tcp_fatal_error(queue);
1031                         return -EIO;
1032                 }
1033
1034                 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1035                         pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1036                         return -EIO;
1037                 }
1038
1039                 queue->left = hdr->hlen - queue->offset + hdgst;
1040                 goto recv;
1041         }
1042
1043         if (queue->hdr_digest &&
1044             nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
1045                 nvmet_tcp_fatal_error(queue); /* fatal */
1046                 return -EPROTO;
1047         }
1048
1049         if (queue->data_digest &&
1050             nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1051                 nvmet_tcp_fatal_error(queue); /* fatal */
1052                 return -EPROTO;
1053         }
1054
1055         return nvmet_tcp_done_recv_pdu(queue);
1056 }
1057
1058 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1059 {
1060         struct nvmet_tcp_queue *queue = cmd->queue;
1061
1062         nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1063         queue->offset = 0;
1064         queue->left = NVME_TCP_DIGEST_LENGTH;
1065         queue->rcv_state = NVMET_TCP_RECV_DDGST;
1066 }
1067
1068 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1069 {
1070         struct nvmet_tcp_cmd  *cmd = queue->cmd;
1071         int ret;
1072
1073         while (msg_data_left(&cmd->recv_msg)) {
1074                 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1075                         cmd->recv_msg.msg_flags);
1076                 if (ret <= 0)
1077                         return ret;
1078
1079                 cmd->pdu_recv += ret;
1080                 cmd->rbytes_done += ret;
1081         }
1082
1083         nvmet_tcp_unmap_pdu_iovec(cmd);
1084
1085         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1086             cmd->rbytes_done == cmd->req.transfer_len) {
1087                 if (queue->data_digest) {
1088                         nvmet_tcp_prep_recv_ddgst(cmd);
1089                         return 0;
1090                 }
1091                 cmd->req.execute(&cmd->req);
1092         }
1093
1094         nvmet_prepare_receive_pdu(queue);
1095         return 0;
1096 }
1097
1098 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1099 {
1100         struct nvmet_tcp_cmd *cmd = queue->cmd;
1101         int ret;
1102         struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1103         struct kvec iov = {
1104                 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1105                 .iov_len = queue->left
1106         };
1107
1108         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1109                         iov.iov_len, msg.msg_flags);
1110         if (unlikely(ret < 0))
1111                 return ret;
1112
1113         queue->offset += ret;
1114         queue->left -= ret;
1115         if (queue->left)
1116                 return -EAGAIN;
1117
1118         if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1119                 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1120                         queue->idx, cmd->req.cmd->common.command_id,
1121                         queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1122                         le32_to_cpu(cmd->exp_ddgst));
1123                 nvmet_tcp_finish_cmd(cmd);
1124                 nvmet_tcp_fatal_error(queue);
1125                 ret = -EPROTO;
1126                 goto out;
1127         }
1128
1129         if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1130             cmd->rbytes_done == cmd->req.transfer_len)
1131                 cmd->req.execute(&cmd->req);
1132         ret = 0;
1133 out:
1134         nvmet_prepare_receive_pdu(queue);
1135         return ret;
1136 }
1137
1138 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1139 {
1140         int result = 0;
1141
1142         if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1143                 return 0;
1144
1145         if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1146                 result = nvmet_tcp_try_recv_pdu(queue);
1147                 if (result != 0)
1148                         goto done_recv;
1149         }
1150
1151         if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1152                 result = nvmet_tcp_try_recv_data(queue);
1153                 if (result != 0)
1154                         goto done_recv;
1155         }
1156
1157         if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1158                 result = nvmet_tcp_try_recv_ddgst(queue);
1159                 if (result != 0)
1160                         goto done_recv;
1161         }
1162
1163 done_recv:
1164         if (result < 0) {
1165                 if (result == -EAGAIN)
1166                         return 0;
1167                 return result;
1168         }
1169         return 1;
1170 }
1171
1172 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1173                 int budget, int *recvs)
1174 {
1175         int i, ret = 0;
1176
1177         for (i = 0; i < budget; i++) {
1178                 ret = nvmet_tcp_try_recv_one(queue);
1179                 if (unlikely(ret < 0)) {
1180                         nvmet_tcp_socket_error(queue, ret);
1181                         goto done;
1182                 } else if (ret == 0) {
1183                         break;
1184                 }
1185                 (*recvs)++;
1186         }
1187 done:
1188         return ret;
1189 }
1190
1191 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1192 {
1193         spin_lock(&queue->state_lock);
1194         if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1195                 queue->state = NVMET_TCP_Q_DISCONNECTING;
1196                 schedule_work(&queue->release_work);
1197         }
1198         spin_unlock(&queue->state_lock);
1199 }
1200
1201 static void nvmet_tcp_io_work(struct work_struct *w)
1202 {
1203         struct nvmet_tcp_queue *queue =
1204                 container_of(w, struct nvmet_tcp_queue, io_work);
1205         bool pending;
1206         int ret, ops = 0;
1207
1208         do {
1209                 pending = false;
1210
1211                 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1212                 if (ret > 0)
1213                         pending = true;
1214                 else if (ret < 0)
1215                         return;
1216
1217                 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1218                 if (ret > 0)
1219                         pending = true;
1220                 else if (ret < 0)
1221                         return;
1222
1223         } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1224
1225         /*
1226          * We exahusted our budget, requeue our selves
1227          */
1228         if (pending)
1229                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1230 }
1231
1232 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1233                 struct nvmet_tcp_cmd *c)
1234 {
1235         u8 hdgst = nvmet_tcp_hdgst_len(queue);
1236
1237         c->queue = queue;
1238         c->req.port = queue->port->nport;
1239
1240         c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1241                         sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1242         if (!c->cmd_pdu)
1243                 return -ENOMEM;
1244         c->req.cmd = &c->cmd_pdu->cmd;
1245
1246         c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1247                         sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1248         if (!c->rsp_pdu)
1249                 goto out_free_cmd;
1250         c->req.cqe = &c->rsp_pdu->cqe;
1251
1252         c->data_pdu = page_frag_alloc(&queue->pf_cache,
1253                         sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1254         if (!c->data_pdu)
1255                 goto out_free_rsp;
1256
1257         c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1258                         sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1259         if (!c->r2t_pdu)
1260                 goto out_free_data;
1261
1262         c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1263
1264         list_add_tail(&c->entry, &queue->free_list);
1265
1266         return 0;
1267 out_free_data:
1268         page_frag_free(c->data_pdu);
1269 out_free_rsp:
1270         page_frag_free(c->rsp_pdu);
1271 out_free_cmd:
1272         page_frag_free(c->cmd_pdu);
1273         return -ENOMEM;
1274 }
1275
1276 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1277 {
1278         page_frag_free(c->r2t_pdu);
1279         page_frag_free(c->data_pdu);
1280         page_frag_free(c->rsp_pdu);
1281         page_frag_free(c->cmd_pdu);
1282 }
1283
1284 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1285 {
1286         struct nvmet_tcp_cmd *cmds;
1287         int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1288
1289         cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1290         if (!cmds)
1291                 goto out;
1292
1293         for (i = 0; i < nr_cmds; i++) {
1294                 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1295                 if (ret)
1296                         goto out_free;
1297         }
1298
1299         queue->cmds = cmds;
1300
1301         return 0;
1302 out_free:
1303         while (--i >= 0)
1304                 nvmet_tcp_free_cmd(cmds + i);
1305         kfree(cmds);
1306 out:
1307         return ret;
1308 }
1309
1310 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1311 {
1312         struct nvmet_tcp_cmd *cmds = queue->cmds;
1313         int i;
1314
1315         for (i = 0; i < queue->nr_cmds; i++)
1316                 nvmet_tcp_free_cmd(cmds + i);
1317
1318         nvmet_tcp_free_cmd(&queue->connect);
1319         kfree(cmds);
1320 }
1321
1322 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1323 {
1324         struct socket *sock = queue->sock;
1325
1326         write_lock_bh(&sock->sk->sk_callback_lock);
1327         sock->sk->sk_data_ready =  queue->data_ready;
1328         sock->sk->sk_state_change = queue->state_change;
1329         sock->sk->sk_write_space = queue->write_space;
1330         sock->sk->sk_user_data = NULL;
1331         write_unlock_bh(&sock->sk->sk_callback_lock);
1332 }
1333
1334 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1335 {
1336         nvmet_req_uninit(&cmd->req);
1337         nvmet_tcp_unmap_pdu_iovec(cmd);
1338         kfree(cmd->iov);
1339         sgl_free(cmd->req.sg);
1340 }
1341
1342 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1343 {
1344         struct nvmet_tcp_cmd *cmd = queue->cmds;
1345         int i;
1346
1347         for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1348                 if (nvmet_tcp_need_data_in(cmd))
1349                         nvmet_tcp_finish_cmd(cmd);
1350         }
1351
1352         if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1353                 /* failed in connect */
1354                 nvmet_tcp_finish_cmd(&queue->connect);
1355         }
1356 }
1357
1358 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1359 {
1360         struct nvmet_tcp_queue *queue =
1361                 container_of(w, struct nvmet_tcp_queue, release_work);
1362
1363         mutex_lock(&nvmet_tcp_queue_mutex);
1364         list_del_init(&queue->queue_list);
1365         mutex_unlock(&nvmet_tcp_queue_mutex);
1366
1367         nvmet_tcp_restore_socket_callbacks(queue);
1368         flush_work(&queue->io_work);
1369
1370         nvmet_tcp_uninit_data_in_cmds(queue);
1371         nvmet_sq_destroy(&queue->nvme_sq);
1372         cancel_work_sync(&queue->io_work);
1373         sock_release(queue->sock);
1374         nvmet_tcp_free_cmds(queue);
1375         if (queue->hdr_digest || queue->data_digest)
1376                 nvmet_tcp_free_crypto(queue);
1377         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1378
1379         kfree(queue);
1380 }
1381
1382 static void nvmet_tcp_data_ready(struct sock *sk)
1383 {
1384         struct nvmet_tcp_queue *queue;
1385
1386         read_lock_bh(&sk->sk_callback_lock);
1387         queue = sk->sk_user_data;
1388         if (likely(queue))
1389                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1390         read_unlock_bh(&sk->sk_callback_lock);
1391 }
1392
1393 static void nvmet_tcp_write_space(struct sock *sk)
1394 {
1395         struct nvmet_tcp_queue *queue;
1396
1397         read_lock_bh(&sk->sk_callback_lock);
1398         queue = sk->sk_user_data;
1399         if (unlikely(!queue))
1400                 goto out;
1401
1402         if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1403                 queue->write_space(sk);
1404                 goto out;
1405         }
1406
1407         if (sk_stream_is_writeable(sk)) {
1408                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1409                 queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1410         }
1411 out:
1412         read_unlock_bh(&sk->sk_callback_lock);
1413 }
1414
1415 static void nvmet_tcp_state_change(struct sock *sk)
1416 {
1417         struct nvmet_tcp_queue *queue;
1418
1419         write_lock_bh(&sk->sk_callback_lock);
1420         queue = sk->sk_user_data;
1421         if (!queue)
1422                 goto done;
1423
1424         switch (sk->sk_state) {
1425         case TCP_FIN_WAIT1:
1426         case TCP_CLOSE_WAIT:
1427         case TCP_CLOSE:
1428                 /* FALLTHRU */
1429                 sk->sk_user_data = NULL;
1430                 nvmet_tcp_schedule_release_queue(queue);
1431                 break;
1432         default:
1433                 pr_warn("queue %d unhandled state %d\n",
1434                         queue->idx, sk->sk_state);
1435         }
1436 done:
1437         write_unlock_bh(&sk->sk_callback_lock);
1438 }
1439
1440 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1441 {
1442         struct socket *sock = queue->sock;
1443         struct inet_sock *inet = inet_sk(sock->sk);
1444         int ret;
1445
1446         ret = kernel_getsockname(sock,
1447                 (struct sockaddr *)&queue->sockaddr);
1448         if (ret < 0)
1449                 return ret;
1450
1451         ret = kernel_getpeername(sock,
1452                 (struct sockaddr *)&queue->sockaddr_peer);
1453         if (ret < 0)
1454                 return ret;
1455
1456         /*
1457          * Cleanup whatever is sitting in the TCP transmit queue on socket
1458          * close. This is done to prevent stale data from being sent should
1459          * the network connection be restored before TCP times out.
1460          */
1461         sock_no_linger(sock->sk);
1462
1463         if (so_priority > 0)
1464                 sock_set_priority(sock->sk, so_priority);
1465
1466         /* Set socket type of service */
1467         if (inet->rcv_tos > 0)
1468                 ip_sock_set_tos(sock->sk, inet->rcv_tos);
1469
1470         write_lock_bh(&sock->sk->sk_callback_lock);
1471         sock->sk->sk_user_data = queue;
1472         queue->data_ready = sock->sk->sk_data_ready;
1473         sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1474         queue->state_change = sock->sk->sk_state_change;
1475         sock->sk->sk_state_change = nvmet_tcp_state_change;
1476         queue->write_space = sock->sk->sk_write_space;
1477         sock->sk->sk_write_space = nvmet_tcp_write_space;
1478         write_unlock_bh(&sock->sk->sk_callback_lock);
1479
1480         return 0;
1481 }
1482
1483 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1484                 struct socket *newsock)
1485 {
1486         struct nvmet_tcp_queue *queue;
1487         int ret;
1488
1489         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1490         if (!queue)
1491                 return -ENOMEM;
1492
1493         INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1494         INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1495         queue->sock = newsock;
1496         queue->port = port;
1497         queue->nr_cmds = 0;
1498         spin_lock_init(&queue->state_lock);
1499         queue->state = NVMET_TCP_Q_CONNECTING;
1500         INIT_LIST_HEAD(&queue->free_list);
1501         init_llist_head(&queue->resp_list);
1502         INIT_LIST_HEAD(&queue->resp_send_list);
1503
1504         queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1505         if (queue->idx < 0) {
1506                 ret = queue->idx;
1507                 goto out_free_queue;
1508         }
1509
1510         ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1511         if (ret)
1512                 goto out_ida_remove;
1513
1514         ret = nvmet_sq_init(&queue->nvme_sq);
1515         if (ret)
1516                 goto out_free_connect;
1517
1518         nvmet_prepare_receive_pdu(queue);
1519
1520         mutex_lock(&nvmet_tcp_queue_mutex);
1521         list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1522         mutex_unlock(&nvmet_tcp_queue_mutex);
1523
1524         ret = nvmet_tcp_set_queue_sock(queue);
1525         if (ret)
1526                 goto out_destroy_sq;
1527
1528         queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1529
1530         return 0;
1531 out_destroy_sq:
1532         mutex_lock(&nvmet_tcp_queue_mutex);
1533         list_del_init(&queue->queue_list);
1534         mutex_unlock(&nvmet_tcp_queue_mutex);
1535         nvmet_sq_destroy(&queue->nvme_sq);
1536 out_free_connect:
1537         nvmet_tcp_free_cmd(&queue->connect);
1538 out_ida_remove:
1539         ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1540 out_free_queue:
1541         kfree(queue);
1542         return ret;
1543 }
1544
1545 static void nvmet_tcp_accept_work(struct work_struct *w)
1546 {
1547         struct nvmet_tcp_port *port =
1548                 container_of(w, struct nvmet_tcp_port, accept_work);
1549         struct socket *newsock;
1550         int ret;
1551
1552         while (true) {
1553                 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1554                 if (ret < 0) {
1555                         if (ret != -EAGAIN)
1556                                 pr_warn("failed to accept err=%d\n", ret);
1557                         return;
1558                 }
1559                 ret = nvmet_tcp_alloc_queue(port, newsock);
1560                 if (ret) {
1561                         pr_err("failed to allocate queue\n");
1562                         sock_release(newsock);
1563                 }
1564         }
1565 }
1566
1567 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1568 {
1569         struct nvmet_tcp_port *port;
1570
1571         read_lock_bh(&sk->sk_callback_lock);
1572         port = sk->sk_user_data;
1573         if (!port)
1574                 goto out;
1575
1576         if (sk->sk_state == TCP_LISTEN)
1577                 schedule_work(&port->accept_work);
1578 out:
1579         read_unlock_bh(&sk->sk_callback_lock);
1580 }
1581
1582 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1583 {
1584         struct nvmet_tcp_port *port;
1585         __kernel_sa_family_t af;
1586         int ret;
1587
1588         port = kzalloc(sizeof(*port), GFP_KERNEL);
1589         if (!port)
1590                 return -ENOMEM;
1591
1592         switch (nport->disc_addr.adrfam) {
1593         case NVMF_ADDR_FAMILY_IP4:
1594                 af = AF_INET;
1595                 break;
1596         case NVMF_ADDR_FAMILY_IP6:
1597                 af = AF_INET6;
1598                 break;
1599         default:
1600                 pr_err("address family %d not supported\n",
1601                                 nport->disc_addr.adrfam);
1602                 ret = -EINVAL;
1603                 goto err_port;
1604         }
1605
1606         ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1607                         nport->disc_addr.trsvcid, &port->addr);
1608         if (ret) {
1609                 pr_err("malformed ip/port passed: %s:%s\n",
1610                         nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1611                 goto err_port;
1612         }
1613
1614         port->nport = nport;
1615         INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1616         if (port->nport->inline_data_size < 0)
1617                 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1618
1619         ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1620                                 IPPROTO_TCP, &port->sock);
1621         if (ret) {
1622                 pr_err("failed to create a socket\n");
1623                 goto err_port;
1624         }
1625
1626         port->sock->sk->sk_user_data = port;
1627         port->data_ready = port->sock->sk->sk_data_ready;
1628         port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1629         sock_set_reuseaddr(port->sock->sk);
1630         tcp_sock_set_nodelay(port->sock->sk);
1631         if (so_priority > 0)
1632                 sock_set_priority(port->sock->sk, so_priority);
1633
1634         ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1635                         sizeof(port->addr));
1636         if (ret) {
1637                 pr_err("failed to bind port socket %d\n", ret);
1638                 goto err_sock;
1639         }
1640
1641         ret = kernel_listen(port->sock, 128);
1642         if (ret) {
1643                 pr_err("failed to listen %d on port sock\n", ret);
1644                 goto err_sock;
1645         }
1646
1647         nport->priv = port;
1648         pr_info("enabling port %d (%pISpc)\n",
1649                 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1650
1651         return 0;
1652
1653 err_sock:
1654         sock_release(port->sock);
1655 err_port:
1656         kfree(port);
1657         return ret;
1658 }
1659
1660 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1661 {
1662         struct nvmet_tcp_port *port = nport->priv;
1663
1664         write_lock_bh(&port->sock->sk->sk_callback_lock);
1665         port->sock->sk->sk_data_ready = port->data_ready;
1666         port->sock->sk->sk_user_data = NULL;
1667         write_unlock_bh(&port->sock->sk->sk_callback_lock);
1668         cancel_work_sync(&port->accept_work);
1669
1670         sock_release(port->sock);
1671         kfree(port);
1672 }
1673
1674 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1675 {
1676         struct nvmet_tcp_queue *queue;
1677
1678         mutex_lock(&nvmet_tcp_queue_mutex);
1679         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1680                 if (queue->nvme_sq.ctrl == ctrl)
1681                         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1682         mutex_unlock(&nvmet_tcp_queue_mutex);
1683 }
1684
1685 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1686 {
1687         struct nvmet_tcp_queue *queue =
1688                 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1689
1690         if (sq->qid == 0) {
1691                 /* Let inflight controller teardown complete */
1692                 flush_scheduled_work();
1693         }
1694
1695         queue->nr_cmds = sq->size * 2;
1696         if (nvmet_tcp_alloc_cmds(queue))
1697                 return NVME_SC_INTERNAL;
1698         return 0;
1699 }
1700
1701 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1702                 struct nvmet_port *nport, char *traddr)
1703 {
1704         struct nvmet_tcp_port *port = nport->priv;
1705
1706         if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1707                 struct nvmet_tcp_cmd *cmd =
1708                         container_of(req, struct nvmet_tcp_cmd, req);
1709                 struct nvmet_tcp_queue *queue = cmd->queue;
1710
1711                 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1712         } else {
1713                 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1714         }
1715 }
1716
1717 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1718         .owner                  = THIS_MODULE,
1719         .type                   = NVMF_TRTYPE_TCP,
1720         .msdbd                  = 1,
1721         .add_port               = nvmet_tcp_add_port,
1722         .remove_port            = nvmet_tcp_remove_port,
1723         .queue_response         = nvmet_tcp_queue_response,
1724         .delete_ctrl            = nvmet_tcp_delete_ctrl,
1725         .install_queue          = nvmet_tcp_install_queue,
1726         .disc_traddr            = nvmet_tcp_disc_port_addr,
1727 };
1728
1729 static int __init nvmet_tcp_init(void)
1730 {
1731         int ret;
1732
1733         nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1734         if (!nvmet_tcp_wq)
1735                 return -ENOMEM;
1736
1737         ret = nvmet_register_transport(&nvmet_tcp_ops);
1738         if (ret)
1739                 goto err;
1740
1741         return 0;
1742 err:
1743         destroy_workqueue(nvmet_tcp_wq);
1744         return ret;
1745 }
1746
1747 static void __exit nvmet_tcp_exit(void)
1748 {
1749         struct nvmet_tcp_queue *queue;
1750
1751         nvmet_unregister_transport(&nvmet_tcp_ops);
1752
1753         flush_scheduled_work();
1754         mutex_lock(&nvmet_tcp_queue_mutex);
1755         list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1756                 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1757         mutex_unlock(&nvmet_tcp_queue_mutex);
1758         flush_scheduled_work();
1759
1760         destroy_workqueue(nvmet_tcp_wq);
1761 }
1762
1763 module_init(nvmet_tcp_init);
1764 module_exit(nvmet_tcp_exit);
1765
1766 MODULE_LICENSE("GPL v2");
1767 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
This page took 0.134812 seconds and 4 git commands to generate.