]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'linux-watchdog-6.14-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_atomic_uapi.h>
41 #include <drm/drm_fb_dma_helper.h>
42 #include <drm/drm_framebuffer.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47
48 #include "vc4_drv.h"
49 #include "vc4_hdmi.h"
50 #include "vc4_regs.h"
51
52 #define HVS_FIFO_LATENCY_PIX    6
53
54 #define CRTC_WRITE(offset, val)                                                         \
55         do {                                                                            \
56                 kunit_fail_current_test("Accessing a register in a unit test!\n");      \
57                 writel(val, vc4_crtc->regs + (offset));                                 \
58         } while (0)
59
60 #define CRTC_READ(offset)                                                               \
61         ({                                                                              \
62                 kunit_fail_current_test("Accessing a register in a unit test!\n");      \
63                 readl(vc4_crtc->regs + (offset));                                       \
64         })
65
66 static const struct debugfs_reg32 crtc_regs[] = {
67         VC4_REG32(PV_CONTROL),
68         VC4_REG32(PV_V_CONTROL),
69         VC4_REG32(PV_VSYNCD_EVEN),
70         VC4_REG32(PV_HORZA),
71         VC4_REG32(PV_HORZB),
72         VC4_REG32(PV_VERTA),
73         VC4_REG32(PV_VERTB),
74         VC4_REG32(PV_VERTA_EVEN),
75         VC4_REG32(PV_VERTB_EVEN),
76         VC4_REG32(PV_INTEN),
77         VC4_REG32(PV_INTSTAT),
78         VC4_REG32(PV_STAT),
79         VC4_REG32(PV_HACT_ACT),
80 };
81
82 static unsigned int
83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84 {
85         struct vc4_hvs *hvs = vc4->hvs;
86         u32 dispbase, top, base;
87
88         /* Top/base are supposed to be 4-pixel aligned, but the
89          * Raspberry Pi firmware fills the low bits (which are
90          * presumably ignored).
91          */
92
93         if (vc4->gen >= VC4_GEN_6_C) {
94                 dispbase = HVS_READ(SCALER6_DISPX_COB(channel));
95                 top = VC4_GET_FIELD(dispbase, SCALER6_DISPX_COB_TOP) & ~3;
96                 base = VC4_GET_FIELD(dispbase, SCALER6_DISPX_COB_BASE) & ~3;
97         } else {
98                 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
99                 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
100                 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
101         }
102
103         return top - base + 4;
104 }
105
106 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
107                                           bool in_vblank_irq,
108                                           int *vpos, int *hpos,
109                                           ktime_t *stime, ktime_t *etime,
110                                           const struct drm_display_mode *mode)
111 {
112         struct drm_device *dev = crtc->dev;
113         struct vc4_dev *vc4 = to_vc4_dev(dev);
114         struct vc4_hvs *hvs = vc4->hvs;
115         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
116         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
117         unsigned int channel = vc4_crtc_state->assigned_channel;
118         unsigned int cob_size;
119         u32 val;
120         int fifo_lines;
121         int vblank_lines;
122         bool ret = false;
123
124         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
125
126         /* Get optional system timestamp before query. */
127         if (stime)
128                 *stime = ktime_get();
129
130         /*
131          * Read vertical scanline which is currently composed for our
132          * pixelvalve by the HVS, and also the scaler status.
133          */
134         if (vc4->gen >= VC4_GEN_6_C)
135                 val = HVS_READ(SCALER6_DISPX_STATUS(channel));
136         else
137                 val = HVS_READ(SCALER_DISPSTATX(channel));
138
139         /* Get optional system timestamp after query. */
140         if (etime)
141                 *etime = ktime_get();
142
143         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
144
145         /* Vertical position of hvs composed scanline. */
146
147         if (vc4->gen >= VC4_GEN_6_C)
148                 *vpos = VC4_GET_FIELD(val, SCALER6_DISPX_STATUS_YLINE);
149         else
150                 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
151
152         *hpos = 0;
153
154         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
155                 *vpos /= 2;
156
157                 /* Use hpos to correct for field offset in interlaced mode. */
158                 if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
159                         *hpos += mode->crtc_htotal / 2;
160         }
161
162         cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
163         /* This is the offset we need for translating hvs -> pv scanout pos. */
164         fifo_lines = cob_size / mode->crtc_hdisplay;
165
166         if (fifo_lines > 0)
167                 ret = true;
168
169         /* HVS more than fifo_lines into frame for compositing? */
170         if (*vpos > fifo_lines) {
171                 /*
172                  * We are in active scanout and can get some meaningful results
173                  * from HVS. The actual PV scanout can not trail behind more
174                  * than fifo_lines as that is the fifo's capacity. Assume that
175                  * in active scanout the HVS and PV work in lockstep wrt. HVS
176                  * refilling the fifo and PV consuming from the fifo, ie.
177                  * whenever the PV consumes and frees up a scanline in the
178                  * fifo, the HVS will immediately refill it, therefore
179                  * incrementing vpos. Therefore we choose HVS read position -
180                  * fifo size in scanlines as a estimate of the real scanout
181                  * position of the PV.
182                  */
183                 *vpos -= fifo_lines + 1;
184
185                 return ret;
186         }
187
188         /*
189          * Less: This happens when we are in vblank and the HVS, after getting
190          * the VSTART restart signal from the PV, just started refilling its
191          * fifo with new lines from the top-most lines of the new framebuffers.
192          * The PV does not scan out in vblank, so does not remove lines from
193          * the fifo, so the fifo will be full quickly and the HVS has to pause.
194          * We can't get meaningful readings wrt. scanline position of the PV
195          * and need to make things up in a approximative but consistent way.
196          */
197         vblank_lines = mode->vtotal - mode->vdisplay;
198
199         if (in_vblank_irq) {
200                 /*
201                  * Assume the irq handler got called close to first
202                  * line of vblank, so PV has about a full vblank
203                  * scanlines to go, and as a base timestamp use the
204                  * one taken at entry into vblank irq handler, so it
205                  * is not affected by random delays due to lock
206                  * contention on event_lock or vblank_time lock in
207                  * the core.
208                  */
209                 *vpos = -vblank_lines;
210
211                 if (stime)
212                         *stime = vc4_crtc->t_vblank;
213                 if (etime)
214                         *etime = vc4_crtc->t_vblank;
215
216                 /*
217                  * If the HVS fifo is not yet full then we know for certain
218                  * we are at the very beginning of vblank, as the hvs just
219                  * started refilling, and the stime and etime timestamps
220                  * truly correspond to start of vblank.
221                  *
222                  * Unfortunately there's no way to report this to upper levels
223                  * and make it more useful.
224                  */
225         } else {
226                 /*
227                  * No clue where we are inside vblank. Return a vpos of zero,
228                  * which will cause calling code to just return the etime
229                  * timestamp uncorrected. At least this is no worse than the
230                  * standard fallback.
231                  */
232                 *vpos = 0;
233         }
234
235         return ret;
236 }
237
238 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
239 {
240         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
241         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
242         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
243
244         /*
245          * NOTE: Could we use register 0x68 (PV_HW_CFG1) to get the FIFO
246          * size?
247          */
248         u32 fifo_len_bytes = pv_data->fifo_depth;
249
250         /*
251          * Pixels are pulled from the HVS if the number of bytes is
252          * lower than the FIFO full level.
253          *
254          * The latency of the pixel fetch mechanism is 6 pixels, so we
255          * need to convert those 6 pixels in bytes, depending on the
256          * format, and then subtract that from the length of the FIFO
257          * to make sure we never end up in a situation where the FIFO
258          * is full.
259          */
260         switch (format) {
261         case PV_CONTROL_FORMAT_DSIV_16:
262         case PV_CONTROL_FORMAT_DSIC_16:
263                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
264         case PV_CONTROL_FORMAT_DSIV_18:
265                 return fifo_len_bytes - 14;
266         case PV_CONTROL_FORMAT_24:
267         case PV_CONTROL_FORMAT_DSIV_24:
268         default:
269                 /*
270                  * For some reason, the pixelvalve4 doesn't work with
271                  * the usual formula and will only work with 32.
272                  */
273                 if (crtc_data->hvs_output == 5)
274                         return 32;
275
276                 /*
277                  * It looks like in some situations, we will overflow
278                  * the PixelValve FIFO (with the bit 10 of PV stat being
279                  * set) and stall the HVS / PV, eventually resulting in
280                  * a page flip timeout.
281                  *
282                  * Displaying the video overlay during a playback with
283                  * Kodi on an RPi3 seems to be a great solution with a
284                  * failure rate around 50%.
285                  *
286                  * Removing 1 from the FIFO full level however
287                  * seems to completely remove that issue.
288                  */
289                 if (vc4->gen == VC4_GEN_4)
290                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
291
292                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
293         }
294 }
295
296 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
297                                              u32 format)
298 {
299         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
300         u32 ret = 0;
301
302         ret |= VC4_SET_FIELD((level >> 6),
303                              PV5_CONTROL_FIFO_LEVEL_HIGH);
304
305         return ret | VC4_SET_FIELD(level & 0x3f,
306                                    PV_CONTROL_FIFO_LEVEL);
307 }
308
309 /*
310  * Returns the encoder attached to the CRTC.
311  *
312  * VC4 can only scan out to one encoder at a time, while the DRM core
313  * allows drivers to push pixels to more than one encoder from the
314  * same CRTC.
315  */
316 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
317                                          struct drm_crtc_state *state)
318 {
319         struct drm_encoder *encoder;
320
321         WARN_ON(hweight32(state->encoder_mask) > 1);
322
323         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
324                 return encoder;
325
326         return NULL;
327 }
328
329 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
330 {
331         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
332         struct drm_device *dev = crtc->dev;
333         int idx;
334
335         if (!drm_dev_enter(dev, &idx))
336                 return;
337
338         /* The PV needs to be disabled before it can be flushed */
339         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
340         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
341
342         drm_dev_exit(idx);
343 }
344
345 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
346                                struct drm_atomic_state *state)
347 {
348         struct drm_device *dev = crtc->dev;
349         struct vc4_dev *vc4 = to_vc4_dev(dev);
350         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
351         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
352         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
353         struct drm_crtc_state *crtc_state = crtc->state;
354         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
355         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
356         bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
357                        vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
358         u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
359         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
360                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
361         bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
362         bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
363         u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
364         u8 ppc = pv_data->pixels_per_clock;
365
366         u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
367         u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
368         u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
369
370         bool debug_dump_regs = false;
371         int idx;
372
373         if (!drm_dev_enter(dev, &idx))
374                 return;
375
376         if (debug_dump_regs) {
377                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
378                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
379                          drm_crtc_index(crtc));
380                 drm_print_regset32(&p, &vc4_crtc->regset);
381         }
382
383         vc4_crtc_pixelvalve_reset(crtc);
384
385         CRTC_WRITE(PV_HORZA,
386                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
387                                  PV_HORZA_HBP) |
388                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
389                                  PV_HORZA_HSYNC));
390
391         CRTC_WRITE(PV_HORZB,
392                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
393                                  PV_HORZB_HFP) |
394                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
395                                  PV_HORZB_HACTIVE));
396
397         if (interlace) {
398                 bool odd_field_first = false;
399                 u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
400                 u16 vert_bp_even = vert_bp;
401                 u16 vert_fp_even = vert_fp;
402
403                 if (is_vec) {
404                         /* VEC (composite output) */
405                         ++field_delay;
406                         if (mode->htotal == 858) {
407                                 /* 525-line mode (NTSC or PAL-M) */
408                                 odd_field_first = true;
409                         }
410                 }
411
412                 if (odd_field_first)
413                         ++vert_fp_even;
414                 else
415                         ++vert_bp;
416
417                 CRTC_WRITE(PV_VERTA_EVEN,
418                            VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
419                            VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
420                 CRTC_WRITE(PV_VERTB_EVEN,
421                            VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
422                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
423
424                 /* We set up first field even mode for HDMI and VEC's PAL.
425                  * For NTSC, we need first field odd.
426                  */
427                 CRTC_WRITE(PV_V_CONTROL,
428                            PV_VCONTROL_CONTINUOUS |
429                            (vc4->gen >= VC4_GEN_6_C ? PV_VCONTROL_ODD_TIMING : 0) |
430                            (is_dsi ? PV_VCONTROL_DSI : 0) |
431                            PV_VCONTROL_INTERLACE |
432                            (odd_field_first
433                                    ? PV_VCONTROL_ODD_FIRST
434                                    : VC4_SET_FIELD(field_delay,
435                                                    PV_VCONTROL_ODD_DELAY)));
436                 CRTC_WRITE(PV_VSYNCD_EVEN,
437                            (odd_field_first ? field_delay : 0));
438         } else {
439                 CRTC_WRITE(PV_V_CONTROL,
440                            PV_VCONTROL_CONTINUOUS |
441                            (vc4->gen >= VC4_GEN_6_C ? PV_VCONTROL_ODD_TIMING : 0) |
442                            (is_dsi ? PV_VCONTROL_DSI : 0));
443                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
444         }
445
446         CRTC_WRITE(PV_VERTA,
447                    VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
448                    VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
449         CRTC_WRITE(PV_VERTB,
450                    VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
451                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
452
453         if (is_dsi)
454                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
455
456         if (vc4->gen >= VC4_GEN_5)
457                 CRTC_WRITE(PV_MUX_CFG,
458                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
459                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
460
461         if (vc4->gen >= VC4_GEN_6_C)
462                 CRTC_WRITE(PV_PIPE_INIT_CTRL,
463                            VC4_SET_FIELD(1, PV_PIPE_INIT_CTRL_PV_INIT_WIDTH) |
464                            VC4_SET_FIELD(1, PV_PIPE_INIT_CTRL_PV_INIT_IDLE) |
465                            PV_PIPE_INIT_CTRL_PV_INIT_EN);
466
467         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
468                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
469                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
470                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
471                    PV_CONTROL_CLR_AT_START |
472                    PV_CONTROL_TRIGGER_UNDERFLOW |
473                    PV_CONTROL_WAIT_HSTART |
474                    VC4_SET_FIELD(vc4_encoder->clock_select,
475                                  PV_CONTROL_CLK_SELECT));
476
477         if (debug_dump_regs) {
478                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
479                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
480                          drm_crtc_index(crtc));
481                 drm_print_regset32(&p, &vc4_crtc->regset);
482         }
483
484         drm_dev_exit(idx);
485 }
486
487 static void require_hvs_enabled(struct drm_device *dev)
488 {
489         struct vc4_dev *vc4 = to_vc4_dev(dev);
490         struct vc4_hvs *hvs = vc4->hvs;
491
492         if (vc4->gen >= VC4_GEN_6_C)
493                 WARN_ON_ONCE(!(HVS_READ(SCALER6_CONTROL) & SCALER6_CONTROL_HVS_EN));
494         else
495                 WARN_ON_ONCE(!(HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE));
496 }
497
498 static int vc4_crtc_disable(struct drm_crtc *crtc,
499                             struct drm_encoder *encoder,
500                             struct drm_atomic_state *state,
501                             unsigned int channel)
502 {
503         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
504         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
505         struct drm_device *dev = crtc->dev;
506         struct vc4_dev *vc4 = to_vc4_dev(dev);
507         int idx, ret;
508
509         if (!drm_dev_enter(dev, &idx))
510                 return -ENODEV;
511
512         CRTC_WRITE(PV_V_CONTROL,
513                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
514         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
515         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
516
517         /*
518          * This delay is needed to avoid to get a pixel stuck in an
519          * unflushable FIFO between the pixelvalve and the HDMI
520          * controllers on the BCM2711.
521          *
522          * Timing is fairly sensitive here, so mdelay is the safest
523          * approach.
524          *
525          * If it was to be reworked, the stuck pixel happens on a
526          * BCM2711 when changing mode with a good probability, so a
527          * script that changes mode on a regular basis should trigger
528          * the bug after less than 10 attempts. It manifests itself with
529          * every pixels being shifted by one to the right, and thus the
530          * last pixel of a line actually being displayed as the first
531          * pixel on the next line.
532          */
533         mdelay(20);
534
535         if (vc4_encoder && vc4_encoder->post_crtc_disable)
536                 vc4_encoder->post_crtc_disable(encoder, state);
537
538         vc4_crtc_pixelvalve_reset(crtc);
539         vc4_hvs_stop_channel(vc4->hvs, channel);
540
541         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
542                 vc4_encoder->post_crtc_powerdown(encoder, state);
543
544         drm_dev_exit(idx);
545
546         return 0;
547 }
548
549 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
550 {
551         struct drm_device *drm = crtc->dev;
552         struct vc4_dev *vc4 = to_vc4_dev(drm);
553         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
554         enum vc4_encoder_type encoder_type;
555         const struct vc4_pv_data *pv_data;
556         struct drm_encoder *encoder;
557         struct vc4_hdmi *vc4_hdmi;
558         unsigned encoder_sel;
559         int channel;
560         int ret;
561
562         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
563                                       "brcm,bcm2711-pixelvalve2") ||
564               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
565                                       "brcm,bcm2711-pixelvalve4") ||
566               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
567                                       "brcm,bcm2712-pixelvalve0") ||
568               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
569                                       "brcm,bcm2712-pixelvalve1")))
570                 return 0;
571
572         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
573                 return 0;
574
575         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
576                 return 0;
577
578         channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
579         if (channel < 0)
580                 return 0;
581
582         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
583         if (WARN_ON(encoder_sel != 0))
584                 return 0;
585
586         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
587         encoder_type = pv_data->encoder_types[encoder_sel];
588         encoder = vc4_find_encoder_by_type(drm, encoder_type);
589         if (WARN_ON(!encoder))
590                 return 0;
591
592         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
593         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
594         if (ret)
595                 return ret;
596
597         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
598         if (ret)
599                 return ret;
600
601         /*
602          * post_crtc_powerdown will have called pm_runtime_put, so we
603          * don't need it here otherwise we'll get the reference counting
604          * wrong.
605          */
606
607         return 0;
608 }
609
610 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
611 {
612         struct drm_device *dev = crtc->dev;
613         unsigned long flags;
614
615         if (!crtc->state || !crtc->state->event)
616                 return;
617
618         spin_lock_irqsave(&dev->event_lock, flags);
619         drm_crtc_send_vblank_event(crtc, crtc->state->event);
620         crtc->state->event = NULL;
621         spin_unlock_irqrestore(&dev->event_lock, flags);
622 }
623
624 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
625                                     struct drm_atomic_state *state)
626 {
627         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
628                                                                          crtc);
629         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
630         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
631         struct drm_device *dev = crtc->dev;
632
633         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
634                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
635
636         require_hvs_enabled(dev);
637
638         /* Disable vblank irq handling before crtc is disabled. */
639         drm_crtc_vblank_off(crtc);
640
641         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
642
643         /*
644          * Make sure we issue a vblank event after disabling the CRTC if
645          * someone was waiting it.
646          */
647         vc4_crtc_send_vblank(crtc);
648 }
649
650 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
651                                    struct drm_atomic_state *state)
652 {
653         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
654                                                                          crtc);
655         struct drm_device *dev = crtc->dev;
656         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
657         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
658         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
659         int idx;
660
661         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
662                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
663
664         if (!drm_dev_enter(dev, &idx))
665                 return;
666
667         require_hvs_enabled(dev);
668
669         /* Enable vblank irq handling before crtc is started otherwise
670          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
671          */
672         drm_crtc_vblank_on(crtc);
673
674         vc4_hvs_atomic_enable(crtc, state);
675
676         if (vc4_encoder->pre_crtc_configure)
677                 vc4_encoder->pre_crtc_configure(encoder, state);
678
679         vc4_crtc_config_pv(crtc, encoder, state);
680
681         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
682
683         if (vc4_encoder->pre_crtc_enable)
684                 vc4_encoder->pre_crtc_enable(encoder, state);
685
686         /* When feeding the transposer block the pixelvalve is unneeded and
687          * should not be enabled.
688          */
689         CRTC_WRITE(PV_V_CONTROL,
690                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
691
692         if (vc4_encoder->post_crtc_enable)
693                 vc4_encoder->post_crtc_enable(encoder, state);
694
695         drm_dev_exit(idx);
696 }
697
698 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
699                                                 const struct drm_display_mode *mode)
700 {
701         /* Do not allow doublescan modes from user space */
702         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
703                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
704                               crtc->base.id);
705                 return MODE_NO_DBLESCAN;
706         }
707
708         return MODE_OK;
709 }
710
711 void vc4_crtc_get_margins(struct drm_crtc_state *state,
712                           unsigned int *left, unsigned int *right,
713                           unsigned int *top, unsigned int *bottom)
714 {
715         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
716         struct drm_connector_state *conn_state;
717         struct drm_connector *conn;
718         int i;
719
720         *left = vc4_state->margins.left;
721         *right = vc4_state->margins.right;
722         *top = vc4_state->margins.top;
723         *bottom = vc4_state->margins.bottom;
724
725         /* We have to interate over all new connector states because
726          * vc4_crtc_get_margins() might be called before
727          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
728          * might be outdated.
729          */
730         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
731                 if (conn_state->crtc != state->crtc)
732                         continue;
733
734                 *left = conn_state->tv.margins.left;
735                 *right = conn_state->tv.margins.right;
736                 *top = conn_state->tv.margins.top;
737                 *bottom = conn_state->tv.margins.bottom;
738                 break;
739         }
740 }
741
742 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
743                           struct drm_atomic_state *state)
744 {
745         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
746                                                                           crtc);
747         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
748         struct drm_connector *conn;
749         struct drm_connector_state *conn_state;
750         struct drm_encoder *encoder;
751         int ret, i;
752
753         ret = vc4_hvs_atomic_check(crtc, state);
754         if (ret)
755                 return ret;
756
757         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
758         if (encoder) {
759                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
760                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
761
762                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
763                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
764                                                   mode->clock * 9 / 10) * 1000;
765                 } else {
766                         vc4_state->hvs_load = mode->clock * 1000;
767                 }
768         }
769
770         for_each_new_connector_in_state(state, conn, conn_state,
771                                         i) {
772                 if (conn_state->crtc != crtc)
773                         continue;
774
775                 if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
776                            sizeof(vc4_state->margins))) {
777                         memcpy(&vc4_state->margins, &conn_state->tv.margins,
778                                sizeof(vc4_state->margins));
779
780                         /*
781                          * Need to force the dlist entries for all planes to be
782                          * updated so that the dest rectangles are changed.
783                          */
784                         crtc_state->zpos_changed = true;
785                 }
786                 break;
787         }
788
789         return 0;
790 }
791
792 static int vc4_enable_vblank(struct drm_crtc *crtc)
793 {
794         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
795         struct drm_device *dev = crtc->dev;
796         int idx;
797
798         if (!drm_dev_enter(dev, &idx))
799                 return -ENODEV;
800
801         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
802
803         drm_dev_exit(idx);
804
805         return 0;
806 }
807
808 static void vc4_disable_vblank(struct drm_crtc *crtc)
809 {
810         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
811         struct drm_device *dev = crtc->dev;
812         int idx;
813
814         if (!drm_dev_enter(dev, &idx))
815                 return;
816
817         CRTC_WRITE(PV_INTEN, 0);
818
819         drm_dev_exit(idx);
820 }
821
822 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
823 {
824         struct drm_crtc *crtc = &vc4_crtc->base;
825         struct drm_device *dev = crtc->dev;
826         struct vc4_dev *vc4 = to_vc4_dev(dev);
827         struct vc4_hvs *hvs = vc4->hvs;
828         unsigned int current_dlist;
829         u32 chan = vc4_crtc->current_hvs_channel;
830         unsigned long flags;
831
832         spin_lock_irqsave(&dev->event_lock, flags);
833         spin_lock(&vc4_crtc->irq_lock);
834
835         if (vc4->gen >= VC4_GEN_6_C)
836                 current_dlist = VC4_GET_FIELD(HVS_READ(SCALER6_DISPX_DL(chan)),
837                                               SCALER6_DISPX_DL_LACT);
838         else
839                 current_dlist = HVS_READ(SCALER_DISPLACTX(chan));
840
841         if (vc4_crtc->event &&
842             (vc4_crtc->current_dlist == current_dlist || vc4_crtc->feeds_txp)) {
843                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
844                 vc4_crtc->event = NULL;
845                 drm_crtc_vblank_put(crtc);
846
847                 /* Wait for the page flip to unmask the underrun to ensure that
848                  * the display list was updated by the hardware. Before that
849                  * happens, the HVS will be using the previous display list with
850                  * the CRTC and encoder already reconfigured, leading to
851                  * underruns. This can be seen when reconfiguring the CRTC.
852                  */
853                 if (vc4->gen < VC4_GEN_6_C)
854                         vc4_hvs_unmask_underrun(hvs, chan);
855         }
856         spin_unlock(&vc4_crtc->irq_lock);
857         spin_unlock_irqrestore(&dev->event_lock, flags);
858 }
859
860 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
861 {
862         crtc->t_vblank = ktime_get();
863         drm_crtc_handle_vblank(&crtc->base);
864         vc4_crtc_handle_page_flip(crtc);
865 }
866
867 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
868 {
869         struct vc4_crtc *vc4_crtc = data;
870         u32 stat = CRTC_READ(PV_INTSTAT);
871         irqreturn_t ret = IRQ_NONE;
872
873         if (stat & PV_INT_VFP_START) {
874                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
875                 vc4_crtc_handle_vblank(vc4_crtc);
876                 ret = IRQ_HANDLED;
877         }
878
879         return ret;
880 }
881
882 struct vc4_async_flip_state {
883         struct drm_crtc *crtc;
884         struct drm_framebuffer *fb;
885         struct drm_framebuffer *old_fb;
886         struct drm_pending_vblank_event *event;
887
888         union {
889                 struct dma_fence_cb fence;
890                 struct vc4_seqno_cb seqno;
891         } cb;
892 };
893
894 /* Called when the V3D execution for the BO being flipped to is done, so that
895  * we can actually update the plane's address to point to it.
896  */
897 static void
898 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
899 {
900         struct drm_crtc *crtc = flip_state->crtc;
901         struct drm_device *dev = crtc->dev;
902         struct drm_plane *plane = crtc->primary;
903
904         vc4_plane_async_set_fb(plane, flip_state->fb);
905         if (flip_state->event) {
906                 unsigned long flags;
907
908                 spin_lock_irqsave(&dev->event_lock, flags);
909                 drm_crtc_send_vblank_event(crtc, flip_state->event);
910                 spin_unlock_irqrestore(&dev->event_lock, flags);
911         }
912
913         drm_crtc_vblank_put(crtc);
914         drm_framebuffer_put(flip_state->fb);
915
916         if (flip_state->old_fb)
917                 drm_framebuffer_put(flip_state->old_fb);
918
919         kfree(flip_state);
920 }
921
922 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
923 {
924         struct vc4_async_flip_state *flip_state =
925                 container_of(cb, struct vc4_async_flip_state, cb.seqno);
926         struct vc4_bo *bo = NULL;
927
928         if (flip_state->old_fb) {
929                 struct drm_gem_dma_object *dma_bo =
930                         drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
931                 bo = to_vc4_bo(&dma_bo->base);
932         }
933
934         vc4_async_page_flip_complete(flip_state);
935
936         /*
937          * Decrement the BO usecnt in order to keep the inc/dec
938          * calls balanced when the planes are updated through
939          * the async update path.
940          *
941          * FIXME: we should move to generic async-page-flip when
942          * it's available, so that we can get rid of this
943          * hand-made cleanup_fb() logic.
944          */
945         if (bo)
946                 vc4_bo_dec_usecnt(bo);
947 }
948
949 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
950                                                struct dma_fence_cb *cb)
951 {
952         struct vc4_async_flip_state *flip_state =
953                 container_of(cb, struct vc4_async_flip_state, cb.fence);
954
955         vc4_async_page_flip_complete(flip_state);
956         dma_fence_put(fence);
957 }
958
959 static int vc4_async_set_fence_cb(struct drm_device *dev,
960                                   struct vc4_async_flip_state *flip_state)
961 {
962         struct drm_framebuffer *fb = flip_state->fb;
963         struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
964         struct vc4_dev *vc4 = to_vc4_dev(dev);
965         struct dma_fence *fence;
966         int ret;
967
968         if (vc4->gen == VC4_GEN_4) {
969                 struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
970
971                 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
972                                           vc4_async_page_flip_seqno_complete);
973         }
974
975         ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
976         if (ret)
977                 return ret;
978
979         /* If there's no fence, complete the page flip immediately */
980         if (!fence) {
981                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
982                 return 0;
983         }
984
985         /* If the fence has already been completed, complete the page flip */
986         if (dma_fence_add_callback(fence, &flip_state->cb.fence,
987                                    vc4_async_page_flip_fence_complete))
988                 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
989
990         return 0;
991 }
992
993 static int
994 vc4_async_page_flip_common(struct drm_crtc *crtc,
995                            struct drm_framebuffer *fb,
996                            struct drm_pending_vblank_event *event,
997                            uint32_t flags)
998 {
999         struct drm_device *dev = crtc->dev;
1000         struct drm_plane *plane = crtc->primary;
1001         struct vc4_async_flip_state *flip_state;
1002
1003         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
1004         if (!flip_state)
1005                 return -ENOMEM;
1006
1007         drm_framebuffer_get(fb);
1008         flip_state->fb = fb;
1009         flip_state->crtc = crtc;
1010         flip_state->event = event;
1011
1012         /* Save the current FB before it's replaced by the new one in
1013          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
1014          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
1015          * it consistent.
1016          * FIXME: we should move to generic async-page-flip when it's
1017          * available, so that we can get rid of this hand-made cleanup_fb()
1018          * logic.
1019          */
1020         flip_state->old_fb = plane->state->fb;
1021         if (flip_state->old_fb)
1022                 drm_framebuffer_get(flip_state->old_fb);
1023
1024         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1025
1026         /* Immediately update the plane's legacy fb pointer, so that later
1027          * modeset prep sees the state that will be present when the semaphore
1028          * is released.
1029          */
1030         drm_atomic_set_fb_for_plane(plane->state, fb);
1031
1032         vc4_async_set_fence_cb(dev, flip_state);
1033
1034         /* Driver takes ownership of state on successful async commit. */
1035         return 0;
1036 }
1037
1038 /* Implements async (non-vblank-synced) page flips.
1039  *
1040  * The page flip ioctl needs to return immediately, so we grab the
1041  * modeset semaphore on the pipe, and queue the address update for
1042  * when V3D is done with the BO being flipped to.
1043  */
1044 static int vc4_async_page_flip(struct drm_crtc *crtc,
1045                                struct drm_framebuffer *fb,
1046                                struct drm_pending_vblank_event *event,
1047                                uint32_t flags)
1048 {
1049         struct drm_device *dev = crtc->dev;
1050         struct vc4_dev *vc4 = to_vc4_dev(dev);
1051         struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1052         struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1053         int ret;
1054
1055         if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1056                 return -ENODEV;
1057
1058         /*
1059          * Increment the BO usecnt here, so that we never end up with an
1060          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1061          * plane is later updated through the non-async path.
1062          *
1063          * FIXME: we should move to generic async-page-flip when
1064          * it's available, so that we can get rid of this
1065          * hand-made prepare_fb() logic.
1066          */
1067         ret = vc4_bo_inc_usecnt(bo);
1068         if (ret)
1069                 return ret;
1070
1071         ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1072         if (ret) {
1073                 vc4_bo_dec_usecnt(bo);
1074                 return ret;
1075         }
1076
1077         return 0;
1078 }
1079
1080 static int vc5_async_page_flip(struct drm_crtc *crtc,
1081                                struct drm_framebuffer *fb,
1082                                struct drm_pending_vblank_event *event,
1083                                uint32_t flags)
1084 {
1085         return vc4_async_page_flip_common(crtc, fb, event, flags);
1086 }
1087
1088 int vc4_page_flip(struct drm_crtc *crtc,
1089                   struct drm_framebuffer *fb,
1090                   struct drm_pending_vblank_event *event,
1091                   uint32_t flags,
1092                   struct drm_modeset_acquire_ctx *ctx)
1093 {
1094         if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1095                 struct drm_device *dev = crtc->dev;
1096                 struct vc4_dev *vc4 = to_vc4_dev(dev);
1097
1098                 if (vc4->gen > VC4_GEN_4)
1099                         return vc5_async_page_flip(crtc, fb, event, flags);
1100                 else
1101                         return vc4_async_page_flip(crtc, fb, event, flags);
1102         } else {
1103                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1104         }
1105 }
1106
1107 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1108 {
1109         struct vc4_crtc_state *vc4_state, *old_vc4_state;
1110
1111         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1112         if (!vc4_state)
1113                 return NULL;
1114
1115         old_vc4_state = to_vc4_crtc_state(crtc->state);
1116         vc4_state->margins = old_vc4_state->margins;
1117         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1118
1119         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1120         return &vc4_state->base;
1121 }
1122
1123 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1124                             struct drm_crtc_state *state)
1125 {
1126         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1127         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1128
1129         if (drm_mm_node_allocated(&vc4_state->mm)) {
1130                 unsigned long flags;
1131
1132                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1133                 drm_mm_remove_node(&vc4_state->mm);
1134                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1135
1136         }
1137
1138         drm_atomic_helper_crtc_destroy_state(crtc, state);
1139 }
1140
1141 void vc4_crtc_reset(struct drm_crtc *crtc)
1142 {
1143         struct vc4_crtc_state *vc4_crtc_state;
1144
1145         if (crtc->state)
1146                 vc4_crtc_destroy_state(crtc, crtc->state);
1147
1148         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1149         if (!vc4_crtc_state) {
1150                 crtc->state = NULL;
1151                 return;
1152         }
1153
1154         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1155         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1156 }
1157
1158 int vc4_crtc_late_register(struct drm_crtc *crtc)
1159 {
1160         struct drm_device *drm = crtc->dev;
1161         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1162         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1163
1164         vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1165                                  &vc4_crtc->regset);
1166
1167         return 0;
1168 }
1169
1170 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1171         .set_config = drm_atomic_helper_set_config,
1172         .page_flip = vc4_page_flip,
1173         .set_property = NULL,
1174         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1175         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1176         .reset = vc4_crtc_reset,
1177         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1178         .atomic_destroy_state = vc4_crtc_destroy_state,
1179         .enable_vblank = vc4_enable_vblank,
1180         .disable_vblank = vc4_disable_vblank,
1181         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1182         .late_register = vc4_crtc_late_register,
1183 };
1184
1185 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1186         .mode_valid = vc4_crtc_mode_valid,
1187         .atomic_check = vc4_crtc_atomic_check,
1188         .atomic_begin = vc4_hvs_atomic_begin,
1189         .atomic_flush = vc4_hvs_atomic_flush,
1190         .atomic_enable = vc4_crtc_atomic_enable,
1191         .atomic_disable = vc4_crtc_atomic_disable,
1192         .get_scanout_position = vc4_crtc_get_scanout_position,
1193 };
1194
1195 const struct vc4_pv_data bcm2835_pv0_data = {
1196         .base = {
1197                 .name = "pixelvalve-0",
1198                 .debugfs_name = "crtc0_regs",
1199                 .hvs_available_channels = BIT(0),
1200                 .hvs_output = 0,
1201         },
1202         .fifo_depth = 64,
1203         .pixels_per_clock = 1,
1204         .encoder_types = {
1205                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1206                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1207         },
1208 };
1209
1210 const struct vc4_pv_data bcm2835_pv1_data = {
1211         .base = {
1212                 .name = "pixelvalve-1",
1213                 .debugfs_name = "crtc1_regs",
1214                 .hvs_available_channels = BIT(2),
1215                 .hvs_output = 2,
1216         },
1217         .fifo_depth = 64,
1218         .pixels_per_clock = 1,
1219         .encoder_types = {
1220                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1221                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1222         },
1223 };
1224
1225 const struct vc4_pv_data bcm2835_pv2_data = {
1226         .base = {
1227                 .name = "pixelvalve-2",
1228                 .debugfs_name = "crtc2_regs",
1229                 .hvs_available_channels = BIT(1),
1230                 .hvs_output = 1,
1231         },
1232         .fifo_depth = 64,
1233         .pixels_per_clock = 1,
1234         .encoder_types = {
1235                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1236                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1237         },
1238 };
1239
1240 const struct vc4_pv_data bcm2711_pv0_data = {
1241         .base = {
1242                 .name = "pixelvalve-0",
1243                 .debugfs_name = "crtc0_regs",
1244                 .hvs_available_channels = BIT(0),
1245                 .hvs_output = 0,
1246         },
1247         .fifo_depth = 64,
1248         .pixels_per_clock = 1,
1249         .encoder_types = {
1250                 [0] = VC4_ENCODER_TYPE_DSI0,
1251                 [1] = VC4_ENCODER_TYPE_DPI,
1252         },
1253 };
1254
1255 const struct vc4_pv_data bcm2711_pv1_data = {
1256         .base = {
1257                 .name = "pixelvalve-1",
1258                 .debugfs_name = "crtc1_regs",
1259                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1260                 .hvs_output = 3,
1261         },
1262         .fifo_depth = 64,
1263         .pixels_per_clock = 1,
1264         .encoder_types = {
1265                 [0] = VC4_ENCODER_TYPE_DSI1,
1266                 [1] = VC4_ENCODER_TYPE_SMI,
1267         },
1268 };
1269
1270 const struct vc4_pv_data bcm2711_pv2_data = {
1271         .base = {
1272                 .name = "pixelvalve-2",
1273                 .debugfs_name = "crtc2_regs",
1274                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1275                 .hvs_output = 4,
1276         },
1277         .fifo_depth = 256,
1278         .pixels_per_clock = 2,
1279         .encoder_types = {
1280                 [0] = VC4_ENCODER_TYPE_HDMI0,
1281         },
1282 };
1283
1284 const struct vc4_pv_data bcm2711_pv3_data = {
1285         .base = {
1286                 .name = "pixelvalve-3",
1287                 .debugfs_name = "crtc3_regs",
1288                 .hvs_available_channels = BIT(1),
1289                 .hvs_output = 1,
1290         },
1291         .fifo_depth = 64,
1292         .pixels_per_clock = 1,
1293         .encoder_types = {
1294                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1295         },
1296 };
1297
1298 const struct vc4_pv_data bcm2711_pv4_data = {
1299         .base = {
1300                 .name = "pixelvalve-4",
1301                 .debugfs_name = "crtc4_regs",
1302                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1303                 .hvs_output = 5,
1304         },
1305         .fifo_depth = 64,
1306         .pixels_per_clock = 2,
1307         .encoder_types = {
1308                 [0] = VC4_ENCODER_TYPE_HDMI1,
1309         },
1310 };
1311
1312 const struct vc4_pv_data bcm2712_pv0_data = {
1313         .base = {
1314                 .debugfs_name = "crtc0_regs",
1315                 .hvs_available_channels = BIT(0),
1316                 .hvs_output = 0,
1317         },
1318         .fifo_depth = 64,
1319         .pixels_per_clock = 1,
1320         .encoder_types = {
1321                 [0] = VC4_ENCODER_TYPE_HDMI0,
1322         },
1323 };
1324
1325 const struct vc4_pv_data bcm2712_pv1_data = {
1326         .base = {
1327                 .debugfs_name = "crtc1_regs",
1328                 .hvs_available_channels = BIT(1),
1329                 .hvs_output = 1,
1330         },
1331         .fifo_depth = 64,
1332         .pixels_per_clock = 1,
1333         .encoder_types = {
1334                 [0] = VC4_ENCODER_TYPE_HDMI1,
1335         },
1336 };
1337
1338 static const struct of_device_id vc4_crtc_dt_match[] = {
1339         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1340         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1341         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1342         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1343         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1344         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1345         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1346         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1347         { .compatible = "brcm,bcm2712-pixelvalve0", .data = &bcm2712_pv0_data },
1348         { .compatible = "brcm,bcm2712-pixelvalve1", .data = &bcm2712_pv1_data },
1349         {}
1350 };
1351
1352 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1353                                         struct drm_crtc *crtc)
1354 {
1355         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1356         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1357         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1358         struct drm_encoder *encoder;
1359
1360         drm_for_each_encoder(encoder, drm) {
1361                 struct vc4_encoder *vc4_encoder;
1362                 int i;
1363
1364                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1365                         continue;
1366
1367                 vc4_encoder = to_vc4_encoder(encoder);
1368                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1369                         if (vc4_encoder->type == encoder_types[i]) {
1370                                 vc4_encoder->clock_select = i;
1371                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1372                                 break;
1373                         }
1374                 }
1375         }
1376 }
1377
1378 /**
1379  * __vc4_crtc_init - Initializes a CRTC
1380  * @drm: DRM Device
1381  * @pdev: CRTC Platform Device
1382  * @vc4_crtc: CRTC Object to Initialize
1383  * @data: Configuration data associated with this CRTC
1384  * @primary_plane: Primary plane for CRTC
1385  * @crtc_funcs: Callbacks for the new CRTC
1386  * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1387  * @feeds_txp: Is this CRTC connected to the TXP?
1388  *
1389  * Initializes our private CRTC structure. This function is mostly
1390  * relevant for KUnit testing, all other users should use
1391  * vc4_crtc_init() instead.
1392  *
1393  * Returns:
1394  * 0 on success, a negative error code on failure.
1395  */
1396 int __vc4_crtc_init(struct drm_device *drm,
1397                     struct platform_device *pdev,
1398                     struct vc4_crtc *vc4_crtc,
1399                     const struct vc4_crtc_data *data,
1400                     struct drm_plane *primary_plane,
1401                     const struct drm_crtc_funcs *crtc_funcs,
1402                     const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1403                     bool feeds_txp)
1404 {
1405         struct vc4_dev *vc4 = to_vc4_dev(drm);
1406         struct drm_crtc *crtc = &vc4_crtc->base;
1407         unsigned int i;
1408         int ret;
1409
1410         vc4_crtc->data = data;
1411         vc4_crtc->pdev = pdev;
1412         vc4_crtc->feeds_txp = feeds_txp;
1413         spin_lock_init(&vc4_crtc->irq_lock);
1414         ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1415                                          crtc_funcs, data->name);
1416         if (ret)
1417                 return ret;
1418
1419         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1420
1421         if (vc4->gen == VC4_GEN_4) {
1422                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1423                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1424
1425                 /* We support CTM, but only for one CRTC at a time. It's therefore
1426                  * implemented as private driver state in vc4_kms, not here.
1427                  */
1428                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1429         }
1430
1431         for (i = 0; i < crtc->gamma_size; i++) {
1432                 vc4_crtc->lut_r[i] = i;
1433                 vc4_crtc->lut_g[i] = i;
1434                 vc4_crtc->lut_b[i] = i;
1435         }
1436
1437         return 0;
1438 }
1439
1440 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1441                   struct vc4_crtc *vc4_crtc,
1442                   const struct vc4_crtc_data *data,
1443                   const struct drm_crtc_funcs *crtc_funcs,
1444                   const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1445                   bool feeds_txp)
1446 {
1447         struct drm_plane *primary_plane;
1448
1449         /* For now, we create just the primary and the legacy cursor
1450          * planes.  We should be able to stack more planes on easily,
1451          * but to do that we would need to compute the bandwidth
1452          * requirement of the plane configuration, and reject ones
1453          * that will take too much.
1454          */
1455         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1456         if (IS_ERR(primary_plane)) {
1457                 dev_err(drm->dev, "failed to construct primary plane\n");
1458                 return PTR_ERR(primary_plane);
1459         }
1460
1461         return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1462                                crtc_funcs, crtc_helper_funcs, feeds_txp);
1463 }
1464
1465 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1466 {
1467         struct platform_device *pdev = to_platform_device(dev);
1468         struct drm_device *drm = dev_get_drvdata(master);
1469         const struct vc4_pv_data *pv_data;
1470         struct vc4_crtc *vc4_crtc;
1471         struct drm_crtc *crtc;
1472         int ret;
1473
1474         vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1475         if (!vc4_crtc)
1476                 return -ENOMEM;
1477         crtc = &vc4_crtc->base;
1478
1479         pv_data = of_device_get_match_data(dev);
1480         if (!pv_data)
1481                 return -ENODEV;
1482
1483         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1484         if (IS_ERR(vc4_crtc->regs))
1485                 return PTR_ERR(vc4_crtc->regs);
1486
1487         vc4_crtc->regset.base = vc4_crtc->regs;
1488         vc4_crtc->regset.regs = crtc_regs;
1489         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1490
1491         ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1492                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1493                             false);
1494         if (ret)
1495                 return ret;
1496         vc4_set_crtc_possible_masks(drm, crtc);
1497
1498         CRTC_WRITE(PV_INTEN, 0);
1499         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1500         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1501                                vc4_crtc_irq_handler,
1502                                IRQF_SHARED,
1503                                "vc4 crtc", vc4_crtc);
1504         if (ret)
1505                 return ret;
1506
1507         platform_set_drvdata(pdev, vc4_crtc);
1508
1509         return 0;
1510 }
1511
1512 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1513                             void *data)
1514 {
1515         struct platform_device *pdev = to_platform_device(dev);
1516         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1517
1518         CRTC_WRITE(PV_INTEN, 0);
1519
1520         platform_set_drvdata(pdev, NULL);
1521 }
1522
1523 static const struct component_ops vc4_crtc_ops = {
1524         .bind   = vc4_crtc_bind,
1525         .unbind = vc4_crtc_unbind,
1526 };
1527
1528 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1529 {
1530         return component_add(&pdev->dev, &vc4_crtc_ops);
1531 }
1532
1533 static void vc4_crtc_dev_remove(struct platform_device *pdev)
1534 {
1535         component_del(&pdev->dev, &vc4_crtc_ops);
1536 }
1537
1538 struct platform_driver vc4_crtc_driver = {
1539         .probe = vc4_crtc_dev_probe,
1540         .remove = vc4_crtc_dev_remove,
1541         .driver = {
1542                 .name = "vc4_crtc",
1543                 .of_match_table = vc4_crtc_dt_match,
1544         },
1545 };
This page took 0.123672 seconds and 4 git commands to generate.