1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
35 #include <linux/aer.h>
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names);
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 EXPORT_SYMBOL(pci_pci_problems);
49 unsigned int pci_pm_d3_delay;
51 static void pci_pme_list_scan(struct work_struct *work);
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 struct pci_pme_device {
58 struct list_head list;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 unsigned int delay = dev->d3_delay;
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 #define DEFAULT_HOTPLUG_BUS_SIZE 1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
109 unsigned int pcibios_max_latency = 255;
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
114 /* If set, the PCIe ATS capability will not be used. */
115 static bool pcie_ats_disabled;
117 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_ats_disabled(void)
122 return pcie_ats_disabled;
125 /* Disable bridge_d3 for all PCIe ports */
126 static bool pci_bridge_d3_disable;
127 /* Force bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_force;
130 static int __init pcie_port_pm_setup(char *str)
132 if (!strcmp(str, "off"))
133 pci_bridge_d3_disable = true;
134 else if (!strcmp(str, "force"))
135 pci_bridge_d3_force = true;
138 __setup("pcie_port_pm=", pcie_port_pm_setup);
140 /* Time to wait after a reset for device to become responsive */
141 #define PCIE_RESET_READY_POLL_MS 60000
144 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
145 * @bus: pointer to PCI bus structure to search
147 * Given a PCI bus, returns the highest PCI bus number present in the set
148 * including the given PCI bus and its list of child PCI buses.
150 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 unsigned char max, n;
155 max = bus->busn_res.end;
156 list_for_each_entry(tmp, &bus->children, node) {
157 n = pci_bus_max_busnr(tmp);
163 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
165 #ifdef CONFIG_HAS_IOMEM
166 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
168 struct resource *res = &pdev->resource[bar];
171 * Make sure the BAR is actually a memory resource, not an IO resource
173 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
174 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return ioremap_nocache(res->start, resource_size(res));
179 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
181 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 * Make sure the BAR is actually a memory resource, not an IO resource
186 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
190 return ioremap_wc(pci_resource_start(pdev, bar),
191 pci_resource_len(pdev, bar));
193 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
197 * pci_dev_str_match_path - test if a path string matches a device
198 * @dev: the PCI device to test
199 * @p: string to match the device against
200 * @endptr: pointer to the string after the match
202 * Test if a string (typically from a kernel parameter) formatted as a
203 * path of device/function addresses matches a PCI device. The string must
206 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
208 * A path for a device can be obtained using 'lspci -t'. Using a path
209 * is more robust against bus renumbering than using only a single bus,
210 * device and function address.
212 * Returns 1 if the string matches the device, 0 if it does not and
213 * a negative error code if it fails to parse the string.
215 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
219 int seg, bus, slot, func;
223 *endptr = strchrnul(path, ';');
225 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
230 p = strrchr(wpath, '/');
233 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
239 if (dev->devfn != PCI_DEVFN(slot, func)) {
245 * Note: we don't need to get a reference to the upstream
246 * bridge because we hold a reference to the top level
247 * device which should hold a reference to the bridge,
250 dev = pci_upstream_bridge(dev);
259 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
263 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
270 ret = (seg == pci_domain_nr(dev->bus) &&
271 bus == dev->bus->number &&
272 dev->devfn == PCI_DEVFN(slot, func));
280 * pci_dev_str_match - test if a string matches a device
281 * @dev: the PCI device to test
282 * @p: string to match the device against
283 * @endptr: pointer to the string after the match
285 * Test if a string (typically from a kernel parameter) matches a specified
286 * PCI device. The string may be of one of the following formats:
288 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
289 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
291 * The first format specifies a PCI bus/device/function address which
292 * may change if new hardware is inserted, if motherboard firmware changes,
293 * or due to changes caused in kernel parameters. If the domain is
294 * left unspecified, it is taken to be 0. In order to be robust against
295 * bus renumbering issues, a path of PCI device/function numbers may be used
296 * to address the specific device. The path for a device can be determined
297 * through the use of 'lspci -t'.
299 * The second format matches devices using IDs in the configuration
300 * space which may match multiple devices in the system. A value of 0
301 * for any field will match all devices. (Note: this differs from
302 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
303 * legacy reasons and convenience so users don't have to specify
304 * FFFFFFFFs on the command line.)
306 * Returns 1 if the string matches the device, 0 if it does not and
307 * a negative error code if the string cannot be parsed.
309 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
314 unsigned short vendor, device, subsystem_vendor, subsystem_device;
316 if (strncmp(p, "pci:", 4) == 0) {
317 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
319 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
320 &subsystem_vendor, &subsystem_device, &count);
322 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
326 subsystem_vendor = 0;
327 subsystem_device = 0;
332 if ((!vendor || vendor == dev->vendor) &&
333 (!device || device == dev->device) &&
334 (!subsystem_vendor ||
335 subsystem_vendor == dev->subsystem_vendor) &&
336 (!subsystem_device ||
337 subsystem_device == dev->subsystem_device))
341 * PCI Bus, Device, Function IDs are specified
342 * (optionally, may include a path of devfns following it)
344 ret = pci_dev_str_match_path(dev, p, &p);
359 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
360 u8 pos, int cap, int *ttl)
365 pci_bus_read_config_byte(bus, devfn, pos, &pos);
371 pci_bus_read_config_word(bus, devfn, pos, &ent);
383 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 int ttl = PCI_FIND_CAP_TTL;
388 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
393 return __pci_find_next_cap(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT, cap);
396 EXPORT_SYMBOL_GPL(pci_find_next_capability);
398 static int __pci_bus_find_cap_start(struct pci_bus *bus,
399 unsigned int devfn, u8 hdr_type)
403 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
404 if (!(status & PCI_STATUS_CAP_LIST))
408 case PCI_HEADER_TYPE_NORMAL:
409 case PCI_HEADER_TYPE_BRIDGE:
410 return PCI_CAPABILITY_LIST;
411 case PCI_HEADER_TYPE_CARDBUS:
412 return PCI_CB_CAPABILITY_LIST;
419 * pci_find_capability - query for devices' capabilities
420 * @dev: PCI device to query
421 * @cap: capability code
423 * Tell if a device supports a given PCI capability.
424 * Returns the address of the requested capability structure within the
425 * device's PCI configuration space or 0 in case the device does not
426 * support it. Possible values for @cap:
428 * %PCI_CAP_ID_PM Power Management
429 * %PCI_CAP_ID_AGP Accelerated Graphics Port
430 * %PCI_CAP_ID_VPD Vital Product Data
431 * %PCI_CAP_ID_SLOTID Slot Identification
432 * %PCI_CAP_ID_MSI Message Signalled Interrupts
433 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
434 * %PCI_CAP_ID_PCIX PCI-X
435 * %PCI_CAP_ID_EXP PCI Express
437 int pci_find_capability(struct pci_dev *dev, int cap)
441 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
443 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
447 EXPORT_SYMBOL(pci_find_capability);
450 * pci_bus_find_capability - query for devices' capabilities
451 * @bus: the PCI bus to query
452 * @devfn: PCI device to query
453 * @cap: capability code
455 * Like pci_find_capability() but works for pci devices that do not have a
456 * pci_dev structure set up yet.
458 * Returns the address of the requested capability structure within the
459 * device's PCI configuration space or 0 in case the device does not
462 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
467 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
469 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
471 pos = __pci_find_next_cap(bus, devfn, pos, cap);
475 EXPORT_SYMBOL(pci_bus_find_capability);
478 * pci_find_next_ext_capability - Find an extended capability
479 * @dev: PCI device to query
480 * @start: address at which to start looking (0 to start at beginning of list)
481 * @cap: capability code
483 * Returns the address of the next matching extended capability structure
484 * within the device's PCI configuration space or 0 if the device does
485 * not support it. Some capabilities can occur several times, e.g., the
486 * vendor-specific capability, and this provides a way to find them all.
488 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
492 int pos = PCI_CFG_SPACE_SIZE;
494 /* minimum 8 bytes per capability */
495 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
497 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
503 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
507 * If we have no capabilities, this is indicated by cap ID,
508 * cap version and next pointer all being 0.
514 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 pos = PCI_EXT_CAP_NEXT(header);
518 if (pos < PCI_CFG_SPACE_SIZE)
521 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
527 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 * pci_find_ext_capability - Find an extended capability
531 * @dev: PCI device to query
532 * @cap: capability code
534 * Returns the address of the requested extended capability structure
535 * within the device's PCI configuration space or 0 if the device does
536 * not support it. Possible values for @cap:
538 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
539 * %PCI_EXT_CAP_ID_VC Virtual Channel
540 * %PCI_EXT_CAP_ID_DSN Device Serial Number
541 * %PCI_EXT_CAP_ID_PWR Power Budgeting
543 int pci_find_ext_capability(struct pci_dev *dev, int cap)
545 return pci_find_next_ext_capability(dev, 0, cap);
547 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
549 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
551 int rc, ttl = PCI_FIND_CAP_TTL;
554 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
555 mask = HT_3BIT_CAP_MASK;
557 mask = HT_5BIT_CAP_MASK;
559 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
560 PCI_CAP_ID_HT, &ttl);
562 rc = pci_read_config_byte(dev, pos + 3, &cap);
563 if (rc != PCIBIOS_SUCCESSFUL)
566 if ((cap & mask) == ht_cap)
569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
570 pos + PCI_CAP_LIST_NEXT,
571 PCI_CAP_ID_HT, &ttl);
577 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
578 * @dev: PCI device to query
579 * @pos: Position from which to continue searching
580 * @ht_cap: Hypertransport capability code
582 * To be used in conjunction with pci_find_ht_capability() to search for
583 * all capabilities matching @ht_cap. @pos should always be a value returned
584 * from pci_find_ht_capability().
586 * NB. To be 100% safe against broken PCI devices, the caller should take
587 * steps to avoid an infinite loop.
589 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
591 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
593 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 * pci_find_ht_capability - query a device's Hypertransport capabilities
597 * @dev: PCI device to query
598 * @ht_cap: Hypertransport capability code
600 * Tell if a device supports a given Hypertransport capability.
601 * Returns an address within the device's PCI configuration space
602 * or 0 in case the device does not support the request capability.
603 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
604 * which has a Hypertransport capability matching @ht_cap.
606 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
610 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
612 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
616 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 * pci_find_parent_resource - return resource region of parent bus of given region
620 * @dev: PCI device structure contains resources to be searched
621 * @res: child resource record for which parent is sought
623 * For given resource region of given device, return the resource
624 * region of parent bus the given region is contained in.
626 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
627 struct resource *res)
629 const struct pci_bus *bus = dev->bus;
633 pci_bus_for_each_resource(bus, r, i) {
636 if (resource_contains(r, res)) {
639 * If the window is prefetchable but the BAR is
640 * not, the allocator made a mistake.
642 if (r->flags & IORESOURCE_PREFETCH &&
643 !(res->flags & IORESOURCE_PREFETCH))
647 * If we're below a transparent bridge, there may
648 * be both a positively-decoded aperture and a
649 * subtractively-decoded region that contain the BAR.
650 * We want the positively-decoded one, so this depends
651 * on pci_bus_for_each_resource() giving us those
659 EXPORT_SYMBOL(pci_find_parent_resource);
662 * pci_find_resource - Return matching PCI device resource
663 * @dev: PCI device to query
664 * @res: Resource to look for
666 * Goes over standard PCI resources (BARs) and checks if the given resource
667 * is partially or fully contained in any of them. In that case the
668 * matching resource is returned, %NULL otherwise.
670 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
675 struct resource *r = &dev->resource[i];
677 if (r->start && resource_contains(r, res))
683 EXPORT_SYMBOL(pci_find_resource);
686 * pci_find_pcie_root_port - return PCIe Root Port
687 * @dev: PCI device to query
689 * Traverse up the parent chain and return the PCIe Root Port PCI Device
690 * for a given PCI Device.
692 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
694 struct pci_dev *bridge, *highest_pcie_bridge = dev;
696 bridge = pci_upstream_bridge(dev);
697 while (bridge && pci_is_pcie(bridge)) {
698 highest_pcie_bridge = bridge;
699 bridge = pci_upstream_bridge(bridge);
702 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 return highest_pcie_bridge;
707 EXPORT_SYMBOL(pci_find_pcie_root_port);
710 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
711 * @dev: the PCI device to operate on
712 * @pos: config space offset of status word
713 * @mask: mask of bit(s) to care about in status word
715 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
717 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 /* Wait for Transaction Pending bit clean */
722 for (i = 0; i < 4; i++) {
725 msleep((1 << (i - 1)) * 100);
727 pci_read_config_word(dev, pos, &status);
728 if (!(status & mask))
736 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
737 * @dev: PCI device to have its BARs restored
739 * Restore the BAR values for a given device, so as to make it
740 * accessible by its driver.
742 static void pci_restore_bars(struct pci_dev *dev)
746 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
747 pci_update_resource(dev, i);
750 static const struct pci_platform_pm_ops *pci_platform_pm;
752 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
754 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
755 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
757 pci_platform_pm = ops;
761 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
763 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
766 static inline int platform_pci_set_power_state(struct pci_dev *dev,
769 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
772 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
774 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
777 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
779 return pci_platform_pm ?
780 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
783 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
785 return pci_platform_pm ?
786 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
789 static inline bool platform_pci_need_resume(struct pci_dev *dev)
791 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
795 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
797 * @dev: PCI device to handle.
798 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
801 * -EINVAL if the requested state is invalid.
802 * -EIO if device does not support PCI PM or its PM capabilities register has a
803 * wrong version, or device doesn't support the requested state.
804 * 0 if device already is in the requested state.
805 * 0 if device's power state has been successfully changed.
807 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
810 bool need_restore = false;
812 /* Check if we're already there */
813 if (dev->current_state == state)
819 if (state < PCI_D0 || state > PCI_D3hot)
822 /* Validate current state:
823 * Can enter D0 from any state, but if we can only go deeper
824 * to sleep if we're already in a low power state
826 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
827 && dev->current_state > state) {
828 pci_err(dev, "invalid power transition (from state %d to %d)\n",
829 dev->current_state, state);
833 /* check if this device supports the desired state */
834 if ((state == PCI_D1 && !dev->d1_support)
835 || (state == PCI_D2 && !dev->d2_support))
838 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
840 /* If we're (effectively) in D3, force entire word to 0.
841 * This doesn't affect PME_Status, disables PME_En, and
842 * sets PowerState to 0.
844 switch (dev->current_state) {
848 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
853 case PCI_UNKNOWN: /* Boot-up */
854 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
855 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
857 /* Fall-through: force to D0 */
863 /* enter specified state */
864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
866 /* Mandatory power management transition delays */
867 /* see PCI PM 1.1 5.6.1 table 18 */
868 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
869 pci_dev_d3_sleep(dev);
870 else if (state == PCI_D2 || dev->current_state == PCI_D2)
871 udelay(PCI_PM_D2_DELAY);
873 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
874 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
875 if (dev->current_state != state && printk_ratelimit())
876 pci_info(dev, "Refused to change power state, currently in D%d\n",
880 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
881 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
882 * from D3hot to D0 _may_ perform an internal reset, thereby
883 * going to "D0 Uninitialized" rather than "D0 Initialized".
884 * For example, at least some versions of the 3c905B and the
885 * 3c556B exhibit this behaviour.
887 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
888 * devices in a D3hot state at boot. Consequently, we need to
889 * restore at least the BARs so that the device will be
890 * accessible to its driver.
893 pci_restore_bars(dev);
896 pcie_aspm_pm_state_change(dev->bus->self);
902 * pci_update_current_state - Read power state of given device and cache it
903 * @dev: PCI device to handle.
904 * @state: State to cache in case the device doesn't have the PM capability
906 * The power state is read from the PMCSR register, which however is
907 * inaccessible in D3cold. The platform firmware is therefore queried first
908 * to detect accessibility of the register. In case the platform firmware
909 * reports an incorrect state or the device isn't power manageable by the
910 * platform at all, we try to detect D3cold by testing accessibility of the
911 * vendor ID in config space.
913 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
915 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
916 !pci_device_is_present(dev)) {
917 dev->current_state = PCI_D3cold;
918 } else if (dev->pm_cap) {
921 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
922 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
924 dev->current_state = state;
929 * pci_power_up - Put the given device into D0 forcibly
930 * @dev: PCI device to power up
932 void pci_power_up(struct pci_dev *dev)
934 if (platform_pci_power_manageable(dev))
935 platform_pci_set_power_state(dev, PCI_D0);
937 pci_raw_set_power_state(dev, PCI_D0);
938 pci_update_current_state(dev, PCI_D0);
942 * pci_platform_power_transition - Use platform to change device power state
943 * @dev: PCI device to handle.
944 * @state: State to put the device into.
946 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
950 if (platform_pci_power_manageable(dev)) {
951 error = platform_pci_set_power_state(dev, state);
953 pci_update_current_state(dev, state);
957 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
958 dev->current_state = PCI_D0;
964 * pci_wakeup - Wake up a PCI device
965 * @pci_dev: Device to handle.
966 * @ign: ignored parameter
968 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
970 pci_wakeup_event(pci_dev);
971 pm_request_resume(&pci_dev->dev);
976 * pci_wakeup_bus - Walk given bus and wake up devices on it
977 * @bus: Top bus of the subtree to walk.
979 void pci_wakeup_bus(struct pci_bus *bus)
982 pci_walk_bus(bus, pci_wakeup, NULL);
986 * __pci_start_power_transition - Start power transition of a PCI device
987 * @dev: PCI device to handle.
988 * @state: State to put the device into.
990 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
992 if (state == PCI_D0) {
993 pci_platform_power_transition(dev, PCI_D0);
995 * Mandatory power management transition delays, see
996 * PCI Express Base Specification Revision 2.0 Section
997 * 6.6.1: Conventional Reset. Do not delay for
998 * devices powered on/off by corresponding bridge,
999 * because have already delayed for the bridge.
1001 if (dev->runtime_d3cold) {
1002 if (dev->d3cold_delay)
1003 msleep(dev->d3cold_delay);
1005 * When powering on a bridge from D3cold, the
1006 * whole hierarchy may be powered on into
1007 * D0uninitialized state, resume them to give
1008 * them a chance to suspend again
1010 pci_wakeup_bus(dev->subordinate);
1016 * __pci_dev_set_current_state - Set current state of a PCI device
1017 * @dev: Device to handle
1018 * @data: pointer to state to be set
1020 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1022 pci_power_t state = *(pci_power_t *)data;
1024 dev->current_state = state;
1029 * pci_bus_set_current_state - Walk given bus and set current state of devices
1030 * @bus: Top bus of the subtree to walk.
1031 * @state: state to be set
1033 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1036 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1040 * __pci_complete_power_transition - Complete power transition of a PCI device
1041 * @dev: PCI device to handle.
1042 * @state: State to put the device into.
1044 * This function should not be called directly by device drivers.
1046 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1050 if (state <= PCI_D0)
1052 ret = pci_platform_power_transition(dev, state);
1053 /* Power off the bridge may power off the whole hierarchy */
1054 if (!ret && state == PCI_D3cold)
1055 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1058 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1061 * pci_set_power_state - Set the power state of a PCI device
1062 * @dev: PCI device to handle.
1063 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1065 * Transition a device to a new power state, using the platform firmware and/or
1066 * the device's PCI PM registers.
1069 * -EINVAL if the requested state is invalid.
1070 * -EIO if device does not support PCI PM or its PM capabilities register has a
1071 * wrong version, or device doesn't support the requested state.
1072 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1073 * 0 if device already is in the requested state.
1074 * 0 if the transition is to D3 but D3 is not supported.
1075 * 0 if device's power state has been successfully changed.
1077 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1081 /* bound the state we're entering */
1082 if (state > PCI_D3cold)
1084 else if (state < PCI_D0)
1086 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1088 * If the device or the parent bridge do not support PCI PM,
1089 * ignore the request if we're doing anything other than putting
1090 * it into D0 (which would only happen on boot).
1094 /* Check if we're already there */
1095 if (dev->current_state == state)
1098 __pci_start_power_transition(dev, state);
1100 /* This device is quirked not to be put into D3, so
1101 don't put it in D3 */
1102 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1106 * To put device in D3cold, we put device into D3hot in native
1107 * way, then put device into D3cold with platform ops
1109 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1112 if (!__pci_complete_power_transition(dev, state))
1117 EXPORT_SYMBOL(pci_set_power_state);
1120 * pci_choose_state - Choose the power state of a PCI device
1121 * @dev: PCI device to be suspended
1122 * @state: target sleep state for the whole system. This is the value
1123 * that is passed to suspend() function.
1125 * Returns PCI power state suitable for given device and given system
1129 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1136 ret = platform_pci_choose_state(dev);
1137 if (ret != PCI_POWER_ERROR)
1140 switch (state.event) {
1143 case PM_EVENT_FREEZE:
1144 case PM_EVENT_PRETHAW:
1145 /* REVISIT both freeze and pre-thaw "should" use D0 */
1146 case PM_EVENT_SUSPEND:
1147 case PM_EVENT_HIBERNATE:
1150 pci_info(dev, "unrecognized suspend event %d\n",
1156 EXPORT_SYMBOL(pci_choose_state);
1158 #define PCI_EXP_SAVE_REGS 7
1160 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1161 u16 cap, bool extended)
1163 struct pci_cap_saved_state *tmp;
1165 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1166 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1172 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1174 return _pci_find_saved_cap(dev, cap, false);
1177 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1179 return _pci_find_saved_cap(dev, cap, true);
1182 static int pci_save_pcie_state(struct pci_dev *dev)
1185 struct pci_cap_saved_state *save_state;
1188 if (!pci_is_pcie(dev))
1191 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1193 pci_err(dev, "buffer not found in %s\n", __func__);
1197 cap = (u16 *)&save_state->cap.data[0];
1198 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1199 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1200 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1201 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1202 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1203 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1204 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1209 static void pci_restore_pcie_state(struct pci_dev *dev)
1212 struct pci_cap_saved_state *save_state;
1215 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1219 cap = (u16 *)&save_state->cap.data[0];
1220 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1221 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1222 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1223 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1224 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1225 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1226 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1230 static int pci_save_pcix_state(struct pci_dev *dev)
1233 struct pci_cap_saved_state *save_state;
1235 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1239 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1241 pci_err(dev, "buffer not found in %s\n", __func__);
1245 pci_read_config_word(dev, pos + PCI_X_CMD,
1246 (u16 *)save_state->cap.data);
1251 static void pci_restore_pcix_state(struct pci_dev *dev)
1254 struct pci_cap_saved_state *save_state;
1257 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1258 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1259 if (!save_state || !pos)
1261 cap = (u16 *)&save_state->cap.data[0];
1263 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1268 * pci_save_state - save the PCI configuration space of a device before suspending
1269 * @dev: - PCI device that we're dealing with
1271 int pci_save_state(struct pci_dev *dev)
1274 /* XXX: 100% dword access ok here? */
1275 for (i = 0; i < 16; i++)
1276 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1277 dev->state_saved = true;
1279 i = pci_save_pcie_state(dev);
1283 i = pci_save_pcix_state(dev);
1287 return pci_save_vc_state(dev);
1289 EXPORT_SYMBOL(pci_save_state);
1291 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1292 u32 saved_val, int retry)
1296 pci_read_config_dword(pdev, offset, &val);
1297 if (val == saved_val)
1301 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1302 offset, val, saved_val);
1303 pci_write_config_dword(pdev, offset, saved_val);
1307 pci_read_config_dword(pdev, offset, &val);
1308 if (val == saved_val)
1315 static void pci_restore_config_space_range(struct pci_dev *pdev,
1316 int start, int end, int retry)
1320 for (index = end; index >= start; index--)
1321 pci_restore_config_dword(pdev, 4 * index,
1322 pdev->saved_config_space[index],
1326 static void pci_restore_config_space(struct pci_dev *pdev)
1328 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1329 pci_restore_config_space_range(pdev, 10, 15, 0);
1330 /* Restore BARs before the command register. */
1331 pci_restore_config_space_range(pdev, 4, 9, 10);
1332 pci_restore_config_space_range(pdev, 0, 3, 0);
1334 pci_restore_config_space_range(pdev, 0, 15, 0);
1338 static void pci_restore_rebar_state(struct pci_dev *pdev)
1340 unsigned int pos, nbars, i;
1343 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1347 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1348 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1349 PCI_REBAR_CTRL_NBAR_SHIFT;
1351 for (i = 0; i < nbars; i++, pos += 8) {
1352 struct resource *res;
1355 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1356 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1357 res = pdev->resource + bar_idx;
1358 size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1359 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1360 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1361 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1366 * pci_restore_state - Restore the saved state of a PCI device
1367 * @dev: - PCI device that we're dealing with
1369 void pci_restore_state(struct pci_dev *dev)
1371 if (!dev->state_saved)
1374 /* PCI Express register must be restored first */
1375 pci_restore_pcie_state(dev);
1376 pci_restore_pasid_state(dev);
1377 pci_restore_pri_state(dev);
1378 pci_restore_ats_state(dev);
1379 pci_restore_vc_state(dev);
1380 pci_restore_rebar_state(dev);
1382 pci_cleanup_aer_error_status_regs(dev);
1384 pci_restore_config_space(dev);
1386 pci_restore_pcix_state(dev);
1387 pci_restore_msi_state(dev);
1389 /* Restore ACS and IOV configuration state */
1390 pci_enable_acs(dev);
1391 pci_restore_iov_state(dev);
1393 dev->state_saved = false;
1395 EXPORT_SYMBOL(pci_restore_state);
1397 struct pci_saved_state {
1398 u32 config_space[16];
1399 struct pci_cap_saved_data cap[0];
1403 * pci_store_saved_state - Allocate and return an opaque struct containing
1404 * the device saved state.
1405 * @dev: PCI device that we're dealing with
1407 * Return NULL if no state or error.
1409 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1411 struct pci_saved_state *state;
1412 struct pci_cap_saved_state *tmp;
1413 struct pci_cap_saved_data *cap;
1416 if (!dev->state_saved)
1419 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1421 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1422 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1424 state = kzalloc(size, GFP_KERNEL);
1428 memcpy(state->config_space, dev->saved_config_space,
1429 sizeof(state->config_space));
1432 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1433 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1434 memcpy(cap, &tmp->cap, len);
1435 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1437 /* Empty cap_save terminates list */
1441 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1444 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1445 * @dev: PCI device that we're dealing with
1446 * @state: Saved state returned from pci_store_saved_state()
1448 int pci_load_saved_state(struct pci_dev *dev,
1449 struct pci_saved_state *state)
1451 struct pci_cap_saved_data *cap;
1453 dev->state_saved = false;
1458 memcpy(dev->saved_config_space, state->config_space,
1459 sizeof(state->config_space));
1463 struct pci_cap_saved_state *tmp;
1465 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1466 if (!tmp || tmp->cap.size != cap->size)
1469 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1470 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1471 sizeof(struct pci_cap_saved_data) + cap->size);
1474 dev->state_saved = true;
1477 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1480 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1481 * and free the memory allocated for it.
1482 * @dev: PCI device that we're dealing with
1483 * @state: Pointer to saved state returned from pci_store_saved_state()
1485 int pci_load_and_free_saved_state(struct pci_dev *dev,
1486 struct pci_saved_state **state)
1488 int ret = pci_load_saved_state(dev, *state);
1493 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1495 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1497 return pci_enable_resources(dev, bars);
1500 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1503 struct pci_dev *bridge;
1507 err = pci_set_power_state(dev, PCI_D0);
1508 if (err < 0 && err != -EIO)
1511 bridge = pci_upstream_bridge(dev);
1513 pcie_aspm_powersave_config_link(bridge);
1515 err = pcibios_enable_device(dev, bars);
1518 pci_fixup_device(pci_fixup_enable, dev);
1520 if (dev->msi_enabled || dev->msix_enabled)
1523 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1525 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1526 if (cmd & PCI_COMMAND_INTX_DISABLE)
1527 pci_write_config_word(dev, PCI_COMMAND,
1528 cmd & ~PCI_COMMAND_INTX_DISABLE);
1535 * pci_reenable_device - Resume abandoned device
1536 * @dev: PCI device to be resumed
1538 * Note this function is a backend of pci_default_resume and is not supposed
1539 * to be called by normal code, write proper resume handler and use it instead.
1541 int pci_reenable_device(struct pci_dev *dev)
1543 if (pci_is_enabled(dev))
1544 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1547 EXPORT_SYMBOL(pci_reenable_device);
1549 static void pci_enable_bridge(struct pci_dev *dev)
1551 struct pci_dev *bridge;
1554 bridge = pci_upstream_bridge(dev);
1556 pci_enable_bridge(bridge);
1558 if (pci_is_enabled(dev)) {
1559 if (!dev->is_busmaster)
1560 pci_set_master(dev);
1564 retval = pci_enable_device(dev);
1566 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1568 pci_set_master(dev);
1571 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1573 struct pci_dev *bridge;
1578 * Power state could be unknown at this point, either due to a fresh
1579 * boot or a device removal call. So get the current power state
1580 * so that things like MSI message writing will behave as expected
1581 * (e.g. if the device really is in D0 at enable time).
1585 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1586 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1589 if (atomic_inc_return(&dev->enable_cnt) > 1)
1590 return 0; /* already enabled */
1592 bridge = pci_upstream_bridge(dev);
1594 pci_enable_bridge(bridge);
1596 /* only skip sriov related */
1597 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1598 if (dev->resource[i].flags & flags)
1600 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1601 if (dev->resource[i].flags & flags)
1604 err = do_pci_enable_device(dev, bars);
1606 atomic_dec(&dev->enable_cnt);
1611 * pci_enable_device_io - Initialize a device for use with IO space
1612 * @dev: PCI device to be initialized
1614 * Initialize device before it's used by a driver. Ask low-level code
1615 * to enable I/O resources. Wake up the device if it was suspended.
1616 * Beware, this function can fail.
1618 int pci_enable_device_io(struct pci_dev *dev)
1620 return pci_enable_device_flags(dev, IORESOURCE_IO);
1622 EXPORT_SYMBOL(pci_enable_device_io);
1625 * pci_enable_device_mem - Initialize a device for use with Memory space
1626 * @dev: PCI device to be initialized
1628 * Initialize device before it's used by a driver. Ask low-level code
1629 * to enable Memory resources. Wake up the device if it was suspended.
1630 * Beware, this function can fail.
1632 int pci_enable_device_mem(struct pci_dev *dev)
1634 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1636 EXPORT_SYMBOL(pci_enable_device_mem);
1639 * pci_enable_device - Initialize device before it's used by a driver.
1640 * @dev: PCI device to be initialized
1642 * Initialize device before it's used by a driver. Ask low-level code
1643 * to enable I/O and memory. Wake up the device if it was suspended.
1644 * Beware, this function can fail.
1646 * Note we don't actually enable the device many times if we call
1647 * this function repeatedly (we just increment the count).
1649 int pci_enable_device(struct pci_dev *dev)
1651 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1653 EXPORT_SYMBOL(pci_enable_device);
1656 * Managed PCI resources. This manages device on/off, intx/msi/msix
1657 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1658 * there's no need to track it separately. pci_devres is initialized
1659 * when a device is enabled using managed PCI device enable interface.
1662 unsigned int enabled:1;
1663 unsigned int pinned:1;
1664 unsigned int orig_intx:1;
1665 unsigned int restore_intx:1;
1670 static void pcim_release(struct device *gendev, void *res)
1672 struct pci_dev *dev = to_pci_dev(gendev);
1673 struct pci_devres *this = res;
1676 if (dev->msi_enabled)
1677 pci_disable_msi(dev);
1678 if (dev->msix_enabled)
1679 pci_disable_msix(dev);
1681 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1682 if (this->region_mask & (1 << i))
1683 pci_release_region(dev, i);
1688 if (this->restore_intx)
1689 pci_intx(dev, this->orig_intx);
1691 if (this->enabled && !this->pinned)
1692 pci_disable_device(dev);
1695 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1697 struct pci_devres *dr, *new_dr;
1699 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1703 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1706 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1709 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1711 if (pci_is_managed(pdev))
1712 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1717 * pcim_enable_device - Managed pci_enable_device()
1718 * @pdev: PCI device to be initialized
1720 * Managed pci_enable_device().
1722 int pcim_enable_device(struct pci_dev *pdev)
1724 struct pci_devres *dr;
1727 dr = get_pci_dr(pdev);
1733 rc = pci_enable_device(pdev);
1735 pdev->is_managed = 1;
1740 EXPORT_SYMBOL(pcim_enable_device);
1743 * pcim_pin_device - Pin managed PCI device
1744 * @pdev: PCI device to pin
1746 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1747 * driver detach. @pdev must have been enabled with
1748 * pcim_enable_device().
1750 void pcim_pin_device(struct pci_dev *pdev)
1752 struct pci_devres *dr;
1754 dr = find_pci_dr(pdev);
1755 WARN_ON(!dr || !dr->enabled);
1759 EXPORT_SYMBOL(pcim_pin_device);
1762 * pcibios_add_device - provide arch specific hooks when adding device dev
1763 * @dev: the PCI device being added
1765 * Permits the platform to provide architecture specific functionality when
1766 * devices are added. This is the default implementation. Architecture
1767 * implementations can override this.
1769 int __weak pcibios_add_device(struct pci_dev *dev)
1775 * pcibios_release_device - provide arch specific hooks when releasing device dev
1776 * @dev: the PCI device being released
1778 * Permits the platform to provide architecture specific functionality when
1779 * devices are released. This is the default implementation. Architecture
1780 * implementations can override this.
1782 void __weak pcibios_release_device(struct pci_dev *dev) {}
1785 * pcibios_disable_device - disable arch specific PCI resources for device dev
1786 * @dev: the PCI device to disable
1788 * Disables architecture specific PCI resources for the device. This
1789 * is the default implementation. Architecture implementations can
1792 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1795 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1796 * @irq: ISA IRQ to penalize
1797 * @active: IRQ active or not
1799 * Permits the platform to provide architecture-specific functionality when
1800 * penalizing ISA IRQs. This is the default implementation. Architecture
1801 * implementations can override this.
1803 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1805 static void do_pci_disable_device(struct pci_dev *dev)
1809 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1810 if (pci_command & PCI_COMMAND_MASTER) {
1811 pci_command &= ~PCI_COMMAND_MASTER;
1812 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1815 pcibios_disable_device(dev);
1819 * pci_disable_enabled_device - Disable device without updating enable_cnt
1820 * @dev: PCI device to disable
1822 * NOTE: This function is a backend of PCI power management routines and is
1823 * not supposed to be called drivers.
1825 void pci_disable_enabled_device(struct pci_dev *dev)
1827 if (pci_is_enabled(dev))
1828 do_pci_disable_device(dev);
1832 * pci_disable_device - Disable PCI device after use
1833 * @dev: PCI device to be disabled
1835 * Signal to the system that the PCI device is not in use by the system
1836 * anymore. This only involves disabling PCI bus-mastering, if active.
1838 * Note we don't actually disable the device until all callers of
1839 * pci_enable_device() have called pci_disable_device().
1841 void pci_disable_device(struct pci_dev *dev)
1843 struct pci_devres *dr;
1845 dr = find_pci_dr(dev);
1849 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1850 "disabling already-disabled device");
1852 if (atomic_dec_return(&dev->enable_cnt) != 0)
1855 do_pci_disable_device(dev);
1857 dev->is_busmaster = 0;
1859 EXPORT_SYMBOL(pci_disable_device);
1862 * pcibios_set_pcie_reset_state - set reset state for device dev
1863 * @dev: the PCIe device reset
1864 * @state: Reset state to enter into
1867 * Sets the PCIe reset state for the device. This is the default
1868 * implementation. Architecture implementations can override this.
1870 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1871 enum pcie_reset_state state)
1877 * pci_set_pcie_reset_state - set reset state for device dev
1878 * @dev: the PCIe device reset
1879 * @state: Reset state to enter into
1882 * Sets the PCI reset state for the device.
1884 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1886 return pcibios_set_pcie_reset_state(dev, state);
1888 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1891 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1892 * @dev: PCIe root port or event collector.
1894 void pcie_clear_root_pme_status(struct pci_dev *dev)
1896 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1900 * pci_check_pme_status - Check if given device has generated PME.
1901 * @dev: Device to check.
1903 * Check the PME status of the device and if set, clear it and clear PME enable
1904 * (if set). Return 'true' if PME status and PME enable were both set or
1905 * 'false' otherwise.
1907 bool pci_check_pme_status(struct pci_dev *dev)
1916 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1917 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1918 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1921 /* Clear PME status. */
1922 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1923 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1924 /* Disable PME to avoid interrupt flood. */
1925 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1929 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1935 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1936 * @dev: Device to handle.
1937 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1939 * Check if @dev has generated PME and queue a resume request for it in that
1942 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1944 if (pme_poll_reset && dev->pme_poll)
1945 dev->pme_poll = false;
1947 if (pci_check_pme_status(dev)) {
1948 pci_wakeup_event(dev);
1949 pm_request_resume(&dev->dev);
1955 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1956 * @bus: Top bus of the subtree to walk.
1958 void pci_pme_wakeup_bus(struct pci_bus *bus)
1961 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1966 * pci_pme_capable - check the capability of PCI device to generate PME#
1967 * @dev: PCI device to handle.
1968 * @state: PCI state from which device will issue PME#.
1970 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1975 return !!(dev->pme_support & (1 << state));
1977 EXPORT_SYMBOL(pci_pme_capable);
1979 static void pci_pme_list_scan(struct work_struct *work)
1981 struct pci_pme_device *pme_dev, *n;
1983 mutex_lock(&pci_pme_list_mutex);
1984 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1985 if (pme_dev->dev->pme_poll) {
1986 struct pci_dev *bridge;
1988 bridge = pme_dev->dev->bus->self;
1990 * If bridge is in low power state, the
1991 * configuration space of subordinate devices
1992 * may be not accessible
1994 if (bridge && bridge->current_state != PCI_D0)
1996 pci_pme_wakeup(pme_dev->dev, NULL);
1998 list_del(&pme_dev->list);
2002 if (!list_empty(&pci_pme_list))
2003 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2004 msecs_to_jiffies(PME_TIMEOUT));
2005 mutex_unlock(&pci_pme_list_mutex);
2008 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2012 if (!dev->pme_support)
2015 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2016 /* Clear PME_Status by writing 1 to it and enable PME# */
2017 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2019 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2021 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2025 * pci_pme_restore - Restore PME configuration after config space restore.
2026 * @dev: PCI device to update.
2028 void pci_pme_restore(struct pci_dev *dev)
2032 if (!dev->pme_support)
2035 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2036 if (dev->wakeup_prepared) {
2037 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2038 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2040 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2041 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2043 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2047 * pci_pme_active - enable or disable PCI device's PME# function
2048 * @dev: PCI device to handle.
2049 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2051 * The caller must verify that the device is capable of generating PME# before
2052 * calling this function with @enable equal to 'true'.
2054 void pci_pme_active(struct pci_dev *dev, bool enable)
2056 __pci_pme_active(dev, enable);
2059 * PCI (as opposed to PCIe) PME requires that the device have
2060 * its PME# line hooked up correctly. Not all hardware vendors
2061 * do this, so the PME never gets delivered and the device
2062 * remains asleep. The easiest way around this is to
2063 * periodically walk the list of suspended devices and check
2064 * whether any have their PME flag set. The assumption is that
2065 * we'll wake up often enough anyway that this won't be a huge
2066 * hit, and the power savings from the devices will still be a
2069 * Although PCIe uses in-band PME message instead of PME# line
2070 * to report PME, PME does not work for some PCIe devices in
2071 * reality. For example, there are devices that set their PME
2072 * status bits, but don't really bother to send a PME message;
2073 * there are PCI Express Root Ports that don't bother to
2074 * trigger interrupts when they receive PME messages from the
2075 * devices below. So PME poll is used for PCIe devices too.
2078 if (dev->pme_poll) {
2079 struct pci_pme_device *pme_dev;
2081 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2084 pci_warn(dev, "can't enable PME#\n");
2088 mutex_lock(&pci_pme_list_mutex);
2089 list_add(&pme_dev->list, &pci_pme_list);
2090 if (list_is_singular(&pci_pme_list))
2091 queue_delayed_work(system_freezable_wq,
2093 msecs_to_jiffies(PME_TIMEOUT));
2094 mutex_unlock(&pci_pme_list_mutex);
2096 mutex_lock(&pci_pme_list_mutex);
2097 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2098 if (pme_dev->dev == dev) {
2099 list_del(&pme_dev->list);
2104 mutex_unlock(&pci_pme_list_mutex);
2108 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2110 EXPORT_SYMBOL(pci_pme_active);
2113 * __pci_enable_wake - enable PCI device as wakeup event source
2114 * @dev: PCI device affected
2115 * @state: PCI state from which device will issue wakeup events
2116 * @enable: True to enable event generation; false to disable
2118 * This enables the device as a wakeup event source, or disables it.
2119 * When such events involves platform-specific hooks, those hooks are
2120 * called automatically by this routine.
2122 * Devices with legacy power management (no standard PCI PM capabilities)
2123 * always require such platform hooks.
2126 * 0 is returned on success
2127 * -EINVAL is returned if device is not supposed to wake up the system
2128 * Error code depending on the platform is returned if both the platform and
2129 * the native mechanism fail to enable the generation of wake-up events
2131 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2136 * Bridges can only signal wakeup on behalf of subordinate devices,
2137 * but that is set up elsewhere, so skip them.
2139 if (pci_has_subordinate(dev))
2142 /* Don't do the same thing twice in a row for one device. */
2143 if (!!enable == !!dev->wakeup_prepared)
2147 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2148 * Anderson we should be doing PME# wake enable followed by ACPI wake
2149 * enable. To disable wake-up we call the platform first, for symmetry.
2155 if (pci_pme_capable(dev, state))
2156 pci_pme_active(dev, true);
2159 error = platform_pci_set_wakeup(dev, true);
2163 dev->wakeup_prepared = true;
2165 platform_pci_set_wakeup(dev, false);
2166 pci_pme_active(dev, false);
2167 dev->wakeup_prepared = false;
2174 * pci_enable_wake - change wakeup settings for a PCI device
2175 * @pci_dev: Target device
2176 * @state: PCI state from which device will issue wakeup events
2177 * @enable: Whether or not to enable event generation
2179 * If @enable is set, check device_may_wakeup() for the device before calling
2180 * __pci_enable_wake() for it.
2182 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2184 if (enable && !device_may_wakeup(&pci_dev->dev))
2187 return __pci_enable_wake(pci_dev, state, enable);
2189 EXPORT_SYMBOL(pci_enable_wake);
2192 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2193 * @dev: PCI device to prepare
2194 * @enable: True to enable wake-up event generation; false to disable
2196 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2197 * and this function allows them to set that up cleanly - pci_enable_wake()
2198 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2199 * ordering constraints.
2201 * This function only returns error code if the device is not allowed to wake
2202 * up the system from sleep or it is not capable of generating PME# from both
2203 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2205 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2207 return pci_pme_capable(dev, PCI_D3cold) ?
2208 pci_enable_wake(dev, PCI_D3cold, enable) :
2209 pci_enable_wake(dev, PCI_D3hot, enable);
2211 EXPORT_SYMBOL(pci_wake_from_d3);
2214 * pci_target_state - find an appropriate low power state for a given PCI dev
2216 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2218 * Use underlying platform code to find a supported low power state for @dev.
2219 * If the platform can't manage @dev, return the deepest state from which it
2220 * can generate wake events, based on any available PME info.
2222 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2224 pci_power_t target_state = PCI_D3hot;
2226 if (platform_pci_power_manageable(dev)) {
2228 * Call the platform to find the target state for the device.
2230 pci_power_t state = platform_pci_choose_state(dev);
2233 case PCI_POWER_ERROR:
2238 if (pci_no_d1d2(dev))
2240 /* else: fall through */
2242 target_state = state;
2245 return target_state;
2249 target_state = PCI_D0;
2252 * If the device is in D3cold even though it's not power-manageable by
2253 * the platform, it may have been powered down by non-standard means.
2254 * Best to let it slumber.
2256 if (dev->current_state == PCI_D3cold)
2257 target_state = PCI_D3cold;
2261 * Find the deepest state from which the device can generate
2264 if (dev->pme_support) {
2266 && !(dev->pme_support & (1 << target_state)))
2271 return target_state;
2275 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2276 * @dev: Device to handle.
2278 * Choose the power state appropriate for the device depending on whether
2279 * it can wake up the system and/or is power manageable by the platform
2280 * (PCI_D3hot is the default) and put the device into that state.
2282 int pci_prepare_to_sleep(struct pci_dev *dev)
2284 bool wakeup = device_may_wakeup(&dev->dev);
2285 pci_power_t target_state = pci_target_state(dev, wakeup);
2288 if (target_state == PCI_POWER_ERROR)
2291 pci_enable_wake(dev, target_state, wakeup);
2293 error = pci_set_power_state(dev, target_state);
2296 pci_enable_wake(dev, target_state, false);
2300 EXPORT_SYMBOL(pci_prepare_to_sleep);
2303 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2304 * @dev: Device to handle.
2306 * Disable device's system wake-up capability and put it into D0.
2308 int pci_back_from_sleep(struct pci_dev *dev)
2310 pci_enable_wake(dev, PCI_D0, false);
2311 return pci_set_power_state(dev, PCI_D0);
2313 EXPORT_SYMBOL(pci_back_from_sleep);
2316 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2317 * @dev: PCI device being suspended.
2319 * Prepare @dev to generate wake-up events at run time and put it into a low
2322 int pci_finish_runtime_suspend(struct pci_dev *dev)
2324 pci_power_t target_state;
2327 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2328 if (target_state == PCI_POWER_ERROR)
2331 dev->runtime_d3cold = target_state == PCI_D3cold;
2333 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2335 error = pci_set_power_state(dev, target_state);
2338 pci_enable_wake(dev, target_state, false);
2339 dev->runtime_d3cold = false;
2346 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2347 * @dev: Device to check.
2349 * Return true if the device itself is capable of generating wake-up events
2350 * (through the platform or using the native PCIe PME) or if the device supports
2351 * PME and one of its upstream bridges can generate wake-up events.
2353 bool pci_dev_run_wake(struct pci_dev *dev)
2355 struct pci_bus *bus = dev->bus;
2357 if (!dev->pme_support)
2360 /* PME-capable in principle, but not from the target power state */
2361 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2364 if (device_can_wakeup(&dev->dev))
2367 while (bus->parent) {
2368 struct pci_dev *bridge = bus->self;
2370 if (device_can_wakeup(&bridge->dev))
2376 /* We have reached the root bus. */
2378 return device_can_wakeup(bus->bridge);
2382 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2385 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2386 * @pci_dev: Device to check.
2388 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2389 * reconfigured due to wakeup settings difference between system and runtime
2390 * suspend and the current power state of it is suitable for the upcoming
2391 * (system) transition.
2393 * If the device is not configured for system wakeup, disable PME for it before
2394 * returning 'true' to prevent it from waking up the system unnecessarily.
2396 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2398 struct device *dev = &pci_dev->dev;
2399 bool wakeup = device_may_wakeup(dev);
2401 if (!pm_runtime_suspended(dev)
2402 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2403 || platform_pci_need_resume(pci_dev))
2407 * At this point the device is good to go unless it's been configured
2408 * to generate PME at the runtime suspend time, but it is not supposed
2409 * to wake up the system. In that case, simply disable PME for it
2410 * (it will have to be re-enabled on exit from system resume).
2412 * If the device's power state is D3cold and the platform check above
2413 * hasn't triggered, the device's configuration is suitable and we don't
2414 * need to manipulate it at all.
2416 spin_lock_irq(&dev->power.lock);
2418 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2420 __pci_pme_active(pci_dev, false);
2422 spin_unlock_irq(&dev->power.lock);
2427 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2428 * @pci_dev: Device to handle.
2430 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2431 * it might have been disabled during the prepare phase of system suspend if
2432 * the device was not configured for system wakeup.
2434 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2436 struct device *dev = &pci_dev->dev;
2438 if (!pci_dev_run_wake(pci_dev))
2441 spin_lock_irq(&dev->power.lock);
2443 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2444 __pci_pme_active(pci_dev, true);
2446 spin_unlock_irq(&dev->power.lock);
2449 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2451 struct device *dev = &pdev->dev;
2452 struct device *parent = dev->parent;
2455 pm_runtime_get_sync(parent);
2456 pm_runtime_get_noresume(dev);
2458 * pdev->current_state is set to PCI_D3cold during suspending,
2459 * so wait until suspending completes
2461 pm_runtime_barrier(dev);
2463 * Only need to resume devices in D3cold, because config
2464 * registers are still accessible for devices suspended but
2467 if (pdev->current_state == PCI_D3cold)
2468 pm_runtime_resume(dev);
2471 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2473 struct device *dev = &pdev->dev;
2474 struct device *parent = dev->parent;
2476 pm_runtime_put(dev);
2478 pm_runtime_put_sync(parent);
2482 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2483 * @bridge: Bridge to check
2485 * This function checks if it is possible to move the bridge to D3.
2486 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2488 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2490 if (!pci_is_pcie(bridge))
2493 switch (pci_pcie_type(bridge)) {
2494 case PCI_EXP_TYPE_ROOT_PORT:
2495 case PCI_EXP_TYPE_UPSTREAM:
2496 case PCI_EXP_TYPE_DOWNSTREAM:
2497 if (pci_bridge_d3_disable)
2501 * Hotplug ports handled by firmware in System Management Mode
2502 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2504 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2507 if (pci_bridge_d3_force)
2510 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2511 if (bridge->is_thunderbolt)
2515 * Hotplug ports handled natively by the OS were not validated
2516 * by vendors for runtime D3 at least until 2018 because there
2517 * was no OS support.
2519 if (bridge->is_hotplug_bridge)
2523 * It should be safe to put PCIe ports from 2015 or newer
2526 if (dmi_get_bios_year() >= 2015)
2534 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2536 bool *d3cold_ok = data;
2538 if (/* The device needs to be allowed to go D3cold ... */
2539 dev->no_d3cold || !dev->d3cold_allowed ||
2541 /* ... and if it is wakeup capable to do so from D3cold. */
2542 (device_may_wakeup(&dev->dev) &&
2543 !pci_pme_capable(dev, PCI_D3cold)) ||
2545 /* If it is a bridge it must be allowed to go to D3. */
2546 !pci_power_manageable(dev))
2554 * pci_bridge_d3_update - Update bridge D3 capabilities
2555 * @dev: PCI device which is changed
2557 * Update upstream bridge PM capabilities accordingly depending on if the
2558 * device PM configuration was changed or the device is being removed. The
2559 * change is also propagated upstream.
2561 void pci_bridge_d3_update(struct pci_dev *dev)
2563 bool remove = !device_is_registered(&dev->dev);
2564 struct pci_dev *bridge;
2565 bool d3cold_ok = true;
2567 bridge = pci_upstream_bridge(dev);
2568 if (!bridge || !pci_bridge_d3_possible(bridge))
2572 * If D3 is currently allowed for the bridge, removing one of its
2573 * children won't change that.
2575 if (remove && bridge->bridge_d3)
2579 * If D3 is currently allowed for the bridge and a child is added or
2580 * changed, disallowance of D3 can only be caused by that child, so
2581 * we only need to check that single device, not any of its siblings.
2583 * If D3 is currently not allowed for the bridge, checking the device
2584 * first may allow us to skip checking its siblings.
2587 pci_dev_check_d3cold(dev, &d3cold_ok);
2590 * If D3 is currently not allowed for the bridge, this may be caused
2591 * either by the device being changed/removed or any of its siblings,
2592 * so we need to go through all children to find out if one of them
2593 * continues to block D3.
2595 if (d3cold_ok && !bridge->bridge_d3)
2596 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2599 if (bridge->bridge_d3 != d3cold_ok) {
2600 bridge->bridge_d3 = d3cold_ok;
2601 /* Propagate change to upstream bridges */
2602 pci_bridge_d3_update(bridge);
2607 * pci_d3cold_enable - Enable D3cold for device
2608 * @dev: PCI device to handle
2610 * This function can be used in drivers to enable D3cold from the device
2611 * they handle. It also updates upstream PCI bridge PM capabilities
2614 void pci_d3cold_enable(struct pci_dev *dev)
2616 if (dev->no_d3cold) {
2617 dev->no_d3cold = false;
2618 pci_bridge_d3_update(dev);
2621 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2624 * pci_d3cold_disable - Disable D3cold for device
2625 * @dev: PCI device to handle
2627 * This function can be used in drivers to disable D3cold from the device
2628 * they handle. It also updates upstream PCI bridge PM capabilities
2631 void pci_d3cold_disable(struct pci_dev *dev)
2633 if (!dev->no_d3cold) {
2634 dev->no_d3cold = true;
2635 pci_bridge_d3_update(dev);
2638 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2641 * pci_pm_init - Initialize PM functions of given PCI device
2642 * @dev: PCI device to handle.
2644 void pci_pm_init(struct pci_dev *dev)
2649 pm_runtime_forbid(&dev->dev);
2650 pm_runtime_set_active(&dev->dev);
2651 pm_runtime_enable(&dev->dev);
2652 device_enable_async_suspend(&dev->dev);
2653 dev->wakeup_prepared = false;
2656 dev->pme_support = 0;
2658 /* find PCI PM capability in list */
2659 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2662 /* Check device's ability to generate PME# */
2663 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2665 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2666 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2667 pmc & PCI_PM_CAP_VER_MASK);
2672 dev->d3_delay = PCI_PM_D3_WAIT;
2673 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2674 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2675 dev->d3cold_allowed = true;
2677 dev->d1_support = false;
2678 dev->d2_support = false;
2679 if (!pci_no_d1d2(dev)) {
2680 if (pmc & PCI_PM_CAP_D1)
2681 dev->d1_support = true;
2682 if (pmc & PCI_PM_CAP_D2)
2683 dev->d2_support = true;
2685 if (dev->d1_support || dev->d2_support)
2686 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2687 dev->d1_support ? " D1" : "",
2688 dev->d2_support ? " D2" : "");
2691 pmc &= PCI_PM_CAP_PME_MASK;
2693 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2694 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2695 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2696 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2697 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2698 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2699 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2700 dev->pme_poll = true;
2702 * Make device's PM flags reflect the wake-up capability, but
2703 * let the user space enable it to wake up the system as needed.
2705 device_set_wakeup_capable(&dev->dev, true);
2706 /* Disable the PME# generation functionality */
2707 pci_pme_active(dev, false);
2711 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2713 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2717 case PCI_EA_P_VF_MEM:
2718 flags |= IORESOURCE_MEM;
2720 case PCI_EA_P_MEM_PREFETCH:
2721 case PCI_EA_P_VF_MEM_PREFETCH:
2722 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2725 flags |= IORESOURCE_IO;
2734 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2737 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2738 return &dev->resource[bei];
2739 #ifdef CONFIG_PCI_IOV
2740 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2741 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2742 return &dev->resource[PCI_IOV_RESOURCES +
2743 bei - PCI_EA_BEI_VF_BAR0];
2745 else if (bei == PCI_EA_BEI_ROM)
2746 return &dev->resource[PCI_ROM_RESOURCE];
2751 /* Read an Enhanced Allocation (EA) entry */
2752 static int pci_ea_read(struct pci_dev *dev, int offset)
2754 struct resource *res;
2755 int ent_size, ent_offset = offset;
2756 resource_size_t start, end;
2757 unsigned long flags;
2758 u32 dw0, bei, base, max_offset;
2760 bool support_64 = (sizeof(resource_size_t) >= 8);
2762 pci_read_config_dword(dev, ent_offset, &dw0);
2765 /* Entry size field indicates DWORDs after 1st */
2766 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2768 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2771 bei = (dw0 & PCI_EA_BEI) >> 4;
2772 prop = (dw0 & PCI_EA_PP) >> 8;
2775 * If the Property is in the reserved range, try the Secondary
2778 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2779 prop = (dw0 & PCI_EA_SP) >> 16;
2780 if (prop > PCI_EA_P_BRIDGE_IO)
2783 res = pci_ea_get_resource(dev, bei, prop);
2785 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2789 flags = pci_ea_flags(dev, prop);
2791 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2796 pci_read_config_dword(dev, ent_offset, &base);
2797 start = (base & PCI_EA_FIELD_MASK);
2800 /* Read MaxOffset */
2801 pci_read_config_dword(dev, ent_offset, &max_offset);
2804 /* Read Base MSBs (if 64-bit entry) */
2805 if (base & PCI_EA_IS_64) {
2808 pci_read_config_dword(dev, ent_offset, &base_upper);
2811 flags |= IORESOURCE_MEM_64;
2813 /* entry starts above 32-bit boundary, can't use */
2814 if (!support_64 && base_upper)
2818 start |= ((u64)base_upper << 32);
2821 end = start + (max_offset | 0x03);
2823 /* Read MaxOffset MSBs (if 64-bit entry) */
2824 if (max_offset & PCI_EA_IS_64) {
2825 u32 max_offset_upper;
2827 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2830 flags |= IORESOURCE_MEM_64;
2832 /* entry too big, can't use */
2833 if (!support_64 && max_offset_upper)
2837 end += ((u64)max_offset_upper << 32);
2841 pci_err(dev, "EA Entry crosses address boundary\n");
2845 if (ent_size != ent_offset - offset) {
2846 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2847 ent_size, ent_offset - offset);
2851 res->name = pci_name(dev);
2856 if (bei <= PCI_EA_BEI_BAR5)
2857 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2859 else if (bei == PCI_EA_BEI_ROM)
2860 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2862 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2863 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2864 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2866 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2870 return offset + ent_size;
2873 /* Enhanced Allocation Initialization */
2874 void pci_ea_init(struct pci_dev *dev)
2881 /* find PCI EA capability in list */
2882 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2886 /* determine the number of entries */
2887 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2889 num_ent &= PCI_EA_NUM_ENT_MASK;
2891 offset = ea + PCI_EA_FIRST_ENT;
2893 /* Skip DWORD 2 for type 1 functions */
2894 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2897 /* parse each EA entry */
2898 for (i = 0; i < num_ent; ++i)
2899 offset = pci_ea_read(dev, offset);
2902 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2903 struct pci_cap_saved_state *new_cap)
2905 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2909 * _pci_add_cap_save_buffer - allocate buffer for saving given
2910 * capability registers
2911 * @dev: the PCI device
2912 * @cap: the capability to allocate the buffer for
2913 * @extended: Standard or Extended capability ID
2914 * @size: requested size of the buffer
2916 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2917 bool extended, unsigned int size)
2920 struct pci_cap_saved_state *save_state;
2923 pos = pci_find_ext_capability(dev, cap);
2925 pos = pci_find_capability(dev, cap);
2930 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2934 save_state->cap.cap_nr = cap;
2935 save_state->cap.cap_extended = extended;
2936 save_state->cap.size = size;
2937 pci_add_saved_cap(dev, save_state);
2942 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2944 return _pci_add_cap_save_buffer(dev, cap, false, size);
2947 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2949 return _pci_add_cap_save_buffer(dev, cap, true, size);
2953 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2954 * @dev: the PCI device
2956 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2960 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2961 PCI_EXP_SAVE_REGS * sizeof(u16));
2963 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2965 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2967 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2969 pci_allocate_vc_save_buffers(dev);
2972 void pci_free_cap_save_buffers(struct pci_dev *dev)
2974 struct pci_cap_saved_state *tmp;
2975 struct hlist_node *n;
2977 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2982 * pci_configure_ari - enable or disable ARI forwarding
2983 * @dev: the PCI device
2985 * If @dev and its upstream bridge both support ARI, enable ARI in the
2986 * bridge. Otherwise, disable ARI in the bridge.
2988 void pci_configure_ari(struct pci_dev *dev)
2991 struct pci_dev *bridge;
2993 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2996 bridge = dev->bus->self;
3000 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3001 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3004 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3005 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3006 PCI_EXP_DEVCTL2_ARI);
3007 bridge->ari_enabled = 1;
3009 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3010 PCI_EXP_DEVCTL2_ARI);
3011 bridge->ari_enabled = 0;
3015 static int pci_acs_enable;
3018 * pci_request_acs - ask for ACS to be enabled if supported
3020 void pci_request_acs(void)
3025 static const char *disable_acs_redir_param;
3028 * pci_disable_acs_redir - disable ACS redirect capabilities
3029 * @dev: the PCI device
3031 * For only devices specified in the disable_acs_redir parameter.
3033 static void pci_disable_acs_redir(struct pci_dev *dev)
3040 if (!disable_acs_redir_param)
3043 p = disable_acs_redir_param;
3045 ret = pci_dev_str_match(dev, p, &p);
3047 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3048 disable_acs_redir_param);
3051 } else if (ret == 1) {
3056 if (*p != ';' && *p != ',') {
3057 /* End of param or invalid format */
3066 if (!pci_dev_specific_disable_acs_redir(dev))
3069 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3071 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3075 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3077 /* P2P Request & Completion Redirect */
3078 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3080 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3082 pci_info(dev, "disabled ACS redirect\n");
3086 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
3087 * @dev: the PCI device
3089 static void pci_std_enable_acs(struct pci_dev *dev)
3095 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3099 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3100 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3102 /* Source Validation */
3103 ctrl |= (cap & PCI_ACS_SV);
3105 /* P2P Request Redirect */
3106 ctrl |= (cap & PCI_ACS_RR);
3108 /* P2P Completion Redirect */
3109 ctrl |= (cap & PCI_ACS_CR);
3111 /* Upstream Forwarding */
3112 ctrl |= (cap & PCI_ACS_UF);
3114 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3118 * pci_enable_acs - enable ACS if hardware support it
3119 * @dev: the PCI device
3121 void pci_enable_acs(struct pci_dev *dev)
3123 if (!pci_acs_enable)
3124 goto disable_acs_redir;
3126 if (!pci_dev_specific_enable_acs(dev))
3127 goto disable_acs_redir;
3129 pci_std_enable_acs(dev);
3133 * Note: pci_disable_acs_redir() must be called even if ACS was not
3134 * enabled by the kernel because it may have been enabled by
3135 * platform firmware. So if we are told to disable it, we should
3136 * always disable it after setting the kernel's default
3139 pci_disable_acs_redir(dev);
3142 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3147 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3152 * Except for egress control, capabilities are either required
3153 * or only required if controllable. Features missing from the
3154 * capability field can therefore be assumed as hard-wired enabled.
3156 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3157 acs_flags &= (cap | PCI_ACS_EC);
3159 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3160 return (ctrl & acs_flags) == acs_flags;
3164 * pci_acs_enabled - test ACS against required flags for a given device
3165 * @pdev: device to test
3166 * @acs_flags: required PCI ACS flags
3168 * Return true if the device supports the provided flags. Automatically
3169 * filters out flags that are not implemented on multifunction devices.
3171 * Note that this interface checks the effective ACS capabilities of the
3172 * device rather than the actual capabilities. For instance, most single
3173 * function endpoints are not required to support ACS because they have no
3174 * opportunity for peer-to-peer access. We therefore return 'true'
3175 * regardless of whether the device exposes an ACS capability. This makes
3176 * it much easier for callers of this function to ignore the actual type
3177 * or topology of the device when testing ACS support.
3179 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3183 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3188 * Conventional PCI and PCI-X devices never support ACS, either
3189 * effectively or actually. The shared bus topology implies that
3190 * any device on the bus can receive or snoop DMA.
3192 if (!pci_is_pcie(pdev))
3195 switch (pci_pcie_type(pdev)) {
3197 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3198 * but since their primary interface is PCI/X, we conservatively
3199 * handle them as we would a non-PCIe device.
3201 case PCI_EXP_TYPE_PCIE_BRIDGE:
3203 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3204 * applicable... must never implement an ACS Extended Capability...".
3205 * This seems arbitrary, but we take a conservative interpretation
3206 * of this statement.
3208 case PCI_EXP_TYPE_PCI_BRIDGE:
3209 case PCI_EXP_TYPE_RC_EC:
3212 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3213 * implement ACS in order to indicate their peer-to-peer capabilities,
3214 * regardless of whether they are single- or multi-function devices.
3216 case PCI_EXP_TYPE_DOWNSTREAM:
3217 case PCI_EXP_TYPE_ROOT_PORT:
3218 return pci_acs_flags_enabled(pdev, acs_flags);
3220 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3221 * implemented by the remaining PCIe types to indicate peer-to-peer
3222 * capabilities, but only when they are part of a multifunction
3223 * device. The footnote for section 6.12 indicates the specific
3224 * PCIe types included here.
3226 case PCI_EXP_TYPE_ENDPOINT:
3227 case PCI_EXP_TYPE_UPSTREAM:
3228 case PCI_EXP_TYPE_LEG_END:
3229 case PCI_EXP_TYPE_RC_END:
3230 if (!pdev->multifunction)
3233 return pci_acs_flags_enabled(pdev, acs_flags);
3237 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3238 * to single function devices with the exception of downstream ports.
3244 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3245 * @start: starting downstream device
3246 * @end: ending upstream device or NULL to search to the root bus
3247 * @acs_flags: required flags
3249 * Walk up a device tree from start to end testing PCI ACS support. If
3250 * any step along the way does not support the required flags, return false.
3252 bool pci_acs_path_enabled(struct pci_dev *start,
3253 struct pci_dev *end, u16 acs_flags)
3255 struct pci_dev *pdev, *parent = start;
3260 if (!pci_acs_enabled(pdev, acs_flags))
3263 if (pci_is_root_bus(pdev->bus))
3264 return (end == NULL);
3266 parent = pdev->bus->self;
3267 } while (pdev != end);
3273 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3277 * Helper to find the position of the ctrl register for a BAR.
3278 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3279 * Returns -ENOENT if no ctrl register for the BAR could be found.
3281 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3283 unsigned int pos, nbars, i;
3286 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3290 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3291 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3292 PCI_REBAR_CTRL_NBAR_SHIFT;
3294 for (i = 0; i < nbars; i++, pos += 8) {
3297 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3298 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3307 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3309 * @bar: BAR to query
3311 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3312 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3314 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3319 pos = pci_rebar_find_pos(pdev, bar);
3323 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3324 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3328 * pci_rebar_get_current_size - get the current size of a BAR
3330 * @bar: BAR to set size to
3332 * Read the size of a BAR from the resizable BAR config.
3333 * Returns size if found or negative error code.
3335 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3340 pos = pci_rebar_find_pos(pdev, bar);
3344 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3345 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3349 * pci_rebar_set_size - set a new size for a BAR
3351 * @bar: BAR to set size to
3352 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3354 * Set the new size of a BAR as defined in the spec.
3355 * Returns zero if resizing was successful, error code otherwise.
3357 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3362 pos = pci_rebar_find_pos(pdev, bar);
3366 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3367 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3368 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3369 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3374 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3375 * @dev: the PCI device
3376 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3377 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3378 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3379 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3381 * Return 0 if all upstream bridges support AtomicOp routing, egress
3382 * blocking is disabled on all upstream ports, and the root port supports
3383 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3384 * AtomicOp completion), or negative otherwise.
3386 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3388 struct pci_bus *bus = dev->bus;
3389 struct pci_dev *bridge;
3392 if (!pci_is_pcie(dev))
3396 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3397 * AtomicOp requesters. For now, we only support endpoints as
3398 * requesters and root ports as completers. No endpoints as
3399 * completers, and no peer-to-peer.
3402 switch (pci_pcie_type(dev)) {
3403 case PCI_EXP_TYPE_ENDPOINT:
3404 case PCI_EXP_TYPE_LEG_END:
3405 case PCI_EXP_TYPE_RC_END:
3411 while (bus->parent) {
3414 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3416 switch (pci_pcie_type(bridge)) {
3417 /* Ensure switch ports support AtomicOp routing */
3418 case PCI_EXP_TYPE_UPSTREAM:
3419 case PCI_EXP_TYPE_DOWNSTREAM:
3420 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3424 /* Ensure root port supports all the sizes we care about */
3425 case PCI_EXP_TYPE_ROOT_PORT:
3426 if ((cap & cap_mask) != cap_mask)
3431 /* Ensure upstream ports don't block AtomicOps on egress */
3432 if (!bridge->has_secondary_link) {
3433 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3435 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3442 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3443 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3446 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3449 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3450 * @dev: the PCI device
3451 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3453 * Perform INTx swizzling for a device behind one level of bridge. This is
3454 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3455 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3456 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3457 * the PCI Express Base Specification, Revision 2.1)
3459 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3463 if (pci_ari_enabled(dev->bus))
3466 slot = PCI_SLOT(dev->devfn);
3468 return (((pin - 1) + slot) % 4) + 1;
3471 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3479 while (!pci_is_root_bus(dev->bus)) {
3480 pin = pci_swizzle_interrupt_pin(dev, pin);
3481 dev = dev->bus->self;
3488 * pci_common_swizzle - swizzle INTx all the way to root bridge
3489 * @dev: the PCI device
3490 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3492 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3493 * bridges all the way up to a PCI root bus.
3495 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3499 while (!pci_is_root_bus(dev->bus)) {
3500 pin = pci_swizzle_interrupt_pin(dev, pin);
3501 dev = dev->bus->self;
3504 return PCI_SLOT(dev->devfn);
3506 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3509 * pci_release_region - Release a PCI bar
3510 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3511 * @bar: BAR to release
3513 * Releases the PCI I/O and memory resources previously reserved by a
3514 * successful call to pci_request_region. Call this function only
3515 * after all use of the PCI regions has ceased.
3517 void pci_release_region(struct pci_dev *pdev, int bar)
3519 struct pci_devres *dr;
3521 if (pci_resource_len(pdev, bar) == 0)
3523 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3524 release_region(pci_resource_start(pdev, bar),
3525 pci_resource_len(pdev, bar));
3526 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3527 release_mem_region(pci_resource_start(pdev, bar),
3528 pci_resource_len(pdev, bar));
3530 dr = find_pci_dr(pdev);
3532 dr->region_mask &= ~(1 << bar);
3534 EXPORT_SYMBOL(pci_release_region);
3537 * __pci_request_region - Reserved PCI I/O and memory resource
3538 * @pdev: PCI device whose resources are to be reserved
3539 * @bar: BAR to be reserved
3540 * @res_name: Name to be associated with resource.
3541 * @exclusive: whether the region access is exclusive or not
3543 * Mark the PCI region associated with PCI device @pdev BR @bar as
3544 * being reserved by owner @res_name. Do not access any
3545 * address inside the PCI regions unless this call returns
3548 * If @exclusive is set, then the region is marked so that userspace
3549 * is explicitly not allowed to map the resource via /dev/mem or
3550 * sysfs MMIO access.
3552 * Returns 0 on success, or %EBUSY on error. A warning
3553 * message is also printed on failure.
3555 static int __pci_request_region(struct pci_dev *pdev, int bar,
3556 const char *res_name, int exclusive)
3558 struct pci_devres *dr;
3560 if (pci_resource_len(pdev, bar) == 0)
3563 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3564 if (!request_region(pci_resource_start(pdev, bar),
3565 pci_resource_len(pdev, bar), res_name))
3567 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3568 if (!__request_mem_region(pci_resource_start(pdev, bar),
3569 pci_resource_len(pdev, bar), res_name,
3574 dr = find_pci_dr(pdev);
3576 dr->region_mask |= 1 << bar;
3581 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3582 &pdev->resource[bar]);
3587 * pci_request_region - Reserve PCI I/O and memory resource
3588 * @pdev: PCI device whose resources are to be reserved
3589 * @bar: BAR to be reserved
3590 * @res_name: Name to be associated with resource
3592 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3593 * being reserved by owner @res_name. Do not access any
3594 * address inside the PCI regions unless this call returns
3597 * Returns 0 on success, or %EBUSY on error. A warning
3598 * message is also printed on failure.
3600 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3602 return __pci_request_region(pdev, bar, res_name, 0);
3604 EXPORT_SYMBOL(pci_request_region);
3607 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3608 * @pdev: PCI device whose resources are to be reserved
3609 * @bar: BAR to be reserved
3610 * @res_name: Name to be associated with resource.
3612 * Mark the PCI region associated with PCI device @pdev BR @bar as
3613 * being reserved by owner @res_name. Do not access any
3614 * address inside the PCI regions unless this call returns
3617 * Returns 0 on success, or %EBUSY on error. A warning
3618 * message is also printed on failure.
3620 * The key difference that _exclusive makes it that userspace is
3621 * explicitly not allowed to map the resource via /dev/mem or
3624 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3625 const char *res_name)
3627 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3629 EXPORT_SYMBOL(pci_request_region_exclusive);
3632 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3633 * @pdev: PCI device whose resources were previously reserved
3634 * @bars: Bitmask of BARs to be released
3636 * Release selected PCI I/O and memory resources previously reserved.
3637 * Call this function only after all use of the PCI regions has ceased.
3639 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3643 for (i = 0; i < 6; i++)
3644 if (bars & (1 << i))
3645 pci_release_region(pdev, i);
3647 EXPORT_SYMBOL(pci_release_selected_regions);
3649 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3650 const char *res_name, int excl)
3654 for (i = 0; i < 6; i++)
3655 if (bars & (1 << i))
3656 if (__pci_request_region(pdev, i, res_name, excl))
3662 if (bars & (1 << i))
3663 pci_release_region(pdev, i);
3670 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3671 * @pdev: PCI device whose resources are to be reserved
3672 * @bars: Bitmask of BARs to be requested
3673 * @res_name: Name to be associated with resource
3675 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3676 const char *res_name)
3678 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3680 EXPORT_SYMBOL(pci_request_selected_regions);
3682 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3683 const char *res_name)
3685 return __pci_request_selected_regions(pdev, bars, res_name,
3686 IORESOURCE_EXCLUSIVE);
3688 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3691 * pci_release_regions - Release reserved PCI I/O and memory resources
3692 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3694 * Releases all PCI I/O and memory resources previously reserved by a
3695 * successful call to pci_request_regions. Call this function only
3696 * after all use of the PCI regions has ceased.
3699 void pci_release_regions(struct pci_dev *pdev)
3701 pci_release_selected_regions(pdev, (1 << 6) - 1);
3703 EXPORT_SYMBOL(pci_release_regions);
3706 * pci_request_regions - Reserved PCI I/O and memory resources
3707 * @pdev: PCI device whose resources are to be reserved
3708 * @res_name: Name to be associated with resource.
3710 * Mark all PCI regions associated with PCI device @pdev as
3711 * being reserved by owner @res_name. Do not access any
3712 * address inside the PCI regions unless this call returns
3715 * Returns 0 on success, or %EBUSY on error. A warning
3716 * message is also printed on failure.
3718 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3720 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3722 EXPORT_SYMBOL(pci_request_regions);
3725 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3726 * @pdev: PCI device whose resources are to be reserved
3727 * @res_name: Name to be associated with resource.
3729 * Mark all PCI regions associated with PCI device @pdev as
3730 * being reserved by owner @res_name. Do not access any
3731 * address inside the PCI regions unless this call returns
3734 * pci_request_regions_exclusive() will mark the region so that
3735 * /dev/mem and the sysfs MMIO access will not be allowed.
3737 * Returns 0 on success, or %EBUSY on error. A warning
3738 * message is also printed on failure.
3740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3742 return pci_request_selected_regions_exclusive(pdev,
3743 ((1 << 6) - 1), res_name);
3745 EXPORT_SYMBOL(pci_request_regions_exclusive);
3748 * Record the PCI IO range (expressed as CPU physical address + size).
3749 * Return a negative value if an error has occured, zero otherwise
3751 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3752 resource_size_t size)
3756 struct logic_pio_hwaddr *range;
3758 if (!size || addr + size < addr)
3761 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3765 range->fwnode = fwnode;
3767 range->hw_start = addr;
3768 range->flags = LOGIC_PIO_CPU_MMIO;
3770 ret = logic_pio_register_range(range);
3778 phys_addr_t pci_pio_to_address(unsigned long pio)
3780 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3783 if (pio >= MMIO_UPPER_LIMIT)
3786 address = logic_pio_to_hwaddr(pio);
3792 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3795 return logic_pio_trans_cpuaddr(address);
3797 if (address > IO_SPACE_LIMIT)
3798 return (unsigned long)-1;
3800 return (unsigned long) address;
3805 * pci_remap_iospace - Remap the memory mapped I/O space
3806 * @res: Resource describing the I/O space
3807 * @phys_addr: physical address of range to be mapped
3809 * Remap the memory mapped I/O space described by the @res
3810 * and the CPU physical address @phys_addr into virtual address space.
3811 * Only architectures that have memory mapped IO functions defined
3812 * (and the PCI_IOBASE value defined) should call this function.
3814 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3816 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3817 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3819 if (!(res->flags & IORESOURCE_IO))
3822 if (res->end > IO_SPACE_LIMIT)
3825 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3826 pgprot_device(PAGE_KERNEL));
3828 /* this architecture does not have memory mapped I/O space,
3829 so this function should never be called */
3830 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3834 EXPORT_SYMBOL(pci_remap_iospace);
3837 * pci_unmap_iospace - Unmap the memory mapped I/O space
3838 * @res: resource to be unmapped
3840 * Unmap the CPU virtual address @res from virtual address space.
3841 * Only architectures that have memory mapped IO functions defined
3842 * (and the PCI_IOBASE value defined) should call this function.
3844 void pci_unmap_iospace(struct resource *res)
3846 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3847 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3849 unmap_kernel_range(vaddr, resource_size(res));
3852 EXPORT_SYMBOL(pci_unmap_iospace);
3854 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3856 struct resource **res = ptr;
3858 pci_unmap_iospace(*res);
3862 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3863 * @dev: Generic device to remap IO address for
3864 * @res: Resource describing the I/O space
3865 * @phys_addr: physical address of range to be mapped
3867 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3870 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3871 phys_addr_t phys_addr)
3873 const struct resource **ptr;
3876 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3880 error = pci_remap_iospace(res, phys_addr);
3885 devres_add(dev, ptr);
3890 EXPORT_SYMBOL(devm_pci_remap_iospace);
3893 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3894 * @dev: Generic device to remap IO address for
3895 * @offset: Resource address to map
3896 * @size: Size of map
3898 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3901 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3902 resource_size_t offset,
3903 resource_size_t size)
3905 void __iomem **ptr, *addr;
3907 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3911 addr = pci_remap_cfgspace(offset, size);
3914 devres_add(dev, ptr);
3920 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3923 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3924 * @dev: generic device to handle the resource for
3925 * @res: configuration space resource to be handled
3927 * Checks that a resource is a valid memory region, requests the memory
3928 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3929 * proper PCI configuration space memory attributes are guaranteed.
3931 * All operations are managed and will be undone on driver detach.
3933 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3934 * on failure. Usage example::
3936 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3937 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3939 * return PTR_ERR(base);
3941 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3942 struct resource *res)
3944 resource_size_t size;
3946 void __iomem *dest_ptr;
3950 if (!res || resource_type(res) != IORESOURCE_MEM) {
3951 dev_err(dev, "invalid resource\n");
3952 return IOMEM_ERR_PTR(-EINVAL);
3955 size = resource_size(res);
3956 name = res->name ?: dev_name(dev);
3958 if (!devm_request_mem_region(dev, res->start, size, name)) {
3959 dev_err(dev, "can't request region for resource %pR\n", res);
3960 return IOMEM_ERR_PTR(-EBUSY);
3963 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3965 dev_err(dev, "ioremap failed for resource %pR\n", res);
3966 devm_release_mem_region(dev, res->start, size);
3967 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3972 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3974 static void __pci_set_master(struct pci_dev *dev, bool enable)
3978 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3980 cmd = old_cmd | PCI_COMMAND_MASTER;
3982 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3983 if (cmd != old_cmd) {
3984 pci_dbg(dev, "%s bus mastering\n",
3985 enable ? "enabling" : "disabling");
3986 pci_write_config_word(dev, PCI_COMMAND, cmd);
3988 dev->is_busmaster = enable;
3992 * pcibios_setup - process "pci=" kernel boot arguments
3993 * @str: string used to pass in "pci=" kernel boot arguments
3995 * Process kernel boot arguments. This is the default implementation.
3996 * Architecture specific implementations can override this as necessary.
3998 char * __weak __init pcibios_setup(char *str)
4004 * pcibios_set_master - enable PCI bus-mastering for device dev
4005 * @dev: the PCI device to enable
4007 * Enables PCI bus-mastering for the device. This is the default
4008 * implementation. Architecture specific implementations can override
4009 * this if necessary.
4011 void __weak pcibios_set_master(struct pci_dev *dev)
4015 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4016 if (pci_is_pcie(dev))
4019 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4021 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4022 else if (lat > pcibios_max_latency)
4023 lat = pcibios_max_latency;
4027 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4031 * pci_set_master - enables bus-mastering for device dev
4032 * @dev: the PCI device to enable
4034 * Enables bus-mastering on the device and calls pcibios_set_master()
4035 * to do the needed arch specific settings.
4037 void pci_set_master(struct pci_dev *dev)
4039 __pci_set_master(dev, true);
4040 pcibios_set_master(dev);
4042 EXPORT_SYMBOL(pci_set_master);
4045 * pci_clear_master - disables bus-mastering for device dev
4046 * @dev: the PCI device to disable
4048 void pci_clear_master(struct pci_dev *dev)
4050 __pci_set_master(dev, false);
4052 EXPORT_SYMBOL(pci_clear_master);
4055 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4056 * @dev: the PCI device for which MWI is to be enabled
4058 * Helper function for pci_set_mwi.
4059 * Originally copied from drivers/net/acenic.c.
4062 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4064 int pci_set_cacheline_size(struct pci_dev *dev)
4068 if (!pci_cache_line_size)
4071 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4072 equal to or multiple of the right value. */
4073 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4074 if (cacheline_size >= pci_cache_line_size &&
4075 (cacheline_size % pci_cache_line_size) == 0)
4078 /* Write the correct value. */
4079 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4081 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4082 if (cacheline_size == pci_cache_line_size)
4085 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
4086 pci_cache_line_size << 2);
4090 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4093 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4094 * @dev: the PCI device for which MWI is enabled
4096 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4098 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4100 int pci_set_mwi(struct pci_dev *dev)
4102 #ifdef PCI_DISABLE_MWI
4108 rc = pci_set_cacheline_size(dev);
4112 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4113 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4114 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4115 cmd |= PCI_COMMAND_INVALIDATE;
4116 pci_write_config_word(dev, PCI_COMMAND, cmd);
4121 EXPORT_SYMBOL(pci_set_mwi);
4124 * pcim_set_mwi - a device-managed pci_set_mwi()
4125 * @dev: the PCI device for which MWI is enabled
4127 * Managed pci_set_mwi().
4129 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4131 int pcim_set_mwi(struct pci_dev *dev)
4133 struct pci_devres *dr;
4135 dr = find_pci_dr(dev);
4140 return pci_set_mwi(dev);
4142 EXPORT_SYMBOL(pcim_set_mwi);
4145 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4146 * @dev: the PCI device for which MWI is enabled
4148 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4149 * Callers are not required to check the return value.
4151 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4153 int pci_try_set_mwi(struct pci_dev *dev)
4155 #ifdef PCI_DISABLE_MWI
4158 return pci_set_mwi(dev);
4161 EXPORT_SYMBOL(pci_try_set_mwi);
4164 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4165 * @dev: the PCI device to disable
4167 * Disables PCI Memory-Write-Invalidate transaction on the device
4169 void pci_clear_mwi(struct pci_dev *dev)
4171 #ifndef PCI_DISABLE_MWI
4174 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4175 if (cmd & PCI_COMMAND_INVALIDATE) {
4176 cmd &= ~PCI_COMMAND_INVALIDATE;
4177 pci_write_config_word(dev, PCI_COMMAND, cmd);
4181 EXPORT_SYMBOL(pci_clear_mwi);
4184 * pci_intx - enables/disables PCI INTx for device dev
4185 * @pdev: the PCI device to operate on
4186 * @enable: boolean: whether to enable or disable PCI INTx
4188 * Enables/disables PCI INTx for device dev
4190 void pci_intx(struct pci_dev *pdev, int enable)
4192 u16 pci_command, new;
4194 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4197 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4199 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4201 if (new != pci_command) {
4202 struct pci_devres *dr;
4204 pci_write_config_word(pdev, PCI_COMMAND, new);
4206 dr = find_pci_dr(pdev);
4207 if (dr && !dr->restore_intx) {
4208 dr->restore_intx = 1;
4209 dr->orig_intx = !enable;
4213 EXPORT_SYMBOL_GPL(pci_intx);
4215 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4217 struct pci_bus *bus = dev->bus;
4218 bool mask_updated = true;
4219 u32 cmd_status_dword;
4220 u16 origcmd, newcmd;
4221 unsigned long flags;
4225 * We do a single dword read to retrieve both command and status.
4226 * Document assumptions that make this possible.
4228 BUILD_BUG_ON(PCI_COMMAND % 4);
4229 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4231 raw_spin_lock_irqsave(&pci_lock, flags);
4233 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4235 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4238 * Check interrupt status register to see whether our device
4239 * triggered the interrupt (when masking) or the next IRQ is
4240 * already pending (when unmasking).
4242 if (mask != irq_pending) {
4243 mask_updated = false;
4247 origcmd = cmd_status_dword;
4248 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4250 newcmd |= PCI_COMMAND_INTX_DISABLE;
4251 if (newcmd != origcmd)
4252 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4255 raw_spin_unlock_irqrestore(&pci_lock, flags);
4257 return mask_updated;
4261 * pci_check_and_mask_intx - mask INTx on pending interrupt
4262 * @dev: the PCI device to operate on
4264 * Check if the device dev has its INTx line asserted, mask it and
4265 * return true in that case. False is returned if no interrupt was
4268 bool pci_check_and_mask_intx(struct pci_dev *dev)
4270 return pci_check_and_set_intx_mask(dev, true);
4272 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4275 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4276 * @dev: the PCI device to operate on
4278 * Check if the device dev has its INTx line asserted, unmask it if not
4279 * and return true. False is returned and the mask remains active if
4280 * there was still an interrupt pending.
4282 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4284 return pci_check_and_set_intx_mask(dev, false);
4286 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4289 * pci_wait_for_pending_transaction - waits for pending transaction
4290 * @dev: the PCI device to operate on
4292 * Return 0 if transaction is pending 1 otherwise.
4294 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4296 if (!pci_is_pcie(dev))
4299 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4300 PCI_EXP_DEVSTA_TRPND);
4302 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4304 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4310 * After reset, the device should not silently discard config
4311 * requests, but it may still indicate that it needs more time by
4312 * responding to them with CRS completions. The Root Port will
4313 * generally synthesize ~0 data to complete the read (except when
4314 * CRS SV is enabled and the read was for the Vendor ID; in that
4315 * case it synthesizes 0x0001 data).
4317 * Wait for the device to return a non-CRS completion. Read the
4318 * Command register instead of Vendor ID so we don't have to
4319 * contend with the CRS SV value.
4321 pci_read_config_dword(dev, PCI_COMMAND, &id);
4323 if (delay > timeout) {
4324 pci_warn(dev, "not ready %dms after %s; giving up\n",
4325 delay - 1, reset_type);
4330 pci_info(dev, "not ready %dms after %s; waiting\n",
4331 delay - 1, reset_type);
4335 pci_read_config_dword(dev, PCI_COMMAND, &id);
4339 pci_info(dev, "ready %dms after %s\n", delay - 1,
4346 * pcie_has_flr - check if a device supports function level resets
4347 * @dev: device to check
4349 * Returns true if the device advertises support for PCIe function level
4352 bool pcie_has_flr(struct pci_dev *dev)
4356 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4359 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4360 return cap & PCI_EXP_DEVCAP_FLR;
4362 EXPORT_SYMBOL_GPL(pcie_has_flr);
4365 * pcie_flr - initiate a PCIe function level reset
4366 * @dev: device to reset
4368 * Initiate a function level reset on @dev. The caller should ensure the
4369 * device supports FLR before calling this function, e.g. by using the
4370 * pcie_has_flr() helper.
4372 int pcie_flr(struct pci_dev *dev)
4374 if (!pci_wait_for_pending_transaction(dev))
4375 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4377 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4380 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4381 * 100ms, but may silently discard requests while the FLR is in
4382 * progress. Wait 100ms before trying to access the device.
4386 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4388 EXPORT_SYMBOL_GPL(pcie_flr);
4390 static int pci_af_flr(struct pci_dev *dev, int probe)
4395 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4399 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4402 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4403 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4410 * Wait for Transaction Pending bit to clear. A word-aligned test
4411 * is used, so we use the conrol offset rather than status and shift
4412 * the test bit to match.
4414 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4415 PCI_AF_STATUS_TP << 8))
4416 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4418 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4421 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4422 * updated 27 July 2006; a device must complete an FLR within
4423 * 100ms, but may silently discard requests while the FLR is in
4424 * progress. Wait 100ms before trying to access the device.
4428 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4432 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4433 * @dev: Device to reset.
4434 * @probe: If set, only check if the device can be reset this way.
4436 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4437 * unset, it will be reinitialized internally when going from PCI_D3hot to
4438 * PCI_D0. If that's the case and the device is not in a low-power state
4439 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4441 * NOTE: This causes the caller to sleep for twice the device power transition
4442 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4443 * by default (i.e. unless the @dev's d3_delay field has a different value).
4444 * Moreover, only devices in D0 can be reset by this function.
4446 static int pci_pm_reset(struct pci_dev *dev, int probe)
4450 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4453 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4454 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4460 if (dev->current_state != PCI_D0)
4463 csr &= ~PCI_PM_CTRL_STATE_MASK;
4465 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4466 pci_dev_d3_sleep(dev);
4468 csr &= ~PCI_PM_CTRL_STATE_MASK;
4470 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4471 pci_dev_d3_sleep(dev);
4473 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4476 * pcie_wait_for_link - Wait until link is active or inactive
4477 * @pdev: Bridge device
4478 * @active: waiting for active or inactive?
4480 * Use this to wait till link becomes active or inactive.
4482 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4489 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4490 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4499 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4500 active ? "set" : "cleared");
4505 void pci_reset_secondary_bus(struct pci_dev *dev)
4509 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4510 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4511 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4514 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4515 * this to 2ms to ensure that we meet the minimum requirement.
4519 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4520 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4523 * Trhfa for conventional PCI is 2^25 clock cycles.
4524 * Assuming a minimum 33MHz clock this results in a 1s
4525 * delay before we can consider subordinate devices to
4526 * be re-initialized. PCIe has some ways to shorten this,
4527 * but we don't make use of them yet.
4532 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4534 pci_reset_secondary_bus(dev);
4538 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4539 * @dev: Bridge device
4541 * Use the bridge control register to assert reset on the secondary bus.
4542 * Devices on the secondary bus are left in power-on state.
4544 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4546 pcibios_reset_secondary_bus(dev);
4548 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4551 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4553 struct pci_dev *pdev;
4555 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4556 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4559 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4566 return pci_bridge_secondary_bus_reset(dev->bus->self);
4569 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4573 if (!hotplug || !try_module_get(hotplug->ops->owner))
4576 if (hotplug->ops->reset_slot)
4577 rc = hotplug->ops->reset_slot(hotplug, probe);
4579 module_put(hotplug->ops->owner);
4584 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4586 struct pci_dev *pdev;
4588 if (dev->subordinate || !dev->slot ||
4589 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4592 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4593 if (pdev != dev && pdev->slot == dev->slot)
4596 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4599 static void pci_dev_lock(struct pci_dev *dev)
4601 pci_cfg_access_lock(dev);
4602 /* block PM suspend, driver probe, etc. */
4603 device_lock(&dev->dev);
4606 /* Return 1 on successful lock, 0 on contention */
4607 static int pci_dev_trylock(struct pci_dev *dev)
4609 if (pci_cfg_access_trylock(dev)) {
4610 if (device_trylock(&dev->dev))
4612 pci_cfg_access_unlock(dev);
4618 static void pci_dev_unlock(struct pci_dev *dev)
4620 device_unlock(&dev->dev);
4621 pci_cfg_access_unlock(dev);
4624 static void pci_dev_save_and_disable(struct pci_dev *dev)
4626 const struct pci_error_handlers *err_handler =
4627 dev->driver ? dev->driver->err_handler : NULL;
4630 * dev->driver->err_handler->reset_prepare() is protected against
4631 * races with ->remove() by the device lock, which must be held by
4634 if (err_handler && err_handler->reset_prepare)
4635 err_handler->reset_prepare(dev);
4638 * Wake-up device prior to save. PM registers default to D0 after
4639 * reset and a simple register restore doesn't reliably return
4640 * to a non-D0 state anyway.
4642 pci_set_power_state(dev, PCI_D0);
4644 pci_save_state(dev);
4646 * Disable the device by clearing the Command register, except for
4647 * INTx-disable which is set. This not only disables MMIO and I/O port
4648 * BARs, but also prevents the device from being Bus Master, preventing
4649 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4650 * compliant devices, INTx-disable prevents legacy interrupts.
4652 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4655 static void pci_dev_restore(struct pci_dev *dev)
4657 const struct pci_error_handlers *err_handler =
4658 dev->driver ? dev->driver->err_handler : NULL;
4660 pci_restore_state(dev);
4663 * dev->driver->err_handler->reset_done() is protected against
4664 * races with ->remove() by the device lock, which must be held by
4667 if (err_handler && err_handler->reset_done)
4668 err_handler->reset_done(dev);
4672 * __pci_reset_function_locked - reset a PCI device function while holding
4673 * the @dev mutex lock.
4674 * @dev: PCI device to reset
4676 * Some devices allow an individual function to be reset without affecting
4677 * other functions in the same device. The PCI device must be responsive
4678 * to PCI config space in order to use this function.
4680 * The device function is presumed to be unused and the caller is holding
4681 * the device mutex lock when this function is called.
4682 * Resetting the device will make the contents of PCI configuration space
4683 * random, so any caller of this must be prepared to reinitialise the
4684 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4687 * Returns 0 if the device function was successfully reset or negative if the
4688 * device doesn't support resetting a single function.
4690 int __pci_reset_function_locked(struct pci_dev *dev)
4697 * A reset method returns -ENOTTY if it doesn't support this device
4698 * and we should try the next method.
4700 * If it returns 0 (success), we're finished. If it returns any
4701 * other error, we're also finished: this indicates that further
4702 * reset mechanisms might be broken on the device.
4704 rc = pci_dev_specific_reset(dev, 0);
4707 if (pcie_has_flr(dev)) {
4712 rc = pci_af_flr(dev, 0);
4715 rc = pci_pm_reset(dev, 0);
4718 rc = pci_dev_reset_slot_function(dev, 0);
4721 return pci_parent_bus_reset(dev, 0);
4723 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4726 * pci_probe_reset_function - check whether the device can be safely reset
4727 * @dev: PCI device to reset
4729 * Some devices allow an individual function to be reset without affecting
4730 * other functions in the same device. The PCI device must be responsive
4731 * to PCI config space in order to use this function.
4733 * Returns 0 if the device function can be reset or negative if the
4734 * device doesn't support resetting a single function.
4736 int pci_probe_reset_function(struct pci_dev *dev)
4742 rc = pci_dev_specific_reset(dev, 1);
4745 if (pcie_has_flr(dev))
4747 rc = pci_af_flr(dev, 1);
4750 rc = pci_pm_reset(dev, 1);
4753 rc = pci_dev_reset_slot_function(dev, 1);
4757 return pci_parent_bus_reset(dev, 1);
4761 * pci_reset_function - quiesce and reset a PCI device function
4762 * @dev: PCI device to reset
4764 * Some devices allow an individual function to be reset without affecting
4765 * other functions in the same device. The PCI device must be responsive
4766 * to PCI config space in order to use this function.
4768 * This function does not just reset the PCI portion of a device, but
4769 * clears all the state associated with the device. This function differs
4770 * from __pci_reset_function_locked() in that it saves and restores device state
4771 * over the reset and takes the PCI device lock.
4773 * Returns 0 if the device function was successfully reset or negative if the
4774 * device doesn't support resetting a single function.
4776 int pci_reset_function(struct pci_dev *dev)
4784 pci_dev_save_and_disable(dev);
4786 rc = __pci_reset_function_locked(dev);
4788 pci_dev_restore(dev);
4789 pci_dev_unlock(dev);
4793 EXPORT_SYMBOL_GPL(pci_reset_function);
4796 * pci_reset_function_locked - quiesce and reset a PCI device function
4797 * @dev: PCI device to reset
4799 * Some devices allow an individual function to be reset without affecting
4800 * other functions in the same device. The PCI device must be responsive
4801 * to PCI config space in order to use this function.
4803 * This function does not just reset the PCI portion of a device, but
4804 * clears all the state associated with the device. This function differs
4805 * from __pci_reset_function_locked() in that it saves and restores device state
4806 * over the reset. It also differs from pci_reset_function() in that it
4807 * requires the PCI device lock to be held.
4809 * Returns 0 if the device function was successfully reset or negative if the
4810 * device doesn't support resetting a single function.
4812 int pci_reset_function_locked(struct pci_dev *dev)
4819 pci_dev_save_and_disable(dev);
4821 rc = __pci_reset_function_locked(dev);
4823 pci_dev_restore(dev);
4827 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4830 * pci_try_reset_function - quiesce and reset a PCI device function
4831 * @dev: PCI device to reset
4833 * Same as above, except return -EAGAIN if unable to lock device.
4835 int pci_try_reset_function(struct pci_dev *dev)
4842 if (!pci_dev_trylock(dev))
4845 pci_dev_save_and_disable(dev);
4846 rc = __pci_reset_function_locked(dev);
4847 pci_dev_restore(dev);
4848 pci_dev_unlock(dev);
4852 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4854 /* Do any devices on or below this bus prevent a bus reset? */
4855 static bool pci_bus_resetable(struct pci_bus *bus)
4857 struct pci_dev *dev;
4860 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4863 list_for_each_entry(dev, &bus->devices, bus_list) {
4864 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4865 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4872 /* Lock devices from the top of the tree down */
4873 static void pci_bus_lock(struct pci_bus *bus)
4875 struct pci_dev *dev;
4877 list_for_each_entry(dev, &bus->devices, bus_list) {
4879 if (dev->subordinate)
4880 pci_bus_lock(dev->subordinate);
4884 /* Unlock devices from the bottom of the tree up */
4885 static void pci_bus_unlock(struct pci_bus *bus)
4887 struct pci_dev *dev;
4889 list_for_each_entry(dev, &bus->devices, bus_list) {
4890 if (dev->subordinate)
4891 pci_bus_unlock(dev->subordinate);
4892 pci_dev_unlock(dev);
4896 /* Return 1 on successful lock, 0 on contention */
4897 static int pci_bus_trylock(struct pci_bus *bus)
4899 struct pci_dev *dev;
4901 list_for_each_entry(dev, &bus->devices, bus_list) {
4902 if (!pci_dev_trylock(dev))
4904 if (dev->subordinate) {
4905 if (!pci_bus_trylock(dev->subordinate)) {
4906 pci_dev_unlock(dev);
4914 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4915 if (dev->subordinate)
4916 pci_bus_unlock(dev->subordinate);
4917 pci_dev_unlock(dev);
4922 /* Do any devices on or below this slot prevent a bus reset? */
4923 static bool pci_slot_resetable(struct pci_slot *slot)
4925 struct pci_dev *dev;
4927 if (slot->bus->self &&
4928 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4931 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4932 if (!dev->slot || dev->slot != slot)
4934 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4935 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4942 /* Lock devices from the top of the tree down */
4943 static void pci_slot_lock(struct pci_slot *slot)
4945 struct pci_dev *dev;
4947 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4948 if (!dev->slot || dev->slot != slot)
4951 if (dev->subordinate)
4952 pci_bus_lock(dev->subordinate);
4956 /* Unlock devices from the bottom of the tree up */
4957 static void pci_slot_unlock(struct pci_slot *slot)
4959 struct pci_dev *dev;
4961 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4962 if (!dev->slot || dev->slot != slot)
4964 if (dev->subordinate)
4965 pci_bus_unlock(dev->subordinate);
4966 pci_dev_unlock(dev);
4970 /* Return 1 on successful lock, 0 on contention */
4971 static int pci_slot_trylock(struct pci_slot *slot)
4973 struct pci_dev *dev;
4975 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4976 if (!dev->slot || dev->slot != slot)
4978 if (!pci_dev_trylock(dev))
4980 if (dev->subordinate) {
4981 if (!pci_bus_trylock(dev->subordinate)) {
4982 pci_dev_unlock(dev);
4990 list_for_each_entry_continue_reverse(dev,
4991 &slot->bus->devices, bus_list) {
4992 if (!dev->slot || dev->slot != slot)
4994 if (dev->subordinate)
4995 pci_bus_unlock(dev->subordinate);
4996 pci_dev_unlock(dev);
5001 /* Save and disable devices from the top of the tree down */
5002 static void pci_bus_save_and_disable(struct pci_bus *bus)
5004 struct pci_dev *dev;
5006 list_for_each_entry(dev, &bus->devices, bus_list) {
5008 pci_dev_save_and_disable(dev);
5009 pci_dev_unlock(dev);
5010 if (dev->subordinate)
5011 pci_bus_save_and_disable(dev->subordinate);
5016 * Restore devices from top of the tree down - parent bridges need to be
5017 * restored before we can get to subordinate devices.
5019 static void pci_bus_restore(struct pci_bus *bus)
5021 struct pci_dev *dev;
5023 list_for_each_entry(dev, &bus->devices, bus_list) {
5025 pci_dev_restore(dev);
5026 pci_dev_unlock(dev);
5027 if (dev->subordinate)
5028 pci_bus_restore(dev->subordinate);
5032 /* Save and disable devices from the top of the tree down */
5033 static void pci_slot_save_and_disable(struct pci_slot *slot)
5035 struct pci_dev *dev;
5037 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5038 if (!dev->slot || dev->slot != slot)
5040 pci_dev_save_and_disable(dev);
5041 if (dev->subordinate)
5042 pci_bus_save_and_disable(dev->subordinate);
5047 * Restore devices from top of the tree down - parent bridges need to be
5048 * restored before we can get to subordinate devices.
5050 static void pci_slot_restore(struct pci_slot *slot)
5052 struct pci_dev *dev;
5054 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5055 if (!dev->slot || dev->slot != slot)
5058 pci_dev_restore(dev);
5059 pci_dev_unlock(dev);
5060 if (dev->subordinate)
5061 pci_bus_restore(dev->subordinate);
5065 static int pci_slot_reset(struct pci_slot *slot, int probe)
5069 if (!slot || !pci_slot_resetable(slot))
5073 pci_slot_lock(slot);
5077 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5080 pci_slot_unlock(slot);
5086 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5087 * @slot: PCI slot to probe
5089 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5091 int pci_probe_reset_slot(struct pci_slot *slot)
5093 return pci_slot_reset(slot, 1);
5095 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5098 * __pci_reset_slot - Try to reset a PCI slot
5099 * @slot: PCI slot to reset
5101 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5102 * independent of other slots. For instance, some slots may support slot power
5103 * control. In the case of a 1:1 bus to slot architecture, this function may
5104 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5105 * Generally a slot reset should be attempted before a bus reset. All of the
5106 * function of the slot and any subordinate buses behind the slot are reset
5107 * through this function. PCI config space of all devices in the slot and
5108 * behind the slot is saved before and restored after reset.
5110 * Same as above except return -EAGAIN if the slot cannot be locked
5112 static int __pci_reset_slot(struct pci_slot *slot)
5116 rc = pci_slot_reset(slot, 1);
5120 pci_slot_save_and_disable(slot);
5122 if (pci_slot_trylock(slot)) {
5124 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5125 pci_slot_unlock(slot);
5129 pci_slot_restore(slot);
5134 static int pci_bus_reset(struct pci_bus *bus, int probe)
5138 if (!bus->self || !pci_bus_resetable(bus))
5148 ret = pci_bridge_secondary_bus_reset(bus->self);
5150 pci_bus_unlock(bus);
5156 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5157 * @bus: PCI bus to probe
5159 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5161 int pci_probe_reset_bus(struct pci_bus *bus)
5163 return pci_bus_reset(bus, 1);
5165 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5168 * __pci_reset_bus - Try to reset a PCI bus
5169 * @bus: top level PCI bus to reset
5171 * Same as above except return -EAGAIN if the bus cannot be locked
5173 static int __pci_reset_bus(struct pci_bus *bus)
5177 rc = pci_bus_reset(bus, 1);
5181 pci_bus_save_and_disable(bus);
5183 if (pci_bus_trylock(bus)) {
5185 rc = pci_bridge_secondary_bus_reset(bus->self);
5186 pci_bus_unlock(bus);
5190 pci_bus_restore(bus);
5196 * pci_reset_bus - Try to reset a PCI bus
5197 * @pdev: top level PCI device to reset via slot/bus
5199 * Same as above except return -EAGAIN if the bus cannot be locked
5201 int pci_reset_bus(struct pci_dev *pdev)
5203 return pci_probe_reset_slot(pdev->slot) ?
5204 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5206 EXPORT_SYMBOL_GPL(pci_reset_bus);
5209 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5210 * @dev: PCI device to query
5212 * Returns mmrbc: maximum designed memory read count in bytes
5213 * or appropriate error value.
5215 int pcix_get_max_mmrbc(struct pci_dev *dev)
5220 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5224 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5227 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5229 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5232 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5233 * @dev: PCI device to query
5235 * Returns mmrbc: maximum memory read count in bytes
5236 * or appropriate error value.
5238 int pcix_get_mmrbc(struct pci_dev *dev)
5243 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5247 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5250 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5252 EXPORT_SYMBOL(pcix_get_mmrbc);
5255 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5256 * @dev: PCI device to query
5257 * @mmrbc: maximum memory read count in bytes
5258 * valid values are 512, 1024, 2048, 4096
5260 * If possible sets maximum memory read byte count, some bridges have erratas
5261 * that prevent this.
5263 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5269 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5272 v = ffs(mmrbc) - 10;
5274 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5278 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5281 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5284 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5287 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5289 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5292 cmd &= ~PCI_X_CMD_MAX_READ;
5294 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5299 EXPORT_SYMBOL(pcix_set_mmrbc);
5302 * pcie_get_readrq - get PCI Express read request size
5303 * @dev: PCI device to query
5305 * Returns maximum memory read request in bytes
5306 * or appropriate error value.
5308 int pcie_get_readrq(struct pci_dev *dev)
5312 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5314 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5316 EXPORT_SYMBOL(pcie_get_readrq);
5319 * pcie_set_readrq - set PCI Express maximum memory read request
5320 * @dev: PCI device to query
5321 * @rq: maximum memory read count in bytes
5322 * valid values are 128, 256, 512, 1024, 2048, 4096
5324 * If possible sets maximum memory read request in bytes
5326 int pcie_set_readrq(struct pci_dev *dev, int rq)
5330 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5334 * If using the "performance" PCIe config, we clamp the
5335 * read rq size to the max packet size to prevent the
5336 * host bridge generating requests larger than we can
5339 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5340 int mps = pcie_get_mps(dev);
5346 v = (ffs(rq) - 8) << 12;
5348 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5349 PCI_EXP_DEVCTL_READRQ, v);
5351 EXPORT_SYMBOL(pcie_set_readrq);
5354 * pcie_get_mps - get PCI Express maximum payload size
5355 * @dev: PCI device to query
5357 * Returns maximum payload size in bytes
5359 int pcie_get_mps(struct pci_dev *dev)
5363 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5365 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5367 EXPORT_SYMBOL(pcie_get_mps);
5370 * pcie_set_mps - set PCI Express maximum payload size
5371 * @dev: PCI device to query
5372 * @mps: maximum payload size in bytes
5373 * valid values are 128, 256, 512, 1024, 2048, 4096
5375 * If possible sets maximum payload size
5377 int pcie_set_mps(struct pci_dev *dev, int mps)
5381 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5385 if (v > dev->pcie_mpss)
5389 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5390 PCI_EXP_DEVCTL_PAYLOAD, v);
5392 EXPORT_SYMBOL(pcie_set_mps);
5395 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5396 * device and its bandwidth limitation
5397 * @dev: PCI device to query
5398 * @limiting_dev: storage for device causing the bandwidth limitation
5399 * @speed: storage for speed of limiting device
5400 * @width: storage for width of limiting device
5402 * Walk up the PCI device chain and find the point where the minimum
5403 * bandwidth is available. Return the bandwidth available there and (if
5404 * limiting_dev, speed, and width pointers are supplied) information about
5405 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5408 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5409 enum pci_bus_speed *speed,
5410 enum pcie_link_width *width)
5413 enum pci_bus_speed next_speed;
5414 enum pcie_link_width next_width;
5418 *speed = PCI_SPEED_UNKNOWN;
5420 *width = PCIE_LNK_WIDTH_UNKNOWN;
5425 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5427 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5428 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5429 PCI_EXP_LNKSTA_NLW_SHIFT;
5431 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5433 /* Check if current device limits the total bandwidth */
5434 if (!bw || next_bw <= bw) {
5438 *limiting_dev = dev;
5440 *speed = next_speed;
5442 *width = next_width;
5445 dev = pci_upstream_bridge(dev);
5450 EXPORT_SYMBOL(pcie_bandwidth_available);
5453 * pcie_get_speed_cap - query for the PCI device's link speed capability
5454 * @dev: PCI device to query
5456 * Query the PCI device speed capability. Return the maximum link speed
5457 * supported by the device.
5459 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5461 u32 lnkcap2, lnkcap;
5464 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5465 * Speeds Vector in Link Capabilities 2 when supported, falling
5466 * back to Max Link Speed in Link Capabilities otherwise.
5468 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5469 if (lnkcap2) { /* PCIe r3.0-compliant */
5470 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5471 return PCIE_SPEED_16_0GT;
5472 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5473 return PCIE_SPEED_8_0GT;
5474 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5475 return PCIE_SPEED_5_0GT;
5476 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5477 return PCIE_SPEED_2_5GT;
5478 return PCI_SPEED_UNKNOWN;
5481 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5483 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5484 return PCIE_SPEED_16_0GT;
5485 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5486 return PCIE_SPEED_8_0GT;
5487 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5488 return PCIE_SPEED_5_0GT;
5489 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5490 return PCIE_SPEED_2_5GT;
5493 return PCI_SPEED_UNKNOWN;
5495 EXPORT_SYMBOL(pcie_get_speed_cap);
5498 * pcie_get_width_cap - query for the PCI device's link width capability
5499 * @dev: PCI device to query
5501 * Query the PCI device width capability. Return the maximum link width
5502 * supported by the device.
5504 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5508 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5510 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5512 return PCIE_LNK_WIDTH_UNKNOWN;
5514 EXPORT_SYMBOL(pcie_get_width_cap);
5517 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5519 * @speed: storage for link speed
5520 * @width: storage for link width
5522 * Calculate a PCI device's link bandwidth by querying for its link speed
5523 * and width, multiplying them, and applying encoding overhead. The result
5524 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5526 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5527 enum pcie_link_width *width)
5529 *speed = pcie_get_speed_cap(dev);
5530 *width = pcie_get_width_cap(dev);
5532 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5535 return *width * PCIE_SPEED2MBS_ENC(*speed);
5539 * __pcie_print_link_status - Report the PCI device's link speed and width
5540 * @dev: PCI device to query
5541 * @verbose: Print info even when enough bandwidth is available
5543 * If the available bandwidth at the device is less than the device is
5544 * capable of, report the device's maximum possible bandwidth and the
5545 * upstream link that limits its performance. If @verbose, always print
5546 * the available bandwidth, even if the device isn't constrained.
5548 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5550 enum pcie_link_width width, width_cap;
5551 enum pci_bus_speed speed, speed_cap;
5552 struct pci_dev *limiting_dev = NULL;
5553 u32 bw_avail, bw_cap;
5555 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5556 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5558 if (bw_avail >= bw_cap && verbose)
5559 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5560 bw_cap / 1000, bw_cap % 1000,
5561 PCIE_SPEED2STR(speed_cap), width_cap);
5562 else if (bw_avail < bw_cap)
5563 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5564 bw_avail / 1000, bw_avail % 1000,
5565 PCIE_SPEED2STR(speed), width,
5566 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5567 bw_cap / 1000, bw_cap % 1000,
5568 PCIE_SPEED2STR(speed_cap), width_cap);
5572 * pcie_print_link_status - Report the PCI device's link speed and width
5573 * @dev: PCI device to query
5575 * Report the available bandwidth at the device.
5577 void pcie_print_link_status(struct pci_dev *dev)
5579 __pcie_print_link_status(dev, true);
5581 EXPORT_SYMBOL(pcie_print_link_status);
5584 * pci_select_bars - Make BAR mask from the type of resource
5585 * @dev: the PCI device for which BAR mask is made
5586 * @flags: resource type mask to be selected
5588 * This helper routine makes bar mask from the type of resource.
5590 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5593 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5594 if (pci_resource_flags(dev, i) & flags)
5598 EXPORT_SYMBOL(pci_select_bars);
5600 /* Some architectures require additional programming to enable VGA */
5601 static arch_set_vga_state_t arch_set_vga_state;
5603 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5605 arch_set_vga_state = func; /* NULL disables */
5608 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5609 unsigned int command_bits, u32 flags)
5611 if (arch_set_vga_state)
5612 return arch_set_vga_state(dev, decode, command_bits,
5618 * pci_set_vga_state - set VGA decode state on device and parents if requested
5619 * @dev: the PCI device
5620 * @decode: true = enable decoding, false = disable decoding
5621 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5622 * @flags: traverse ancestors and change bridges
5623 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5625 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5626 unsigned int command_bits, u32 flags)
5628 struct pci_bus *bus;
5629 struct pci_dev *bridge;
5633 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5635 /* ARCH specific VGA enables */
5636 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5640 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5641 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5643 cmd |= command_bits;
5645 cmd &= ~command_bits;
5646 pci_write_config_word(dev, PCI_COMMAND, cmd);
5649 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5656 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5659 cmd |= PCI_BRIDGE_CTL_VGA;
5661 cmd &= ~PCI_BRIDGE_CTL_VGA;
5662 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5671 * pci_add_dma_alias - Add a DMA devfn alias for a device
5672 * @dev: the PCI device for which alias is added
5673 * @devfn: alias slot and function
5675 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5676 * which is used to program permissible bus-devfn source addresses for DMA
5677 * requests in an IOMMU. These aliases factor into IOMMU group creation
5678 * and are useful for devices generating DMA requests beyond or different
5679 * from their logical bus-devfn. Examples include device quirks where the
5680 * device simply uses the wrong devfn, as well as non-transparent bridges
5681 * where the alias may be a proxy for devices in another domain.
5683 * IOMMU group creation is performed during device discovery or addition,
5684 * prior to any potential DMA mapping and therefore prior to driver probing
5685 * (especially for userspace assigned devices where IOMMU group definition
5686 * cannot be left as a userspace activity). DMA aliases should therefore
5687 * be configured via quirks, such as the PCI fixup header quirk.
5689 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5691 if (!dev->dma_alias_mask)
5692 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5693 sizeof(long), GFP_KERNEL);
5694 if (!dev->dma_alias_mask) {
5695 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5699 set_bit(devfn, dev->dma_alias_mask);
5700 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5701 PCI_SLOT(devfn), PCI_FUNC(devfn));
5704 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5706 return (dev1->dma_alias_mask &&
5707 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5708 (dev2->dma_alias_mask &&
5709 test_bit(dev1->devfn, dev2->dma_alias_mask));
5712 bool pci_device_is_present(struct pci_dev *pdev)
5716 if (pci_dev_is_disconnected(pdev))
5718 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5720 EXPORT_SYMBOL_GPL(pci_device_is_present);
5722 void pci_ignore_hotplug(struct pci_dev *dev)
5724 struct pci_dev *bridge = dev->bus->self;
5726 dev->ignore_hotplug = 1;
5727 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5729 bridge->ignore_hotplug = 1;
5731 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5733 resource_size_t __weak pcibios_default_alignment(void)
5738 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5739 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5740 static DEFINE_SPINLOCK(resource_alignment_lock);
5743 * pci_specified_resource_alignment - get resource alignment specified by user.
5744 * @dev: the PCI device to get
5745 * @resize: whether or not to change resources' size when reassigning alignment
5747 * RETURNS: Resource alignment if it is specified.
5748 * Zero if it is not specified.
5750 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5753 int align_order, count;
5754 resource_size_t align = pcibios_default_alignment();
5758 spin_lock(&resource_alignment_lock);
5759 p = resource_alignment_param;
5762 if (pci_has_flag(PCI_PROBE_ONLY)) {
5764 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5770 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5777 ret = pci_dev_str_match(dev, p, &p);
5780 if (align_order == -1)
5783 align = 1 << align_order;
5785 } else if (ret < 0) {
5786 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5791 if (*p != ';' && *p != ',') {
5792 /* End of param or invalid format */
5798 spin_unlock(&resource_alignment_lock);
5802 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5803 resource_size_t align, bool resize)
5805 struct resource *r = &dev->resource[bar];
5806 resource_size_t size;
5808 if (!(r->flags & IORESOURCE_MEM))
5811 if (r->flags & IORESOURCE_PCI_FIXED) {
5812 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5813 bar, r, (unsigned long long)align);
5817 size = resource_size(r);
5822 * Increase the alignment of the resource. There are two ways we
5825 * 1) Increase the size of the resource. BARs are aligned on their
5826 * size, so when we reallocate space for this resource, we'll
5827 * allocate it with the larger alignment. This also prevents
5828 * assignment of any other BARs inside the alignment region, so
5829 * if we're requesting page alignment, this means no other BARs
5830 * will share the page.
5832 * The disadvantage is that this makes the resource larger than
5833 * the hardware BAR, which may break drivers that compute things
5834 * based on the resource size, e.g., to find registers at a
5835 * fixed offset before the end of the BAR.
5837 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5838 * set r->start to the desired alignment. By itself this
5839 * doesn't prevent other BARs being put inside the alignment
5840 * region, but if we realign *every* resource of every device in
5841 * the system, none of them will share an alignment region.
5843 * When the user has requested alignment for only some devices via
5844 * the "pci=resource_alignment" argument, "resize" is true and we
5845 * use the first method. Otherwise we assume we're aligning all
5846 * devices and we use the second.
5849 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5850 bar, r, (unsigned long long)align);
5856 r->flags &= ~IORESOURCE_SIZEALIGN;
5857 r->flags |= IORESOURCE_STARTALIGN;
5859 r->end = r->start + size - 1;
5861 r->flags |= IORESOURCE_UNSET;
5865 * This function disables memory decoding and releases memory resources
5866 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5867 * It also rounds up size to specified alignment.
5868 * Later on, the kernel will assign page-aligned memory resource back
5871 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5875 resource_size_t align;
5877 bool resize = false;
5880 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5881 * 3.4.1.11. Their resources are allocated from the space
5882 * described by the VF BARx register in the PF's SR-IOV capability.
5883 * We can't influence their alignment here.
5888 /* check if specified PCI is target device to reassign */
5889 align = pci_specified_resource_alignment(dev, &resize);
5893 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5894 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5895 pci_warn(dev, "Can't reassign resources to host bridge\n");
5899 pci_read_config_word(dev, PCI_COMMAND, &command);
5900 command &= ~PCI_COMMAND_MEMORY;
5901 pci_write_config_word(dev, PCI_COMMAND, command);
5903 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5904 pci_request_resource_alignment(dev, i, align, resize);
5907 * Need to disable bridge's resource window,
5908 * to enable the kernel to reassign new resource
5911 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5912 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5913 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5914 r = &dev->resource[i];
5915 if (!(r->flags & IORESOURCE_MEM))
5917 r->flags |= IORESOURCE_UNSET;
5918 r->end = resource_size(r) - 1;
5921 pci_disable_bridge_window(dev);
5925 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5927 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5928 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5929 spin_lock(&resource_alignment_lock);
5930 strncpy(resource_alignment_param, buf, count);
5931 resource_alignment_param[count] = '\0';
5932 spin_unlock(&resource_alignment_lock);
5936 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5939 spin_lock(&resource_alignment_lock);
5940 count = snprintf(buf, size, "%s", resource_alignment_param);
5941 spin_unlock(&resource_alignment_lock);
5945 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5947 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5950 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5951 const char *buf, size_t count)
5953 return pci_set_resource_alignment_param(buf, count);
5956 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5957 pci_resource_alignment_store);
5959 static int __init pci_resource_alignment_sysfs_init(void)
5961 return bus_create_file(&pci_bus_type,
5962 &bus_attr_resource_alignment);
5964 late_initcall(pci_resource_alignment_sysfs_init);
5966 static void pci_no_domains(void)
5968 #ifdef CONFIG_PCI_DOMAINS
5969 pci_domains_supported = 0;
5973 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5974 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5976 static int pci_get_new_domain_nr(void)
5978 return atomic_inc_return(&__domain_nr);
5981 static int of_pci_bus_find_domain_nr(struct device *parent)
5983 static int use_dt_domains = -1;
5987 domain = of_get_pci_domain_nr(parent->of_node);
5989 * Check DT domain and use_dt_domains values.
5991 * If DT domain property is valid (domain >= 0) and
5992 * use_dt_domains != 0, the DT assignment is valid since this means
5993 * we have not previously allocated a domain number by using
5994 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5995 * 1, to indicate that we have just assigned a domain number from
5998 * If DT domain property value is not valid (ie domain < 0), and we
5999 * have not previously assigned a domain number from DT
6000 * (use_dt_domains != 1) we should assign a domain number by
6003 * pci_get_new_domain_nr()
6005 * API and update the use_dt_domains value to keep track of method we
6006 * are using to assign domain numbers (use_dt_domains = 0).
6008 * All other combinations imply we have a platform that is trying
6009 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6010 * which is a recipe for domain mishandling and it is prevented by
6011 * invalidating the domain value (domain = -1) and printing a
6012 * corresponding error.
6014 if (domain >= 0 && use_dt_domains) {
6016 } else if (domain < 0 && use_dt_domains != 1) {
6018 domain = pci_get_new_domain_nr();
6021 pr_err("Node %pOF has ", parent->of_node);
6022 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6029 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6031 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6032 acpi_pci_bus_find_domain_nr(bus);
6037 * pci_ext_cfg_avail - can we access extended PCI config space?
6039 * Returns 1 if we can access PCI extended config space (offsets
6040 * greater than 0xff). This is the default implementation. Architecture
6041 * implementations can override this.
6043 int __weak pci_ext_cfg_avail(void)
6048 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6051 EXPORT_SYMBOL(pci_fixup_cardbus);
6053 static int __init pci_setup(char *str)
6056 char *k = strchr(str, ',');
6059 if (*str && (str = pcibios_setup(str)) && *str) {
6060 if (!strcmp(str, "nomsi")) {
6062 } else if (!strncmp(str, "noats", 5)) {
6063 pr_info("PCIe: ATS is disabled\n");
6064 pcie_ats_disabled = true;
6065 } else if (!strcmp(str, "noaer")) {
6067 } else if (!strcmp(str, "earlydump")) {
6068 pci_early_dump = true;
6069 } else if (!strncmp(str, "realloc=", 8)) {
6070 pci_realloc_get_opt(str + 8);
6071 } else if (!strncmp(str, "realloc", 7)) {
6072 pci_realloc_get_opt("on");
6073 } else if (!strcmp(str, "nodomains")) {
6075 } else if (!strncmp(str, "noari", 5)) {
6076 pcie_ari_disabled = true;
6077 } else if (!strncmp(str, "cbiosize=", 9)) {
6078 pci_cardbus_io_size = memparse(str + 9, &str);
6079 } else if (!strncmp(str, "cbmemsize=", 10)) {
6080 pci_cardbus_mem_size = memparse(str + 10, &str);
6081 } else if (!strncmp(str, "resource_alignment=", 19)) {
6082 pci_set_resource_alignment_param(str + 19,
6084 } else if (!strncmp(str, "ecrc=", 5)) {
6085 pcie_ecrc_get_policy(str + 5);
6086 } else if (!strncmp(str, "hpiosize=", 9)) {
6087 pci_hotplug_io_size = memparse(str + 9, &str);
6088 } else if (!strncmp(str, "hpmemsize=", 10)) {
6089 pci_hotplug_mem_size = memparse(str + 10, &str);
6090 } else if (!strncmp(str, "hpbussize=", 10)) {
6091 pci_hotplug_bus_size =
6092 simple_strtoul(str + 10, &str, 0);
6093 if (pci_hotplug_bus_size > 0xff)
6094 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6095 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6096 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6097 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6098 pcie_bus_config = PCIE_BUS_SAFE;
6099 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6100 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6101 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6102 pcie_bus_config = PCIE_BUS_PEER2PEER;
6103 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6104 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6105 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6106 disable_acs_redir_param = str + 18;
6108 printk(KERN_ERR "PCI: Unknown option `%s'\n",
6116 early_param("pci", pci_setup);