]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: HSW CRW stability magic
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <[email protected]>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable,
45                                                     bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65         if (obj->tiling_mode)
66                 i915_gem_release_mmap(obj);
67
68         /* As we do not have an associated fence register, we will force
69          * a tiling change if we ever need to acquire one.
70          */
71         obj->fence_dirty = false;
72         obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77                                   size_t size)
78 {
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84                                      size_t size)
85 {
86         dev_priv->mm.object_count--;
87         dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93         struct drm_i915_private *dev_priv = dev->dev_private;
94         struct completion *x = &dev_priv->error_completion;
95         unsigned long flags;
96         int ret;
97
98         if (!atomic_read(&dev_priv->mm.wedged))
99                 return 0;
100
101         /*
102          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103          * userspace. If it takes that long something really bad is going on and
104          * we should simply try to bail out and fail as gracefully as possible.
105          */
106         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113
114         if (atomic_read(&dev_priv->mm.wedged)) {
115                 /* GPU is hung, bump the completion count to account for
116                  * the token we just consumed so that we never hit zero and
117                  * end up waiting upon a subsequent completion event that
118                  * will never happen.
119                  */
120                 spin_lock_irqsave(&x->wait.lock, flags);
121                 x->done++;
122                 spin_unlock_irqrestore(&x->wait.lock, flags);
123         }
124         return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         int ret;
130
131         ret = i915_gem_wait_for_error(dev);
132         if (ret)
133                 return ret;
134
135         ret = mutex_lock_interruptible(&dev->struct_mutex);
136         if (ret)
137                 return ret;
138
139         WARN_ON(i915_verify_lists(dev));
140         return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146         return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151                     struct drm_file *file)
152 {
153         struct drm_i915_gem_init *args = data;
154
155         if (drm_core_check_feature(dev, DRIVER_MODESET))
156                 return -ENODEV;
157
158         if (args->gtt_start >= args->gtt_end ||
159             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160                 return -EINVAL;
161
162         /* GEM with user mode setting was never supported on ilk and later. */
163         if (INTEL_INFO(dev)->gen >= 5)
164                 return -ENODEV;
165
166         mutex_lock(&dev->struct_mutex);
167         i915_gem_init_global_gtt(dev, args->gtt_start,
168                                  args->gtt_end, args->gtt_end);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186                 if (obj->pin_count)
187                         pinned += obj->gtt_space->size;
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->mm.gtt_total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198                 struct drm_device *dev,
199                 uint64_t size,
200                 uint32_t *handle_p)
201 {
202         struct drm_i915_gem_object *obj;
203         int ret;
204         u32 handle;
205
206         size = roundup(size, PAGE_SIZE);
207         if (size == 0)
208                 return -EINVAL;
209
210         /* Allocate the new object */
211         obj = i915_gem_alloc_object(dev, size);
212         if (obj == NULL)
213                 return -ENOMEM;
214
215         ret = drm_gem_handle_create(file, &obj->base, &handle);
216         if (ret) {
217                 drm_gem_object_release(&obj->base);
218                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219                 kfree(obj);
220                 return ret;
221         }
222
223         /* drop reference from allocate - handle holds it now */
224         drm_gem_object_unreference(&obj->base);
225         trace_i915_gem_object_create(obj);
226
227         *handle_p = handle;
228         return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233                      struct drm_device *dev,
234                      struct drm_mode_create_dumb *args)
235 {
236         /* have to work out size/pitch and return them */
237         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238         args->size = args->pitch * args->height;
239         return i915_gem_create(file, dev,
240                                args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244                           struct drm_device *dev,
245                           uint32_t handle)
246 {
247         return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251  * Creates a new mm object and returns a handle to it.
252  */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255                       struct drm_file *file)
256 {
257         struct drm_i915_gem_create *args = data;
258
259         return i915_gem_create(file, dev,
260                                args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268                 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273                         const char *gpu_vaddr, int gpu_offset,
274                         int length)
275 {
276         int ret, cpu_offset = 0;
277
278         while (length > 0) {
279                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280                 int this_length = min(cacheline_end - gpu_offset, length);
281                 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284                                      gpu_vaddr + swizzled_gpu_offset,
285                                      this_length);
286                 if (ret)
287                         return ret + length;
288
289                 cpu_offset += this_length;
290                 gpu_offset += this_length;
291                 length -= this_length;
292         }
293
294         return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299                           const char __user *cpu_vaddr,
300                           int length)
301 {
302         int ret, cpu_offset = 0;
303
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310                                        cpu_vaddr + cpu_offset,
311                                        this_length);
312                 if (ret)
313                         return ret + length;
314
315                 cpu_offset += this_length;
316                 gpu_offset += this_length;
317                 length -= this_length;
318         }
319
320         return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324  * Flushes invalid cachelines before reading the target if
325  * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328                  char __user *user_data,
329                  bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331         char *vaddr;
332         int ret;
333
334         if (unlikely(page_do_bit17_swizzling))
335                 return -EINVAL;
336
337         vaddr = kmap_atomic(page);
338         if (needs_clflush)
339                 drm_clflush_virt_range(vaddr + shmem_page_offset,
340                                        page_length);
341         ret = __copy_to_user_inatomic(user_data,
342                                       vaddr + shmem_page_offset,
343                                       page_length);
344         kunmap_atomic(vaddr);
345
346         return ret ? -EFAULT : 0;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351                              bool swizzled)
352 {
353         if (unlikely(swizzled)) {
354                 unsigned long start = (unsigned long) addr;
355                 unsigned long end = (unsigned long) addr + length;
356
357                 /* For swizzling simply ensure that we always flush both
358                  * channels. Lame, but simple and it works. Swizzled
359                  * pwrite/pread is far from a hotpath - current userspace
360                  * doesn't use it at all. */
361                 start = round_down(start, 128);
362                 end = round_up(end, 128);
363
364                 drm_clflush_virt_range((void *)start, end - start);
365         } else {
366                 drm_clflush_virt_range(addr, length);
367         }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372  * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         vaddr = kmap(page);
382         if (needs_clflush)
383                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384                                              page_length,
385                                              page_do_bit17_swizzling);
386
387         if (page_do_bit17_swizzling)
388                 ret = __copy_to_user_swizzled(user_data,
389                                               vaddr, shmem_page_offset,
390                                               page_length);
391         else
392                 ret = __copy_to_user(user_data,
393                                      vaddr + shmem_page_offset,
394                                      page_length);
395         kunmap(page);
396
397         return ret ? - EFAULT : 0;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402                      struct drm_i915_gem_object *obj,
403                      struct drm_i915_gem_pread *args,
404                      struct drm_file *file)
405 {
406         char __user *user_data;
407         ssize_t remain;
408         loff_t offset;
409         int shmem_page_offset, page_length, ret = 0;
410         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411         int hit_slowpath = 0;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct scatterlist *sg;
415         int i;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         ret = i915_gem_object_get_pages(obj);
437         if (ret)
438                 return ret;
439
440         i915_gem_object_pin_pages(obj);
441
442         offset = args->offset;
443
444         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445                 struct page *page;
446
447                 if (i < offset >> PAGE_SHIFT)
448                         continue;
449
450                 if (remain <= 0)
451                         break;
452
453                 /* Operation in this page
454                  *
455                  * shmem_page_offset = offset within page in shmem file
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset_in_page(offset);
459                 page_length = remain;
460                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461                         page_length = PAGE_SIZE - shmem_page_offset;
462
463                 page = sg_page(sg);
464                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465                         (page_to_phys(page) & (1 << 17)) != 0;
466
467                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468                                        user_data, page_do_bit17_swizzling,
469                                        needs_clflush);
470                 if (ret == 0)
471                         goto next_page;
472
473                 hit_slowpath = 1;
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (!prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491
492 next_page:
493                 mark_page_accessed(page);
494
495                 if (ret)
496                         goto out;
497
498                 remain -= page_length;
499                 user_data += page_length;
500                 offset += page_length;
501         }
502
503 out:
504         i915_gem_object_unpin_pages(obj);
505
506         if (hit_slowpath) {
507                 /* Fixup: Kill any reinstated backing storage pages */
508                 if (obj->madv == __I915_MADV_PURGED)
509                         i915_gem_object_truncate(obj);
510         }
511
512         return ret;
513 }
514
515 /**
516  * Reads data from the object referenced by handle.
517  *
518  * On error, the contents of *data are undefined.
519  */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522                      struct drm_file *file)
523 {
524         struct drm_i915_gem_pread *args = data;
525         struct drm_i915_gem_object *obj;
526         int ret = 0;
527
528         if (args->size == 0)
529                 return 0;
530
531         if (!access_ok(VERIFY_WRITE,
532                        (char __user *)(uintptr_t)args->data_ptr,
533                        args->size))
534                 return -EFAULT;
535
536         ret = i915_mutex_lock_interruptible(dev);
537         if (ret)
538                 return ret;
539
540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541         if (&obj->base == NULL) {
542                 ret = -ENOENT;
543                 goto unlock;
544         }
545
546         /* Bounds check source.  */
547         if (args->offset > obj->base.size ||
548             args->size > obj->base.size - args->offset) {
549                 ret = -EINVAL;
550                 goto out;
551         }
552
553         /* prime objects have no backing filp to GEM pread/pwrite
554          * pages from.
555          */
556         if (!obj->base.filp) {
557                 ret = -EINVAL;
558                 goto out;
559         }
560
561         trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563         ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566         drm_gem_object_unreference(&obj->base);
567 unlock:
568         mutex_unlock(&dev->struct_mutex);
569         return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573  * page faults in the source data
574  */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578                 loff_t page_base, int page_offset,
579                 char __user *user_data,
580                 int length)
581 {
582         void __iomem *vaddr_atomic;
583         void *vaddr;
584         unsigned long unwritten;
585
586         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587         /* We can use the cpu mem copy function because this is X86. */
588         vaddr = (void __force*)vaddr_atomic + page_offset;
589         unwritten = __copy_from_user_inatomic_nocache(vaddr,
590                                                       user_data, length);
591         io_mapping_unmap_atomic(vaddr_atomic);
592         return unwritten;
593 }
594
595 /**
596  * This is the fast pwrite path, where we copy the data directly from the
597  * user into the GTT, uncached.
598  */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601                          struct drm_i915_gem_object *obj,
602                          struct drm_i915_gem_pwrite *args,
603                          struct drm_file *file)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         ssize_t remain;
607         loff_t offset, page_base;
608         char __user *user_data;
609         int page_offset, page_length, ret;
610
611         ret = i915_gem_object_pin(obj, 0, true, true);
612         if (ret)
613                 goto out;
614
615         ret = i915_gem_object_set_to_gtt_domain(obj, true);
616         if (ret)
617                 goto out_unpin;
618
619         ret = i915_gem_object_put_fence(obj);
620         if (ret)
621                 goto out_unpin;
622
623         user_data = (char __user *) (uintptr_t) args->data_ptr;
624         remain = args->size;
625
626         offset = obj->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = offset & PAGE_MASK;
636                 page_offset = offset_in_page(offset);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 /* If we get a fault while copying data, then (presumably) our
642                  * source page isn't available.  Return the error and we'll
643                  * retry in the slow path.
644                  */
645                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
646                                     page_offset, user_data, page_length)) {
647                         ret = -EFAULT;
648                         goto out_unpin;
649                 }
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 out_unpin:
657         i915_gem_object_unpin(obj);
658 out:
659         return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663  * Flushes invalid cachelines before writing to the target if
664  * needs_clflush_before is set and flushes out any written cachelines after
665  * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668                   char __user *user_data,
669                   bool page_do_bit17_swizzling,
670                   bool needs_clflush_before,
671                   bool needs_clflush_after)
672 {
673         char *vaddr;
674         int ret;
675
676         if (unlikely(page_do_bit17_swizzling))
677                 return -EINVAL;
678
679         vaddr = kmap_atomic(page);
680         if (needs_clflush_before)
681                 drm_clflush_virt_range(vaddr + shmem_page_offset,
682                                        page_length);
683         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684                                                 user_data,
685                                                 page_length);
686         if (needs_clflush_after)
687                 drm_clflush_virt_range(vaddr + shmem_page_offset,
688                                        page_length);
689         kunmap_atomic(vaddr);
690
691         return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695  * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698                   char __user *user_data,
699                   bool page_do_bit17_swizzling,
700                   bool needs_clflush_before,
701                   bool needs_clflush_after)
702 {
703         char *vaddr;
704         int ret;
705
706         vaddr = kmap(page);
707         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709                                              page_length,
710                                              page_do_bit17_swizzling);
711         if (page_do_bit17_swizzling)
712                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713                                                 user_data,
714                                                 page_length);
715         else
716                 ret = __copy_from_user(vaddr + shmem_page_offset,
717                                        user_data,
718                                        page_length);
719         if (needs_clflush_after)
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         kunmap(page);
724
725         return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730                       struct drm_i915_gem_object *obj,
731                       struct drm_i915_gem_pwrite *args,
732                       struct drm_file *file)
733 {
734         ssize_t remain;
735         loff_t offset;
736         char __user *user_data;
737         int shmem_page_offset, page_length, ret = 0;
738         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739         int hit_slowpath = 0;
740         int needs_clflush_after = 0;
741         int needs_clflush_before = 0;
742         int i;
743         struct scatterlist *sg;
744
745         user_data = (char __user *) (uintptr_t) args->data_ptr;
746         remain = args->size;
747
748         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749
750         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751                 /* If we're not in the cpu write domain, set ourself into the gtt
752                  * write domain and manually flush cachelines (if required). This
753                  * optimizes for the case when the gpu will use the data
754                  * right away and we therefore have to clflush anyway. */
755                 if (obj->cache_level == I915_CACHE_NONE)
756                         needs_clflush_after = 1;
757                 if (obj->gtt_space) {
758                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
759                         if (ret)
760                                 return ret;
761                 }
762         }
763         /* Same trick applies for invalidate partially written cachelines before
764          * writing.  */
765         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766             && obj->cache_level == I915_CACHE_NONE)
767                 needs_clflush_before = 1;
768
769         ret = i915_gem_object_get_pages(obj);
770         if (ret)
771                 return ret;
772
773         i915_gem_object_pin_pages(obj);
774
775         offset = args->offset;
776         obj->dirty = 1;
777
778         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779                 struct page *page;
780                 int partial_cacheline_write;
781
782                 if (i < offset >> PAGE_SHIFT)
783                         continue;
784
785                 if (remain <= 0)
786                         break;
787
788                 /* Operation in this page
789                  *
790                  * shmem_page_offset = offset within page in shmem file
791                  * page_length = bytes to copy for this page
792                  */
793                 shmem_page_offset = offset_in_page(offset);
794
795                 page_length = remain;
796                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - shmem_page_offset;
798
799                 /* If we don't overwrite a cacheline completely we need to be
800                  * careful to have up-to-date data by first clflushing. Don't
801                  * overcomplicate things and flush the entire patch. */
802                 partial_cacheline_write = needs_clflush_before &&
803                         ((shmem_page_offset | page_length)
804                                 & (boot_cpu_data.x86_clflush_size - 1));
805
806                 page = sg_page(sg);
807                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808                         (page_to_phys(page) & (1 << 17)) != 0;
809
810                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811                                         user_data, page_do_bit17_swizzling,
812                                         partial_cacheline_write,
813                                         needs_clflush_after);
814                 if (ret == 0)
815                         goto next_page;
816
817                 hit_slowpath = 1;
818                 mutex_unlock(&dev->struct_mutex);
819                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820                                         user_data, page_do_bit17_swizzling,
821                                         partial_cacheline_write,
822                                         needs_clflush_after);
823
824                 mutex_lock(&dev->struct_mutex);
825
826 next_page:
827                 set_page_dirty(page);
828                 mark_page_accessed(page);
829
830                 if (ret)
831                         goto out;
832
833                 remain -= page_length;
834                 user_data += page_length;
835                 offset += page_length;
836         }
837
838 out:
839         i915_gem_object_unpin_pages(obj);
840
841         if (hit_slowpath) {
842                 /* Fixup: Kill any reinstated backing storage pages */
843                 if (obj->madv == __I915_MADV_PURGED)
844                         i915_gem_object_truncate(obj);
845                 /* and flush dirty cachelines in case the object isn't in the cpu write
846                  * domain anymore. */
847                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848                         i915_gem_clflush_object(obj);
849                         intel_gtt_chipset_flush();
850                 }
851         }
852
853         if (needs_clflush_after)
854                 intel_gtt_chipset_flush();
855
856         return ret;
857 }
858
859 /**
860  * Writes data to the object referenced by handle.
861  *
862  * On error, the contents of the buffer that were to be modified are undefined.
863  */
864 int
865 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866                       struct drm_file *file)
867 {
868         struct drm_i915_gem_pwrite *args = data;
869         struct drm_i915_gem_object *obj;
870         int ret;
871
872         if (args->size == 0)
873                 return 0;
874
875         if (!access_ok(VERIFY_READ,
876                        (char __user *)(uintptr_t)args->data_ptr,
877                        args->size))
878                 return -EFAULT;
879
880         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881                                            args->size);
882         if (ret)
883                 return -EFAULT;
884
885         ret = i915_mutex_lock_interruptible(dev);
886         if (ret)
887                 return ret;
888
889         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890         if (&obj->base == NULL) {
891                 ret = -ENOENT;
892                 goto unlock;
893         }
894
895         /* Bounds check destination. */
896         if (args->offset > obj->base.size ||
897             args->size > obj->base.size - args->offset) {
898                 ret = -EINVAL;
899                 goto out;
900         }
901
902         /* prime objects have no backing filp to GEM pread/pwrite
903          * pages from.
904          */
905         if (!obj->base.filp) {
906                 ret = -EINVAL;
907                 goto out;
908         }
909
910         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
912         ret = -EFAULT;
913         /* We can only do the GTT pwrite on untiled buffers, as otherwise
914          * it would end up going through the fenced access, and we'll get
915          * different detiling behavior between reading and writing.
916          * pread/pwrite currently are reading and writing from the CPU
917          * perspective, requiring manual detiling by the client.
918          */
919         if (obj->phys_obj) {
920                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
921                 goto out;
922         }
923
924         if (obj->cache_level == I915_CACHE_NONE &&
925             obj->tiling_mode == I915_TILING_NONE &&
926             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928                 /* Note that the gtt paths might fail with non-page-backed user
929                  * pointers (e.g. gtt mappings when moving data between
930                  * textures). Fallback to the shmem path in that case. */
931         }
932
933         if (ret == -EFAULT || ret == -ENOSPC)
934                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937         drm_gem_object_unreference(&obj->base);
938 unlock:
939         mutex_unlock(&dev->struct_mutex);
940         return ret;
941 }
942
943 int
944 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945                      bool interruptible)
946 {
947         if (atomic_read(&dev_priv->mm.wedged)) {
948                 struct completion *x = &dev_priv->error_completion;
949                 bool recovery_complete;
950                 unsigned long flags;
951
952                 /* Give the error handler a chance to run. */
953                 spin_lock_irqsave(&x->wait.lock, flags);
954                 recovery_complete = x->done > 0;
955                 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957                 /* Non-interruptible callers can't handle -EAGAIN, hence return
958                  * -EIO unconditionally for these. */
959                 if (!interruptible)
960                         return -EIO;
961
962                 /* Recovery complete, but still wedged means reset failure. */
963                 if (recovery_complete)
964                         return -EIO;
965
966                 return -EAGAIN;
967         }
968
969         return 0;
970 }
971
972 /*
973  * Compare seqno against outstanding lazy request. Emit a request if they are
974  * equal.
975  */
976 static int
977 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978 {
979         int ret;
980
981         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983         ret = 0;
984         if (seqno == ring->outstanding_lazy_request)
985                 ret = i915_add_request(ring, NULL, NULL);
986
987         return ret;
988 }
989
990 /**
991  * __wait_seqno - wait until execution of seqno has finished
992  * @ring: the ring expected to report seqno
993  * @seqno: duh!
994  * @interruptible: do an interruptible wait (normally yes)
995  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996  *
997  * Returns 0 if the seqno was found within the alloted time. Else returns the
998  * errno with remaining time filled in timeout argument.
999  */
1000 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001                         bool interruptible, struct timespec *timeout)
1002 {
1003         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004         struct timespec before, now, wait_time={1,0};
1005         unsigned long timeout_jiffies;
1006         long end;
1007         bool wait_forever = true;
1008         int ret;
1009
1010         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011                 return 0;
1012
1013         trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015         if (timeout != NULL) {
1016                 wait_time = *timeout;
1017                 wait_forever = false;
1018         }
1019
1020         timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022         if (WARN_ON(!ring->irq_get(ring)))
1023                 return -ENODEV;
1024
1025         /* Record current time in case interrupted by signal, or wedged * */
1026         getrawmonotonic(&before);
1027
1028 #define EXIT_COND \
1029         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030         atomic_read(&dev_priv->mm.wedged))
1031         do {
1032                 if (interruptible)
1033                         end = wait_event_interruptible_timeout(ring->irq_queue,
1034                                                                EXIT_COND,
1035                                                                timeout_jiffies);
1036                 else
1037                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038                                                  timeout_jiffies);
1039
1040                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041                 if (ret)
1042                         end = ret;
1043         } while (end == 0 && wait_forever);
1044
1045         getrawmonotonic(&now);
1046
1047         ring->irq_put(ring);
1048         trace_i915_gem_request_wait_end(ring, seqno);
1049 #undef EXIT_COND
1050
1051         if (timeout) {
1052                 struct timespec sleep_time = timespec_sub(now, before);
1053                 *timeout = timespec_sub(*timeout, sleep_time);
1054         }
1055
1056         switch (end) {
1057         case -EIO:
1058         case -EAGAIN: /* Wedged */
1059         case -ERESTARTSYS: /* Signal */
1060                 return (int)end;
1061         case 0: /* Timeout */
1062                 if (timeout)
1063                         set_normalized_timespec(timeout, 0, 0);
1064                 return -ETIME;
1065         default: /* Completed */
1066                 WARN_ON(end < 0); /* We're not aware of other errors */
1067                 return 0;
1068         }
1069 }
1070
1071 /**
1072  * Waits for a sequence number to be signaled, and cleans up the
1073  * request and object lists appropriately for that event.
1074  */
1075 int
1076 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077 {
1078         struct drm_device *dev = ring->dev;
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         bool interruptible = dev_priv->mm.interruptible;
1081         int ret;
1082
1083         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084         BUG_ON(seqno == 0);
1085
1086         ret = i915_gem_check_wedge(dev_priv, interruptible);
1087         if (ret)
1088                 return ret;
1089
1090         ret = i915_gem_check_olr(ring, seqno);
1091         if (ret)
1092                 return ret;
1093
1094         return __wait_seqno(ring, seqno, interruptible, NULL);
1095 }
1096
1097 /**
1098  * Ensures that all rendering to the object has completed and the object is
1099  * safe to unbind from the GTT or access from the CPU.
1100  */
1101 static __must_check int
1102 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103                                bool readonly)
1104 {
1105         struct intel_ring_buffer *ring = obj->ring;
1106         u32 seqno;
1107         int ret;
1108
1109         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110         if (seqno == 0)
1111                 return 0;
1112
1113         ret = i915_wait_seqno(ring, seqno);
1114         if (ret)
1115                 return ret;
1116
1117         i915_gem_retire_requests_ring(ring);
1118
1119         /* Manually manage the write flush as we may have not yet
1120          * retired the buffer.
1121          */
1122         if (obj->last_write_seqno &&
1123             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124                 obj->last_write_seqno = 0;
1125                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126         }
1127
1128         return 0;
1129 }
1130
1131 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1132  * as the object state may change during this call.
1133  */
1134 static __must_check int
1135 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136                                             bool readonly)
1137 {
1138         struct drm_device *dev = obj->base.dev;
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140         struct intel_ring_buffer *ring = obj->ring;
1141         u32 seqno;
1142         int ret;
1143
1144         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145         BUG_ON(!dev_priv->mm.interruptible);
1146
1147         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148         if (seqno == 0)
1149                 return 0;
1150
1151         ret = i915_gem_check_wedge(dev_priv, true);
1152         if (ret)
1153                 return ret;
1154
1155         ret = i915_gem_check_olr(ring, seqno);
1156         if (ret)
1157                 return ret;
1158
1159         mutex_unlock(&dev->struct_mutex);
1160         ret = __wait_seqno(ring, seqno, true, NULL);
1161         mutex_lock(&dev->struct_mutex);
1162
1163         i915_gem_retire_requests_ring(ring);
1164
1165         /* Manually manage the write flush as we may have not yet
1166          * retired the buffer.
1167          */
1168         if (obj->last_write_seqno &&
1169             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170                 obj->last_write_seqno = 0;
1171                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172         }
1173
1174         return ret;
1175 }
1176
1177 /**
1178  * Called when user space prepares to use an object with the CPU, either
1179  * through the mmap ioctl's mapping or a GTT mapping.
1180  */
1181 int
1182 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183                           struct drm_file *file)
1184 {
1185         struct drm_i915_gem_set_domain *args = data;
1186         struct drm_i915_gem_object *obj;
1187         uint32_t read_domains = args->read_domains;
1188         uint32_t write_domain = args->write_domain;
1189         int ret;
1190
1191         /* Only handle setting domains to types used by the CPU. */
1192         if (write_domain & I915_GEM_GPU_DOMAINS)
1193                 return -EINVAL;
1194
1195         if (read_domains & I915_GEM_GPU_DOMAINS)
1196                 return -EINVAL;
1197
1198         /* Having something in the write domain implies it's in the read
1199          * domain, and only that read domain.  Enforce that in the request.
1200          */
1201         if (write_domain != 0 && read_domains != write_domain)
1202                 return -EINVAL;
1203
1204         ret = i915_mutex_lock_interruptible(dev);
1205         if (ret)
1206                 return ret;
1207
1208         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209         if (&obj->base == NULL) {
1210                 ret = -ENOENT;
1211                 goto unlock;
1212         }
1213
1214         /* Try to flush the object off the GPU without holding the lock.
1215          * We will repeat the flush holding the lock in the normal manner
1216          * to catch cases where we are gazumped.
1217          */
1218         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219         if (ret)
1220                 goto unref;
1221
1222         if (read_domains & I915_GEM_DOMAIN_GTT) {
1223                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224
1225                 /* Silently promote "you're not bound, there was nothing to do"
1226                  * to success, since the client was just asking us to
1227                  * make sure everything was done.
1228                  */
1229                 if (ret == -EINVAL)
1230                         ret = 0;
1231         } else {
1232                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233         }
1234
1235 unref:
1236         drm_gem_object_unreference(&obj->base);
1237 unlock:
1238         mutex_unlock(&dev->struct_mutex);
1239         return ret;
1240 }
1241
1242 /**
1243  * Called when user space has done writes to this buffer
1244  */
1245 int
1246 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247                          struct drm_file *file)
1248 {
1249         struct drm_i915_gem_sw_finish *args = data;
1250         struct drm_i915_gem_object *obj;
1251         int ret = 0;
1252
1253         ret = i915_mutex_lock_interruptible(dev);
1254         if (ret)
1255                 return ret;
1256
1257         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258         if (&obj->base == NULL) {
1259                 ret = -ENOENT;
1260                 goto unlock;
1261         }
1262
1263         /* Pinned buffers may be scanout, so flush the cache */
1264         if (obj->pin_count)
1265                 i915_gem_object_flush_cpu_write_domain(obj);
1266
1267         drm_gem_object_unreference(&obj->base);
1268 unlock:
1269         mutex_unlock(&dev->struct_mutex);
1270         return ret;
1271 }
1272
1273 /**
1274  * Maps the contents of an object, returning the address it is mapped
1275  * into.
1276  *
1277  * While the mapping holds a reference on the contents of the object, it doesn't
1278  * imply a ref on the object itself.
1279  */
1280 int
1281 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282                     struct drm_file *file)
1283 {
1284         struct drm_i915_gem_mmap *args = data;
1285         struct drm_gem_object *obj;
1286         unsigned long addr;
1287
1288         obj = drm_gem_object_lookup(dev, file, args->handle);
1289         if (obj == NULL)
1290                 return -ENOENT;
1291
1292         /* prime objects have no backing filp to GEM mmap
1293          * pages from.
1294          */
1295         if (!obj->filp) {
1296                 drm_gem_object_unreference_unlocked(obj);
1297                 return -EINVAL;
1298         }
1299
1300         addr = vm_mmap(obj->filp, 0, args->size,
1301                        PROT_READ | PROT_WRITE, MAP_SHARED,
1302                        args->offset);
1303         drm_gem_object_unreference_unlocked(obj);
1304         if (IS_ERR((void *)addr))
1305                 return addr;
1306
1307         args->addr_ptr = (uint64_t) addr;
1308
1309         return 0;
1310 }
1311
1312 /**
1313  * i915_gem_fault - fault a page into the GTT
1314  * vma: VMA in question
1315  * vmf: fault info
1316  *
1317  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318  * from userspace.  The fault handler takes care of binding the object to
1319  * the GTT (if needed), allocating and programming a fence register (again,
1320  * only if needed based on whether the old reg is still valid or the object
1321  * is tiled) and inserting a new PTE into the faulting process.
1322  *
1323  * Note that the faulting process may involve evicting existing objects
1324  * from the GTT and/or fence registers to make room.  So performance may
1325  * suffer if the GTT working set is large or there are few fence registers
1326  * left.
1327  */
1328 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329 {
1330         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331         struct drm_device *dev = obj->base.dev;
1332         drm_i915_private_t *dev_priv = dev->dev_private;
1333         pgoff_t page_offset;
1334         unsigned long pfn;
1335         int ret = 0;
1336         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337
1338         /* We don't use vmf->pgoff since that has the fake offset */
1339         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340                 PAGE_SHIFT;
1341
1342         ret = i915_mutex_lock_interruptible(dev);
1343         if (ret)
1344                 goto out;
1345
1346         trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
1348         /* Now bind it into the GTT if needed */
1349         if (!obj->map_and_fenceable) {
1350                 ret = i915_gem_object_unbind(obj);
1351                 if (ret)
1352                         goto unlock;
1353         }
1354         if (!obj->gtt_space) {
1355                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356                 if (ret)
1357                         goto unlock;
1358
1359                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360                 if (ret)
1361                         goto unlock;
1362         }
1363
1364         if (!obj->has_global_gtt_mapping)
1365                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
1367         ret = i915_gem_object_get_fence(obj);
1368         if (ret)
1369                 goto unlock;
1370
1371         if (i915_gem_object_is_inactive(obj))
1372                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373
1374         obj->fault_mappable = true;
1375
1376         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377                 page_offset;
1378
1379         /* Finally, remap it using the new GTT offset */
1380         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381 unlock:
1382         mutex_unlock(&dev->struct_mutex);
1383 out:
1384         switch (ret) {
1385         case -EIO:
1386                 /* If this -EIO is due to a gpu hang, give the reset code a
1387                  * chance to clean up the mess. Otherwise return the proper
1388                  * SIGBUS. */
1389                 if (!atomic_read(&dev_priv->mm.wedged))
1390                         return VM_FAULT_SIGBUS;
1391         case -EAGAIN:
1392                 /* Give the error handler a chance to run and move the
1393                  * objects off the GPU active list. Next time we service the
1394                  * fault, we should be able to transition the page into the
1395                  * GTT without touching the GPU (and so avoid further
1396                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397                  * with coherency, just lost writes.
1398                  */
1399                 set_need_resched();
1400         case 0:
1401         case -ERESTARTSYS:
1402         case -EINTR:
1403         case -EBUSY:
1404                 /*
1405                  * EBUSY is ok: this just means that another thread
1406                  * already did the job.
1407                  */
1408                 return VM_FAULT_NOPAGE;
1409         case -ENOMEM:
1410                 return VM_FAULT_OOM;
1411         default:
1412                 WARN_ON_ONCE(ret);
1413                 return VM_FAULT_SIGBUS;
1414         }
1415 }
1416
1417 /**
1418  * i915_gem_release_mmap - remove physical page mappings
1419  * @obj: obj in question
1420  *
1421  * Preserve the reservation of the mmapping with the DRM core code, but
1422  * relinquish ownership of the pages back to the system.
1423  *
1424  * It is vital that we remove the page mapping if we have mapped a tiled
1425  * object through the GTT and then lose the fence register due to
1426  * resource pressure. Similarly if the object has been moved out of the
1427  * aperture, than pages mapped into userspace must be revoked. Removing the
1428  * mapping will then trigger a page fault on the next user access, allowing
1429  * fixup by i915_gem_fault().
1430  */
1431 void
1432 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1433 {
1434         if (!obj->fault_mappable)
1435                 return;
1436
1437         if (obj->base.dev->dev_mapping)
1438                 unmap_mapping_range(obj->base.dev->dev_mapping,
1439                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1440                                     obj->base.size, 1);
1441
1442         obj->fault_mappable = false;
1443 }
1444
1445 static uint32_t
1446 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1447 {
1448         uint32_t gtt_size;
1449
1450         if (INTEL_INFO(dev)->gen >= 4 ||
1451             tiling_mode == I915_TILING_NONE)
1452                 return size;
1453
1454         /* Previous chips need a power-of-two fence region when tiling */
1455         if (INTEL_INFO(dev)->gen == 3)
1456                 gtt_size = 1024*1024;
1457         else
1458                 gtt_size = 512*1024;
1459
1460         while (gtt_size < size)
1461                 gtt_size <<= 1;
1462
1463         return gtt_size;
1464 }
1465
1466 /**
1467  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1468  * @obj: object to check
1469  *
1470  * Return the required GTT alignment for an object, taking into account
1471  * potential fence register mapping.
1472  */
1473 static uint32_t
1474 i915_gem_get_gtt_alignment(struct drm_device *dev,
1475                            uint32_t size,
1476                            int tiling_mode)
1477 {
1478         /*
1479          * Minimum alignment is 4k (GTT page size), but might be greater
1480          * if a fence register is needed for the object.
1481          */
1482         if (INTEL_INFO(dev)->gen >= 4 ||
1483             tiling_mode == I915_TILING_NONE)
1484                 return 4096;
1485
1486         /*
1487          * Previous chips need to be aligned to the size of the smallest
1488          * fence register that can contain the object.
1489          */
1490         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1491 }
1492
1493 /**
1494  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1495  *                                       unfenced object
1496  * @dev: the device
1497  * @size: size of the object
1498  * @tiling_mode: tiling mode of the object
1499  *
1500  * Return the required GTT alignment for an object, only taking into account
1501  * unfenced tiled surface requirements.
1502  */
1503 uint32_t
1504 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1505                                     uint32_t size,
1506                                     int tiling_mode)
1507 {
1508         /*
1509          * Minimum alignment is 4k (GTT page size) for sane hw.
1510          */
1511         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1512             tiling_mode == I915_TILING_NONE)
1513                 return 4096;
1514
1515         /* Previous hardware however needs to be aligned to a power-of-two
1516          * tile height. The simplest method for determining this is to reuse
1517          * the power-of-tile object size.
1518          */
1519         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1520 }
1521
1522 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1523 {
1524         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1525         int ret;
1526
1527         if (obj->base.map_list.map)
1528                 return 0;
1529
1530         ret = drm_gem_create_mmap_offset(&obj->base);
1531         if (ret != -ENOSPC)
1532                 return ret;
1533
1534         /* Badly fragmented mmap space? The only way we can recover
1535          * space is by destroying unwanted objects. We can't randomly release
1536          * mmap_offsets as userspace expects them to be persistent for the
1537          * lifetime of the objects. The closest we can is to release the
1538          * offsets on purgeable objects by truncating it and marking it purged,
1539          * which prevents userspace from ever using that object again.
1540          */
1541         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1542         ret = drm_gem_create_mmap_offset(&obj->base);
1543         if (ret != -ENOSPC)
1544                 return ret;
1545
1546         i915_gem_shrink_all(dev_priv);
1547         return drm_gem_create_mmap_offset(&obj->base);
1548 }
1549
1550 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1551 {
1552         if (!obj->base.map_list.map)
1553                 return;
1554
1555         drm_gem_free_mmap_offset(&obj->base);
1556 }
1557
1558 int
1559 i915_gem_mmap_gtt(struct drm_file *file,
1560                   struct drm_device *dev,
1561                   uint32_t handle,
1562                   uint64_t *offset)
1563 {
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         struct drm_i915_gem_object *obj;
1566         int ret;
1567
1568         ret = i915_mutex_lock_interruptible(dev);
1569         if (ret)
1570                 return ret;
1571
1572         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1573         if (&obj->base == NULL) {
1574                 ret = -ENOENT;
1575                 goto unlock;
1576         }
1577
1578         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1579                 ret = -E2BIG;
1580                 goto out;
1581         }
1582
1583         if (obj->madv != I915_MADV_WILLNEED) {
1584                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1585                 ret = -EINVAL;
1586                 goto out;
1587         }
1588
1589         ret = i915_gem_object_create_mmap_offset(obj);
1590         if (ret)
1591                 goto out;
1592
1593         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1594
1595 out:
1596         drm_gem_object_unreference(&obj->base);
1597 unlock:
1598         mutex_unlock(&dev->struct_mutex);
1599         return ret;
1600 }
1601
1602 /**
1603  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1604  * @dev: DRM device
1605  * @data: GTT mapping ioctl data
1606  * @file: GEM object info
1607  *
1608  * Simply returns the fake offset to userspace so it can mmap it.
1609  * The mmap call will end up in drm_gem_mmap(), which will set things
1610  * up so we can get faults in the handler above.
1611  *
1612  * The fault handler will take care of binding the object into the GTT
1613  * (since it may have been evicted to make room for something), allocating
1614  * a fence register, and mapping the appropriate aperture address into
1615  * userspace.
1616  */
1617 int
1618 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1619                         struct drm_file *file)
1620 {
1621         struct drm_i915_gem_mmap_gtt *args = data;
1622
1623         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1624 }
1625
1626 /* Immediately discard the backing storage */
1627 static void
1628 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1629 {
1630         struct inode *inode;
1631
1632         i915_gem_object_free_mmap_offset(obj);
1633
1634         if (obj->base.filp == NULL)
1635                 return;
1636
1637         /* Our goal here is to return as much of the memory as
1638          * is possible back to the system as we are called from OOM.
1639          * To do this we must instruct the shmfs to drop all of its
1640          * backing pages, *now*.
1641          */
1642         inode = obj->base.filp->f_path.dentry->d_inode;
1643         shmem_truncate_range(inode, 0, (loff_t)-1);
1644
1645         obj->madv = __I915_MADV_PURGED;
1646 }
1647
1648 static inline int
1649 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1650 {
1651         return obj->madv == I915_MADV_DONTNEED;
1652 }
1653
1654 static void
1655 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1656 {
1657         int page_count = obj->base.size / PAGE_SIZE;
1658         struct scatterlist *sg;
1659         int ret, i;
1660
1661         BUG_ON(obj->madv == __I915_MADV_PURGED);
1662
1663         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1664         if (ret) {
1665                 /* In the event of a disaster, abandon all caches and
1666                  * hope for the best.
1667                  */
1668                 WARN_ON(ret != -EIO);
1669                 i915_gem_clflush_object(obj);
1670                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1671         }
1672
1673         if (i915_gem_object_needs_bit17_swizzle(obj))
1674                 i915_gem_object_save_bit_17_swizzle(obj);
1675
1676         if (obj->madv == I915_MADV_DONTNEED)
1677                 obj->dirty = 0;
1678
1679         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1680                 struct page *page = sg_page(sg);
1681
1682                 if (obj->dirty)
1683                         set_page_dirty(page);
1684
1685                 if (obj->madv == I915_MADV_WILLNEED)
1686                         mark_page_accessed(page);
1687
1688                 page_cache_release(page);
1689         }
1690         obj->dirty = 0;
1691
1692         sg_free_table(obj->pages);
1693         kfree(obj->pages);
1694 }
1695
1696 static int
1697 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1698 {
1699         const struct drm_i915_gem_object_ops *ops = obj->ops;
1700
1701         if (obj->pages == NULL)
1702                 return 0;
1703
1704         BUG_ON(obj->gtt_space);
1705
1706         if (obj->pages_pin_count)
1707                 return -EBUSY;
1708
1709         ops->put_pages(obj);
1710         obj->pages = NULL;
1711
1712         list_del(&obj->gtt_list);
1713         if (i915_gem_object_is_purgeable(obj))
1714                 i915_gem_object_truncate(obj);
1715
1716         return 0;
1717 }
1718
1719 static long
1720 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1721 {
1722         struct drm_i915_gem_object *obj, *next;
1723         long count = 0;
1724
1725         list_for_each_entry_safe(obj, next,
1726                                  &dev_priv->mm.unbound_list,
1727                                  gtt_list) {
1728                 if (i915_gem_object_is_purgeable(obj) &&
1729                     i915_gem_object_put_pages(obj) == 0) {
1730                         count += obj->base.size >> PAGE_SHIFT;
1731                         if (count >= target)
1732                                 return count;
1733                 }
1734         }
1735
1736         list_for_each_entry_safe(obj, next,
1737                                  &dev_priv->mm.inactive_list,
1738                                  mm_list) {
1739                 if (i915_gem_object_is_purgeable(obj) &&
1740                     i915_gem_object_unbind(obj) == 0 &&
1741                     i915_gem_object_put_pages(obj) == 0) {
1742                         count += obj->base.size >> PAGE_SHIFT;
1743                         if (count >= target)
1744                                 return count;
1745                 }
1746         }
1747
1748         return count;
1749 }
1750
1751 static void
1752 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1753 {
1754         struct drm_i915_gem_object *obj, *next;
1755
1756         i915_gem_evict_everything(dev_priv->dev);
1757
1758         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1759                 i915_gem_object_put_pages(obj);
1760 }
1761
1762 static int
1763 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764 {
1765         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766         int page_count, i;
1767         struct address_space *mapping;
1768         struct sg_table *st;
1769         struct scatterlist *sg;
1770         struct page *page;
1771         gfp_t gfp;
1772
1773         /* Assert that the object is not currently in any GPU domain. As it
1774          * wasn't in the GTT, there shouldn't be any way it could have been in
1775          * a GPU cache
1776          */
1777         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1778         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1779
1780         st = kmalloc(sizeof(*st), GFP_KERNEL);
1781         if (st == NULL)
1782                 return -ENOMEM;
1783
1784         page_count = obj->base.size / PAGE_SIZE;
1785         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1786                 sg_free_table(st);
1787                 kfree(st);
1788                 return -ENOMEM;
1789         }
1790
1791         /* Get the list of pages out of our struct file.  They'll be pinned
1792          * at this point until we release them.
1793          *
1794          * Fail silently without starting the shrinker
1795          */
1796         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1797         gfp = mapping_gfp_mask(mapping);
1798         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1799         gfp &= ~(__GFP_IO | __GFP_WAIT);
1800         for_each_sg(st->sgl, sg, page_count, i) {
1801                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1802                 if (IS_ERR(page)) {
1803                         i915_gem_purge(dev_priv, page_count);
1804                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1805                 }
1806                 if (IS_ERR(page)) {
1807                         /* We've tried hard to allocate the memory by reaping
1808                          * our own buffer, now let the real VM do its job and
1809                          * go down in flames if truly OOM.
1810                          */
1811                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1812                         gfp |= __GFP_IO | __GFP_WAIT;
1813
1814                         i915_gem_shrink_all(dev_priv);
1815                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1816                         if (IS_ERR(page))
1817                                 goto err_pages;
1818
1819                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1820                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1821                 }
1822
1823                 sg_set_page(sg, page, PAGE_SIZE, 0);
1824         }
1825
1826         if (i915_gem_object_needs_bit17_swizzle(obj))
1827                 i915_gem_object_do_bit_17_swizzle(obj);
1828
1829         obj->pages = st;
1830         return 0;
1831
1832 err_pages:
1833         for_each_sg(st->sgl, sg, i, page_count)
1834                 page_cache_release(sg_page(sg));
1835         sg_free_table(st);
1836         kfree(st);
1837         return PTR_ERR(page);
1838 }
1839
1840 /* Ensure that the associated pages are gathered from the backing storage
1841  * and pinned into our object. i915_gem_object_get_pages() may be called
1842  * multiple times before they are released by a single call to
1843  * i915_gem_object_put_pages() - once the pages are no longer referenced
1844  * either as a result of memory pressure (reaping pages under the shrinker)
1845  * or as the object is itself released.
1846  */
1847 int
1848 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1849 {
1850         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1851         const struct drm_i915_gem_object_ops *ops = obj->ops;
1852         int ret;
1853
1854         if (obj->pages)
1855                 return 0;
1856
1857         BUG_ON(obj->pages_pin_count);
1858
1859         ret = ops->get_pages(obj);
1860         if (ret)
1861                 return ret;
1862
1863         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1864         return 0;
1865 }
1866
1867 void
1868 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1869                                struct intel_ring_buffer *ring,
1870                                u32 seqno)
1871 {
1872         struct drm_device *dev = obj->base.dev;
1873         struct drm_i915_private *dev_priv = dev->dev_private;
1874
1875         BUG_ON(ring == NULL);
1876         obj->ring = ring;
1877
1878         /* Add a reference if we're newly entering the active list. */
1879         if (!obj->active) {
1880                 drm_gem_object_reference(&obj->base);
1881                 obj->active = 1;
1882         }
1883
1884         /* Move from whatever list we were on to the tail of execution. */
1885         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1886         list_move_tail(&obj->ring_list, &ring->active_list);
1887
1888         obj->last_read_seqno = seqno;
1889
1890         if (obj->fenced_gpu_access) {
1891                 obj->last_fenced_seqno = seqno;
1892
1893                 /* Bump MRU to take account of the delayed flush */
1894                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1895                         struct drm_i915_fence_reg *reg;
1896
1897                         reg = &dev_priv->fence_regs[obj->fence_reg];
1898                         list_move_tail(&reg->lru_list,
1899                                        &dev_priv->mm.fence_list);
1900                 }
1901         }
1902 }
1903
1904 static void
1905 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1906 {
1907         struct drm_device *dev = obj->base.dev;
1908         struct drm_i915_private *dev_priv = dev->dev_private;
1909
1910         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1911         BUG_ON(!obj->active);
1912
1913         if (obj->pin_count) /* are we a framebuffer? */
1914                 intel_mark_fb_idle(obj);
1915
1916         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1917
1918         list_del_init(&obj->ring_list);
1919         obj->ring = NULL;
1920
1921         obj->last_read_seqno = 0;
1922         obj->last_write_seqno = 0;
1923         obj->base.write_domain = 0;
1924
1925         obj->last_fenced_seqno = 0;
1926         obj->fenced_gpu_access = false;
1927
1928         obj->active = 0;
1929         drm_gem_object_unreference(&obj->base);
1930
1931         WARN_ON(i915_verify_lists(dev));
1932 }
1933
1934 static u32
1935 i915_gem_get_seqno(struct drm_device *dev)
1936 {
1937         drm_i915_private_t *dev_priv = dev->dev_private;
1938         u32 seqno = dev_priv->next_seqno;
1939
1940         /* reserve 0 for non-seqno */
1941         if (++dev_priv->next_seqno == 0)
1942                 dev_priv->next_seqno = 1;
1943
1944         return seqno;
1945 }
1946
1947 u32
1948 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1949 {
1950         if (ring->outstanding_lazy_request == 0)
1951                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1952
1953         return ring->outstanding_lazy_request;
1954 }
1955
1956 int
1957 i915_add_request(struct intel_ring_buffer *ring,
1958                  struct drm_file *file,
1959                  u32 *out_seqno)
1960 {
1961         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1962         struct drm_i915_gem_request *request;
1963         u32 request_ring_position;
1964         u32 seqno;
1965         int was_empty;
1966         int ret;
1967
1968         /*
1969          * Emit any outstanding flushes - execbuf can fail to emit the flush
1970          * after having emitted the batchbuffer command. Hence we need to fix
1971          * things up similar to emitting the lazy request. The difference here
1972          * is that the flush _must_ happen before the next request, no matter
1973          * what.
1974          */
1975         ret = intel_ring_flush_all_caches(ring);
1976         if (ret)
1977                 return ret;
1978
1979         request = kmalloc(sizeof(*request), GFP_KERNEL);
1980         if (request == NULL)
1981                 return -ENOMEM;
1982
1983         seqno = i915_gem_next_request_seqno(ring);
1984
1985         /* Record the position of the start of the request so that
1986          * should we detect the updated seqno part-way through the
1987          * GPU processing the request, we never over-estimate the
1988          * position of the head.
1989          */
1990         request_ring_position = intel_ring_get_tail(ring);
1991
1992         ret = ring->add_request(ring, &seqno);
1993         if (ret) {
1994                 kfree(request);
1995                 return ret;
1996         }
1997
1998         trace_i915_gem_request_add(ring, seqno);
1999
2000         request->seqno = seqno;
2001         request->ring = ring;
2002         request->tail = request_ring_position;
2003         request->emitted_jiffies = jiffies;
2004         was_empty = list_empty(&ring->request_list);
2005         list_add_tail(&request->list, &ring->request_list);
2006         request->file_priv = NULL;
2007
2008         if (file) {
2009                 struct drm_i915_file_private *file_priv = file->driver_priv;
2010
2011                 spin_lock(&file_priv->mm.lock);
2012                 request->file_priv = file_priv;
2013                 list_add_tail(&request->client_list,
2014                               &file_priv->mm.request_list);
2015                 spin_unlock(&file_priv->mm.lock);
2016         }
2017
2018         ring->outstanding_lazy_request = 0;
2019
2020         if (!dev_priv->mm.suspended) {
2021                 if (i915_enable_hangcheck) {
2022                         mod_timer(&dev_priv->hangcheck_timer,
2023                                   jiffies +
2024                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2025                 }
2026                 if (was_empty) {
2027                         queue_delayed_work(dev_priv->wq,
2028                                            &dev_priv->mm.retire_work, HZ);
2029                         intel_mark_busy(dev_priv->dev);
2030                 }
2031         }
2032
2033         if (out_seqno)
2034                 *out_seqno = seqno;
2035         return 0;
2036 }
2037
2038 static inline void
2039 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2040 {
2041         struct drm_i915_file_private *file_priv = request->file_priv;
2042
2043         if (!file_priv)
2044                 return;
2045
2046         spin_lock(&file_priv->mm.lock);
2047         if (request->file_priv) {
2048                 list_del(&request->client_list);
2049                 request->file_priv = NULL;
2050         }
2051         spin_unlock(&file_priv->mm.lock);
2052 }
2053
2054 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2055                                       struct intel_ring_buffer *ring)
2056 {
2057         while (!list_empty(&ring->request_list)) {
2058                 struct drm_i915_gem_request *request;
2059
2060                 request = list_first_entry(&ring->request_list,
2061                                            struct drm_i915_gem_request,
2062                                            list);
2063
2064                 list_del(&request->list);
2065                 i915_gem_request_remove_from_client(request);
2066                 kfree(request);
2067         }
2068
2069         while (!list_empty(&ring->active_list)) {
2070                 struct drm_i915_gem_object *obj;
2071
2072                 obj = list_first_entry(&ring->active_list,
2073                                        struct drm_i915_gem_object,
2074                                        ring_list);
2075
2076                 i915_gem_object_move_to_inactive(obj);
2077         }
2078 }
2079
2080 static void i915_gem_reset_fences(struct drm_device *dev)
2081 {
2082         struct drm_i915_private *dev_priv = dev->dev_private;
2083         int i;
2084
2085         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2086                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2087
2088                 i915_gem_write_fence(dev, i, NULL);
2089
2090                 if (reg->obj)
2091                         i915_gem_object_fence_lost(reg->obj);
2092
2093                 reg->pin_count = 0;
2094                 reg->obj = NULL;
2095                 INIT_LIST_HEAD(&reg->lru_list);
2096         }
2097
2098         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2099 }
2100
2101 void i915_gem_reset(struct drm_device *dev)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         struct drm_i915_gem_object *obj;
2105         struct intel_ring_buffer *ring;
2106         int i;
2107
2108         for_each_ring(ring, dev_priv, i)
2109                 i915_gem_reset_ring_lists(dev_priv, ring);
2110
2111         /* Move everything out of the GPU domains to ensure we do any
2112          * necessary invalidation upon reuse.
2113          */
2114         list_for_each_entry(obj,
2115                             &dev_priv->mm.inactive_list,
2116                             mm_list)
2117         {
2118                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2119         }
2120
2121         /* The fence registers are invalidated so clear them out */
2122         i915_gem_reset_fences(dev);
2123 }
2124
2125 /**
2126  * This function clears the request list as sequence numbers are passed.
2127  */
2128 void
2129 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2130 {
2131         uint32_t seqno;
2132         int i;
2133
2134         if (list_empty(&ring->request_list))
2135                 return;
2136
2137         WARN_ON(i915_verify_lists(ring->dev));
2138
2139         seqno = ring->get_seqno(ring, true);
2140
2141         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2142                 if (seqno >= ring->sync_seqno[i])
2143                         ring->sync_seqno[i] = 0;
2144
2145         while (!list_empty(&ring->request_list)) {
2146                 struct drm_i915_gem_request *request;
2147
2148                 request = list_first_entry(&ring->request_list,
2149                                            struct drm_i915_gem_request,
2150                                            list);
2151
2152                 if (!i915_seqno_passed(seqno, request->seqno))
2153                         break;
2154
2155                 trace_i915_gem_request_retire(ring, request->seqno);
2156                 /* We know the GPU must have read the request to have
2157                  * sent us the seqno + interrupt, so use the position
2158                  * of tail of the request to update the last known position
2159                  * of the GPU head.
2160                  */
2161                 ring->last_retired_head = request->tail;
2162
2163                 list_del(&request->list);
2164                 i915_gem_request_remove_from_client(request);
2165                 kfree(request);
2166         }
2167
2168         /* Move any buffers on the active list that are no longer referenced
2169          * by the ringbuffer to the flushing/inactive lists as appropriate.
2170          */
2171         while (!list_empty(&ring->active_list)) {
2172                 struct drm_i915_gem_object *obj;
2173
2174                 obj = list_first_entry(&ring->active_list,
2175                                       struct drm_i915_gem_object,
2176                                       ring_list);
2177
2178                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2179                         break;
2180
2181                 i915_gem_object_move_to_inactive(obj);
2182         }
2183
2184         if (unlikely(ring->trace_irq_seqno &&
2185                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2186                 ring->irq_put(ring);
2187                 ring->trace_irq_seqno = 0;
2188         }
2189
2190         WARN_ON(i915_verify_lists(ring->dev));
2191 }
2192
2193 void
2194 i915_gem_retire_requests(struct drm_device *dev)
2195 {
2196         drm_i915_private_t *dev_priv = dev->dev_private;
2197         struct intel_ring_buffer *ring;
2198         int i;
2199
2200         for_each_ring(ring, dev_priv, i)
2201                 i915_gem_retire_requests_ring(ring);
2202 }
2203
2204 static void
2205 i915_gem_retire_work_handler(struct work_struct *work)
2206 {
2207         drm_i915_private_t *dev_priv;
2208         struct drm_device *dev;
2209         struct intel_ring_buffer *ring;
2210         bool idle;
2211         int i;
2212
2213         dev_priv = container_of(work, drm_i915_private_t,
2214                                 mm.retire_work.work);
2215         dev = dev_priv->dev;
2216
2217         /* Come back later if the device is busy... */
2218         if (!mutex_trylock(&dev->struct_mutex)) {
2219                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2220                 return;
2221         }
2222
2223         i915_gem_retire_requests(dev);
2224
2225         /* Send a periodic flush down the ring so we don't hold onto GEM
2226          * objects indefinitely.
2227          */
2228         idle = true;
2229         for_each_ring(ring, dev_priv, i) {
2230                 if (ring->gpu_caches_dirty)
2231                         i915_add_request(ring, NULL, NULL);
2232
2233                 idle &= list_empty(&ring->request_list);
2234         }
2235
2236         if (!dev_priv->mm.suspended && !idle)
2237                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2238         if (idle)
2239                 intel_mark_idle(dev);
2240
2241         mutex_unlock(&dev->struct_mutex);
2242 }
2243
2244 /**
2245  * Ensures that an object will eventually get non-busy by flushing any required
2246  * write domains, emitting any outstanding lazy request and retiring and
2247  * completed requests.
2248  */
2249 static int
2250 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2251 {
2252         int ret;
2253
2254         if (obj->active) {
2255                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2256                 if (ret)
2257                         return ret;
2258
2259                 i915_gem_retire_requests_ring(obj->ring);
2260         }
2261
2262         return 0;
2263 }
2264
2265 /**
2266  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2267  * @DRM_IOCTL_ARGS: standard ioctl arguments
2268  *
2269  * Returns 0 if successful, else an error is returned with the remaining time in
2270  * the timeout parameter.
2271  *  -ETIME: object is still busy after timeout
2272  *  -ERESTARTSYS: signal interrupted the wait
2273  *  -ENONENT: object doesn't exist
2274  * Also possible, but rare:
2275  *  -EAGAIN: GPU wedged
2276  *  -ENOMEM: damn
2277  *  -ENODEV: Internal IRQ fail
2278  *  -E?: The add request failed
2279  *
2280  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2281  * non-zero timeout parameter the wait ioctl will wait for the given number of
2282  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2283  * without holding struct_mutex the object may become re-busied before this
2284  * function completes. A similar but shorter * race condition exists in the busy
2285  * ioctl
2286  */
2287 int
2288 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2289 {
2290         struct drm_i915_gem_wait *args = data;
2291         struct drm_i915_gem_object *obj;
2292         struct intel_ring_buffer *ring = NULL;
2293         struct timespec timeout_stack, *timeout = NULL;
2294         u32 seqno = 0;
2295         int ret = 0;
2296
2297         if (args->timeout_ns >= 0) {
2298                 timeout_stack = ns_to_timespec(args->timeout_ns);
2299                 timeout = &timeout_stack;
2300         }
2301
2302         ret = i915_mutex_lock_interruptible(dev);
2303         if (ret)
2304                 return ret;
2305
2306         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2307         if (&obj->base == NULL) {
2308                 mutex_unlock(&dev->struct_mutex);
2309                 return -ENOENT;
2310         }
2311
2312         /* Need to make sure the object gets inactive eventually. */
2313         ret = i915_gem_object_flush_active(obj);
2314         if (ret)
2315                 goto out;
2316
2317         if (obj->active) {
2318                 seqno = obj->last_read_seqno;
2319                 ring = obj->ring;
2320         }
2321
2322         if (seqno == 0)
2323                  goto out;
2324
2325         /* Do this after OLR check to make sure we make forward progress polling
2326          * on this IOCTL with a 0 timeout (like busy ioctl)
2327          */
2328         if (!args->timeout_ns) {
2329                 ret = -ETIME;
2330                 goto out;
2331         }
2332
2333         drm_gem_object_unreference(&obj->base);
2334         mutex_unlock(&dev->struct_mutex);
2335
2336         ret = __wait_seqno(ring, seqno, true, timeout);
2337         if (timeout) {
2338                 WARN_ON(!timespec_valid(timeout));
2339                 args->timeout_ns = timespec_to_ns(timeout);
2340         }
2341         return ret;
2342
2343 out:
2344         drm_gem_object_unreference(&obj->base);
2345         mutex_unlock(&dev->struct_mutex);
2346         return ret;
2347 }
2348
2349 /**
2350  * i915_gem_object_sync - sync an object to a ring.
2351  *
2352  * @obj: object which may be in use on another ring.
2353  * @to: ring we wish to use the object on. May be NULL.
2354  *
2355  * This code is meant to abstract object synchronization with the GPU.
2356  * Calling with NULL implies synchronizing the object with the CPU
2357  * rather than a particular GPU ring.
2358  *
2359  * Returns 0 if successful, else propagates up the lower layer error.
2360  */
2361 int
2362 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2363                      struct intel_ring_buffer *to)
2364 {
2365         struct intel_ring_buffer *from = obj->ring;
2366         u32 seqno;
2367         int ret, idx;
2368
2369         if (from == NULL || to == from)
2370                 return 0;
2371
2372         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2373                 return i915_gem_object_wait_rendering(obj, false);
2374
2375         idx = intel_ring_sync_index(from, to);
2376
2377         seqno = obj->last_read_seqno;
2378         if (seqno <= from->sync_seqno[idx])
2379                 return 0;
2380
2381         ret = i915_gem_check_olr(obj->ring, seqno);
2382         if (ret)
2383                 return ret;
2384
2385         ret = to->sync_to(to, from, seqno);
2386         if (!ret)
2387                 from->sync_seqno[idx] = seqno;
2388
2389         return ret;
2390 }
2391
2392 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2393 {
2394         u32 old_write_domain, old_read_domains;
2395
2396         /* Act a barrier for all accesses through the GTT */
2397         mb();
2398
2399         /* Force a pagefault for domain tracking on next user access */
2400         i915_gem_release_mmap(obj);
2401
2402         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2403                 return;
2404
2405         old_read_domains = obj->base.read_domains;
2406         old_write_domain = obj->base.write_domain;
2407
2408         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2409         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2410
2411         trace_i915_gem_object_change_domain(obj,
2412                                             old_read_domains,
2413                                             old_write_domain);
2414 }
2415
2416 /**
2417  * Unbinds an object from the GTT aperture.
2418  */
2419 int
2420 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2421 {
2422         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2423         int ret = 0;
2424
2425         if (obj->gtt_space == NULL)
2426                 return 0;
2427
2428         if (obj->pin_count)
2429                 return -EBUSY;
2430
2431         BUG_ON(obj->pages == NULL);
2432
2433         ret = i915_gem_object_finish_gpu(obj);
2434         if (ret)
2435                 return ret;
2436         /* Continue on if we fail due to EIO, the GPU is hung so we
2437          * should be safe and we need to cleanup or else we might
2438          * cause memory corruption through use-after-free.
2439          */
2440
2441         i915_gem_object_finish_gtt(obj);
2442
2443         /* release the fence reg _after_ flushing */
2444         ret = i915_gem_object_put_fence(obj);
2445         if (ret)
2446                 return ret;
2447
2448         trace_i915_gem_object_unbind(obj);
2449
2450         if (obj->has_global_gtt_mapping)
2451                 i915_gem_gtt_unbind_object(obj);
2452         if (obj->has_aliasing_ppgtt_mapping) {
2453                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2454                 obj->has_aliasing_ppgtt_mapping = 0;
2455         }
2456         i915_gem_gtt_finish_object(obj);
2457
2458         list_del(&obj->mm_list);
2459         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2460         /* Avoid an unnecessary call to unbind on rebind. */
2461         obj->map_and_fenceable = true;
2462
2463         drm_mm_put_block(obj->gtt_space);
2464         obj->gtt_space = NULL;
2465         obj->gtt_offset = 0;
2466
2467         return 0;
2468 }
2469
2470 static int i915_ring_idle(struct intel_ring_buffer *ring)
2471 {
2472         if (list_empty(&ring->active_list))
2473                 return 0;
2474
2475         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2476 }
2477
2478 int i915_gpu_idle(struct drm_device *dev)
2479 {
2480         drm_i915_private_t *dev_priv = dev->dev_private;
2481         struct intel_ring_buffer *ring;
2482         int ret, i;
2483
2484         /* Flush everything onto the inactive list. */
2485         for_each_ring(ring, dev_priv, i) {
2486                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2487                 if (ret)
2488                         return ret;
2489
2490                 ret = i915_ring_idle(ring);
2491                 if (ret)
2492                         return ret;
2493         }
2494
2495         return 0;
2496 }
2497
2498 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2499                                         struct drm_i915_gem_object *obj)
2500 {
2501         drm_i915_private_t *dev_priv = dev->dev_private;
2502         uint64_t val;
2503
2504         if (obj) {
2505                 u32 size = obj->gtt_space->size;
2506
2507                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2508                                  0xfffff000) << 32;
2509                 val |= obj->gtt_offset & 0xfffff000;
2510                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2511                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2512
2513                 if (obj->tiling_mode == I915_TILING_Y)
2514                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2515                 val |= I965_FENCE_REG_VALID;
2516         } else
2517                 val = 0;
2518
2519         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2520         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2521 }
2522
2523 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2524                                  struct drm_i915_gem_object *obj)
2525 {
2526         drm_i915_private_t *dev_priv = dev->dev_private;
2527         uint64_t val;
2528
2529         if (obj) {
2530                 u32 size = obj->gtt_space->size;
2531
2532                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2533                                  0xfffff000) << 32;
2534                 val |= obj->gtt_offset & 0xfffff000;
2535                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2536                 if (obj->tiling_mode == I915_TILING_Y)
2537                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2538                 val |= I965_FENCE_REG_VALID;
2539         } else
2540                 val = 0;
2541
2542         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2543         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2544 }
2545
2546 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2547                                  struct drm_i915_gem_object *obj)
2548 {
2549         drm_i915_private_t *dev_priv = dev->dev_private;
2550         u32 val;
2551
2552         if (obj) {
2553                 u32 size = obj->gtt_space->size;
2554                 int pitch_val;
2555                 int tile_width;
2556
2557                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2558                      (size & -size) != size ||
2559                      (obj->gtt_offset & (size - 1)),
2560                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2561                      obj->gtt_offset, obj->map_and_fenceable, size);
2562
2563                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2564                         tile_width = 128;
2565                 else
2566                         tile_width = 512;
2567
2568                 /* Note: pitch better be a power of two tile widths */
2569                 pitch_val = obj->stride / tile_width;
2570                 pitch_val = ffs(pitch_val) - 1;
2571
2572                 val = obj->gtt_offset;
2573                 if (obj->tiling_mode == I915_TILING_Y)
2574                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2575                 val |= I915_FENCE_SIZE_BITS(size);
2576                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2577                 val |= I830_FENCE_REG_VALID;
2578         } else
2579                 val = 0;
2580
2581         if (reg < 8)
2582                 reg = FENCE_REG_830_0 + reg * 4;
2583         else
2584                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2585
2586         I915_WRITE(reg, val);
2587         POSTING_READ(reg);
2588 }
2589
2590 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2591                                 struct drm_i915_gem_object *obj)
2592 {
2593         drm_i915_private_t *dev_priv = dev->dev_private;
2594         uint32_t val;
2595
2596         if (obj) {
2597                 u32 size = obj->gtt_space->size;
2598                 uint32_t pitch_val;
2599
2600                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2601                      (size & -size) != size ||
2602                      (obj->gtt_offset & (size - 1)),
2603                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2604                      obj->gtt_offset, size);
2605
2606                 pitch_val = obj->stride / 128;
2607                 pitch_val = ffs(pitch_val) - 1;
2608
2609                 val = obj->gtt_offset;
2610                 if (obj->tiling_mode == I915_TILING_Y)
2611                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2612                 val |= I830_FENCE_SIZE_BITS(size);
2613                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2614                 val |= I830_FENCE_REG_VALID;
2615         } else
2616                 val = 0;
2617
2618         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2619         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2620 }
2621
2622 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2623                                  struct drm_i915_gem_object *obj)
2624 {
2625         switch (INTEL_INFO(dev)->gen) {
2626         case 7:
2627         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2628         case 5:
2629         case 4: i965_write_fence_reg(dev, reg, obj); break;
2630         case 3: i915_write_fence_reg(dev, reg, obj); break;
2631         case 2: i830_write_fence_reg(dev, reg, obj); break;
2632         default: break;
2633         }
2634 }
2635
2636 static inline int fence_number(struct drm_i915_private *dev_priv,
2637                                struct drm_i915_fence_reg *fence)
2638 {
2639         return fence - dev_priv->fence_regs;
2640 }
2641
2642 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2643                                          struct drm_i915_fence_reg *fence,
2644                                          bool enable)
2645 {
2646         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2647         int reg = fence_number(dev_priv, fence);
2648
2649         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2650
2651         if (enable) {
2652                 obj->fence_reg = reg;
2653                 fence->obj = obj;
2654                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2655         } else {
2656                 obj->fence_reg = I915_FENCE_REG_NONE;
2657                 fence->obj = NULL;
2658                 list_del_init(&fence->lru_list);
2659         }
2660 }
2661
2662 static int
2663 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2664 {
2665         if (obj->last_fenced_seqno) {
2666                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2667                 if (ret)
2668                         return ret;
2669
2670                 obj->last_fenced_seqno = 0;
2671         }
2672
2673         /* Ensure that all CPU reads are completed before installing a fence
2674          * and all writes before removing the fence.
2675          */
2676         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2677                 mb();
2678
2679         obj->fenced_gpu_access = false;
2680         return 0;
2681 }
2682
2683 int
2684 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2685 {
2686         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2687         int ret;
2688
2689         ret = i915_gem_object_flush_fence(obj);
2690         if (ret)
2691                 return ret;
2692
2693         if (obj->fence_reg == I915_FENCE_REG_NONE)
2694                 return 0;
2695
2696         i915_gem_object_update_fence(obj,
2697                                      &dev_priv->fence_regs[obj->fence_reg],
2698                                      false);
2699         i915_gem_object_fence_lost(obj);
2700
2701         return 0;
2702 }
2703
2704 static struct drm_i915_fence_reg *
2705 i915_find_fence_reg(struct drm_device *dev)
2706 {
2707         struct drm_i915_private *dev_priv = dev->dev_private;
2708         struct drm_i915_fence_reg *reg, *avail;
2709         int i;
2710
2711         /* First try to find a free reg */
2712         avail = NULL;
2713         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2714                 reg = &dev_priv->fence_regs[i];
2715                 if (!reg->obj)
2716                         return reg;
2717
2718                 if (!reg->pin_count)
2719                         avail = reg;
2720         }
2721
2722         if (avail == NULL)
2723                 return NULL;
2724
2725         /* None available, try to steal one or wait for a user to finish */
2726         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2727                 if (reg->pin_count)
2728                         continue;
2729
2730                 return reg;
2731         }
2732
2733         return NULL;
2734 }
2735
2736 /**
2737  * i915_gem_object_get_fence - set up fencing for an object
2738  * @obj: object to map through a fence reg
2739  *
2740  * When mapping objects through the GTT, userspace wants to be able to write
2741  * to them without having to worry about swizzling if the object is tiled.
2742  * This function walks the fence regs looking for a free one for @obj,
2743  * stealing one if it can't find any.
2744  *
2745  * It then sets up the reg based on the object's properties: address, pitch
2746  * and tiling format.
2747  *
2748  * For an untiled surface, this removes any existing fence.
2749  */
2750 int
2751 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2752 {
2753         struct drm_device *dev = obj->base.dev;
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         bool enable = obj->tiling_mode != I915_TILING_NONE;
2756         struct drm_i915_fence_reg *reg;
2757         int ret;
2758
2759         /* Have we updated the tiling parameters upon the object and so
2760          * will need to serialise the write to the associated fence register?
2761          */
2762         if (obj->fence_dirty) {
2763                 ret = i915_gem_object_flush_fence(obj);
2764                 if (ret)
2765                         return ret;
2766         }
2767
2768         /* Just update our place in the LRU if our fence is getting reused. */
2769         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2770                 reg = &dev_priv->fence_regs[obj->fence_reg];
2771                 if (!obj->fence_dirty) {
2772                         list_move_tail(&reg->lru_list,
2773                                        &dev_priv->mm.fence_list);
2774                         return 0;
2775                 }
2776         } else if (enable) {
2777                 reg = i915_find_fence_reg(dev);
2778                 if (reg == NULL)
2779                         return -EDEADLK;
2780
2781                 if (reg->obj) {
2782                         struct drm_i915_gem_object *old = reg->obj;
2783
2784                         ret = i915_gem_object_flush_fence(old);
2785                         if (ret)
2786                                 return ret;
2787
2788                         i915_gem_object_fence_lost(old);
2789                 }
2790         } else
2791                 return 0;
2792
2793         i915_gem_object_update_fence(obj, reg, enable);
2794         obj->fence_dirty = false;
2795
2796         return 0;
2797 }
2798
2799 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2800                                      struct drm_mm_node *gtt_space,
2801                                      unsigned long cache_level)
2802 {
2803         struct drm_mm_node *other;
2804
2805         /* On non-LLC machines we have to be careful when putting differing
2806          * types of snoopable memory together to avoid the prefetcher
2807          * crossing memory domains and dieing.
2808          */
2809         if (HAS_LLC(dev))
2810                 return true;
2811
2812         if (gtt_space == NULL)
2813                 return true;
2814
2815         if (list_empty(&gtt_space->node_list))
2816                 return true;
2817
2818         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2819         if (other->allocated && !other->hole_follows && other->color != cache_level)
2820                 return false;
2821
2822         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2823         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2824                 return false;
2825
2826         return true;
2827 }
2828
2829 static void i915_gem_verify_gtt(struct drm_device *dev)
2830 {
2831 #if WATCH_GTT
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833         struct drm_i915_gem_object *obj;
2834         int err = 0;
2835
2836         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2837                 if (obj->gtt_space == NULL) {
2838                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2839                         err++;
2840                         continue;
2841                 }
2842
2843                 if (obj->cache_level != obj->gtt_space->color) {
2844                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2845                                obj->gtt_space->start,
2846                                obj->gtt_space->start + obj->gtt_space->size,
2847                                obj->cache_level,
2848                                obj->gtt_space->color);
2849                         err++;
2850                         continue;
2851                 }
2852
2853                 if (!i915_gem_valid_gtt_space(dev,
2854                                               obj->gtt_space,
2855                                               obj->cache_level)) {
2856                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2857                                obj->gtt_space->start,
2858                                obj->gtt_space->start + obj->gtt_space->size,
2859                                obj->cache_level);
2860                         err++;
2861                         continue;
2862                 }
2863         }
2864
2865         WARN_ON(err);
2866 #endif
2867 }
2868
2869 /**
2870  * Finds free space in the GTT aperture and binds the object there.
2871  */
2872 static int
2873 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2874                             unsigned alignment,
2875                             bool map_and_fenceable,
2876                             bool nonblocking)
2877 {
2878         struct drm_device *dev = obj->base.dev;
2879         drm_i915_private_t *dev_priv = dev->dev_private;
2880         struct drm_mm_node *free_space;
2881         u32 size, fence_size, fence_alignment, unfenced_alignment;
2882         bool mappable, fenceable;
2883         int ret;
2884
2885         if (obj->madv != I915_MADV_WILLNEED) {
2886                 DRM_ERROR("Attempting to bind a purgeable object\n");
2887                 return -EINVAL;
2888         }
2889
2890         fence_size = i915_gem_get_gtt_size(dev,
2891                                            obj->base.size,
2892                                            obj->tiling_mode);
2893         fence_alignment = i915_gem_get_gtt_alignment(dev,
2894                                                      obj->base.size,
2895                                                      obj->tiling_mode);
2896         unfenced_alignment =
2897                 i915_gem_get_unfenced_gtt_alignment(dev,
2898                                                     obj->base.size,
2899                                                     obj->tiling_mode);
2900
2901         if (alignment == 0)
2902                 alignment = map_and_fenceable ? fence_alignment :
2903                                                 unfenced_alignment;
2904         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2905                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2906                 return -EINVAL;
2907         }
2908
2909         size = map_and_fenceable ? fence_size : obj->base.size;
2910
2911         /* If the object is bigger than the entire aperture, reject it early
2912          * before evicting everything in a vain attempt to find space.
2913          */
2914         if (obj->base.size >
2915             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2916                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2917                 return -E2BIG;
2918         }
2919
2920         ret = i915_gem_object_get_pages(obj);
2921         if (ret)
2922                 return ret;
2923
2924  search_free:
2925         if (map_and_fenceable)
2926                 free_space =
2927                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2928                                                           size, alignment, obj->cache_level,
2929                                                           0, dev_priv->mm.gtt_mappable_end,
2930                                                           false);
2931         else
2932                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2933                                                       size, alignment, obj->cache_level,
2934                                                       false);
2935
2936         if (free_space != NULL) {
2937                 if (map_and_fenceable)
2938                         obj->gtt_space =
2939                                 drm_mm_get_block_range_generic(free_space,
2940                                                                size, alignment, obj->cache_level,
2941                                                                0, dev_priv->mm.gtt_mappable_end,
2942                                                                false);
2943                 else
2944                         obj->gtt_space =
2945                                 drm_mm_get_block_generic(free_space,
2946                                                          size, alignment, obj->cache_level,
2947                                                          false);
2948         }
2949         if (obj->gtt_space == NULL) {
2950                 ret = i915_gem_evict_something(dev, size, alignment,
2951                                                obj->cache_level,
2952                                                map_and_fenceable,
2953                                                nonblocking);
2954                 if (ret)
2955                         return ret;
2956
2957                 goto search_free;
2958         }
2959         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2960                                               obj->gtt_space,
2961                                               obj->cache_level))) {
2962                 drm_mm_put_block(obj->gtt_space);
2963                 obj->gtt_space = NULL;
2964                 return -EINVAL;
2965         }
2966
2967
2968         ret = i915_gem_gtt_prepare_object(obj);
2969         if (ret) {
2970                 drm_mm_put_block(obj->gtt_space);
2971                 obj->gtt_space = NULL;
2972                 return ret;
2973         }
2974
2975         if (!dev_priv->mm.aliasing_ppgtt)
2976                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2977
2978         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2979         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2980
2981         obj->gtt_offset = obj->gtt_space->start;
2982
2983         fenceable =
2984                 obj->gtt_space->size == fence_size &&
2985                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2986
2987         mappable =
2988                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2989
2990         obj->map_and_fenceable = mappable && fenceable;
2991
2992         trace_i915_gem_object_bind(obj, map_and_fenceable);
2993         i915_gem_verify_gtt(dev);
2994         return 0;
2995 }
2996
2997 void
2998 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2999 {
3000         /* If we don't have a page list set up, then we're not pinned
3001          * to GPU, and we can ignore the cache flush because it'll happen
3002          * again at bind time.
3003          */
3004         if (obj->pages == NULL)
3005                 return;
3006
3007         /* If the GPU is snooping the contents of the CPU cache,
3008          * we do not need to manually clear the CPU cache lines.  However,
3009          * the caches are only snooped when the render cache is
3010          * flushed/invalidated.  As we always have to emit invalidations
3011          * and flushes when moving into and out of the RENDER domain, correct
3012          * snooping behaviour occurs naturally as the result of our domain
3013          * tracking.
3014          */
3015         if (obj->cache_level != I915_CACHE_NONE)
3016                 return;
3017
3018         trace_i915_gem_object_clflush(obj);
3019
3020         drm_clflush_sg(obj->pages);
3021 }
3022
3023 /** Flushes the GTT write domain for the object if it's dirty. */
3024 static void
3025 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3026 {
3027         uint32_t old_write_domain;
3028
3029         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3030                 return;
3031
3032         /* No actual flushing is required for the GTT write domain.  Writes
3033          * to it immediately go to main memory as far as we know, so there's
3034          * no chipset flush.  It also doesn't land in render cache.
3035          *
3036          * However, we do have to enforce the order so that all writes through
3037          * the GTT land before any writes to the device, such as updates to
3038          * the GATT itself.
3039          */
3040         wmb();
3041
3042         old_write_domain = obj->base.write_domain;
3043         obj->base.write_domain = 0;
3044
3045         trace_i915_gem_object_change_domain(obj,
3046                                             obj->base.read_domains,
3047                                             old_write_domain);
3048 }
3049
3050 /** Flushes the CPU write domain for the object if it's dirty. */
3051 static void
3052 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3053 {
3054         uint32_t old_write_domain;
3055
3056         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3057                 return;
3058
3059         i915_gem_clflush_object(obj);
3060         intel_gtt_chipset_flush();
3061         old_write_domain = obj->base.write_domain;
3062         obj->base.write_domain = 0;
3063
3064         trace_i915_gem_object_change_domain(obj,
3065                                             obj->base.read_domains,
3066                                             old_write_domain);
3067 }
3068
3069 /**
3070  * Moves a single object to the GTT read, and possibly write domain.
3071  *
3072  * This function returns when the move is complete, including waiting on
3073  * flushes to occur.
3074  */
3075 int
3076 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3077 {
3078         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3079         uint32_t old_write_domain, old_read_domains;
3080         int ret;
3081
3082         /* Not valid to be called on unbound objects. */
3083         if (obj->gtt_space == NULL)
3084                 return -EINVAL;
3085
3086         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3087                 return 0;
3088
3089         ret = i915_gem_object_wait_rendering(obj, !write);
3090         if (ret)
3091                 return ret;
3092
3093         i915_gem_object_flush_cpu_write_domain(obj);
3094
3095         old_write_domain = obj->base.write_domain;
3096         old_read_domains = obj->base.read_domains;
3097
3098         /* It should now be out of any other write domains, and we can update
3099          * the domain values for our changes.
3100          */
3101         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3102         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3103         if (write) {
3104                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3105                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3106                 obj->dirty = 1;
3107         }
3108
3109         trace_i915_gem_object_change_domain(obj,
3110                                             old_read_domains,
3111                                             old_write_domain);
3112
3113         /* And bump the LRU for this access */
3114         if (i915_gem_object_is_inactive(obj))
3115                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3116
3117         return 0;
3118 }
3119
3120 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3121                                     enum i915_cache_level cache_level)
3122 {
3123         struct drm_device *dev = obj->base.dev;
3124         drm_i915_private_t *dev_priv = dev->dev_private;
3125         int ret;
3126
3127         if (obj->cache_level == cache_level)
3128                 return 0;
3129
3130         if (obj->pin_count) {
3131                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3132                 return -EBUSY;
3133         }
3134
3135         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3136                 ret = i915_gem_object_unbind(obj);
3137                 if (ret)
3138                         return ret;
3139         }
3140
3141         if (obj->gtt_space) {
3142                 ret = i915_gem_object_finish_gpu(obj);
3143                 if (ret)
3144                         return ret;
3145
3146                 i915_gem_object_finish_gtt(obj);
3147
3148                 /* Before SandyBridge, you could not use tiling or fence
3149                  * registers with snooped memory, so relinquish any fences
3150                  * currently pointing to our region in the aperture.
3151                  */
3152                 if (INTEL_INFO(dev)->gen < 6) {
3153                         ret = i915_gem_object_put_fence(obj);
3154                         if (ret)
3155                                 return ret;
3156                 }
3157
3158                 if (obj->has_global_gtt_mapping)
3159                         i915_gem_gtt_bind_object(obj, cache_level);
3160                 if (obj->has_aliasing_ppgtt_mapping)
3161                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3162                                                obj, cache_level);
3163
3164                 obj->gtt_space->color = cache_level;
3165         }
3166
3167         if (cache_level == I915_CACHE_NONE) {
3168                 u32 old_read_domains, old_write_domain;
3169
3170                 /* If we're coming from LLC cached, then we haven't
3171                  * actually been tracking whether the data is in the
3172                  * CPU cache or not, since we only allow one bit set
3173                  * in obj->write_domain and have been skipping the clflushes.
3174                  * Just set it to the CPU cache for now.
3175                  */
3176                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3177                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3178
3179                 old_read_domains = obj->base.read_domains;
3180                 old_write_domain = obj->base.write_domain;
3181
3182                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3183                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3184
3185                 trace_i915_gem_object_change_domain(obj,
3186                                                     old_read_domains,
3187                                                     old_write_domain);
3188         }
3189
3190         obj->cache_level = cache_level;
3191         i915_gem_verify_gtt(dev);
3192         return 0;
3193 }
3194
3195 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3196                                struct drm_file *file)
3197 {
3198         struct drm_i915_gem_caching *args = data;
3199         struct drm_i915_gem_object *obj;
3200         int ret;
3201
3202         ret = i915_mutex_lock_interruptible(dev);
3203         if (ret)
3204                 return ret;
3205
3206         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3207         if (&obj->base == NULL) {
3208                 ret = -ENOENT;
3209                 goto unlock;
3210         }
3211
3212         args->caching = obj->cache_level != I915_CACHE_NONE;
3213
3214         drm_gem_object_unreference(&obj->base);
3215 unlock:
3216         mutex_unlock(&dev->struct_mutex);
3217         return ret;
3218 }
3219
3220 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3221                                struct drm_file *file)
3222 {
3223         struct drm_i915_gem_caching *args = data;
3224         struct drm_i915_gem_object *obj;
3225         enum i915_cache_level level;
3226         int ret;
3227
3228         switch (args->caching) {
3229         case I915_CACHING_NONE:
3230                 level = I915_CACHE_NONE;
3231                 break;
3232         case I915_CACHING_CACHED:
3233                 level = I915_CACHE_LLC;
3234                 break;
3235         default:
3236                 return -EINVAL;
3237         }
3238
3239         ret = i915_mutex_lock_interruptible(dev);
3240         if (ret)
3241                 return ret;
3242
3243         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3244         if (&obj->base == NULL) {
3245                 ret = -ENOENT;
3246                 goto unlock;
3247         }
3248
3249         ret = i915_gem_object_set_cache_level(obj, level);
3250
3251         drm_gem_object_unreference(&obj->base);
3252 unlock:
3253         mutex_unlock(&dev->struct_mutex);
3254         return ret;
3255 }
3256
3257 /*
3258  * Prepare buffer for display plane (scanout, cursors, etc).
3259  * Can be called from an uninterruptible phase (modesetting) and allows
3260  * any flushes to be pipelined (for pageflips).
3261  */
3262 int
3263 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3264                                      u32 alignment,
3265                                      struct intel_ring_buffer *pipelined)
3266 {
3267         u32 old_read_domains, old_write_domain;
3268         int ret;
3269
3270         if (pipelined != obj->ring) {
3271                 ret = i915_gem_object_sync(obj, pipelined);
3272                 if (ret)
3273                         return ret;
3274         }
3275
3276         /* The display engine is not coherent with the LLC cache on gen6.  As
3277          * a result, we make sure that the pinning that is about to occur is
3278          * done with uncached PTEs. This is lowest common denominator for all
3279          * chipsets.
3280          *
3281          * However for gen6+, we could do better by using the GFDT bit instead
3282          * of uncaching, which would allow us to flush all the LLC-cached data
3283          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3284          */
3285         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3286         if (ret)
3287                 return ret;
3288
3289         /* As the user may map the buffer once pinned in the display plane
3290          * (e.g. libkms for the bootup splash), we have to ensure that we
3291          * always use map_and_fenceable for all scanout buffers.
3292          */
3293         ret = i915_gem_object_pin(obj, alignment, true, false);
3294         if (ret)
3295                 return ret;
3296
3297         i915_gem_object_flush_cpu_write_domain(obj);
3298
3299         old_write_domain = obj->base.write_domain;
3300         old_read_domains = obj->base.read_domains;
3301
3302         /* It should now be out of any other write domains, and we can update
3303          * the domain values for our changes.
3304          */
3305         obj->base.write_domain = 0;
3306         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3307
3308         trace_i915_gem_object_change_domain(obj,
3309                                             old_read_domains,
3310                                             old_write_domain);
3311
3312         return 0;
3313 }
3314
3315 int
3316 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3317 {
3318         int ret;
3319
3320         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3321                 return 0;
3322
3323         ret = i915_gem_object_wait_rendering(obj, false);
3324         if (ret)
3325                 return ret;
3326
3327         /* Ensure that we invalidate the GPU's caches and TLBs. */
3328         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3329         return 0;
3330 }
3331
3332 /**
3333  * Moves a single object to the CPU read, and possibly write domain.
3334  *
3335  * This function returns when the move is complete, including waiting on
3336  * flushes to occur.
3337  */
3338 int
3339 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3340 {
3341         uint32_t old_write_domain, old_read_domains;
3342         int ret;
3343
3344         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3345                 return 0;
3346
3347         ret = i915_gem_object_wait_rendering(obj, !write);
3348         if (ret)
3349                 return ret;
3350
3351         i915_gem_object_flush_gtt_write_domain(obj);
3352
3353         old_write_domain = obj->base.write_domain;
3354         old_read_domains = obj->base.read_domains;
3355
3356         /* Flush the CPU cache if it's still invalid. */
3357         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3358                 i915_gem_clflush_object(obj);
3359
3360                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3361         }
3362
3363         /* It should now be out of any other write domains, and we can update
3364          * the domain values for our changes.
3365          */
3366         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3367
3368         /* If we're writing through the CPU, then the GPU read domains will
3369          * need to be invalidated at next use.
3370          */
3371         if (write) {
3372                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3373                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3374         }
3375
3376         trace_i915_gem_object_change_domain(obj,
3377                                             old_read_domains,
3378                                             old_write_domain);
3379
3380         return 0;
3381 }
3382
3383 /* Throttle our rendering by waiting until the ring has completed our requests
3384  * emitted over 20 msec ago.
3385  *
3386  * Note that if we were to use the current jiffies each time around the loop,
3387  * we wouldn't escape the function with any frames outstanding if the time to
3388  * render a frame was over 20ms.
3389  *
3390  * This should get us reasonable parallelism between CPU and GPU but also
3391  * relatively low latency when blocking on a particular request to finish.
3392  */
3393 static int
3394 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3395 {
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         struct drm_i915_file_private *file_priv = file->driver_priv;
3398         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3399         struct drm_i915_gem_request *request;
3400         struct intel_ring_buffer *ring = NULL;
3401         u32 seqno = 0;
3402         int ret;
3403
3404         if (atomic_read(&dev_priv->mm.wedged))
3405                 return -EIO;
3406
3407         spin_lock(&file_priv->mm.lock);
3408         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3409                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3410                         break;
3411
3412                 ring = request->ring;
3413                 seqno = request->seqno;
3414         }
3415         spin_unlock(&file_priv->mm.lock);
3416
3417         if (seqno == 0)
3418                 return 0;
3419
3420         ret = __wait_seqno(ring, seqno, true, NULL);
3421         if (ret == 0)
3422                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3423
3424         return ret;
3425 }
3426
3427 int
3428 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3429                     uint32_t alignment,
3430                     bool map_and_fenceable,
3431                     bool nonblocking)
3432 {
3433         int ret;
3434
3435         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3436                 return -EBUSY;
3437
3438         if (obj->gtt_space != NULL) {
3439                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3440                     (map_and_fenceable && !obj->map_and_fenceable)) {
3441                         WARN(obj->pin_count,
3442                              "bo is already pinned with incorrect alignment:"
3443                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3444                              " obj->map_and_fenceable=%d\n",
3445                              obj->gtt_offset, alignment,
3446                              map_and_fenceable,
3447                              obj->map_and_fenceable);
3448                         ret = i915_gem_object_unbind(obj);
3449                         if (ret)
3450                                 return ret;
3451                 }
3452         }
3453
3454         if (obj->gtt_space == NULL) {
3455                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3456                                                   map_and_fenceable,
3457                                                   nonblocking);
3458                 if (ret)
3459                         return ret;
3460         }
3461
3462         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3463                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3464
3465         obj->pin_count++;
3466         obj->pin_mappable |= map_and_fenceable;
3467
3468         return 0;
3469 }
3470
3471 void
3472 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3473 {
3474         BUG_ON(obj->pin_count == 0);
3475         BUG_ON(obj->gtt_space == NULL);
3476
3477         if (--obj->pin_count == 0)
3478                 obj->pin_mappable = false;
3479 }
3480
3481 int
3482 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3483                    struct drm_file *file)
3484 {
3485         struct drm_i915_gem_pin *args = data;
3486         struct drm_i915_gem_object *obj;
3487         int ret;
3488
3489         ret = i915_mutex_lock_interruptible(dev);
3490         if (ret)
3491                 return ret;
3492
3493         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3494         if (&obj->base == NULL) {
3495                 ret = -ENOENT;
3496                 goto unlock;
3497         }
3498
3499         if (obj->madv != I915_MADV_WILLNEED) {
3500                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3501                 ret = -EINVAL;
3502                 goto out;
3503         }
3504
3505         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3506                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3507                           args->handle);
3508                 ret = -EINVAL;
3509                 goto out;
3510         }
3511
3512         obj->user_pin_count++;
3513         obj->pin_filp = file;
3514         if (obj->user_pin_count == 1) {
3515                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3516                 if (ret)
3517                         goto out;
3518         }
3519
3520         /* XXX - flush the CPU caches for pinned objects
3521          * as the X server doesn't manage domains yet
3522          */
3523         i915_gem_object_flush_cpu_write_domain(obj);
3524         args->offset = obj->gtt_offset;
3525 out:
3526         drm_gem_object_unreference(&obj->base);
3527 unlock:
3528         mutex_unlock(&dev->struct_mutex);
3529         return ret;
3530 }
3531
3532 int
3533 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3534                      struct drm_file *file)
3535 {
3536         struct drm_i915_gem_pin *args = data;
3537         struct drm_i915_gem_object *obj;
3538         int ret;
3539
3540         ret = i915_mutex_lock_interruptible(dev);
3541         if (ret)
3542                 return ret;
3543
3544         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3545         if (&obj->base == NULL) {
3546                 ret = -ENOENT;
3547                 goto unlock;
3548         }
3549
3550         if (obj->pin_filp != file) {
3551                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3552                           args->handle);
3553                 ret = -EINVAL;
3554                 goto out;
3555         }
3556         obj->user_pin_count--;
3557         if (obj->user_pin_count == 0) {
3558                 obj->pin_filp = NULL;
3559                 i915_gem_object_unpin(obj);
3560         }
3561
3562 out:
3563         drm_gem_object_unreference(&obj->base);
3564 unlock:
3565         mutex_unlock(&dev->struct_mutex);
3566         return ret;
3567 }
3568
3569 int
3570 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3571                     struct drm_file *file)
3572 {
3573         struct drm_i915_gem_busy *args = data;
3574         struct drm_i915_gem_object *obj;
3575         int ret;
3576
3577         ret = i915_mutex_lock_interruptible(dev);
3578         if (ret)
3579                 return ret;
3580
3581         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3582         if (&obj->base == NULL) {
3583                 ret = -ENOENT;
3584                 goto unlock;
3585         }
3586
3587         /* Count all active objects as busy, even if they are currently not used
3588          * by the gpu. Users of this interface expect objects to eventually
3589          * become non-busy without any further actions, therefore emit any
3590          * necessary flushes here.
3591          */
3592         ret = i915_gem_object_flush_active(obj);
3593
3594         args->busy = obj->active;
3595         if (obj->ring) {
3596                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3597                 args->busy |= intel_ring_flag(obj->ring) << 16;
3598         }
3599
3600         drm_gem_object_unreference(&obj->base);
3601 unlock:
3602         mutex_unlock(&dev->struct_mutex);
3603         return ret;
3604 }
3605
3606 int
3607 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3608                         struct drm_file *file_priv)
3609 {
3610         return i915_gem_ring_throttle(dev, file_priv);
3611 }
3612
3613 int
3614 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3615                        struct drm_file *file_priv)
3616 {
3617         struct drm_i915_gem_madvise *args = data;
3618         struct drm_i915_gem_object *obj;
3619         int ret;
3620
3621         switch (args->madv) {
3622         case I915_MADV_DONTNEED:
3623         case I915_MADV_WILLNEED:
3624             break;
3625         default:
3626             return -EINVAL;
3627         }
3628
3629         ret = i915_mutex_lock_interruptible(dev);
3630         if (ret)
3631                 return ret;
3632
3633         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3634         if (&obj->base == NULL) {
3635                 ret = -ENOENT;
3636                 goto unlock;
3637         }
3638
3639         if (obj->pin_count) {
3640                 ret = -EINVAL;
3641                 goto out;
3642         }
3643
3644         if (obj->madv != __I915_MADV_PURGED)
3645                 obj->madv = args->madv;
3646
3647         /* if the object is no longer attached, discard its backing storage */
3648         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3649                 i915_gem_object_truncate(obj);
3650
3651         args->retained = obj->madv != __I915_MADV_PURGED;
3652
3653 out:
3654         drm_gem_object_unreference(&obj->base);
3655 unlock:
3656         mutex_unlock(&dev->struct_mutex);
3657         return ret;
3658 }
3659
3660 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3661                           const struct drm_i915_gem_object_ops *ops)
3662 {
3663         INIT_LIST_HEAD(&obj->mm_list);
3664         INIT_LIST_HEAD(&obj->gtt_list);
3665         INIT_LIST_HEAD(&obj->ring_list);
3666         INIT_LIST_HEAD(&obj->exec_list);
3667
3668         obj->ops = ops;
3669
3670         obj->fence_reg = I915_FENCE_REG_NONE;
3671         obj->madv = I915_MADV_WILLNEED;
3672         /* Avoid an unnecessary call to unbind on the first bind. */
3673         obj->map_and_fenceable = true;
3674
3675         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3676 }
3677
3678 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3679         .get_pages = i915_gem_object_get_pages_gtt,
3680         .put_pages = i915_gem_object_put_pages_gtt,
3681 };
3682
3683 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3684                                                   size_t size)
3685 {
3686         struct drm_i915_gem_object *obj;
3687         struct address_space *mapping;
3688         u32 mask;
3689
3690         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3691         if (obj == NULL)
3692                 return NULL;
3693
3694         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3695                 kfree(obj);
3696                 return NULL;
3697         }
3698
3699         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3700         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3701                 /* 965gm cannot relocate objects above 4GiB. */
3702                 mask &= ~__GFP_HIGHMEM;
3703                 mask |= __GFP_DMA32;
3704         }
3705
3706         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3707         mapping_set_gfp_mask(mapping, mask);
3708
3709         i915_gem_object_init(obj, &i915_gem_object_ops);
3710
3711         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3712         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3713
3714         if (HAS_LLC(dev)) {
3715                 /* On some devices, we can have the GPU use the LLC (the CPU
3716                  * cache) for about a 10% performance improvement
3717                  * compared to uncached.  Graphics requests other than
3718                  * display scanout are coherent with the CPU in
3719                  * accessing this cache.  This means in this mode we
3720                  * don't need to clflush on the CPU side, and on the
3721                  * GPU side we only need to flush internal caches to
3722                  * get data visible to the CPU.
3723                  *
3724                  * However, we maintain the display planes as UC, and so
3725                  * need to rebind when first used as such.
3726                  */
3727                 obj->cache_level = I915_CACHE_LLC;
3728         } else
3729                 obj->cache_level = I915_CACHE_NONE;
3730
3731         return obj;
3732 }
3733
3734 int i915_gem_init_object(struct drm_gem_object *obj)
3735 {
3736         BUG();
3737
3738         return 0;
3739 }
3740
3741 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3742 {
3743         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3744         struct drm_device *dev = obj->base.dev;
3745         drm_i915_private_t *dev_priv = dev->dev_private;
3746
3747         trace_i915_gem_object_destroy(obj);
3748
3749         if (obj->phys_obj)
3750                 i915_gem_detach_phys_object(dev, obj);
3751
3752         obj->pin_count = 0;
3753         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3754                 bool was_interruptible;
3755
3756                 was_interruptible = dev_priv->mm.interruptible;
3757                 dev_priv->mm.interruptible = false;
3758
3759                 WARN_ON(i915_gem_object_unbind(obj));
3760
3761                 dev_priv->mm.interruptible = was_interruptible;
3762         }
3763
3764         obj->pages_pin_count = 0;
3765         i915_gem_object_put_pages(obj);
3766         i915_gem_object_free_mmap_offset(obj);
3767
3768         BUG_ON(obj->pages);
3769
3770         if (obj->base.import_attach)
3771                 drm_prime_gem_destroy(&obj->base, NULL);
3772
3773         drm_gem_object_release(&obj->base);
3774         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3775
3776         kfree(obj->bit_17);
3777         kfree(obj);
3778 }
3779
3780 int
3781 i915_gem_idle(struct drm_device *dev)
3782 {
3783         drm_i915_private_t *dev_priv = dev->dev_private;
3784         int ret;
3785
3786         mutex_lock(&dev->struct_mutex);
3787
3788         if (dev_priv->mm.suspended) {
3789                 mutex_unlock(&dev->struct_mutex);
3790                 return 0;
3791         }
3792
3793         ret = i915_gpu_idle(dev);
3794         if (ret) {
3795                 mutex_unlock(&dev->struct_mutex);
3796                 return ret;
3797         }
3798         i915_gem_retire_requests(dev);
3799
3800         /* Under UMS, be paranoid and evict. */
3801         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3802                 i915_gem_evict_everything(dev);
3803
3804         i915_gem_reset_fences(dev);
3805
3806         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3807          * We need to replace this with a semaphore, or something.
3808          * And not confound mm.suspended!
3809          */
3810         dev_priv->mm.suspended = 1;
3811         del_timer_sync(&dev_priv->hangcheck_timer);
3812
3813         i915_kernel_lost_context(dev);
3814         i915_gem_cleanup_ringbuffer(dev);
3815
3816         mutex_unlock(&dev->struct_mutex);
3817
3818         /* Cancel the retire work handler, which should be idle now. */
3819         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3820
3821         return 0;
3822 }
3823
3824 void i915_gem_l3_remap(struct drm_device *dev)
3825 {
3826         drm_i915_private_t *dev_priv = dev->dev_private;
3827         u32 misccpctl;
3828         int i;
3829
3830         if (!IS_IVYBRIDGE(dev))
3831                 return;
3832
3833         if (!dev_priv->mm.l3_remap_info)
3834                 return;
3835
3836         misccpctl = I915_READ(GEN7_MISCCPCTL);
3837         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3838         POSTING_READ(GEN7_MISCCPCTL);
3839
3840         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3841                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3842                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3843                         DRM_DEBUG("0x%x was already programmed to %x\n",
3844                                   GEN7_L3LOG_BASE + i, remap);
3845                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3846                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3847                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3848         }
3849
3850         /* Make sure all the writes land before disabling dop clock gating */
3851         POSTING_READ(GEN7_L3LOG_BASE);
3852
3853         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3854 }
3855
3856 void i915_gem_init_swizzling(struct drm_device *dev)
3857 {
3858         drm_i915_private_t *dev_priv = dev->dev_private;
3859
3860         if (INTEL_INFO(dev)->gen < 5 ||
3861             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3862                 return;
3863
3864         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3865                                  DISP_TILE_SURFACE_SWIZZLING);
3866
3867         if (IS_GEN5(dev))
3868                 return;
3869
3870         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3871         if (IS_GEN6(dev))
3872                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3873         else
3874                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3875 }
3876
3877 void i915_gem_init_ppgtt(struct drm_device *dev)
3878 {
3879         drm_i915_private_t *dev_priv = dev->dev_private;
3880         uint32_t pd_offset;
3881         struct intel_ring_buffer *ring;
3882         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3883         uint32_t __iomem *pd_addr;
3884         uint32_t pd_entry;
3885         int i;
3886
3887         if (!dev_priv->mm.aliasing_ppgtt)
3888                 return;
3889
3890
3891         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3892         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3893                 dma_addr_t pt_addr;
3894
3895                 if (dev_priv->mm.gtt->needs_dmar)
3896                         pt_addr = ppgtt->pt_dma_addr[i];
3897                 else
3898                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3899
3900                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3901                 pd_entry |= GEN6_PDE_VALID;
3902
3903                 writel(pd_entry, pd_addr + i);
3904         }
3905         readl(pd_addr);
3906
3907         pd_offset = ppgtt->pd_offset;
3908         pd_offset /= 64; /* in cachelines, */
3909         pd_offset <<= 16;
3910
3911         if (INTEL_INFO(dev)->gen == 6) {
3912                 uint32_t ecochk, gab_ctl, ecobits;
3913
3914                 ecobits = I915_READ(GAC_ECO_BITS); 
3915                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3916
3917                 gab_ctl = I915_READ(GAB_CTL);
3918                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3919
3920                 ecochk = I915_READ(GAM_ECOCHK);
3921                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3922                                        ECOCHK_PPGTT_CACHE64B);
3923                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3924         } else if (INTEL_INFO(dev)->gen >= 7) {
3925                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3926                 /* GFX_MODE is per-ring on gen7+ */
3927         }
3928
3929         for_each_ring(ring, dev_priv, i) {
3930                 if (INTEL_INFO(dev)->gen >= 7)
3931                         I915_WRITE(RING_MODE_GEN7(ring),
3932                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3933
3934                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3935                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3936         }
3937 }
3938
3939 static bool
3940 intel_enable_blt(struct drm_device *dev)
3941 {
3942         if (!HAS_BLT(dev))
3943                 return false;
3944
3945         /* The blitter was dysfunctional on early prototypes */
3946         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3947                 DRM_INFO("BLT not supported on this pre-production hardware;"
3948                          " graphics performance will be degraded.\n");
3949                 return false;
3950         }
3951
3952         return true;
3953 }
3954
3955 int
3956 i915_gem_init_hw(struct drm_device *dev)
3957 {
3958         drm_i915_private_t *dev_priv = dev->dev_private;
3959         int ret;
3960
3961         if (!intel_enable_gtt())
3962                 return -EIO;
3963
3964         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3965                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3966
3967         i915_gem_l3_remap(dev);
3968
3969         i915_gem_init_swizzling(dev);
3970
3971         ret = intel_init_render_ring_buffer(dev);
3972         if (ret)
3973                 return ret;
3974
3975         if (HAS_BSD(dev)) {
3976                 ret = intel_init_bsd_ring_buffer(dev);
3977                 if (ret)
3978                         goto cleanup_render_ring;
3979         }
3980
3981         if (intel_enable_blt(dev)) {
3982                 ret = intel_init_blt_ring_buffer(dev);
3983                 if (ret)
3984                         goto cleanup_bsd_ring;
3985         }
3986
3987         dev_priv->next_seqno = 1;
3988
3989         /*
3990          * XXX: There was some w/a described somewhere suggesting loading
3991          * contexts before PPGTT.
3992          */
3993         i915_gem_context_init(dev);
3994         i915_gem_init_ppgtt(dev);
3995
3996         return 0;
3997
3998 cleanup_bsd_ring:
3999         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4000 cleanup_render_ring:
4001         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4002         return ret;
4003 }
4004
4005 static bool
4006 intel_enable_ppgtt(struct drm_device *dev)
4007 {
4008         if (i915_enable_ppgtt >= 0)
4009                 return i915_enable_ppgtt;
4010
4011 #ifdef CONFIG_INTEL_IOMMU
4012         /* Disable ppgtt on SNB if VT-d is on. */
4013         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4014                 return false;
4015 #endif
4016
4017         return true;
4018 }
4019
4020 int i915_gem_init(struct drm_device *dev)
4021 {
4022         struct drm_i915_private *dev_priv = dev->dev_private;
4023         unsigned long gtt_size, mappable_size;
4024         int ret;
4025
4026         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4027         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4028
4029         mutex_lock(&dev->struct_mutex);
4030         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4031                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4032                  * aperture accordingly when using aliasing ppgtt. */
4033                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4034
4035                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4036
4037                 ret = i915_gem_init_aliasing_ppgtt(dev);
4038                 if (ret) {
4039                         mutex_unlock(&dev->struct_mutex);
4040                         return ret;
4041                 }
4042         } else {
4043                 /* Let GEM Manage all of the aperture.
4044                  *
4045                  * However, leave one page at the end still bound to the scratch
4046                  * page.  There are a number of places where the hardware
4047                  * apparently prefetches past the end of the object, and we've
4048                  * seen multiple hangs with the GPU head pointer stuck in a
4049                  * batchbuffer bound at the last page of the aperture.  One page
4050                  * should be enough to keep any prefetching inside of the
4051                  * aperture.
4052                  */
4053                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4054                                          gtt_size);
4055         }
4056
4057         ret = i915_gem_init_hw(dev);
4058         mutex_unlock(&dev->struct_mutex);
4059         if (ret) {
4060                 i915_gem_cleanup_aliasing_ppgtt(dev);
4061                 return ret;
4062         }
4063
4064         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4065         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4066                 dev_priv->dri1.allow_batchbuffer = 1;
4067         return 0;
4068 }
4069
4070 void
4071 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4072 {
4073         drm_i915_private_t *dev_priv = dev->dev_private;
4074         struct intel_ring_buffer *ring;
4075         int i;
4076
4077         for_each_ring(ring, dev_priv, i)
4078                 intel_cleanup_ring_buffer(ring);
4079 }
4080
4081 int
4082 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4083                        struct drm_file *file_priv)
4084 {
4085         drm_i915_private_t *dev_priv = dev->dev_private;
4086         int ret;
4087
4088         if (drm_core_check_feature(dev, DRIVER_MODESET))
4089                 return 0;
4090
4091         if (atomic_read(&dev_priv->mm.wedged)) {
4092                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4093                 atomic_set(&dev_priv->mm.wedged, 0);
4094         }
4095
4096         mutex_lock(&dev->struct_mutex);
4097         dev_priv->mm.suspended = 0;
4098
4099         ret = i915_gem_init_hw(dev);
4100         if (ret != 0) {
4101                 mutex_unlock(&dev->struct_mutex);
4102                 return ret;
4103         }
4104
4105         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4106         mutex_unlock(&dev->struct_mutex);
4107
4108         ret = drm_irq_install(dev);
4109         if (ret)
4110                 goto cleanup_ringbuffer;
4111
4112         return 0;
4113
4114 cleanup_ringbuffer:
4115         mutex_lock(&dev->struct_mutex);
4116         i915_gem_cleanup_ringbuffer(dev);
4117         dev_priv->mm.suspended = 1;
4118         mutex_unlock(&dev->struct_mutex);
4119
4120         return ret;
4121 }
4122
4123 int
4124 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4125                        struct drm_file *file_priv)
4126 {
4127         if (drm_core_check_feature(dev, DRIVER_MODESET))
4128                 return 0;
4129
4130         drm_irq_uninstall(dev);
4131         return i915_gem_idle(dev);
4132 }
4133
4134 void
4135 i915_gem_lastclose(struct drm_device *dev)
4136 {
4137         int ret;
4138
4139         if (drm_core_check_feature(dev, DRIVER_MODESET))
4140                 return;
4141
4142         ret = i915_gem_idle(dev);
4143         if (ret)
4144                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4145 }
4146
4147 static void
4148 init_ring_lists(struct intel_ring_buffer *ring)
4149 {
4150         INIT_LIST_HEAD(&ring->active_list);
4151         INIT_LIST_HEAD(&ring->request_list);
4152 }
4153
4154 void
4155 i915_gem_load(struct drm_device *dev)
4156 {
4157         int i;
4158         drm_i915_private_t *dev_priv = dev->dev_private;
4159
4160         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4161         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4162         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4163         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4164         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4165         for (i = 0; i < I915_NUM_RINGS; i++)
4166                 init_ring_lists(&dev_priv->ring[i]);
4167         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4168                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4169         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4170                           i915_gem_retire_work_handler);
4171         init_completion(&dev_priv->error_completion);
4172
4173         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4174         if (IS_GEN3(dev)) {
4175                 I915_WRITE(MI_ARB_STATE,
4176                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4177         }
4178
4179         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4180
4181         /* Old X drivers will take 0-2 for front, back, depth buffers */
4182         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4183                 dev_priv->fence_reg_start = 3;
4184
4185         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4186                 dev_priv->num_fence_regs = 16;
4187         else
4188                 dev_priv->num_fence_regs = 8;
4189
4190         /* Initialize fence registers to zero */
4191         i915_gem_reset_fences(dev);
4192
4193         i915_gem_detect_bit_6_swizzle(dev);
4194         init_waitqueue_head(&dev_priv->pending_flip_queue);
4195
4196         dev_priv->mm.interruptible = true;
4197
4198         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4199         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4200         register_shrinker(&dev_priv->mm.inactive_shrinker);
4201 }
4202
4203 /*
4204  * Create a physically contiguous memory object for this object
4205  * e.g. for cursor + overlay regs
4206  */
4207 static int i915_gem_init_phys_object(struct drm_device *dev,
4208                                      int id, int size, int align)
4209 {
4210         drm_i915_private_t *dev_priv = dev->dev_private;
4211         struct drm_i915_gem_phys_object *phys_obj;
4212         int ret;
4213
4214         if (dev_priv->mm.phys_objs[id - 1] || !size)
4215                 return 0;
4216
4217         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4218         if (!phys_obj)
4219                 return -ENOMEM;
4220
4221         phys_obj->id = id;
4222
4223         phys_obj->handle = drm_pci_alloc(dev, size, align);
4224         if (!phys_obj->handle) {
4225                 ret = -ENOMEM;
4226                 goto kfree_obj;
4227         }
4228 #ifdef CONFIG_X86
4229         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4230 #endif
4231
4232         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4233
4234         return 0;
4235 kfree_obj:
4236         kfree(phys_obj);
4237         return ret;
4238 }
4239
4240 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4241 {
4242         drm_i915_private_t *dev_priv = dev->dev_private;
4243         struct drm_i915_gem_phys_object *phys_obj;
4244
4245         if (!dev_priv->mm.phys_objs[id - 1])
4246                 return;
4247
4248         phys_obj = dev_priv->mm.phys_objs[id - 1];
4249         if (phys_obj->cur_obj) {
4250                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4251         }
4252
4253 #ifdef CONFIG_X86
4254         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4255 #endif
4256         drm_pci_free(dev, phys_obj->handle);
4257         kfree(phys_obj);
4258         dev_priv->mm.phys_objs[id - 1] = NULL;
4259 }
4260
4261 void i915_gem_free_all_phys_object(struct drm_device *dev)
4262 {
4263         int i;
4264
4265         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4266                 i915_gem_free_phys_object(dev, i);
4267 }
4268
4269 void i915_gem_detach_phys_object(struct drm_device *dev,
4270                                  struct drm_i915_gem_object *obj)
4271 {
4272         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4273         char *vaddr;
4274         int i;
4275         int page_count;
4276
4277         if (!obj->phys_obj)
4278                 return;
4279         vaddr = obj->phys_obj->handle->vaddr;
4280
4281         page_count = obj->base.size / PAGE_SIZE;
4282         for (i = 0; i < page_count; i++) {
4283                 struct page *page = shmem_read_mapping_page(mapping, i);
4284                 if (!IS_ERR(page)) {
4285                         char *dst = kmap_atomic(page);
4286                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4287                         kunmap_atomic(dst);
4288
4289                         drm_clflush_pages(&page, 1);
4290
4291                         set_page_dirty(page);
4292                         mark_page_accessed(page);
4293                         page_cache_release(page);
4294                 }
4295         }
4296         intel_gtt_chipset_flush();
4297
4298         obj->phys_obj->cur_obj = NULL;
4299         obj->phys_obj = NULL;
4300 }
4301
4302 int
4303 i915_gem_attach_phys_object(struct drm_device *dev,
4304                             struct drm_i915_gem_object *obj,
4305                             int id,
4306                             int align)
4307 {
4308         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4309         drm_i915_private_t *dev_priv = dev->dev_private;
4310         int ret = 0;
4311         int page_count;
4312         int i;
4313
4314         if (id > I915_MAX_PHYS_OBJECT)
4315                 return -EINVAL;
4316
4317         if (obj->phys_obj) {
4318                 if (obj->phys_obj->id == id)
4319                         return 0;
4320                 i915_gem_detach_phys_object(dev, obj);
4321         }
4322
4323         /* create a new object */
4324         if (!dev_priv->mm.phys_objs[id - 1]) {
4325                 ret = i915_gem_init_phys_object(dev, id,
4326                                                 obj->base.size, align);
4327                 if (ret) {
4328                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4329                                   id, obj->base.size);
4330                         return ret;
4331                 }
4332         }
4333
4334         /* bind to the object */
4335         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4336         obj->phys_obj->cur_obj = obj;
4337
4338         page_count = obj->base.size / PAGE_SIZE;
4339
4340         for (i = 0; i < page_count; i++) {
4341                 struct page *page;
4342                 char *dst, *src;
4343
4344                 page = shmem_read_mapping_page(mapping, i);
4345                 if (IS_ERR(page))
4346                         return PTR_ERR(page);
4347
4348                 src = kmap_atomic(page);
4349                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4350                 memcpy(dst, src, PAGE_SIZE);
4351                 kunmap_atomic(src);
4352
4353                 mark_page_accessed(page);
4354                 page_cache_release(page);
4355         }
4356
4357         return 0;
4358 }
4359
4360 static int
4361 i915_gem_phys_pwrite(struct drm_device *dev,
4362                      struct drm_i915_gem_object *obj,
4363                      struct drm_i915_gem_pwrite *args,
4364                      struct drm_file *file_priv)
4365 {
4366         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4367         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4368
4369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4370                 unsigned long unwritten;
4371
4372                 /* The physical object once assigned is fixed for the lifetime
4373                  * of the obj, so we can safely drop the lock and continue
4374                  * to access vaddr.
4375                  */
4376                 mutex_unlock(&dev->struct_mutex);
4377                 unwritten = copy_from_user(vaddr, user_data, args->size);
4378                 mutex_lock(&dev->struct_mutex);
4379                 if (unwritten)
4380                         return -EFAULT;
4381         }
4382
4383         intel_gtt_chipset_flush();
4384         return 0;
4385 }
4386
4387 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4388 {
4389         struct drm_i915_file_private *file_priv = file->driver_priv;
4390
4391         /* Clean up our request list when the client is going away, so that
4392          * later retire_requests won't dereference our soon-to-be-gone
4393          * file_priv.
4394          */
4395         spin_lock(&file_priv->mm.lock);
4396         while (!list_empty(&file_priv->mm.request_list)) {
4397                 struct drm_i915_gem_request *request;
4398
4399                 request = list_first_entry(&file_priv->mm.request_list,
4400                                            struct drm_i915_gem_request,
4401                                            client_list);
4402                 list_del(&request->client_list);
4403                 request->file_priv = NULL;
4404         }
4405         spin_unlock(&file_priv->mm.lock);
4406 }
4407
4408 static int
4409 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4410 {
4411         struct drm_i915_private *dev_priv =
4412                 container_of(shrinker,
4413                              struct drm_i915_private,
4414                              mm.inactive_shrinker);
4415         struct drm_device *dev = dev_priv->dev;
4416         struct drm_i915_gem_object *obj;
4417         int nr_to_scan = sc->nr_to_scan;
4418         int cnt;
4419
4420         if (!mutex_trylock(&dev->struct_mutex))
4421                 return 0;
4422
4423         if (nr_to_scan) {
4424                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4425                 if (nr_to_scan > 0)
4426                         i915_gem_shrink_all(dev_priv);
4427         }
4428
4429         cnt = 0;
4430         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4431                 if (obj->pages_pin_count == 0)
4432                         cnt += obj->base.size >> PAGE_SHIFT;
4433         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4434                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4435                         cnt += obj->base.size >> PAGE_SHIFT;
4436
4437         mutex_unlock(&dev->struct_mutex);
4438         return cnt;
4439 }
This page took 0.297315 seconds and 4 git commands to generate.