1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
4 #include "ice_common.h"
6 #include "ice_adminq_cmd.h"
9 #define ICE_PF_RESET_WAIT_COUNT 300
12 * ice_set_mac_type - Sets MAC type
13 * @hw: pointer to the HW structure
15 * This function sets the MAC type of the adapter based on the
16 * vendor ID and device ID stored in the HW structure.
18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
20 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 return ICE_ERR_DEVICE_NOT_SUPPORTED;
23 switch (hw->device_id) {
24 case ICE_DEV_ID_E810C_BACKPLANE:
25 case ICE_DEV_ID_E810C_QSFP:
26 case ICE_DEV_ID_E810C_SFP:
27 case ICE_DEV_ID_E810_XXV_SFP:
28 hw->mac_type = ICE_MAC_E810;
30 case ICE_DEV_ID_E823C_10G_BASE_T:
31 case ICE_DEV_ID_E823C_BACKPLANE:
32 case ICE_DEV_ID_E823C_QSFP:
33 case ICE_DEV_ID_E823C_SFP:
34 case ICE_DEV_ID_E823C_SGMII:
35 case ICE_DEV_ID_E822C_10G_BASE_T:
36 case ICE_DEV_ID_E822C_BACKPLANE:
37 case ICE_DEV_ID_E822C_QSFP:
38 case ICE_DEV_ID_E822C_SFP:
39 case ICE_DEV_ID_E822C_SGMII:
40 case ICE_DEV_ID_E822L_10G_BASE_T:
41 case ICE_DEV_ID_E822L_BACKPLANE:
42 case ICE_DEV_ID_E822L_SFP:
43 case ICE_DEV_ID_E822L_SGMII:
44 case ICE_DEV_ID_E823L_10G_BASE_T:
45 case ICE_DEV_ID_E823L_1GBE:
46 case ICE_DEV_ID_E823L_BACKPLANE:
47 case ICE_DEV_ID_E823L_QSFP:
48 case ICE_DEV_ID_E823L_SFP:
49 hw->mac_type = ICE_MAC_GENERIC;
52 hw->mac_type = ICE_MAC_UNKNOWN;
56 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
61 * ice_clear_pf_cfg - Clear PF configuration
62 * @hw: pointer to the hardware structure
64 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
65 * configuration, flow director filters, etc.).
67 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
69 struct ice_aq_desc desc;
71 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
73 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
77 * ice_aq_manage_mac_read - manage MAC address read command
78 * @hw: pointer to the HW struct
79 * @buf: a virtual buffer to hold the manage MAC read response
80 * @buf_size: Size of the virtual buffer
81 * @cd: pointer to command details structure or NULL
83 * This function is used to return per PF station MAC address (0x0107).
84 * NOTE: Upon successful completion of this command, MAC address information
85 * is returned in user specified buffer. Please interpret user specified
86 * buffer as "manage_mac_read" response.
87 * Response such as various MAC addresses are stored in HW struct (port.mac)
88 * ice_discover_dev_caps is expected to be called before this function is
91 static enum ice_status
92 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
95 struct ice_aqc_manage_mac_read_resp *resp;
96 struct ice_aqc_manage_mac_read *cmd;
97 struct ice_aq_desc desc;
98 enum ice_status status;
102 cmd = &desc.params.mac_read;
104 if (buf_size < sizeof(*resp))
105 return ICE_ERR_BUF_TOO_SHORT;
107 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
109 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
114 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
116 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
117 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
121 /* A single port can report up to two (LAN and WoL) addresses */
122 for (i = 0; i < cmd->num_addr; i++)
123 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
124 ether_addr_copy(hw->port_info->mac.lan_addr,
126 ether_addr_copy(hw->port_info->mac.perm_addr,
135 * ice_aq_get_phy_caps - returns PHY capabilities
136 * @pi: port information structure
137 * @qual_mods: report qualified modules
138 * @report_mode: report mode capabilities
139 * @pcaps: structure for PHY capabilities to be filled
140 * @cd: pointer to command details structure or NULL
142 * Returns the various PHY capabilities supported on the Port (0x0600)
145 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
146 struct ice_aqc_get_phy_caps_data *pcaps,
147 struct ice_sq_cd *cd)
149 struct ice_aqc_get_phy_caps *cmd;
150 u16 pcaps_size = sizeof(*pcaps);
151 struct ice_aq_desc desc;
152 enum ice_status status;
155 cmd = &desc.params.get_phy;
157 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 return ICE_ERR_PARAM;
161 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
164 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
166 cmd->param0 |= cpu_to_le16(report_mode);
167 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
169 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
171 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
172 (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
173 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
174 (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
175 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
176 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
177 pcaps->low_power_ctrl_an);
178 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
179 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
181 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
182 pcaps->link_fec_options);
183 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
184 pcaps->module_compliance_enforcement);
185 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
186 pcaps->extended_compliance_code);
187 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
188 pcaps->module_type[0]);
189 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
190 pcaps->module_type[1]);
191 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
192 pcaps->module_type[2]);
194 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
195 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
196 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
197 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
198 sizeof(pi->phy.link_info.module_type));
205 * ice_aq_get_link_topo_handle - get link topology node return status
206 * @pi: port information structure
207 * @node_type: requested node type
208 * @cd: pointer to command details structure or NULL
210 * Get link topology node return status for specified node type (0x06E0)
212 * Node type cage can be used to determine if cage is present. If AQC
213 * returns error (ENOENT), then no cage present. If no cage present, then
214 * connection type is backplane or BASE-T.
216 static enum ice_status
217 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
218 struct ice_sq_cd *cd)
220 struct ice_aqc_get_link_topo *cmd;
221 struct ice_aq_desc desc;
223 cmd = &desc.params.get_link_topo;
225 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
227 cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
228 ICE_AQC_LINK_TOPO_NODE_CTX_S);
231 cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
233 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
237 * ice_is_media_cage_present
238 * @pi: port information structure
240 * Returns true if media cage is present, else false. If no cage, then
241 * media type is backplane or BASE-T.
243 static bool ice_is_media_cage_present(struct ice_port_info *pi)
245 /* Node type cage can be used to determine if cage is present. If AQC
246 * returns error (ENOENT), then no cage present. If no cage present then
247 * connection type is backplane or BASE-T.
249 return !ice_aq_get_link_topo_handle(pi,
250 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
255 * ice_get_media_type - Gets media type
256 * @pi: port information structure
258 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
260 struct ice_link_status *hw_link_info;
263 return ICE_MEDIA_UNKNOWN;
265 hw_link_info = &pi->phy.link_info;
266 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
267 /* If more than one media type is selected, report unknown */
268 return ICE_MEDIA_UNKNOWN;
270 if (hw_link_info->phy_type_low) {
271 /* 1G SGMII is a special case where some DA cable PHYs
272 * may show this as an option when it really shouldn't
273 * be since SGMII is meant to be between a MAC and a PHY
274 * in a backplane. Try to detect this case and handle it
276 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
277 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
278 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
279 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
280 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
283 switch (hw_link_info->phy_type_low) {
284 case ICE_PHY_TYPE_LOW_1000BASE_SX:
285 case ICE_PHY_TYPE_LOW_1000BASE_LX:
286 case ICE_PHY_TYPE_LOW_10GBASE_SR:
287 case ICE_PHY_TYPE_LOW_10GBASE_LR:
288 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
289 case ICE_PHY_TYPE_LOW_25GBASE_SR:
290 case ICE_PHY_TYPE_LOW_25GBASE_LR:
291 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
292 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
293 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
294 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
295 case ICE_PHY_TYPE_LOW_50GBASE_SR:
296 case ICE_PHY_TYPE_LOW_50GBASE_FR:
297 case ICE_PHY_TYPE_LOW_50GBASE_LR:
298 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
299 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
300 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
301 case ICE_PHY_TYPE_LOW_100GBASE_DR:
302 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
303 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
304 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
305 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
306 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
307 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
308 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
309 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
310 return ICE_MEDIA_FIBER;
311 case ICE_PHY_TYPE_LOW_100BASE_TX:
312 case ICE_PHY_TYPE_LOW_1000BASE_T:
313 case ICE_PHY_TYPE_LOW_2500BASE_T:
314 case ICE_PHY_TYPE_LOW_5GBASE_T:
315 case ICE_PHY_TYPE_LOW_10GBASE_T:
316 case ICE_PHY_TYPE_LOW_25GBASE_T:
317 return ICE_MEDIA_BASET;
318 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
319 case ICE_PHY_TYPE_LOW_25GBASE_CR:
320 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
321 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
322 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
323 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
324 case ICE_PHY_TYPE_LOW_50GBASE_CP:
325 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
326 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
327 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
329 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
330 case ICE_PHY_TYPE_LOW_40G_XLAUI:
331 case ICE_PHY_TYPE_LOW_50G_LAUI2:
332 case ICE_PHY_TYPE_LOW_50G_AUI2:
333 case ICE_PHY_TYPE_LOW_50G_AUI1:
334 case ICE_PHY_TYPE_LOW_100G_AUI4:
335 case ICE_PHY_TYPE_LOW_100G_CAUI4:
336 if (ice_is_media_cage_present(pi))
339 case ICE_PHY_TYPE_LOW_1000BASE_KX:
340 case ICE_PHY_TYPE_LOW_2500BASE_KX:
341 case ICE_PHY_TYPE_LOW_2500BASE_X:
342 case ICE_PHY_TYPE_LOW_5GBASE_KR:
343 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
344 case ICE_PHY_TYPE_LOW_25GBASE_KR:
345 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
346 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
347 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
348 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
349 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
350 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
351 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
352 return ICE_MEDIA_BACKPLANE;
355 switch (hw_link_info->phy_type_high) {
356 case ICE_PHY_TYPE_HIGH_100G_AUI2:
357 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
358 if (ice_is_media_cage_present(pi))
361 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
362 return ICE_MEDIA_BACKPLANE;
363 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
364 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
365 return ICE_MEDIA_FIBER;
368 return ICE_MEDIA_UNKNOWN;
372 * ice_aq_get_link_info
373 * @pi: port information structure
374 * @ena_lse: enable/disable LinkStatusEvent reporting
375 * @link: pointer to link status structure - optional
376 * @cd: pointer to command details structure or NULL
378 * Get Link Status (0x607). Returns the link status of the adapter.
381 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
382 struct ice_link_status *link, struct ice_sq_cd *cd)
384 struct ice_aqc_get_link_status_data link_data = { 0 };
385 struct ice_aqc_get_link_status *resp;
386 struct ice_link_status *li_old, *li;
387 enum ice_media_type *hw_media_type;
388 struct ice_fc_info *hw_fc_info;
389 bool tx_pause, rx_pause;
390 struct ice_aq_desc desc;
391 enum ice_status status;
396 return ICE_ERR_PARAM;
398 li_old = &pi->phy.link_info_old;
399 hw_media_type = &pi->phy.media_type;
400 li = &pi->phy.link_info;
401 hw_fc_info = &pi->fc;
403 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
404 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
405 resp = &desc.params.get_link_status;
406 resp->cmd_flags = cpu_to_le16(cmd_flags);
407 resp->lport_num = pi->lport;
409 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
414 /* save off old link status information */
417 /* update current link status information */
418 li->link_speed = le16_to_cpu(link_data.link_speed);
419 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
420 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
421 *hw_media_type = ice_get_media_type(pi);
422 li->link_info = link_data.link_info;
423 li->an_info = link_data.an_info;
424 li->ext_info = link_data.ext_info;
425 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
426 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
427 li->topo_media_conflict = link_data.topo_media_conflict;
428 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
429 ICE_AQ_CFG_PACING_TYPE_M);
432 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
433 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
434 if (tx_pause && rx_pause)
435 hw_fc_info->current_mode = ICE_FC_FULL;
437 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
439 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
441 hw_fc_info->current_mode = ICE_FC_NONE;
443 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
445 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
446 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
447 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
448 (unsigned long long)li->phy_type_low);
449 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
450 (unsigned long long)li->phy_type_high);
451 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
452 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
453 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
454 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
455 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
456 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
457 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
459 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
461 /* save link status information */
465 /* flag cleared so calling functions don't call AQ again */
466 pi->phy.get_link_info = false;
472 * ice_fill_tx_timer_and_fc_thresh
473 * @hw: pointer to the HW struct
474 * @cmd: pointer to MAC cfg structure
476 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
480 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
481 struct ice_aqc_set_mac_cfg *cmd)
483 u16 fc_thres_val, tx_timer_val;
486 /* We read back the transmit timer and FC threshold value of
487 * LFC. Thus, we will use index =
488 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
490 * Also, because we are operating on transmit timer and FC
491 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
493 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
495 /* Retrieve the transmit timer */
496 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
498 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
499 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
501 /* Retrieve the FC threshold */
502 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
503 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
505 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
510 * @hw: pointer to the HW struct
511 * @max_frame_size: Maximum Frame Size to be supported
512 * @cd: pointer to command details structure or NULL
514 * Set MAC configuration (0x0603)
517 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
519 struct ice_aqc_set_mac_cfg *cmd;
520 struct ice_aq_desc desc;
522 cmd = &desc.params.set_mac_cfg;
524 if (max_frame_size == 0)
525 return ICE_ERR_PARAM;
527 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
529 cmd->max_frame_size = cpu_to_le16(max_frame_size);
531 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
533 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
537 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
538 * @hw: pointer to the HW struct
540 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
542 struct ice_switch_info *sw;
543 enum ice_status status;
545 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
546 sizeof(*hw->switch_info), GFP_KERNEL);
547 sw = hw->switch_info;
550 return ICE_ERR_NO_MEMORY;
552 INIT_LIST_HEAD(&sw->vsi_list_map_head);
554 status = ice_init_def_sw_recp(hw);
556 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
563 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
564 * @hw: pointer to the HW struct
566 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
568 struct ice_switch_info *sw = hw->switch_info;
569 struct ice_vsi_list_map_info *v_pos_map;
570 struct ice_vsi_list_map_info *v_tmp_map;
571 struct ice_sw_recipe *recps;
574 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
576 list_del(&v_pos_map->list_entry);
577 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
579 recps = hw->switch_info->recp_list;
580 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
581 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
583 recps[i].root_rid = i;
584 mutex_destroy(&recps[i].filt_rule_lock);
585 list_for_each_entry_safe(lst_itr, tmp_entry,
586 &recps[i].filt_rules, list_entry) {
587 list_del(&lst_itr->list_entry);
588 devm_kfree(ice_hw_to_dev(hw), lst_itr);
591 ice_rm_all_sw_replay_rule_info(hw);
592 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
593 devm_kfree(ice_hw_to_dev(hw), sw);
597 * ice_get_fw_log_cfg - get FW logging configuration
598 * @hw: pointer to the HW struct
600 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
602 struct ice_aq_desc desc;
603 enum ice_status status;
607 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
608 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
610 return ICE_ERR_NO_MEMORY;
612 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
614 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
618 /* Save FW logging information into the HW structure */
619 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
622 v = le16_to_cpu(config[i]);
623 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
624 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
626 if (m < ICE_AQC_FW_LOG_ID_MAX)
627 hw->fw_log.evnts[m].cur = flgs;
631 devm_kfree(ice_hw_to_dev(hw), config);
637 * ice_cfg_fw_log - configure FW logging
638 * @hw: pointer to the HW struct
639 * @enable: enable certain FW logging events if true, disable all if false
641 * This function enables/disables the FW logging via Rx CQ events and a UART
642 * port based on predetermined configurations. FW logging via the Rx CQ can be
643 * enabled/disabled for individual PF's. However, FW logging via the UART can
644 * only be enabled/disabled for all PFs on the same device.
646 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
647 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
648 * before initializing the device.
650 * When re/configuring FW logging, callers need to update the "cfg" elements of
651 * the hw->fw_log.evnts array with the desired logging event configurations for
652 * modules of interest. When disabling FW logging completely, the callers can
653 * just pass false in the "enable" parameter. On completion, the function will
654 * update the "cur" element of the hw->fw_log.evnts array with the resulting
655 * logging event configurations of the modules that are being re/configured. FW
656 * logging modules that are not part of a reconfiguration operation retain their
659 * Before resetting the device, it is recommended that the driver disables FW
660 * logging before shutting down the control queue. When disabling FW logging
661 * ("enable" = false), the latest configurations of FW logging events stored in
662 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
665 * When enabling FW logging to emit log messages via the Rx CQ during the
666 * device's initialization phase, a mechanism alternative to interrupt handlers
667 * needs to be used to extract FW log messages from the Rx CQ periodically and
668 * to prevent the Rx CQ from being full and stalling other types of control
669 * messages from FW to SW. Interrupts are typically disabled during the device's
670 * initialization phase.
672 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
674 struct ice_aqc_fw_logging *cmd;
675 enum ice_status status = 0;
676 u16 i, chgs = 0, len = 0;
677 struct ice_aq_desc desc;
682 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
685 /* Disable FW logging only when the control queue is still responsive */
687 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
690 /* Get current FW log settings */
691 status = ice_get_fw_log_cfg(hw);
695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
696 cmd = &desc.params.fw_logging;
698 /* Indicate which controls are valid */
699 if (hw->fw_log.cq_en)
700 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
702 if (hw->fw_log.uart_en)
703 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
706 /* Fill in an array of entries with FW logging modules and
707 * logging events being reconfigured.
709 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
712 /* Keep track of enabled event types */
713 actv_evnts |= hw->fw_log.evnts[i].cfg;
715 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
719 data = devm_kcalloc(ice_hw_to_dev(hw),
721 ICE_AQC_FW_LOG_ID_MAX,
724 return ICE_ERR_NO_MEMORY;
727 val = i << ICE_AQC_FW_LOG_ID_S;
728 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
729 data[chgs++] = cpu_to_le16(val);
732 /* Only enable FW logging if at least one module is specified.
733 * If FW logging is currently enabled but all modules are not
734 * enabled to emit log messages, disable FW logging altogether.
737 /* Leave if there is effectively no change */
741 if (hw->fw_log.cq_en)
742 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
744 if (hw->fw_log.uart_en)
745 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
748 len = sizeof(*data) * chgs;
749 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
753 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
755 /* Update the current configuration to reflect events enabled.
756 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
757 * logging mode is enabled for the device. They do not reflect
758 * actual modules being enabled to emit log messages. So, their
759 * values remain unchanged even when all modules are disabled.
761 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
763 hw->fw_log.actv_evnts = actv_evnts;
764 for (i = 0; i < cnt; i++) {
768 /* When disabling all FW logging events as part
769 * of device's de-initialization, the original
770 * configurations are retained, and can be used
771 * to reconfigure FW logging later if the device
774 hw->fw_log.evnts[i].cur = 0;
778 v = le16_to_cpu(data[i]);
779 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
780 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
786 devm_kfree(ice_hw_to_dev(hw), data);
793 * @hw: pointer to the HW struct
794 * @desc: pointer to the AQ message descriptor
795 * @buf: pointer to the buffer accompanying the AQ message
797 * Formats a FW Log message and outputs it via the standard driver logs.
799 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
801 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
802 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
803 le16_to_cpu(desc->datalen));
804 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
808 * ice_get_itr_intrl_gran
809 * @hw: pointer to the HW struct
811 * Determines the ITR/INTRL granularities based on the maximum aggregate
812 * bandwidth according to the device's configuration during power-on.
814 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
816 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
817 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
818 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
820 switch (max_agg_bw) {
821 case ICE_MAX_AGG_BW_200G:
822 case ICE_MAX_AGG_BW_100G:
823 case ICE_MAX_AGG_BW_50G:
824 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
825 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
827 case ICE_MAX_AGG_BW_25G:
828 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
829 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
835 * ice_init_hw - main hardware initialization routine
836 * @hw: pointer to the hardware structure
838 enum ice_status ice_init_hw(struct ice_hw *hw)
840 struct ice_aqc_get_phy_caps_data *pcaps;
841 enum ice_status status;
845 /* Set MAC type based on DeviceID */
846 status = ice_set_mac_type(hw);
850 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
851 PF_FUNC_RID_FUNC_NUM_M) >>
852 PF_FUNC_RID_FUNC_NUM_S;
854 status = ice_reset(hw, ICE_RESET_PFR);
858 ice_get_itr_intrl_gran(hw);
860 status = ice_create_all_ctrlq(hw);
862 goto err_unroll_cqinit;
864 /* Enable FW logging. Not fatal if this fails. */
865 status = ice_cfg_fw_log(hw, true);
867 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
869 status = ice_clear_pf_cfg(hw);
871 goto err_unroll_cqinit;
873 /* Set bit to enable Flow Director filters */
874 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
875 INIT_LIST_HEAD(&hw->fdir_list_head);
877 ice_clear_pxe_mode(hw);
879 status = ice_init_nvm(hw);
881 goto err_unroll_cqinit;
883 status = ice_get_caps(hw);
885 goto err_unroll_cqinit;
887 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
888 sizeof(*hw->port_info), GFP_KERNEL);
889 if (!hw->port_info) {
890 status = ICE_ERR_NO_MEMORY;
891 goto err_unroll_cqinit;
894 /* set the back pointer to HW */
895 hw->port_info->hw = hw;
897 /* Initialize port_info struct with switch configuration data */
898 status = ice_get_initial_sw_cfg(hw);
900 goto err_unroll_alloc;
904 /* Query the allocated resources for Tx scheduler */
905 status = ice_sched_query_res_alloc(hw);
907 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
908 goto err_unroll_alloc;
911 /* Initialize port_info struct with scheduler data */
912 status = ice_sched_init_port(hw->port_info);
914 goto err_unroll_sched;
916 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
918 status = ICE_ERR_NO_MEMORY;
919 goto err_unroll_sched;
922 /* Initialize port_info struct with PHY capabilities */
923 status = ice_aq_get_phy_caps(hw->port_info, false,
924 ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
925 devm_kfree(ice_hw_to_dev(hw), pcaps);
927 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
930 /* Initialize port_info struct with link information */
931 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
933 goto err_unroll_sched;
935 /* need a valid SW entry point to build a Tx tree */
936 if (!hw->sw_entry_point_layer) {
937 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
938 status = ICE_ERR_CFG;
939 goto err_unroll_sched;
941 INIT_LIST_HEAD(&hw->agg_list);
942 /* Initialize max burst size */
943 if (!hw->max_burst_size)
944 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
946 status = ice_init_fltr_mgmt_struct(hw);
948 goto err_unroll_sched;
950 /* Get MAC information */
951 /* A single port can report up to two (LAN and WoL) addresses */
952 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
953 sizeof(struct ice_aqc_manage_mac_read_resp),
955 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
958 status = ICE_ERR_NO_MEMORY;
959 goto err_unroll_fltr_mgmt_struct;
962 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
963 devm_kfree(ice_hw_to_dev(hw), mac_buf);
966 goto err_unroll_fltr_mgmt_struct;
967 /* enable jumbo frame support at MAC level */
968 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
970 goto err_unroll_fltr_mgmt_struct;
971 /* Obtain counter base index which would be used by flow director */
972 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
974 goto err_unroll_fltr_mgmt_struct;
975 status = ice_init_hw_tbls(hw);
977 goto err_unroll_fltr_mgmt_struct;
978 mutex_init(&hw->tnl_lock);
981 err_unroll_fltr_mgmt_struct:
982 ice_cleanup_fltr_mgmt_struct(hw);
984 ice_sched_cleanup_all(hw);
986 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
988 ice_destroy_all_ctrlq(hw);
993 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
994 * @hw: pointer to the hardware structure
996 * This should be called only during nominal operation, not as a result of
997 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
998 * applicable initializations if it fails for any reason.
1000 void ice_deinit_hw(struct ice_hw *hw)
1002 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1003 ice_cleanup_fltr_mgmt_struct(hw);
1005 ice_sched_cleanup_all(hw);
1006 ice_sched_clear_agg(hw);
1008 ice_free_hw_tbls(hw);
1009 mutex_destroy(&hw->tnl_lock);
1011 if (hw->port_info) {
1012 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1013 hw->port_info = NULL;
1016 /* Attempt to disable FW logging before shutting down control queues */
1017 ice_cfg_fw_log(hw, false);
1018 ice_destroy_all_ctrlq(hw);
1020 /* Clear VSI contexts if not already cleared */
1021 ice_clear_all_vsi_ctx(hw);
1025 * ice_check_reset - Check to see if a global reset is complete
1026 * @hw: pointer to the hardware structure
1028 enum ice_status ice_check_reset(struct ice_hw *hw)
1030 u32 cnt, reg = 0, grst_timeout, uld_mask;
1032 /* Poll for Device Active state in case a recent CORER, GLOBR,
1033 * or EMPR has occurred. The grst delay value is in 100ms units.
1034 * Add 1sec for outstanding AQ commands that can take a long time.
1036 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1037 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1039 for (cnt = 0; cnt < grst_timeout; cnt++) {
1041 reg = rd32(hw, GLGEN_RSTAT);
1042 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1046 if (cnt == grst_timeout) {
1047 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1048 return ICE_ERR_RESET_FAILED;
1051 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1052 GLNVM_ULD_PCIER_DONE_1_M |\
1053 GLNVM_ULD_CORER_DONE_M |\
1054 GLNVM_ULD_GLOBR_DONE_M |\
1055 GLNVM_ULD_POR_DONE_M |\
1056 GLNVM_ULD_POR_DONE_1_M |\
1057 GLNVM_ULD_PCIER_DONE_2_M)
1059 uld_mask = ICE_RESET_DONE_MASK;
1061 /* Device is Active; check Global Reset processes are done */
1062 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1063 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1064 if (reg == uld_mask) {
1065 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1071 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1072 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1074 return ICE_ERR_RESET_FAILED;
1081 * ice_pf_reset - Reset the PF
1082 * @hw: pointer to the hardware structure
1084 * If a global reset has been triggered, this function checks
1085 * for its completion and then issues the PF reset
1087 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1091 /* If at function entry a global reset was already in progress, i.e.
1092 * state is not 'device active' or any of the reset done bits are not
1093 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1094 * global reset is done.
1096 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1097 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1098 /* poll on global reset currently in progress until done */
1099 if (ice_check_reset(hw))
1100 return ICE_ERR_RESET_FAILED;
1106 reg = rd32(hw, PFGEN_CTRL);
1108 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1110 /* Wait for the PFR to complete. The wait time is the global config lock
1111 * timeout plus the PFR timeout which will account for a possible reset
1112 * that is occurring during a download package operation.
1114 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1115 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1116 reg = rd32(hw, PFGEN_CTRL);
1117 if (!(reg & PFGEN_CTRL_PFSWR_M))
1123 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1124 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1125 return ICE_ERR_RESET_FAILED;
1132 * ice_reset - Perform different types of reset
1133 * @hw: pointer to the hardware structure
1134 * @req: reset request
1136 * This function triggers a reset as specified by the req parameter.
1139 * If anything other than a PF reset is triggered, PXE mode is restored.
1140 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1141 * interface has been restored in the rebuild flow.
1143 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1149 return ice_pf_reset(hw);
1150 case ICE_RESET_CORER:
1151 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1152 val = GLGEN_RTRIG_CORER_M;
1154 case ICE_RESET_GLOBR:
1155 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1156 val = GLGEN_RTRIG_GLOBR_M;
1159 return ICE_ERR_PARAM;
1162 val |= rd32(hw, GLGEN_RTRIG);
1163 wr32(hw, GLGEN_RTRIG, val);
1166 /* wait for the FW to be ready */
1167 return ice_check_reset(hw);
1171 * ice_copy_rxq_ctx_to_hw
1172 * @hw: pointer to the hardware structure
1173 * @ice_rxq_ctx: pointer to the rxq context
1174 * @rxq_index: the index of the Rx queue
1176 * Copies rxq context from dense structure to HW register space
1178 static enum ice_status
1179 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1184 return ICE_ERR_BAD_PTR;
1186 if (rxq_index > QRX_CTRL_MAX_INDEX)
1187 return ICE_ERR_PARAM;
1189 /* Copy each dword separately to HW */
1190 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1191 wr32(hw, QRX_CONTEXT(i, rxq_index),
1192 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1194 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1195 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1201 /* LAN Rx Queue Context */
1202 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1203 /* Field Width LSB */
1204 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1205 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1206 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1207 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1208 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1209 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1210 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1211 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1212 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1213 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1214 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1215 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1216 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1217 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1218 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1219 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1220 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1221 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1222 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1223 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1229 * @hw: pointer to the hardware structure
1230 * @rlan_ctx: pointer to the rxq context
1231 * @rxq_index: the index of the Rx queue
1233 * Converts rxq context from sparse to dense structure and then writes
1234 * it to HW register space and enables the hardware to prefetch descriptors
1235 * instead of only fetching them on demand
1238 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1241 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1244 return ICE_ERR_BAD_PTR;
1246 rlan_ctx->prefena = 1;
1248 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1249 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1252 /* LAN Tx Queue Context */
1253 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1254 /* Field Width LSB */
1255 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1256 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1257 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1258 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1259 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1260 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1261 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1262 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1263 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1264 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1265 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1266 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1267 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1268 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1269 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1270 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1271 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1272 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1273 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1274 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1275 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1276 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1277 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1278 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1279 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1280 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1281 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1282 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1286 /* FW Admin Queue command wrappers */
1288 /* Software lock/mutex that is meant to be held while the Global Config Lock
1289 * in firmware is acquired by the software to prevent most (but not all) types
1290 * of AQ commands from being sent to FW
1292 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1295 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1296 * @hw: pointer to the HW struct
1297 * @desc: descriptor describing the command
1298 * @buf: buffer to use for indirect commands (NULL for direct commands)
1299 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1300 * @cd: pointer to command details structure
1302 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1305 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1306 u16 buf_size, struct ice_sq_cd *cd)
1308 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1309 bool lock_acquired = false;
1310 enum ice_status status;
1312 /* When a package download is in process (i.e. when the firmware's
1313 * Global Configuration Lock resource is held), only the Download
1314 * Package, Get Version, Get Package Info List and Release Resource
1315 * (with resource ID set to Global Config Lock) AdminQ commands are
1316 * allowed; all others must block until the package download completes
1317 * and the Global Config Lock is released. See also
1318 * ice_acquire_global_cfg_lock().
1320 switch (le16_to_cpu(desc->opcode)) {
1321 case ice_aqc_opc_download_pkg:
1322 case ice_aqc_opc_get_pkg_info_list:
1323 case ice_aqc_opc_get_ver:
1325 case ice_aqc_opc_release_res:
1326 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1330 mutex_lock(&ice_global_cfg_lock_sw);
1331 lock_acquired = true;
1335 status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1337 mutex_unlock(&ice_global_cfg_lock_sw);
1344 * @hw: pointer to the HW struct
1345 * @cd: pointer to command details structure or NULL
1347 * Get the firmware version (0x0001) from the admin queue commands
1349 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1351 struct ice_aqc_get_ver *resp;
1352 struct ice_aq_desc desc;
1353 enum ice_status status;
1355 resp = &desc.params.get_ver;
1357 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1359 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1362 hw->fw_branch = resp->fw_branch;
1363 hw->fw_maj_ver = resp->fw_major;
1364 hw->fw_min_ver = resp->fw_minor;
1365 hw->fw_patch = resp->fw_patch;
1366 hw->fw_build = le32_to_cpu(resp->fw_build);
1367 hw->api_branch = resp->api_branch;
1368 hw->api_maj_ver = resp->api_major;
1369 hw->api_min_ver = resp->api_minor;
1370 hw->api_patch = resp->api_patch;
1377 * ice_aq_send_driver_ver
1378 * @hw: pointer to the HW struct
1379 * @dv: driver's major, minor version
1380 * @cd: pointer to command details structure or NULL
1382 * Send the driver version (0x0002) to the firmware
1385 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1386 struct ice_sq_cd *cd)
1388 struct ice_aqc_driver_ver *cmd;
1389 struct ice_aq_desc desc;
1392 cmd = &desc.params.driver_ver;
1395 return ICE_ERR_PARAM;
1397 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1399 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1400 cmd->major_ver = dv->major_ver;
1401 cmd->minor_ver = dv->minor_ver;
1402 cmd->build_ver = dv->build_ver;
1403 cmd->subbuild_ver = dv->subbuild_ver;
1406 while (len < sizeof(dv->driver_string) &&
1407 isascii(dv->driver_string[len]) && dv->driver_string[len])
1410 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1415 * @hw: pointer to the HW struct
1416 * @unloading: is the driver unloading itself
1418 * Tell the Firmware that we're shutting down the AdminQ and whether
1419 * or not the driver is unloading as well (0x0003).
1421 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1423 struct ice_aqc_q_shutdown *cmd;
1424 struct ice_aq_desc desc;
1426 cmd = &desc.params.q_shutdown;
1428 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1431 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1433 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1438 * @hw: pointer to the HW struct
1440 * @access: access type
1441 * @sdp_number: resource number
1442 * @timeout: the maximum time in ms that the driver may hold the resource
1443 * @cd: pointer to command details structure or NULL
1445 * Requests common resource using the admin queue commands (0x0008).
1446 * When attempting to acquire the Global Config Lock, the driver can
1447 * learn of three states:
1448 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1449 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1450 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1451 * successfully downloaded the package; the driver does
1452 * not have to download the package and can continue
1455 * Note that if the caller is in an acquire lock, perform action, release lock
1456 * phase of operation, it is possible that the FW may detect a timeout and issue
1457 * a CORER. In this case, the driver will receive a CORER interrupt and will
1458 * have to determine its cause. The calling thread that is handling this flow
1459 * will likely get an error propagated back to it indicating the Download
1460 * Package, Update Package or the Release Resource AQ commands timed out.
1462 static enum ice_status
1463 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1464 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1465 struct ice_sq_cd *cd)
1467 struct ice_aqc_req_res *cmd_resp;
1468 struct ice_aq_desc desc;
1469 enum ice_status status;
1471 cmd_resp = &desc.params.res_owner;
1473 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1475 cmd_resp->res_id = cpu_to_le16(res);
1476 cmd_resp->access_type = cpu_to_le16(access);
1477 cmd_resp->res_number = cpu_to_le32(sdp_number);
1478 cmd_resp->timeout = cpu_to_le32(*timeout);
1481 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1483 /* The completion specifies the maximum time in ms that the driver
1484 * may hold the resource in the Timeout field.
1487 /* Global config lock response utilizes an additional status field.
1489 * If the Global config lock resource is held by some other driver, the
1490 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1491 * and the timeout field indicates the maximum time the current owner
1492 * of the resource has to free it.
1494 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1495 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1496 *timeout = le32_to_cpu(cmd_resp->timeout);
1498 } else if (le16_to_cpu(cmd_resp->status) ==
1499 ICE_AQ_RES_GLBL_IN_PROG) {
1500 *timeout = le32_to_cpu(cmd_resp->timeout);
1501 return ICE_ERR_AQ_ERROR;
1502 } else if (le16_to_cpu(cmd_resp->status) ==
1503 ICE_AQ_RES_GLBL_DONE) {
1504 return ICE_ERR_AQ_NO_WORK;
1507 /* invalid FW response, force a timeout immediately */
1509 return ICE_ERR_AQ_ERROR;
1512 /* If the resource is held by some other driver, the command completes
1513 * with a busy return value and the timeout field indicates the maximum
1514 * time the current owner of the resource has to free it.
1516 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1517 *timeout = le32_to_cpu(cmd_resp->timeout);
1523 * ice_aq_release_res
1524 * @hw: pointer to the HW struct
1526 * @sdp_number: resource number
1527 * @cd: pointer to command details structure or NULL
1529 * release common resource using the admin queue commands (0x0009)
1531 static enum ice_status
1532 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1533 struct ice_sq_cd *cd)
1535 struct ice_aqc_req_res *cmd;
1536 struct ice_aq_desc desc;
1538 cmd = &desc.params.res_owner;
1540 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1542 cmd->res_id = cpu_to_le16(res);
1543 cmd->res_number = cpu_to_le32(sdp_number);
1545 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1550 * @hw: pointer to the HW structure
1552 * @access: access type (read or write)
1553 * @timeout: timeout in milliseconds
1555 * This function will attempt to acquire the ownership of a resource.
1558 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1559 enum ice_aq_res_access_type access, u32 timeout)
1561 #define ICE_RES_POLLING_DELAY_MS 10
1562 u32 delay = ICE_RES_POLLING_DELAY_MS;
1563 u32 time_left = timeout;
1564 enum ice_status status;
1566 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1568 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1569 * previously acquired the resource and performed any necessary updates;
1570 * in this case the caller does not obtain the resource and has no
1571 * further work to do.
1573 if (status == ICE_ERR_AQ_NO_WORK)
1574 goto ice_acquire_res_exit;
1577 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1579 /* If necessary, poll until the current lock owner timeouts */
1580 timeout = time_left;
1581 while (status && timeout && time_left) {
1583 timeout = (timeout > delay) ? timeout - delay : 0;
1584 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1586 if (status == ICE_ERR_AQ_NO_WORK)
1587 /* lock free, but no work to do */
1594 if (status && status != ICE_ERR_AQ_NO_WORK)
1595 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1597 ice_acquire_res_exit:
1598 if (status == ICE_ERR_AQ_NO_WORK) {
1599 if (access == ICE_RES_WRITE)
1600 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1602 ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1609 * @hw: pointer to the HW structure
1612 * This function will release a resource using the proper Admin Command.
1614 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1616 enum ice_status status;
1617 u32 total_delay = 0;
1619 status = ice_aq_release_res(hw, res, 0, NULL);
1621 /* there are some rare cases when trying to release the resource
1622 * results in an admin queue timeout, so handle them correctly
1624 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1625 (total_delay < hw->adminq.sq_cmd_timeout)) {
1627 status = ice_aq_release_res(hw, res, 0, NULL);
1633 * ice_aq_alloc_free_res - command to allocate/free resources
1634 * @hw: pointer to the HW struct
1635 * @num_entries: number of resource entries in buffer
1636 * @buf: Indirect buffer to hold data parameters and response
1637 * @buf_size: size of buffer for indirect commands
1638 * @opc: pass in the command opcode
1639 * @cd: pointer to command details structure or NULL
1641 * Helper function to allocate/free resources using the admin queue commands
1644 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1645 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1646 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1648 struct ice_aqc_alloc_free_res_cmd *cmd;
1649 struct ice_aq_desc desc;
1651 cmd = &desc.params.sw_res_ctrl;
1654 return ICE_ERR_PARAM;
1656 if (buf_size < (num_entries * sizeof(buf->elem[0])))
1657 return ICE_ERR_PARAM;
1659 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1661 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1663 cmd->num_entries = cpu_to_le16(num_entries);
1665 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1669 * ice_alloc_hw_res - allocate resource
1670 * @hw: pointer to the HW struct
1671 * @type: type of resource
1672 * @num: number of resources to allocate
1673 * @btm: allocate from bottom
1674 * @res: pointer to array that will receive the resources
1677 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1679 struct ice_aqc_alloc_free_res_elem *buf;
1680 enum ice_status status;
1683 buf_len = struct_size(buf, elem, num);
1684 buf = kzalloc(buf_len, GFP_KERNEL);
1686 return ICE_ERR_NO_MEMORY;
1688 /* Prepare buffer to allocate resource. */
1689 buf->num_elems = cpu_to_le16(num);
1690 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1691 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1693 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1695 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1696 ice_aqc_opc_alloc_res, NULL);
1698 goto ice_alloc_res_exit;
1700 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1708 * ice_free_hw_res - free allocated HW resource
1709 * @hw: pointer to the HW struct
1710 * @type: type of resource to free
1711 * @num: number of resources
1712 * @res: pointer to array that contains the resources to free
1714 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1716 struct ice_aqc_alloc_free_res_elem *buf;
1717 enum ice_status status;
1720 buf_len = struct_size(buf, elem, num);
1721 buf = kzalloc(buf_len, GFP_KERNEL);
1723 return ICE_ERR_NO_MEMORY;
1725 /* Prepare buffer to free resource. */
1726 buf->num_elems = cpu_to_le16(num);
1727 buf->res_type = cpu_to_le16(type);
1728 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1730 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1731 ice_aqc_opc_free_res, NULL);
1733 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1740 * ice_get_num_per_func - determine number of resources per PF
1741 * @hw: pointer to the HW structure
1742 * @max: value to be evenly split between each PF
1744 * Determine the number of valid functions by going through the bitmap returned
1745 * from parsing capabilities and use this to calculate the number of resources
1746 * per PF based on the max value passed in.
1748 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1752 #define ICE_CAPS_VALID_FUNCS_M 0xFF
1753 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1754 ICE_CAPS_VALID_FUNCS_M);
1763 * ice_parse_common_caps - parse common device/function capabilities
1764 * @hw: pointer to the HW struct
1765 * @caps: pointer to common capabilities structure
1766 * @elem: the capability element to parse
1767 * @prefix: message prefix for tracing capabilities
1769 * Given a capability element, extract relevant details into the common
1770 * capability structure.
1772 * Returns: true if the capability matches one of the common capability ids,
1776 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1777 struct ice_aqc_list_caps_elem *elem, const char *prefix)
1779 u32 logical_id = le32_to_cpu(elem->logical_id);
1780 u32 phys_id = le32_to_cpu(elem->phys_id);
1781 u32 number = le32_to_cpu(elem->number);
1782 u16 cap = le16_to_cpu(elem->cap);
1786 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1787 caps->valid_functions = number;
1788 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1789 caps->valid_functions);
1791 case ICE_AQC_CAPS_SRIOV:
1792 caps->sr_iov_1_1 = (number == 1);
1793 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1796 case ICE_AQC_CAPS_DCB:
1797 caps->dcb = (number == 1);
1798 caps->active_tc_bitmap = logical_id;
1799 caps->maxtc = phys_id;
1800 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1801 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1802 caps->active_tc_bitmap);
1803 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1805 case ICE_AQC_CAPS_RSS:
1806 caps->rss_table_size = number;
1807 caps->rss_table_entry_width = logical_id;
1808 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1809 caps->rss_table_size);
1810 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1811 caps->rss_table_entry_width);
1813 case ICE_AQC_CAPS_RXQS:
1814 caps->num_rxq = number;
1815 caps->rxq_first_id = phys_id;
1816 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1818 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1819 caps->rxq_first_id);
1821 case ICE_AQC_CAPS_TXQS:
1822 caps->num_txq = number;
1823 caps->txq_first_id = phys_id;
1824 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1826 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1827 caps->txq_first_id);
1829 case ICE_AQC_CAPS_MSIX:
1830 caps->num_msix_vectors = number;
1831 caps->msix_vector_first_id = phys_id;
1832 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1833 caps->num_msix_vectors);
1834 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1835 caps->msix_vector_first_id);
1837 case ICE_AQC_CAPS_PENDING_NVM_VER:
1838 caps->nvm_update_pending_nvm = true;
1839 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1841 case ICE_AQC_CAPS_PENDING_OROM_VER:
1842 caps->nvm_update_pending_orom = true;
1843 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
1845 case ICE_AQC_CAPS_PENDING_NET_VER:
1846 caps->nvm_update_pending_netlist = true;
1847 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
1849 case ICE_AQC_CAPS_NVM_MGMT:
1850 caps->nvm_unified_update =
1851 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1853 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1854 caps->nvm_unified_update);
1856 case ICE_AQC_CAPS_MAX_MTU:
1857 caps->max_mtu = number;
1858 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1859 prefix, caps->max_mtu);
1862 /* Not one of the recognized common capabilities */
1870 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1871 * @hw: pointer to the HW structure
1872 * @caps: pointer to capabilities structure to fix
1874 * Re-calculate the capabilities that are dependent on the number of physical
1875 * ports; i.e. some features are not supported or function differently on
1876 * devices with more than 4 ports.
1879 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1881 /* This assumes device capabilities are always scanned before function
1882 * capabilities during the initialization flow.
1884 if (hw->dev_caps.num_funcs > 4) {
1885 /* Max 4 TCs per port */
1887 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
1893 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1894 * @hw: pointer to the HW struct
1895 * @func_p: pointer to function capabilities structure
1896 * @cap: pointer to the capability element to parse
1898 * Extract function capabilities for ICE_AQC_CAPS_VF.
1901 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1902 struct ice_aqc_list_caps_elem *cap)
1904 u32 logical_id = le32_to_cpu(cap->logical_id);
1905 u32 number = le32_to_cpu(cap->number);
1907 func_p->num_allocd_vfs = number;
1908 func_p->vf_base_id = logical_id;
1909 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1910 func_p->num_allocd_vfs);
1911 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1912 func_p->vf_base_id);
1916 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
1917 * @hw: pointer to the HW struct
1918 * @func_p: pointer to function capabilities structure
1919 * @cap: pointer to the capability element to parse
1921 * Extract function capabilities for ICE_AQC_CAPS_VSI.
1924 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1925 struct ice_aqc_list_caps_elem *cap)
1927 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
1928 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
1929 le32_to_cpu(cap->number));
1930 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
1931 func_p->guar_num_vsi);
1935 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
1936 * @hw: pointer to the HW struct
1937 * @func_p: pointer to function capabilities structure
1939 * Extract function capabilities for ICE_AQC_CAPS_FD.
1942 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
1946 reg_val = rd32(hw, GLQF_FD_SIZE);
1947 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1948 GLQF_FD_SIZE_FD_GSIZE_S;
1949 func_p->fd_fltr_guar =
1950 ice_get_num_per_func(hw, val);
1951 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1952 GLQF_FD_SIZE_FD_BSIZE_S;
1953 func_p->fd_fltr_best_effort = val;
1955 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
1956 func_p->fd_fltr_guar);
1957 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
1958 func_p->fd_fltr_best_effort);
1962 * ice_parse_func_caps - Parse function capabilities
1963 * @hw: pointer to the HW struct
1964 * @func_p: pointer to function capabilities structure
1965 * @buf: buffer containing the function capability records
1966 * @cap_count: the number of capabilities
1968 * Helper function to parse function (0x000A) capabilities list. For
1969 * capabilities shared between device and function, this relies on
1970 * ice_parse_common_caps.
1972 * Loop through the list of provided capabilities and extract the relevant
1973 * data into the function capabilities structured.
1976 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1977 void *buf, u32 cap_count)
1979 struct ice_aqc_list_caps_elem *cap_resp;
1982 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1984 memset(func_p, 0, sizeof(*func_p));
1986 for (i = 0; i < cap_count; i++) {
1987 u16 cap = le16_to_cpu(cap_resp[i].cap);
1990 found = ice_parse_common_caps(hw, &func_p->common_cap,
1991 &cap_resp[i], "func caps");
1994 case ICE_AQC_CAPS_VF:
1995 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
1997 case ICE_AQC_CAPS_VSI:
1998 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2000 case ICE_AQC_CAPS_FD:
2001 ice_parse_fdir_func_caps(hw, func_p);
2004 /* Don't list common capabilities as unknown */
2006 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2012 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2016 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2017 * @hw: pointer to the HW struct
2018 * @dev_p: pointer to device capabilities structure
2019 * @cap: capability element to parse
2021 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2024 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2025 struct ice_aqc_list_caps_elem *cap)
2027 u32 number = le32_to_cpu(cap->number);
2029 dev_p->num_funcs = hweight32(number);
2030 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2035 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2036 * @hw: pointer to the HW struct
2037 * @dev_p: pointer to device capabilities structure
2038 * @cap: capability element to parse
2040 * Parse ICE_AQC_CAPS_VF for device capabilities.
2043 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2044 struct ice_aqc_list_caps_elem *cap)
2046 u32 number = le32_to_cpu(cap->number);
2048 dev_p->num_vfs_exposed = number;
2049 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2050 dev_p->num_vfs_exposed);
2054 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2055 * @hw: pointer to the HW struct
2056 * @dev_p: pointer to device capabilities structure
2057 * @cap: capability element to parse
2059 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2062 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2063 struct ice_aqc_list_caps_elem *cap)
2065 u32 number = le32_to_cpu(cap->number);
2067 dev_p->num_vsi_allocd_to_host = number;
2068 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2069 dev_p->num_vsi_allocd_to_host);
2073 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2074 * @hw: pointer to the HW struct
2075 * @dev_p: pointer to device capabilities structure
2076 * @cap: capability element to parse
2078 * Parse ICE_AQC_CAPS_FD for device capabilities.
2081 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2082 struct ice_aqc_list_caps_elem *cap)
2084 u32 number = le32_to_cpu(cap->number);
2086 dev_p->num_flow_director_fltr = number;
2087 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2088 dev_p->num_flow_director_fltr);
2092 * ice_parse_dev_caps - Parse device capabilities
2093 * @hw: pointer to the HW struct
2094 * @dev_p: pointer to device capabilities structure
2095 * @buf: buffer containing the device capability records
2096 * @cap_count: the number of capabilities
2098 * Helper device to parse device (0x000B) capabilities list. For
2099 * capabilities shared between device and function, this relies on
2100 * ice_parse_common_caps.
2102 * Loop through the list of provided capabilities and extract the relevant
2103 * data into the device capabilities structured.
2106 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2107 void *buf, u32 cap_count)
2109 struct ice_aqc_list_caps_elem *cap_resp;
2112 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2114 memset(dev_p, 0, sizeof(*dev_p));
2116 for (i = 0; i < cap_count; i++) {
2117 u16 cap = le16_to_cpu(cap_resp[i].cap);
2120 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2121 &cap_resp[i], "dev caps");
2124 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2125 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2127 case ICE_AQC_CAPS_VF:
2128 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2130 case ICE_AQC_CAPS_VSI:
2131 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2133 case ICE_AQC_CAPS_FD:
2134 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2137 /* Don't list common capabilities as unknown */
2139 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2145 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2149 * ice_aq_list_caps - query function/device capabilities
2150 * @hw: pointer to the HW struct
2151 * @buf: a buffer to hold the capabilities
2152 * @buf_size: size of the buffer
2153 * @cap_count: if not NULL, set to the number of capabilities reported
2154 * @opc: capabilities type to discover, device or function
2155 * @cd: pointer to command details structure or NULL
2157 * Get the function (0x000A) or device (0x000B) capabilities description from
2158 * firmware and store it in the buffer.
2160 * If the cap_count pointer is not NULL, then it is set to the number of
2161 * capabilities firmware will report. Note that if the buffer size is too
2162 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2163 * cap_count will still be updated in this case. It is recommended that the
2164 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2165 * firmware could return) to avoid this.
2168 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2169 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2171 struct ice_aqc_list_caps *cmd;
2172 struct ice_aq_desc desc;
2173 enum ice_status status;
2175 cmd = &desc.params.get_cap;
2177 if (opc != ice_aqc_opc_list_func_caps &&
2178 opc != ice_aqc_opc_list_dev_caps)
2179 return ICE_ERR_PARAM;
2181 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2182 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2185 *cap_count = le32_to_cpu(cmd->count);
2191 * ice_discover_dev_caps - Read and extract device capabilities
2192 * @hw: pointer to the hardware structure
2193 * @dev_caps: pointer to device capabilities structure
2195 * Read the device capabilities and extract them into the dev_caps structure
2199 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2201 enum ice_status status;
2205 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2207 return ICE_ERR_NO_MEMORY;
2209 /* Although the driver doesn't know the number of capabilities the
2210 * device will return, we can simply send a 4KB buffer, the maximum
2211 * possible size that firmware can return.
2213 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2215 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2216 ice_aqc_opc_list_dev_caps, NULL);
2218 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2225 * ice_discover_func_caps - Read and extract function capabilities
2226 * @hw: pointer to the hardware structure
2227 * @func_caps: pointer to function capabilities structure
2229 * Read the function capabilities and extract them into the func_caps structure
2232 static enum ice_status
2233 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2235 enum ice_status status;
2239 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2241 return ICE_ERR_NO_MEMORY;
2243 /* Although the driver doesn't know the number of capabilities the
2244 * device will return, we can simply send a 4KB buffer, the maximum
2245 * possible size that firmware can return.
2247 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2249 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2250 ice_aqc_opc_list_func_caps, NULL);
2252 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2259 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2260 * @hw: pointer to the hardware structure
2262 void ice_set_safe_mode_caps(struct ice_hw *hw)
2264 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2265 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2266 struct ice_hw_common_caps cached_caps;
2269 /* cache some func_caps values that should be restored after memset */
2270 cached_caps = func_caps->common_cap;
2272 /* unset func capabilities */
2273 memset(func_caps, 0, sizeof(*func_caps));
2275 #define ICE_RESTORE_FUNC_CAP(name) \
2276 func_caps->common_cap.name = cached_caps.name
2278 /* restore cached values */
2279 ICE_RESTORE_FUNC_CAP(valid_functions);
2280 ICE_RESTORE_FUNC_CAP(txq_first_id);
2281 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2282 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2283 ICE_RESTORE_FUNC_CAP(max_mtu);
2284 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2285 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2286 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2287 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2289 /* one Tx and one Rx queue in safe mode */
2290 func_caps->common_cap.num_rxq = 1;
2291 func_caps->common_cap.num_txq = 1;
2293 /* two MSIX vectors, one for traffic and one for misc causes */
2294 func_caps->common_cap.num_msix_vectors = 2;
2295 func_caps->guar_num_vsi = 1;
2297 /* cache some dev_caps values that should be restored after memset */
2298 cached_caps = dev_caps->common_cap;
2299 num_funcs = dev_caps->num_funcs;
2301 /* unset dev capabilities */
2302 memset(dev_caps, 0, sizeof(*dev_caps));
2304 #define ICE_RESTORE_DEV_CAP(name) \
2305 dev_caps->common_cap.name = cached_caps.name
2307 /* restore cached values */
2308 ICE_RESTORE_DEV_CAP(valid_functions);
2309 ICE_RESTORE_DEV_CAP(txq_first_id);
2310 ICE_RESTORE_DEV_CAP(rxq_first_id);
2311 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2312 ICE_RESTORE_DEV_CAP(max_mtu);
2313 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2314 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2315 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2316 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2317 dev_caps->num_funcs = num_funcs;
2319 /* one Tx and one Rx queue per function in safe mode */
2320 dev_caps->common_cap.num_rxq = num_funcs;
2321 dev_caps->common_cap.num_txq = num_funcs;
2323 /* two MSIX vectors per function */
2324 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2328 * ice_get_caps - get info about the HW
2329 * @hw: pointer to the hardware structure
2331 enum ice_status ice_get_caps(struct ice_hw *hw)
2333 enum ice_status status;
2335 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2339 return ice_discover_func_caps(hw, &hw->func_caps);
2343 * ice_aq_manage_mac_write - manage MAC address write command
2344 * @hw: pointer to the HW struct
2345 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2346 * @flags: flags to control write behavior
2347 * @cd: pointer to command details structure or NULL
2349 * This function is used to write MAC address to the NVM (0x0108).
2352 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2353 struct ice_sq_cd *cd)
2355 struct ice_aqc_manage_mac_write *cmd;
2356 struct ice_aq_desc desc;
2358 cmd = &desc.params.mac_write;
2359 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2362 ether_addr_copy(cmd->mac_addr, mac_addr);
2364 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2368 * ice_aq_clear_pxe_mode
2369 * @hw: pointer to the HW struct
2371 * Tell the firmware that the driver is taking over from PXE (0x0110).
2373 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2375 struct ice_aq_desc desc;
2377 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2378 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2380 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2384 * ice_clear_pxe_mode - clear pxe operations mode
2385 * @hw: pointer to the HW struct
2387 * Make sure all PXE mode settings are cleared, including things
2388 * like descriptor fetch/write-back mode.
2390 void ice_clear_pxe_mode(struct ice_hw *hw)
2392 if (ice_check_sq_alive(hw, &hw->adminq))
2393 ice_aq_clear_pxe_mode(hw);
2397 * ice_get_link_speed_based_on_phy_type - returns link speed
2398 * @phy_type_low: lower part of phy_type
2399 * @phy_type_high: higher part of phy_type
2401 * This helper function will convert an entry in PHY type structure
2402 * [phy_type_low, phy_type_high] to its corresponding link speed.
2403 * Note: In the structure of [phy_type_low, phy_type_high], there should
2404 * be one bit set, as this function will convert one PHY type to its
2406 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2407 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2410 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2412 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2413 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2415 switch (phy_type_low) {
2416 case ICE_PHY_TYPE_LOW_100BASE_TX:
2417 case ICE_PHY_TYPE_LOW_100M_SGMII:
2418 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2420 case ICE_PHY_TYPE_LOW_1000BASE_T:
2421 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2422 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2423 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2424 case ICE_PHY_TYPE_LOW_1G_SGMII:
2425 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2427 case ICE_PHY_TYPE_LOW_2500BASE_T:
2428 case ICE_PHY_TYPE_LOW_2500BASE_X:
2429 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2430 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2432 case ICE_PHY_TYPE_LOW_5GBASE_T:
2433 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2434 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2436 case ICE_PHY_TYPE_LOW_10GBASE_T:
2437 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2438 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2439 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2440 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2441 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2442 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2443 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2445 case ICE_PHY_TYPE_LOW_25GBASE_T:
2446 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2447 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2448 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2449 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2450 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2451 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2452 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2453 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2454 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2455 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2456 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2458 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2459 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2460 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2461 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2462 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2463 case ICE_PHY_TYPE_LOW_40G_XLAUI:
2464 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2466 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2467 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2468 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2469 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2470 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2471 case ICE_PHY_TYPE_LOW_50G_LAUI2:
2472 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2473 case ICE_PHY_TYPE_LOW_50G_AUI2:
2474 case ICE_PHY_TYPE_LOW_50GBASE_CP:
2475 case ICE_PHY_TYPE_LOW_50GBASE_SR:
2476 case ICE_PHY_TYPE_LOW_50GBASE_FR:
2477 case ICE_PHY_TYPE_LOW_50GBASE_LR:
2478 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2479 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2480 case ICE_PHY_TYPE_LOW_50G_AUI1:
2481 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2483 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2484 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2485 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2486 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2487 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2488 case ICE_PHY_TYPE_LOW_100G_CAUI4:
2489 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2490 case ICE_PHY_TYPE_LOW_100G_AUI4:
2491 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2492 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2493 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2494 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2495 case ICE_PHY_TYPE_LOW_100GBASE_DR:
2496 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2499 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2503 switch (phy_type_high) {
2504 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2505 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2506 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2507 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2508 case ICE_PHY_TYPE_HIGH_100G_AUI2:
2509 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2512 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2516 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2517 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2518 return ICE_AQ_LINK_SPEED_UNKNOWN;
2519 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2520 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2521 return ICE_AQ_LINK_SPEED_UNKNOWN;
2522 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2523 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2524 return speed_phy_type_low;
2526 return speed_phy_type_high;
2530 * ice_update_phy_type
2531 * @phy_type_low: pointer to the lower part of phy_type
2532 * @phy_type_high: pointer to the higher part of phy_type
2533 * @link_speeds_bitmap: targeted link speeds bitmap
2535 * Note: For the link_speeds_bitmap structure, you can check it at
2536 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2537 * link_speeds_bitmap include multiple speeds.
2539 * Each entry in this [phy_type_low, phy_type_high] structure will
2540 * present a certain link speed. This helper function will turn on bits
2541 * in [phy_type_low, phy_type_high] structure based on the value of
2542 * link_speeds_bitmap input parameter.
2545 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2546 u16 link_speeds_bitmap)
2553 /* We first check with low part of phy_type */
2554 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2555 pt_low = BIT_ULL(index);
2556 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2558 if (link_speeds_bitmap & speed)
2559 *phy_type_low |= BIT_ULL(index);
2562 /* We then check with high part of phy_type */
2563 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2564 pt_high = BIT_ULL(index);
2565 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2567 if (link_speeds_bitmap & speed)
2568 *phy_type_high |= BIT_ULL(index);
2573 * ice_aq_set_phy_cfg
2574 * @hw: pointer to the HW struct
2575 * @pi: port info structure of the interested logical port
2576 * @cfg: structure with PHY configuration data to be set
2577 * @cd: pointer to command details structure or NULL
2579 * Set the various PHY configuration parameters supported on the Port.
2580 * One or more of the Set PHY config parameters may be ignored in an MFP
2581 * mode as the PF may not have the privilege to set some of the PHY Config
2582 * parameters. This status will be indicated by the command response (0x0601).
2585 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2586 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2588 struct ice_aq_desc desc;
2589 enum ice_status status;
2592 return ICE_ERR_PARAM;
2594 /* Ensure that only valid bits of cfg->caps can be turned on. */
2595 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2596 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2599 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2602 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2603 desc.params.set_phy.lport_num = pi->lport;
2604 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2606 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2607 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
2608 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2609 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
2610 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2611 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
2612 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
2613 cfg->low_power_ctrl_an);
2614 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
2615 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
2616 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
2619 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2620 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2624 pi->phy.curr_user_phy_cfg = *cfg;
2630 * ice_update_link_info - update status of the HW network link
2631 * @pi: port info structure of the interested logical port
2633 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2635 struct ice_link_status *li;
2636 enum ice_status status;
2639 return ICE_ERR_PARAM;
2641 li = &pi->phy.link_info;
2643 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2647 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2648 struct ice_aqc_get_phy_caps_data *pcaps;
2652 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2655 return ICE_ERR_NO_MEMORY;
2657 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2660 devm_kfree(ice_hw_to_dev(hw), pcaps);
2667 * ice_cache_phy_user_req
2668 * @pi: port information structure
2669 * @cache_data: PHY logging data
2670 * @cache_mode: PHY logging mode
2672 * Log the user request on (FC, FEC, SPEED) for later use.
2675 ice_cache_phy_user_req(struct ice_port_info *pi,
2676 struct ice_phy_cache_mode_data cache_data,
2677 enum ice_phy_cache_mode cache_mode)
2682 switch (cache_mode) {
2684 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2686 case ICE_SPEED_MODE:
2687 pi->phy.curr_user_speed_req =
2688 cache_data.data.curr_user_speed_req;
2691 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2699 * ice_caps_to_fc_mode
2700 * @caps: PHY capabilities
2702 * Convert PHY FC capabilities to ice FC mode
2704 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2706 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2707 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2710 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2711 return ICE_FC_TX_PAUSE;
2713 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2714 return ICE_FC_RX_PAUSE;
2720 * ice_caps_to_fec_mode
2721 * @caps: PHY capabilities
2722 * @fec_options: Link FEC options
2724 * Convert PHY FEC capabilities to ice FEC mode
2726 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2728 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2729 return ICE_FEC_AUTO;
2731 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2732 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2733 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2734 ICE_AQC_PHY_FEC_25G_KR_REQ))
2735 return ICE_FEC_BASER;
2737 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2738 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2739 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2742 return ICE_FEC_NONE;
2746 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2747 * @pi: port information structure
2748 * @cfg: PHY configuration data to set FC mode
2749 * @req_mode: FC mode to configure
2752 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2753 enum ice_fc_mode req_mode)
2755 struct ice_phy_cache_mode_data cache_data;
2756 u8 pause_mask = 0x0;
2759 return ICE_ERR_BAD_PTR;
2763 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2764 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2766 case ICE_FC_RX_PAUSE:
2767 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2769 case ICE_FC_TX_PAUSE:
2770 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2776 /* clear the old pause settings */
2777 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2778 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2780 /* set the new capabilities */
2781 cfg->caps |= pause_mask;
2783 /* Cache user FC request */
2784 cache_data.data.curr_user_fc_req = req_mode;
2785 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2792 * @pi: port information structure
2793 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2794 * @ena_auto_link_update: enable automatic link update
2796 * Set the requested flow control mode.
2799 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2801 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2802 struct ice_aqc_get_phy_caps_data *pcaps;
2803 enum ice_status status;
2806 if (!pi || !aq_failures)
2807 return ICE_ERR_BAD_PTR;
2812 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2814 return ICE_ERR_NO_MEMORY;
2816 /* Get the current PHY config */
2817 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2820 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2824 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2826 /* Configure the set PHY data */
2827 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2831 /* If the capabilities have changed, then set the new config */
2832 if (cfg.caps != pcaps->caps) {
2833 int retry_count, retry_max = 10;
2835 /* Auto restart link so settings take effect */
2836 if (ena_auto_link_update)
2837 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2839 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2841 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2845 /* Update the link info
2846 * It sometimes takes a really long time for link to
2847 * come back from the atomic reset. Thus, we wait a
2850 for (retry_count = 0; retry_count < retry_max; retry_count++) {
2851 status = ice_update_link_info(pi);
2860 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2864 devm_kfree(ice_hw_to_dev(hw), pcaps);
2869 * ice_phy_caps_equals_cfg
2870 * @phy_caps: PHY capabilities
2871 * @phy_cfg: PHY configuration
2873 * Helper function to determine if PHY capabilities matches PHY
2877 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2878 struct ice_aqc_set_phy_cfg_data *phy_cfg)
2880 u8 caps_mask, cfg_mask;
2882 if (!phy_caps || !phy_cfg)
2885 /* These bits are not common between capabilities and configuration.
2886 * Do not use them to determine equality.
2888 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2889 ICE_AQC_GET_PHY_EN_MOD_QUAL);
2890 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2892 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2893 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2894 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2895 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2896 phy_caps->eee_cap != phy_cfg->eee_cap ||
2897 phy_caps->eeer_value != phy_cfg->eeer_value ||
2898 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2905 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2906 * @pi: port information structure
2907 * @caps: PHY ability structure to copy date from
2908 * @cfg: PHY configuration structure to copy data to
2910 * Helper function to copy AQC PHY get ability data to PHY set configuration
2914 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
2915 struct ice_aqc_get_phy_caps_data *caps,
2916 struct ice_aqc_set_phy_cfg_data *cfg)
2918 if (!pi || !caps || !cfg)
2921 memset(cfg, 0, sizeof(*cfg));
2922 cfg->phy_type_low = caps->phy_type_low;
2923 cfg->phy_type_high = caps->phy_type_high;
2924 cfg->caps = caps->caps;
2925 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
2926 cfg->eee_cap = caps->eee_cap;
2927 cfg->eeer_value = caps->eeer_value;
2928 cfg->link_fec_opt = caps->link_fec_options;
2929 cfg->module_compliance_enforcement =
2930 caps->module_compliance_enforcement;
2932 if (ice_fw_supports_link_override(pi->hw)) {
2933 struct ice_link_default_override_tlv tlv;
2935 if (ice_get_link_default_override(&tlv, pi))
2938 if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
2939 cfg->module_compliance_enforcement |=
2940 ICE_LINK_OVERRIDE_STRICT_MODE;
2945 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2946 * @pi: port information structure
2947 * @cfg: PHY configuration data to set FEC mode
2948 * @fec: FEC mode to configure
2951 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2952 enum ice_fec_mode fec)
2954 struct ice_aqc_get_phy_caps_data *pcaps;
2955 enum ice_status status;
2958 return ICE_ERR_BAD_PTR;
2960 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2962 return ICE_ERR_NO_MEMORY;
2964 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
2969 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2970 cfg->link_fec_opt = pcaps->link_fec_options;
2974 /* Clear RS bits, and AND BASE-R ability
2975 * bits and OR request bits.
2977 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2978 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2979 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2980 ICE_AQC_PHY_FEC_25G_KR_REQ;
2983 /* Clear BASE-R bits, and AND RS ability
2984 * bits and OR request bits.
2986 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2987 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2988 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2991 /* Clear all FEC option bits. */
2992 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2995 /* AND auto FEC bit, and all caps bits. */
2996 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2997 cfg->link_fec_opt |= pcaps->link_fec_options;
3000 status = ICE_ERR_PARAM;
3004 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3005 struct ice_link_default_override_tlv tlv;
3007 if (ice_get_link_default_override(&tlv, pi))
3010 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3011 (tlv.options & ICE_LINK_OVERRIDE_EN))
3012 cfg->link_fec_opt = tlv.fec_options;
3022 * ice_get_link_status - get status of the HW network link
3023 * @pi: port information structure
3024 * @link_up: pointer to bool (true/false = linkup/linkdown)
3026 * Variable link_up is true if link is up, false if link is down.
3027 * The variable link_up is invalid if status is non zero. As a
3028 * result of this call, link status reporting becomes enabled
3030 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3032 struct ice_phy_info *phy_info;
3033 enum ice_status status = 0;
3035 if (!pi || !link_up)
3036 return ICE_ERR_PARAM;
3038 phy_info = &pi->phy;
3040 if (phy_info->get_link_info) {
3041 status = ice_update_link_info(pi);
3044 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3048 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3054 * ice_aq_set_link_restart_an
3055 * @pi: pointer to the port information structure
3056 * @ena_link: if true: enable link, if false: disable link
3057 * @cd: pointer to command details structure or NULL
3059 * Sets up the link and restarts the Auto-Negotiation over the link.
3062 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3063 struct ice_sq_cd *cd)
3065 struct ice_aqc_restart_an *cmd;
3066 struct ice_aq_desc desc;
3068 cmd = &desc.params.restart_an;
3070 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3072 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3073 cmd->lport_num = pi->lport;
3075 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3077 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3079 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3083 * ice_aq_set_event_mask
3084 * @hw: pointer to the HW struct
3085 * @port_num: port number of the physical function
3086 * @mask: event mask to be set
3087 * @cd: pointer to command details structure or NULL
3089 * Set event mask (0x0613)
3092 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3093 struct ice_sq_cd *cd)
3095 struct ice_aqc_set_event_mask *cmd;
3096 struct ice_aq_desc desc;
3098 cmd = &desc.params.set_event_mask;
3100 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3102 cmd->lport_num = port_num;
3104 cmd->event_mask = cpu_to_le16(mask);
3105 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3109 * ice_aq_set_mac_loopback
3110 * @hw: pointer to the HW struct
3111 * @ena_lpbk: Enable or Disable loopback
3112 * @cd: pointer to command details structure or NULL
3114 * Enable/disable loopback on a given port
3117 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3119 struct ice_aqc_set_mac_lb *cmd;
3120 struct ice_aq_desc desc;
3122 cmd = &desc.params.set_mac_lb;
3124 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3126 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3128 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3132 * ice_aq_set_port_id_led
3133 * @pi: pointer to the port information
3134 * @is_orig_mode: is this LED set to original mode (by the net-list)
3135 * @cd: pointer to command details structure or NULL
3137 * Set LED value for the given port (0x06e9)
3140 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3141 struct ice_sq_cd *cd)
3143 struct ice_aqc_set_port_id_led *cmd;
3144 struct ice_hw *hw = pi->hw;
3145 struct ice_aq_desc desc;
3147 cmd = &desc.params.set_port_id_led;
3149 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3152 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3154 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3156 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3161 * @hw: pointer to the HW struct
3162 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3163 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3164 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3166 * @set_page: set or ignore the page
3167 * @data: pointer to data buffer to be read/written to the I2C device.
3168 * @length: 1-16 for read, 1 for write.
3169 * @write: 0 read, 1 for write.
3170 * @cd: pointer to command details structure or NULL
3172 * Read/Write SFF EEPROM (0x06EE)
3175 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3176 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3177 bool write, struct ice_sq_cd *cd)
3179 struct ice_aqc_sff_eeprom *cmd;
3180 struct ice_aq_desc desc;
3181 enum ice_status status;
3183 if (!data || (mem_addr & 0xff00))
3184 return ICE_ERR_PARAM;
3186 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3187 cmd = &desc.params.read_write_sff_param;
3188 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3189 cmd->lport_num = (u8)(lport & 0xff);
3190 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3191 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3192 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3194 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3195 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3196 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3197 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3199 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3201 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3206 * __ice_aq_get_set_rss_lut
3207 * @hw: pointer to the hardware structure
3208 * @vsi_id: VSI FW index
3209 * @lut_type: LUT table type
3210 * @lut: pointer to the LUT buffer provided by the caller
3211 * @lut_size: size of the LUT buffer
3212 * @glob_lut_idx: global LUT index
3213 * @set: set true to set the table, false to get the table
3215 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3217 static enum ice_status
3218 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3219 u16 lut_size, u8 glob_lut_idx, bool set)
3221 struct ice_aqc_get_set_rss_lut *cmd_resp;
3222 struct ice_aq_desc desc;
3223 enum ice_status status;
3226 cmd_resp = &desc.params.get_set_rss_lut;
3229 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3230 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3232 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3235 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3236 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3237 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3238 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3241 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3242 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3243 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3244 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3245 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3248 status = ICE_ERR_PARAM;
3249 goto ice_aq_get_set_rss_lut_exit;
3252 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3253 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3254 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3257 goto ice_aq_get_set_rss_lut_send;
3258 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3260 goto ice_aq_get_set_rss_lut_send;
3262 goto ice_aq_get_set_rss_lut_send;
3265 /* LUT size is only valid for Global and PF table types */
3267 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3269 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3270 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3271 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3272 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3274 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3275 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3276 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3277 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3278 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3283 status = ICE_ERR_PARAM;
3284 goto ice_aq_get_set_rss_lut_exit;
3287 ice_aq_get_set_rss_lut_send:
3288 cmd_resp->flags = cpu_to_le16(flags);
3289 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3291 ice_aq_get_set_rss_lut_exit:
3296 * ice_aq_get_rss_lut
3297 * @hw: pointer to the hardware structure
3298 * @vsi_handle: software VSI handle
3299 * @lut_type: LUT table type
3300 * @lut: pointer to the LUT buffer provided by the caller
3301 * @lut_size: size of the LUT buffer
3303 * get the RSS lookup table, PF or VSI type
3306 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3307 u8 *lut, u16 lut_size)
3309 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3310 return ICE_ERR_PARAM;
3312 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3313 lut_type, lut, lut_size, 0, false);
3317 * ice_aq_set_rss_lut
3318 * @hw: pointer to the hardware structure
3319 * @vsi_handle: software VSI handle
3320 * @lut_type: LUT table type
3321 * @lut: pointer to the LUT buffer provided by the caller
3322 * @lut_size: size of the LUT buffer
3324 * set the RSS lookup table, PF or VSI type
3327 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3328 u8 *lut, u16 lut_size)
3330 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3331 return ICE_ERR_PARAM;
3333 return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3334 lut_type, lut, lut_size, 0, true);
3338 * __ice_aq_get_set_rss_key
3339 * @hw: pointer to the HW struct
3340 * @vsi_id: VSI FW index
3341 * @key: pointer to key info struct
3342 * @set: set true to set the key, false to get the key
3344 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3347 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3348 struct ice_aqc_get_set_rss_keys *key,
3351 struct ice_aqc_get_set_rss_key *cmd_resp;
3352 u16 key_size = sizeof(*key);
3353 struct ice_aq_desc desc;
3355 cmd_resp = &desc.params.get_set_rss_key;
3358 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3359 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3361 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3364 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3365 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3366 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3367 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3369 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3373 * ice_aq_get_rss_key
3374 * @hw: pointer to the HW struct
3375 * @vsi_handle: software VSI handle
3376 * @key: pointer to key info struct
3378 * get the RSS key per VSI
3381 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3382 struct ice_aqc_get_set_rss_keys *key)
3384 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3385 return ICE_ERR_PARAM;
3387 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3392 * ice_aq_set_rss_key
3393 * @hw: pointer to the HW struct
3394 * @vsi_handle: software VSI handle
3395 * @keys: pointer to key info struct
3397 * set the RSS key per VSI
3400 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3401 struct ice_aqc_get_set_rss_keys *keys)
3403 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3404 return ICE_ERR_PARAM;
3406 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3411 * ice_aq_add_lan_txq
3412 * @hw: pointer to the hardware structure
3413 * @num_qgrps: Number of added queue groups
3414 * @qg_list: list of queue groups to be added
3415 * @buf_size: size of buffer for indirect command
3416 * @cd: pointer to command details structure or NULL
3418 * Add Tx LAN queue (0x0C30)
3421 * Prior to calling add Tx LAN queue:
3422 * Initialize the following as part of the Tx queue context:
3423 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3424 * Cache profile and Packet shaper profile.
3426 * After add Tx LAN queue AQ command is completed:
3427 * Interrupts should be associated with specific queues,
3428 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3431 static enum ice_status
3432 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3433 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3434 struct ice_sq_cd *cd)
3436 struct ice_aqc_add_tx_qgrp *list;
3437 struct ice_aqc_add_txqs *cmd;
3438 struct ice_aq_desc desc;
3439 u16 i, sum_size = 0;
3441 cmd = &desc.params.add_txqs;
3443 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3446 return ICE_ERR_PARAM;
3448 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3449 return ICE_ERR_PARAM;
3451 for (i = 0, list = qg_list; i < num_qgrps; i++) {
3452 sum_size += struct_size(list, txqs, list->num_txqs);
3453 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3457 if (buf_size != sum_size)
3458 return ICE_ERR_PARAM;
3460 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3462 cmd->num_qgrps = num_qgrps;
3464 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3468 * ice_aq_dis_lan_txq
3469 * @hw: pointer to the hardware structure
3470 * @num_qgrps: number of groups in the list
3471 * @qg_list: the list of groups to disable
3472 * @buf_size: the total size of the qg_list buffer in bytes
3473 * @rst_src: if called due to reset, specifies the reset source
3474 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3475 * @cd: pointer to command details structure or NULL
3477 * Disable LAN Tx queue (0x0C31)
3479 static enum ice_status
3480 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3481 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3482 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3483 struct ice_sq_cd *cd)
3485 struct ice_aqc_dis_txq_item *item;
3486 struct ice_aqc_dis_txqs *cmd;
3487 struct ice_aq_desc desc;
3488 enum ice_status status;
3491 cmd = &desc.params.dis_txqs;
3492 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3494 /* qg_list can be NULL only in VM/VF reset flow */
3495 if (!qg_list && !rst_src)
3496 return ICE_ERR_PARAM;
3498 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3499 return ICE_ERR_PARAM;
3501 cmd->num_entries = num_qgrps;
3503 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3504 ICE_AQC_Q_DIS_TIMEOUT_M);
3508 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3509 cmd->vmvf_and_timeout |=
3510 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3513 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3514 /* In this case, FW expects vmvf_num to be absolute VF ID */
3515 cmd->vmvf_and_timeout |=
3516 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3517 ICE_AQC_Q_DIS_VMVF_NUM_M);
3524 /* flush pipe on time out */
3525 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3526 /* If no queue group info, we are in a reset flow. Issue the AQ */
3530 /* set RD bit to indicate that command buffer is provided by the driver
3531 * and it needs to be read by the firmware
3533 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3535 for (i = 0, item = qg_list; i < num_qgrps; i++) {
3536 u16 item_size = struct_size(item, q_id, item->num_qs);
3538 /* If the num of queues is even, add 2 bytes of padding */
3539 if ((item->num_qs % 2) == 0)
3544 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3548 return ICE_ERR_PARAM;
3551 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3554 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3555 vmvf_num, hw->adminq.sq_last_status);
3557 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3558 le16_to_cpu(qg_list[0].q_id[0]),
3559 hw->adminq.sq_last_status);
3564 /* End of FW Admin Queue command wrappers */
3567 * ice_write_byte - write a byte to a packed context structure
3568 * @src_ctx: the context structure to read from
3569 * @dest_ctx: the context to be written to
3570 * @ce_info: a description of the struct to be filled
3573 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3575 u8 src_byte, dest_byte, mask;
3579 /* copy from the next struct field */
3580 from = src_ctx + ce_info->offset;
3582 /* prepare the bits and mask */
3583 shift_width = ce_info->lsb % 8;
3584 mask = (u8)(BIT(ce_info->width) - 1);
3589 /* shift to correct alignment */
3590 mask <<= shift_width;
3591 src_byte <<= shift_width;
3593 /* get the current bits from the target bit string */
3594 dest = dest_ctx + (ce_info->lsb / 8);
3596 memcpy(&dest_byte, dest, sizeof(dest_byte));
3598 dest_byte &= ~mask; /* get the bits not changing */
3599 dest_byte |= src_byte; /* add in the new bits */
3601 /* put it all back */
3602 memcpy(dest, &dest_byte, sizeof(dest_byte));
3606 * ice_write_word - write a word to a packed context structure
3607 * @src_ctx: the context structure to read from
3608 * @dest_ctx: the context to be written to
3609 * @ce_info: a description of the struct to be filled
3612 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3619 /* copy from the next struct field */
3620 from = src_ctx + ce_info->offset;
3622 /* prepare the bits and mask */
3623 shift_width = ce_info->lsb % 8;
3624 mask = BIT(ce_info->width) - 1;
3626 /* don't swizzle the bits until after the mask because the mask bits
3627 * will be in a different bit position on big endian machines
3629 src_word = *(u16 *)from;
3632 /* shift to correct alignment */
3633 mask <<= shift_width;
3634 src_word <<= shift_width;
3636 /* get the current bits from the target bit string */
3637 dest = dest_ctx + (ce_info->lsb / 8);
3639 memcpy(&dest_word, dest, sizeof(dest_word));
3641 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
3642 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
3644 /* put it all back */
3645 memcpy(dest, &dest_word, sizeof(dest_word));
3649 * ice_write_dword - write a dword to a packed context structure
3650 * @src_ctx: the context structure to read from
3651 * @dest_ctx: the context to be written to
3652 * @ce_info: a description of the struct to be filled
3655 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3657 u32 src_dword, mask;
3662 /* copy from the next struct field */
3663 from = src_ctx + ce_info->offset;
3665 /* prepare the bits and mask */
3666 shift_width = ce_info->lsb % 8;
3668 /* if the field width is exactly 32 on an x86 machine, then the shift
3669 * operation will not work because the SHL instructions count is masked
3670 * to 5 bits so the shift will do nothing
3672 if (ce_info->width < 32)
3673 mask = BIT(ce_info->width) - 1;
3677 /* don't swizzle the bits until after the mask because the mask bits
3678 * will be in a different bit position on big endian machines
3680 src_dword = *(u32 *)from;
3683 /* shift to correct alignment */
3684 mask <<= shift_width;
3685 src_dword <<= shift_width;
3687 /* get the current bits from the target bit string */
3688 dest = dest_ctx + (ce_info->lsb / 8);
3690 memcpy(&dest_dword, dest, sizeof(dest_dword));
3692 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
3693 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
3695 /* put it all back */
3696 memcpy(dest, &dest_dword, sizeof(dest_dword));
3700 * ice_write_qword - write a qword to a packed context structure
3701 * @src_ctx: the context structure to read from
3702 * @dest_ctx: the context to be written to
3703 * @ce_info: a description of the struct to be filled
3706 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3708 u64 src_qword, mask;
3713 /* copy from the next struct field */
3714 from = src_ctx + ce_info->offset;
3716 /* prepare the bits and mask */
3717 shift_width = ce_info->lsb % 8;
3719 /* if the field width is exactly 64 on an x86 machine, then the shift
3720 * operation will not work because the SHL instructions count is masked
3721 * to 6 bits so the shift will do nothing
3723 if (ce_info->width < 64)
3724 mask = BIT_ULL(ce_info->width) - 1;
3728 /* don't swizzle the bits until after the mask because the mask bits
3729 * will be in a different bit position on big endian machines
3731 src_qword = *(u64 *)from;
3734 /* shift to correct alignment */
3735 mask <<= shift_width;
3736 src_qword <<= shift_width;
3738 /* get the current bits from the target bit string */
3739 dest = dest_ctx + (ce_info->lsb / 8);
3741 memcpy(&dest_qword, dest, sizeof(dest_qword));
3743 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
3744 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
3746 /* put it all back */
3747 memcpy(dest, &dest_qword, sizeof(dest_qword));
3751 * ice_set_ctx - set context bits in packed structure
3752 * @hw: pointer to the hardware structure
3753 * @src_ctx: pointer to a generic non-packed context structure
3754 * @dest_ctx: pointer to memory for the packed structure
3755 * @ce_info: a description of the structure to be transformed
3758 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3759 const struct ice_ctx_ele *ce_info)
3763 for (f = 0; ce_info[f].width; f++) {
3764 /* We have to deal with each element of the FW response
3765 * using the correct size so that we are correct regardless
3766 * of the endianness of the machine.
3768 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3769 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3770 f, ce_info[f].width, ce_info[f].size_of);
3773 switch (ce_info[f].size_of) {
3775 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3778 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3781 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3784 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3787 return ICE_ERR_INVAL_SIZE;
3795 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3796 * @hw: pointer to the HW struct
3797 * @vsi_handle: software VSI handle
3799 * @q_handle: software queue handle
3802 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3804 struct ice_vsi_ctx *vsi;
3805 struct ice_q_ctx *q_ctx;
3807 vsi = ice_get_vsi_ctx(hw, vsi_handle);
3810 if (q_handle >= vsi->num_lan_q_entries[tc])
3812 if (!vsi->lan_q_ctx[tc])
3814 q_ctx = vsi->lan_q_ctx[tc];
3815 return &q_ctx[q_handle];
3820 * @pi: port information structure
3821 * @vsi_handle: software VSI handle
3823 * @q_handle: software queue handle
3824 * @num_qgrps: Number of added queue groups
3825 * @buf: list of queue groups to be added
3826 * @buf_size: size of buffer for indirect command
3827 * @cd: pointer to command details structure or NULL
3829 * This function adds one LAN queue
3832 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3833 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3834 struct ice_sq_cd *cd)
3836 struct ice_aqc_txsched_elem_data node = { 0 };
3837 struct ice_sched_node *parent;
3838 struct ice_q_ctx *q_ctx;
3839 enum ice_status status;
3842 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3845 if (num_qgrps > 1 || buf->num_txqs > 1)
3846 return ICE_ERR_MAX_LIMIT;
3850 if (!ice_is_vsi_valid(hw, vsi_handle))
3851 return ICE_ERR_PARAM;
3853 mutex_lock(&pi->sched_lock);
3855 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3857 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3859 status = ICE_ERR_PARAM;
3863 /* find a parent node */
3864 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3865 ICE_SCHED_NODE_OWNER_LAN);
3867 status = ICE_ERR_PARAM;
3871 buf->parent_teid = parent->info.node_teid;
3872 node.parent_teid = parent->info.node_teid;
3873 /* Mark that the values in the "generic" section as valid. The default
3874 * value in the "generic" section is zero. This means that :
3875 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3876 * - 0 priority among siblings, indicated by Bit 1-3.
3877 * - WFQ, indicated by Bit 4.
3878 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3880 * - Bit 7 is reserved.
3881 * Without setting the generic section as valid in valid_sections, the
3882 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3884 buf->txqs[0].info.valid_sections =
3885 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
3886 ICE_AQC_ELEM_VALID_EIR;
3887 buf->txqs[0].info.generic = 0;
3888 buf->txqs[0].info.cir_bw.bw_profile_idx =
3889 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3890 buf->txqs[0].info.cir_bw.bw_alloc =
3891 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3892 buf->txqs[0].info.eir_bw.bw_profile_idx =
3893 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3894 buf->txqs[0].info.eir_bw.bw_alloc =
3895 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3897 /* add the LAN queue */
3898 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3900 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3901 le16_to_cpu(buf->txqs[0].txq_id),
3902 hw->adminq.sq_last_status);
3906 node.node_teid = buf->txqs[0].q_teid;
3907 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3908 q_ctx->q_handle = q_handle;
3909 q_ctx->q_teid = le32_to_cpu(node.node_teid);
3911 /* add a leaf node into scheduler tree queue layer */
3912 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3914 status = ice_sched_replay_q_bw(pi, q_ctx);
3917 mutex_unlock(&pi->sched_lock);
3923 * @pi: port information structure
3924 * @vsi_handle: software VSI handle
3926 * @num_queues: number of queues
3927 * @q_handles: pointer to software queue handle array
3928 * @q_ids: pointer to the q_id array
3929 * @q_teids: pointer to queue node teids
3930 * @rst_src: if called due to reset, specifies the reset source
3931 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3932 * @cd: pointer to command details structure or NULL
3934 * This function removes queues and their corresponding nodes in SW DB
3937 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3938 u16 *q_handles, u16 *q_ids, u32 *q_teids,
3939 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3940 struct ice_sq_cd *cd)
3942 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3943 struct ice_aqc_dis_txq_item *qg_list;
3944 struct ice_q_ctx *q_ctx;
3948 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3954 /* if queue is disabled already yet the disable queue command
3955 * has to be sent to complete the VF reset, then call
3956 * ice_aq_dis_lan_txq without any queue information
3959 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
3964 buf_size = struct_size(qg_list, q_id, 1);
3965 qg_list = kzalloc(buf_size, GFP_KERNEL);
3967 return ICE_ERR_NO_MEMORY;
3969 mutex_lock(&pi->sched_lock);
3971 for (i = 0; i < num_queues; i++) {
3972 struct ice_sched_node *node;
3974 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3977 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
3979 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3983 if (q_ctx->q_handle != q_handles[i]) {
3984 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3985 q_ctx->q_handle, q_handles[i]);
3988 qg_list->parent_teid = node->info.parent_teid;
3989 qg_list->num_qs = 1;
3990 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
3991 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
3996 ice_free_sched_node(pi, node);
3997 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3999 mutex_unlock(&pi->sched_lock);
4005 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4006 * @pi: port information structure
4007 * @vsi_handle: software VSI handle
4008 * @tc_bitmap: TC bitmap
4009 * @maxqs: max queues array per TC
4010 * @owner: LAN or RDMA
4012 * This function adds/updates the VSI queues per TC.
4014 static enum ice_status
4015 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4016 u16 *maxqs, u8 owner)
4018 enum ice_status status = 0;
4021 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4024 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4025 return ICE_ERR_PARAM;
4027 mutex_lock(&pi->sched_lock);
4029 ice_for_each_traffic_class(i) {
4030 /* configuration is possible only if TC node is present */
4031 if (!ice_sched_get_tc_node(pi, i))
4034 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4035 ice_is_tc_ena(tc_bitmap, i));
4040 mutex_unlock(&pi->sched_lock);
4045 * ice_cfg_vsi_lan - configure VSI LAN queues
4046 * @pi: port information structure
4047 * @vsi_handle: software VSI handle
4048 * @tc_bitmap: TC bitmap
4049 * @max_lanqs: max LAN queues array per TC
4051 * This function adds/updates the VSI LAN queues per TC.
4054 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4057 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4058 ICE_SCHED_NODE_OWNER_LAN);
4062 * ice_replay_pre_init - replay pre initialization
4063 * @hw: pointer to the HW struct
4065 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4067 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4069 struct ice_switch_info *sw = hw->switch_info;
4072 /* Delete old entries from replay filter list head if there is any */
4073 ice_rm_all_sw_replay_rule_info(hw);
4074 /* In start of replay, move entries into replay_rules list, it
4075 * will allow adding rules entries back to filt_rules list,
4076 * which is operational list.
4078 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4079 list_replace_init(&sw->recp_list[i].filt_rules,
4080 &sw->recp_list[i].filt_replay_rules);
4086 * ice_replay_vsi - replay VSI configuration
4087 * @hw: pointer to the HW struct
4088 * @vsi_handle: driver VSI handle
4090 * Restore all VSI configuration after reset. It is required to call this
4091 * function with main VSI first.
4093 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4095 enum ice_status status;
4097 if (!ice_is_vsi_valid(hw, vsi_handle))
4098 return ICE_ERR_PARAM;
4100 /* Replay pre-initialization if there is any */
4101 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4102 status = ice_replay_pre_init(hw);
4106 /* Replay per VSI all RSS configurations */
4107 status = ice_replay_rss_cfg(hw, vsi_handle);
4110 /* Replay per VSI all filters */
4111 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4116 * ice_replay_post - post replay configuration cleanup
4117 * @hw: pointer to the HW struct
4119 * Post replay cleanup.
4121 void ice_replay_post(struct ice_hw *hw)
4123 /* Delete old entries from replay filter list head */
4124 ice_rm_all_sw_replay_rule_info(hw);
4128 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4129 * @hw: ptr to the hardware info
4130 * @reg: offset of 64 bit HW register to read from
4131 * @prev_stat_loaded: bool to specify if previous stats are loaded
4132 * @prev_stat: ptr to previous loaded stat value
4133 * @cur_stat: ptr to current stat value
4136 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4137 u64 *prev_stat, u64 *cur_stat)
4139 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4141 /* device stats are not reset at PFR, they likely will not be zeroed
4142 * when the driver starts. Thus, save the value from the first read
4143 * without adding to the statistic value so that we report stats which
4144 * count up from zero.
4146 if (!prev_stat_loaded) {
4147 *prev_stat = new_data;
4151 /* Calculate the difference between the new and old values, and then
4152 * add it to the software stat value.
4154 if (new_data >= *prev_stat)
4155 *cur_stat += new_data - *prev_stat;
4157 /* to manage the potential roll-over */
4158 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4160 /* Update the previously stored value to prepare for next read */
4161 *prev_stat = new_data;
4165 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4166 * @hw: ptr to the hardware info
4167 * @reg: offset of HW register to read from
4168 * @prev_stat_loaded: bool to specify if previous stats are loaded
4169 * @prev_stat: ptr to previous loaded stat value
4170 * @cur_stat: ptr to current stat value
4173 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4174 u64 *prev_stat, u64 *cur_stat)
4178 new_data = rd32(hw, reg);
4180 /* device stats are not reset at PFR, they likely will not be zeroed
4181 * when the driver starts. Thus, save the value from the first read
4182 * without adding to the statistic value so that we report stats which
4183 * count up from zero.
4185 if (!prev_stat_loaded) {
4186 *prev_stat = new_data;
4190 /* Calculate the difference between the new and old values, and then
4191 * add it to the software stat value.
4193 if (new_data >= *prev_stat)
4194 *cur_stat += new_data - *prev_stat;
4196 /* to manage the potential roll-over */
4197 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4199 /* Update the previously stored value to prepare for next read */
4200 *prev_stat = new_data;
4204 * ice_sched_query_elem - query element information from HW
4205 * @hw: pointer to the HW struct
4206 * @node_teid: node TEID to be queried
4207 * @buf: buffer to element information
4209 * This function queries HW element information
4212 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4213 struct ice_aqc_txsched_elem_data *buf)
4215 u16 buf_size, num_elem_ret = 0;
4216 enum ice_status status;
4218 buf_size = sizeof(*buf);
4219 memset(buf, 0, buf_size);
4220 buf->node_teid = cpu_to_le32(node_teid);
4221 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4223 if (status || num_elem_ret != 1)
4224 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4229 * ice_fw_supports_link_override
4230 * @hw: pointer to the hardware structure
4232 * Checks if the firmware supports link override
4234 bool ice_fw_supports_link_override(struct ice_hw *hw)
4236 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4237 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4239 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4240 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4242 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4250 * ice_get_link_default_override
4251 * @ldo: pointer to the link default override struct
4252 * @pi: pointer to the port info struct
4254 * Gets the link default override for a port
4257 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4258 struct ice_port_info *pi)
4260 u16 i, tlv, tlv_len, tlv_start, buf, offset;
4261 struct ice_hw *hw = pi->hw;
4262 enum ice_status status;
4264 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4265 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4267 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4271 /* Each port has its own config; calculate for our port */
4272 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4273 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4275 /* link options first */
4276 status = ice_read_sr_word(hw, tlv_start, &buf);
4278 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4281 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4282 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4283 ICE_LINK_OVERRIDE_PHY_CFG_S;
4285 /* link PHY config */
4286 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4287 status = ice_read_sr_word(hw, offset, &buf);
4289 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4292 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4295 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4296 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4297 status = ice_read_sr_word(hw, (offset + i), &buf);
4299 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4302 /* shift 16 bits at a time to fill 64 bits */
4303 ldo->phy_type_low |= ((u64)buf << (i * 16));
4306 /* PHY types high */
4307 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4308 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4309 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4310 status = ice_read_sr_word(hw, (offset + i), &buf);
4312 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4315 /* shift 16 bits at a time to fill 64 bits */
4316 ldo->phy_type_high |= ((u64)buf << (i * 16));
4323 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4324 * @caps: get PHY capability data
4326 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4328 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4329 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4330 ICE_AQC_PHY_AN_EN_CLAUSE73 |
4331 ICE_AQC_PHY_AN_EN_CLAUSE37))
4338 * ice_aq_set_lldp_mib - Set the LLDP MIB
4339 * @hw: pointer to the HW struct
4340 * @mib_type: Local, Remote or both Local and Remote MIBs
4341 * @buf: pointer to the caller-supplied buffer to store the MIB block
4342 * @buf_size: size of the buffer (in bytes)
4343 * @cd: pointer to command details structure or NULL
4345 * Set the LLDP MIB. (0x0A08)
4348 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4349 struct ice_sq_cd *cd)
4351 struct ice_aqc_lldp_set_local_mib *cmd;
4352 struct ice_aq_desc desc;
4354 cmd = &desc.params.lldp_set_mib;
4356 if (buf_size == 0 || !buf)
4357 return ICE_ERR_PARAM;
4359 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4361 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4362 desc.datalen = cpu_to_le16(buf_size);
4364 cmd->type = mib_type;
4365 cmd->length = cpu_to_le16(buf_size);
4367 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);