1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2018 Broadcom */
5 * DOC: Broadcom V3D scheduling
7 * The shared DRM GPU scheduler is used to coordinate submitting jobs
8 * to the hardware. Each DRM fd (roughly a client process) gets its
9 * own scheduler entity, which will process jobs in order. The GPU
10 * scheduler will schedule the clients with a FIFO scheduling algorithm.
12 * For simplicity, and in order to keep latency low for interactive
13 * jobs when bulk background jobs are queued up, we submit a new job
14 * to the HW only when it has completed the last one, instead of
15 * filling up the CT[01]Q FIFOs with jobs. Similarly, we use
16 * `drm_sched_job_add_dependency()` to manage the dependency between bin
17 * and render, instead of having the clients submit jobs using the HW's
18 * semaphores to interlock between them.
21 #include <linux/sched/clock.h>
22 #include <linux/kthread.h>
24 #include <drm/drm_syncobj.h>
28 #include "v3d_trace.h"
30 #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16
32 static struct v3d_job *
33 to_v3d_job(struct drm_sched_job *sched_job)
35 return container_of(sched_job, struct v3d_job, base);
38 static struct v3d_bin_job *
39 to_bin_job(struct drm_sched_job *sched_job)
41 return container_of(sched_job, struct v3d_bin_job, base.base);
44 static struct v3d_render_job *
45 to_render_job(struct drm_sched_job *sched_job)
47 return container_of(sched_job, struct v3d_render_job, base.base);
50 static struct v3d_tfu_job *
51 to_tfu_job(struct drm_sched_job *sched_job)
53 return container_of(sched_job, struct v3d_tfu_job, base.base);
56 static struct v3d_csd_job *
57 to_csd_job(struct drm_sched_job *sched_job)
59 return container_of(sched_job, struct v3d_csd_job, base.base);
62 static struct v3d_cpu_job *
63 to_cpu_job(struct drm_sched_job *sched_job)
65 return container_of(sched_job, struct v3d_cpu_job, base.base);
69 v3d_sched_job_free(struct drm_sched_job *sched_job)
71 struct v3d_job *job = to_v3d_job(sched_job);
77 v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info,
80 if (query_info->queries) {
83 for (i = 0; i < count; i++)
84 drm_syncobj_put(query_info->queries[i].syncobj);
86 kvfree(query_info->queries);
91 v3d_performance_query_info_free(struct v3d_performance_query_info *query_info,
94 if (query_info->queries) {
97 for (i = 0; i < count; i++) {
98 drm_syncobj_put(query_info->queries[i].syncobj);
99 kvfree(query_info->queries[i].kperfmon_ids);
102 kvfree(query_info->queries);
107 v3d_cpu_job_free(struct drm_sched_job *sched_job)
109 struct v3d_cpu_job *job = to_cpu_job(sched_job);
111 v3d_timestamp_query_info_free(&job->timestamp_query,
112 job->timestamp_query.count);
114 v3d_performance_query_info_free(&job->performance_query,
115 job->performance_query.count);
117 v3d_job_cleanup(&job->base);
121 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job)
123 struct v3d_perfmon *perfmon = v3d->global_perfmon;
126 perfmon = job->perfmon;
128 if (perfmon == v3d->active_perfmon)
131 if (perfmon != v3d->active_perfmon)
132 v3d_perfmon_stop(v3d, v3d->active_perfmon, true);
134 if (perfmon && v3d->active_perfmon != perfmon)
135 v3d_perfmon_start(v3d, perfmon);
139 v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue)
141 struct v3d_dev *v3d = job->v3d;
142 struct v3d_file_priv *file = job->file->driver_priv;
143 struct v3d_stats *global_stats = &v3d->queue[queue].stats;
144 struct v3d_stats *local_stats = &file->stats[queue];
145 u64 now = local_clock();
149 * We only need to disable local interrupts to appease lockdep who
150 * otherwise would think v3d_job_start_stats vs v3d_stats_update has an
151 * unsafe in-irq vs no-irq-off usage problem. This is a false positive
152 * because all the locks are per queue and stats type, and all jobs are
153 * completely one at a time serialised. More specifically:
155 * 1. Locks for GPU queues are updated from interrupt handlers under a
156 * spin lock and started here with preemption disabled.
158 * 2. Locks for CPU queues are updated from the worker with preemption
159 * disabled and equally started here with preemption disabled.
161 * Therefore both are consistent.
163 * 3. Because next job can only be queued after the previous one has
164 * been signaled, and locks are per queue, there is also no scope for
165 * the start part to race with the update part.
167 if (IS_ENABLED(CONFIG_LOCKDEP))
168 local_irq_save(flags);
172 write_seqcount_begin(&local_stats->lock);
173 local_stats->start_ns = now;
174 write_seqcount_end(&local_stats->lock);
176 write_seqcount_begin(&global_stats->lock);
177 global_stats->start_ns = now;
178 write_seqcount_end(&global_stats->lock);
180 if (IS_ENABLED(CONFIG_LOCKDEP))
181 local_irq_restore(flags);
187 v3d_stats_update(struct v3d_stats *stats, u64 now)
189 write_seqcount_begin(&stats->lock);
190 stats->enabled_ns += now - stats->start_ns;
191 stats->jobs_completed++;
193 write_seqcount_end(&stats->lock);
197 v3d_job_update_stats(struct v3d_job *job, enum v3d_queue queue)
199 struct v3d_dev *v3d = job->v3d;
200 struct v3d_file_priv *file = job->file->driver_priv;
201 struct v3d_stats *global_stats = &v3d->queue[queue].stats;
202 struct v3d_stats *local_stats = &file->stats[queue];
203 u64 now = local_clock();
206 /* See comment in v3d_job_start_stats() */
207 if (IS_ENABLED(CONFIG_LOCKDEP))
208 local_irq_save(flags);
212 v3d_stats_update(local_stats, now);
213 v3d_stats_update(global_stats, now);
215 if (IS_ENABLED(CONFIG_LOCKDEP))
216 local_irq_restore(flags);
221 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job)
223 struct v3d_bin_job *job = to_bin_job(sched_job);
224 struct v3d_dev *v3d = job->base.v3d;
225 struct drm_device *dev = &v3d->drm;
226 struct dma_fence *fence;
227 unsigned long irqflags;
229 if (unlikely(job->base.base.s_fence->finished.error))
232 /* Lock required around bin_job update vs
233 * v3d_overflow_mem_work().
235 spin_lock_irqsave(&v3d->job_lock, irqflags);
237 /* Clear out the overflow allocation, so we don't
238 * reuse the overflow attached to a previous job.
240 V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0);
241 spin_unlock_irqrestore(&v3d->job_lock, irqflags);
243 v3d_invalidate_caches(v3d);
245 fence = v3d_fence_create(v3d, V3D_BIN);
249 if (job->base.irq_fence)
250 dma_fence_put(job->base.irq_fence);
251 job->base.irq_fence = dma_fence_get(fence);
253 trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno,
254 job->start, job->end);
256 v3d_job_start_stats(&job->base, V3D_BIN);
257 v3d_switch_perfmon(v3d, &job->base);
259 /* Set the current and end address of the control list.
260 * Writing the end register is what starts the job.
263 V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma);
264 V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms);
267 V3D_CORE_WRITE(0, V3D_CLE_CT0QTS,
268 V3D_CLE_CT0QTS_ENABLE |
271 V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start);
272 V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end);
277 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job)
279 struct v3d_render_job *job = to_render_job(sched_job);
280 struct v3d_dev *v3d = job->base.v3d;
281 struct drm_device *dev = &v3d->drm;
282 struct dma_fence *fence;
284 if (unlikely(job->base.base.s_fence->finished.error))
287 v3d->render_job = job;
289 /* Can we avoid this flush? We need to be careful of
290 * scheduling, though -- imagine job0 rendering to texture and
291 * job1 reading, and them being executed as bin0, bin1,
292 * render0, render1, so that render1's flush at bin time
295 v3d_invalidate_caches(v3d);
297 fence = v3d_fence_create(v3d, V3D_RENDER);
301 if (job->base.irq_fence)
302 dma_fence_put(job->base.irq_fence);
303 job->base.irq_fence = dma_fence_get(fence);
305 trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno,
306 job->start, job->end);
308 v3d_job_start_stats(&job->base, V3D_RENDER);
309 v3d_switch_perfmon(v3d, &job->base);
311 /* XXX: Set the QCFG */
313 /* Set the current and end address of the control list.
314 * Writing the end register is what starts the job.
316 V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start);
317 V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end);
322 static struct dma_fence *
323 v3d_tfu_job_run(struct drm_sched_job *sched_job)
325 struct v3d_tfu_job *job = to_tfu_job(sched_job);
326 struct v3d_dev *v3d = job->base.v3d;
327 struct drm_device *dev = &v3d->drm;
328 struct dma_fence *fence;
330 fence = v3d_fence_create(v3d, V3D_TFU);
335 if (job->base.irq_fence)
336 dma_fence_put(job->base.irq_fence);
337 job->base.irq_fence = dma_fence_get(fence);
339 trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno);
341 v3d_job_start_stats(&job->base, V3D_TFU);
343 V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia);
344 V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis);
345 V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica);
346 V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua);
347 V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa);
349 V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc);
350 V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios);
351 V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]);
352 if (v3d->ver >= 71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) {
353 V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]);
354 V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]);
355 V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]);
357 /* ICFG kicks off the job. */
358 V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC);
363 static struct dma_fence *
364 v3d_csd_job_run(struct drm_sched_job *sched_job)
366 struct v3d_csd_job *job = to_csd_job(sched_job);
367 struct v3d_dev *v3d = job->base.v3d;
368 struct drm_device *dev = &v3d->drm;
369 struct dma_fence *fence;
374 v3d_invalidate_caches(v3d);
376 fence = v3d_fence_create(v3d, V3D_CSD);
380 if (job->base.irq_fence)
381 dma_fence_put(job->base.irq_fence);
382 job->base.irq_fence = dma_fence_get(fence);
384 trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno);
386 v3d_job_start_stats(&job->base, V3D_CSD);
387 v3d_switch_perfmon(v3d, &job->base);
389 csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver);
390 for (i = 1; i <= 6; i++)
391 V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]);
393 /* Although V3D 7.1 has an eighth configuration register, we are not
394 * using it. Therefore, make sure it remains unused.
396 * XXX: Set the CFG7 register
399 V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0);
401 /* CFG0 write kicks off the job. */
402 V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]);
408 v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job)
410 struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd;
411 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
412 struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect);
413 struct drm_v3d_submit_csd *args = &indirect_csd->job->args;
416 v3d_get_bo_vaddr(bo);
417 v3d_get_bo_vaddr(indirect);
419 wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset);
421 if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0)
424 args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
425 args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
426 args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT;
427 args->cfg[4] = DIV_ROUND_UP(indirect_csd->wg_size, 16) *
428 (wg_counts[0] * wg_counts[1] * wg_counts[2]) - 1;
430 for (int i = 0; i < 3; i++) {
431 /* 0xffffffff indicates that the uniform rewrite is not needed */
432 if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) {
433 u32 uniform_idx = indirect_csd->wg_uniform_offsets[i];
434 ((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i];
438 v3d_put_bo_vaddr(indirect);
439 v3d_put_bo_vaddr(bo);
443 v3d_timestamp_query(struct v3d_cpu_job *job)
445 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
446 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
449 v3d_get_bo_vaddr(bo);
451 for (int i = 0; i < timestamp_query->count; i++) {
452 value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset;
453 *((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull;
455 drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj,
456 job->base.done_fence);
459 v3d_put_bo_vaddr(bo);
463 v3d_reset_timestamp_queries(struct v3d_cpu_job *job)
465 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
466 struct v3d_timestamp_query *queries = timestamp_query->queries;
467 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
470 v3d_get_bo_vaddr(bo);
472 for (int i = 0; i < timestamp_query->count; i++) {
473 value_addr = ((u8 *)bo->vaddr) + queries[i].offset;
474 *((u64 *)value_addr) = 0;
476 drm_syncobj_replace_fence(queries[i].syncobj, NULL);
479 v3d_put_bo_vaddr(bo);
482 static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value)
487 static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value)
493 write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value)
496 write_to_buffer_64(dst, idx, value);
498 write_to_buffer_32(dst, idx, value);
502 v3d_copy_query_results(struct v3d_cpu_job *job)
504 struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query;
505 struct v3d_timestamp_query *queries = timestamp_query->queries;
506 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
507 struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]);
508 struct v3d_copy_query_results_info *copy = &job->copy;
509 struct dma_fence *fence;
511 bool available, write_result;
515 v3d_get_bo_vaddr(bo);
516 v3d_get_bo_vaddr(timestamp);
518 data = ((u8 *)bo->vaddr) + copy->offset;
520 for (i = 0; i < timestamp_query->count; i++) {
521 fence = drm_syncobj_fence_get(queries[i].syncobj);
522 available = fence ? dma_fence_is_signaled(fence) : false;
524 write_result = available || copy->do_partial;
526 query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset;
527 write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr));
530 if (copy->availability_bit)
531 write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u);
533 data += copy->stride;
535 dma_fence_put(fence);
538 v3d_put_bo_vaddr(timestamp);
539 v3d_put_bo_vaddr(bo);
543 v3d_reset_performance_queries(struct v3d_cpu_job *job)
545 struct v3d_performance_query_info *performance_query = &job->performance_query;
546 struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
547 struct v3d_dev *v3d = job->base.v3d;
548 struct v3d_perfmon *perfmon;
550 for (int i = 0; i < performance_query->count; i++) {
551 for (int j = 0; j < performance_query->nperfmons; j++) {
552 perfmon = v3d_perfmon_find(v3d_priv,
553 performance_query->queries[i].kperfmon_ids[j]);
555 DRM_DEBUG("Failed to find perfmon.");
559 v3d_perfmon_stop(v3d, perfmon, false);
561 memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64));
563 v3d_perfmon_put(perfmon);
566 drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL);
571 v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data,
574 struct v3d_performance_query_info *performance_query =
575 &job->performance_query;
576 struct v3d_file_priv *v3d_priv = job->base.file->driver_priv;
577 struct v3d_performance_query *perf_query =
578 &performance_query->queries[query];
579 struct v3d_dev *v3d = job->base.v3d;
580 unsigned int i, j, offset;
582 for (i = 0, offset = 0;
583 i < performance_query->nperfmons;
584 i++, offset += DRM_V3D_MAX_PERF_COUNTERS) {
585 struct v3d_perfmon *perfmon;
587 perfmon = v3d_perfmon_find(v3d_priv,
588 perf_query->kperfmon_ids[i]);
590 DRM_DEBUG("Failed to find perfmon.");
594 v3d_perfmon_stop(v3d, perfmon, true);
596 if (job->copy.do_64bit) {
597 for (j = 0; j < perfmon->ncounters; j++)
598 write_to_buffer_64(data, offset + j,
601 for (j = 0; j < perfmon->ncounters; j++)
602 write_to_buffer_32(data, offset + j,
606 v3d_perfmon_put(perfmon);
611 v3d_copy_performance_query(struct v3d_cpu_job *job)
613 struct v3d_performance_query_info *performance_query = &job->performance_query;
614 struct v3d_copy_query_results_info *copy = &job->copy;
615 struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]);
616 struct dma_fence *fence;
617 bool available, write_result;
620 v3d_get_bo_vaddr(bo);
622 data = ((u8 *)bo->vaddr) + copy->offset;
624 for (int i = 0; i < performance_query->count; i++) {
625 fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj);
626 available = fence ? dma_fence_is_signaled(fence) : false;
628 write_result = available || copy->do_partial;
630 v3d_write_performance_query_result(job, data, i);
632 if (copy->availability_bit)
633 write_to_buffer(data, performance_query->ncounters,
634 copy->do_64bit, available ? 1u : 0u);
636 data += copy->stride;
638 dma_fence_put(fence);
641 v3d_put_bo_vaddr(bo);
644 static const v3d_cpu_job_fn cpu_job_function[] = {
645 [V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect,
646 [V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query,
647 [V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries,
648 [V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results,
649 [V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries,
650 [V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query,
653 static struct dma_fence *
654 v3d_cpu_job_run(struct drm_sched_job *sched_job)
656 struct v3d_cpu_job *job = to_cpu_job(sched_job);
657 struct v3d_dev *v3d = job->base.v3d;
661 if (job->job_type >= ARRAY_SIZE(cpu_job_function)) {
662 DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type);
666 v3d_job_start_stats(&job->base, V3D_CPU);
667 trace_v3d_cpu_job_begin(&v3d->drm, job->job_type);
669 cpu_job_function[job->job_type](job);
671 trace_v3d_cpu_job_end(&v3d->drm, job->job_type);
672 v3d_job_update_stats(&job->base, V3D_CPU);
677 static struct dma_fence *
678 v3d_cache_clean_job_run(struct drm_sched_job *sched_job)
680 struct v3d_job *job = to_v3d_job(sched_job);
681 struct v3d_dev *v3d = job->v3d;
683 v3d_job_start_stats(job, V3D_CACHE_CLEAN);
685 v3d_clean_caches(v3d);
687 v3d_job_update_stats(job, V3D_CACHE_CLEAN);
692 static enum drm_gpu_sched_stat
693 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job)
697 mutex_lock(&v3d->reset_lock);
699 /* block scheduler */
700 for (q = 0; q < V3D_MAX_QUEUES; q++)
701 drm_sched_stop(&v3d->queue[q].sched, sched_job);
704 drm_sched_increase_karma(sched_job);
706 /* get the GPU back into the init state */
709 for (q = 0; q < V3D_MAX_QUEUES; q++)
710 drm_sched_resubmit_jobs(&v3d->queue[q].sched);
712 /* Unblock schedulers and restart their jobs. */
713 for (q = 0; q < V3D_MAX_QUEUES; q++) {
714 drm_sched_start(&v3d->queue[q].sched, 0);
717 mutex_unlock(&v3d->reset_lock);
719 return DRM_GPU_SCHED_STAT_NOMINAL;
722 /* If the current address or return address have changed, then the GPU
723 * has probably made progress and we should delay the reset. This
724 * could fail if the GPU got in an infinite loop in the CL, but that
725 * is pretty unlikely outside of an i-g-t testcase.
727 static enum drm_gpu_sched_stat
728 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q,
729 u32 *timedout_ctca, u32 *timedout_ctra)
731 struct v3d_job *job = to_v3d_job(sched_job);
732 struct v3d_dev *v3d = job->v3d;
733 u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q));
734 u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q));
736 if (*timedout_ctca != ctca || *timedout_ctra != ctra) {
737 *timedout_ctca = ctca;
738 *timedout_ctra = ctra;
739 return DRM_GPU_SCHED_STAT_NOMINAL;
742 return v3d_gpu_reset_for_timeout(v3d, sched_job);
745 static enum drm_gpu_sched_stat
746 v3d_bin_job_timedout(struct drm_sched_job *sched_job)
748 struct v3d_bin_job *job = to_bin_job(sched_job);
750 return v3d_cl_job_timedout(sched_job, V3D_BIN,
751 &job->timedout_ctca, &job->timedout_ctra);
754 static enum drm_gpu_sched_stat
755 v3d_render_job_timedout(struct drm_sched_job *sched_job)
757 struct v3d_render_job *job = to_render_job(sched_job);
759 return v3d_cl_job_timedout(sched_job, V3D_RENDER,
760 &job->timedout_ctca, &job->timedout_ctra);
763 static enum drm_gpu_sched_stat
764 v3d_generic_job_timedout(struct drm_sched_job *sched_job)
766 struct v3d_job *job = to_v3d_job(sched_job);
768 return v3d_gpu_reset_for_timeout(job->v3d, sched_job);
771 static enum drm_gpu_sched_stat
772 v3d_csd_job_timedout(struct drm_sched_job *sched_job)
774 struct v3d_csd_job *job = to_csd_job(sched_job);
775 struct v3d_dev *v3d = job->base.v3d;
776 u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver));
778 /* If we've made progress, skip reset and let the timer get
781 if (job->timedout_batches != batches) {
782 job->timedout_batches = batches;
783 return DRM_GPU_SCHED_STAT_NOMINAL;
786 return v3d_gpu_reset_for_timeout(v3d, sched_job);
789 static const struct drm_sched_backend_ops v3d_bin_sched_ops = {
790 .run_job = v3d_bin_job_run,
791 .timedout_job = v3d_bin_job_timedout,
792 .free_job = v3d_sched_job_free,
795 static const struct drm_sched_backend_ops v3d_render_sched_ops = {
796 .run_job = v3d_render_job_run,
797 .timedout_job = v3d_render_job_timedout,
798 .free_job = v3d_sched_job_free,
801 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = {
802 .run_job = v3d_tfu_job_run,
803 .timedout_job = v3d_generic_job_timedout,
804 .free_job = v3d_sched_job_free,
807 static const struct drm_sched_backend_ops v3d_csd_sched_ops = {
808 .run_job = v3d_csd_job_run,
809 .timedout_job = v3d_csd_job_timedout,
810 .free_job = v3d_sched_job_free
813 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = {
814 .run_job = v3d_cache_clean_job_run,
815 .timedout_job = v3d_generic_job_timedout,
816 .free_job = v3d_sched_job_free
819 static const struct drm_sched_backend_ops v3d_cpu_sched_ops = {
820 .run_job = v3d_cpu_job_run,
821 .timedout_job = v3d_generic_job_timedout,
822 .free_job = v3d_cpu_job_free
826 v3d_sched_init(struct v3d_dev *v3d)
828 int hw_jobs_limit = 1;
829 int job_hang_limit = 0;
830 int hang_limit_ms = 500;
833 ret = drm_sched_init(&v3d->queue[V3D_BIN].sched,
834 &v3d_bin_sched_ops, NULL,
835 DRM_SCHED_PRIORITY_COUNT,
836 hw_jobs_limit, job_hang_limit,
837 msecs_to_jiffies(hang_limit_ms), NULL,
838 NULL, "v3d_bin", v3d->drm.dev);
842 ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched,
843 &v3d_render_sched_ops, NULL,
844 DRM_SCHED_PRIORITY_COUNT,
845 hw_jobs_limit, job_hang_limit,
846 msecs_to_jiffies(hang_limit_ms), NULL,
847 NULL, "v3d_render", v3d->drm.dev);
851 ret = drm_sched_init(&v3d->queue[V3D_TFU].sched,
852 &v3d_tfu_sched_ops, NULL,
853 DRM_SCHED_PRIORITY_COUNT,
854 hw_jobs_limit, job_hang_limit,
855 msecs_to_jiffies(hang_limit_ms), NULL,
856 NULL, "v3d_tfu", v3d->drm.dev);
860 if (v3d_has_csd(v3d)) {
861 ret = drm_sched_init(&v3d->queue[V3D_CSD].sched,
862 &v3d_csd_sched_ops, NULL,
863 DRM_SCHED_PRIORITY_COUNT,
864 hw_jobs_limit, job_hang_limit,
865 msecs_to_jiffies(hang_limit_ms), NULL,
866 NULL, "v3d_csd", v3d->drm.dev);
870 ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched,
871 &v3d_cache_clean_sched_ops, NULL,
872 DRM_SCHED_PRIORITY_COUNT,
873 hw_jobs_limit, job_hang_limit,
874 msecs_to_jiffies(hang_limit_ms), NULL,
875 NULL, "v3d_cache_clean", v3d->drm.dev);
880 ret = drm_sched_init(&v3d->queue[V3D_CPU].sched,
881 &v3d_cpu_sched_ops, NULL,
882 DRM_SCHED_PRIORITY_COUNT,
884 msecs_to_jiffies(hang_limit_ms), NULL,
885 NULL, "v3d_cpu", v3d->drm.dev);
897 v3d_sched_fini(struct v3d_dev *v3d)
901 for (q = 0; q < V3D_MAX_QUEUES; q++) {
902 if (v3d->queue[q].sched.ready)
903 drm_sched_fini(&v3d->queue[q].sched);