1 // SPDX-License-Identifier: GPL-2.0 OR MIT
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
42 #include "kfd_device_queue_manager.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 #include "kfd_debug.h"
49 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
50 static int kfd_open(struct inode *, struct file *);
51 static int kfd_release(struct inode *, struct file *);
52 static int kfd_mmap(struct file *, struct vm_area_struct *);
54 static const char kfd_dev_name[] = "kfd";
56 static const struct file_operations kfd_fops = {
58 .unlocked_ioctl = kfd_ioctl,
59 .compat_ioctl = compat_ptr_ioctl,
61 .release = kfd_release,
65 static int kfd_char_dev_major = -1;
66 static struct class *kfd_class;
67 struct device *kfd_device;
69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
71 struct kfd_process_device *pdd;
73 mutex_lock(&p->mutex);
74 pdd = kfd_process_device_data_by_id(p, gpu_id);
79 mutex_unlock(&p->mutex);
83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
85 mutex_unlock(&pdd->process->mutex);
88 int kfd_chardev_init(void)
92 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 err = kfd_char_dev_major;
95 goto err_register_chrdev;
97 kfd_class = class_create(kfd_dev_name);
98 err = PTR_ERR(kfd_class);
99 if (IS_ERR(kfd_class))
100 goto err_class_create;
102 kfd_device = device_create(kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
105 err = PTR_ERR(kfd_device);
106 if (IS_ERR(kfd_device))
107 goto err_device_create;
112 class_destroy(kfd_class);
114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
119 void kfd_chardev_exit(void)
121 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_destroy(kfd_class);
123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
128 static int kfd_open(struct inode *inode, struct file *filep)
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
133 if (iminor(inode) != 0)
136 is_32bit_user_mode = in_compat_syscall();
138 if (is_32bit_user_mode) {
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
146 process = kfd_create_process(current);
148 return PTR_ERR(process);
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(process);
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 process->pasid, process->is_32bit_user_mode);
164 static int kfd_release(struct inode *inode, struct file *filep)
166 struct kfd_process *process = filep->private_data;
169 kfd_unref_process(process);
174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
177 struct kfd_ioctl_get_version_args *args = data;
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
215 if (!access_ok((const void __user *) args->read_pointer_address,
217 pr_err("Can't access read pointer\n");
221 if (!access_ok((const void __user *) args->write_pointer_address,
223 pr_err("Can't access write pointer\n");
227 if (args->eop_buffer_address &&
228 !access_ok((const void __user *) args->eop_buffer_address,
230 pr_debug("Can't access eop buffer");
234 if (args->ctx_save_restore_address &&
235 !access_ok((const void __user *) args->ctx_save_restore_address,
237 pr_debug("Can't access ctx save restore buffer");
241 q_properties->is_interop = false;
242 q_properties->is_gws = false;
243 q_properties->queue_percent = args->queue_percentage & 0xFF;
244 /* bit 8-15 are repurposed to be PM4 target XCC */
245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
246 q_properties->priority = args->queue_priority;
247 q_properties->queue_address = args->ring_base_address;
248 q_properties->queue_size = args->ring_size;
249 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
250 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
251 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
252 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
253 q_properties->ctx_save_restore_area_address =
254 args->ctx_save_restore_address;
255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
256 q_properties->ctl_stack_size = args->ctl_stack_size;
257 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
258 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
259 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
260 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
261 q_properties->type = KFD_QUEUE_TYPE_SDMA;
262 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
263 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
267 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
268 q_properties->format = KFD_QUEUE_FORMAT_AQL;
270 q_properties->format = KFD_QUEUE_FORMAT_PM4;
272 pr_debug("Queue Percentage: %d, %d\n",
273 q_properties->queue_percent, args->queue_percentage);
275 pr_debug("Queue Priority: %d, %d\n",
276 q_properties->priority, args->queue_priority);
278 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
279 q_properties->queue_address, args->ring_base_address);
281 pr_debug("Queue Size: 0x%llX, %u\n",
282 q_properties->queue_size, args->ring_size);
284 pr_debug("Queue r/w Pointers: %px, %px\n",
285 q_properties->read_ptr,
286 q_properties->write_ptr);
288 pr_debug("Queue Format: %d\n", q_properties->format);
290 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
292 pr_debug("Queue CTX save area: 0x%llX\n",
293 q_properties->ctx_save_restore_area_address);
298 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
301 struct kfd_ioctl_create_queue_args *args = data;
302 struct kfd_node *dev;
304 unsigned int queue_id;
305 struct kfd_process_device *pdd;
306 struct queue_properties q_properties;
307 uint32_t doorbell_offset_in_process = 0;
308 struct amdgpu_bo *wptr_bo = NULL;
310 memset(&q_properties, 0, sizeof(struct queue_properties));
312 pr_debug("Creating queue ioctl\n");
314 err = set_queue_properties_from_user(&q_properties, args);
318 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
320 mutex_lock(&p->mutex);
322 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
324 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
330 pdd = kfd_bind_process_to_device(dev, p);
333 goto err_bind_process;
336 if (!pdd->qpd.proc_doorbells) {
337 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
339 pr_debug("failed to allocate process doorbells\n");
340 goto err_bind_process;
344 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
345 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
347 if (dev->kfd->shared_resources.enable_mes &&
348 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
349 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
350 struct amdgpu_bo_va_mapping *wptr_mapping;
351 struct amdgpu_vm *wptr_vm;
353 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
354 err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
356 goto err_wptr_map_gart;
358 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
359 wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
360 amdgpu_bo_unreserve(wptr_vm->root.bo);
362 pr_err("Failed to lookup wptr bo\n");
364 goto err_wptr_map_gart;
367 wptr_bo = wptr_mapping->bo_va->base.bo;
368 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
369 pr_err("Requested GART mapping for wptr bo larger than one page\n");
371 goto err_wptr_map_gart;
374 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
376 pr_err("Failed to map wptr bo to GART\n");
377 goto err_wptr_map_gart;
381 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
385 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
386 NULL, NULL, NULL, &doorbell_offset_in_process);
388 goto err_create_queue;
390 args->queue_id = queue_id;
393 /* Return gpu_id as doorbell offset for mmap usage */
394 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
395 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
396 if (KFD_IS_SOC15(dev))
397 /* On SOC15 ASICs, include the doorbell offset within the
398 * process doorbell frame, which is 2 pages.
400 args->doorbell_offset |= doorbell_offset_in_process;
402 mutex_unlock(&p->mutex);
404 pr_debug("Queue id %d was created successfully\n", args->queue_id);
406 pr_debug("Ring buffer address == 0x%016llX\n",
407 args->ring_base_address);
409 pr_debug("Read ptr address == 0x%016llX\n",
410 args->read_pointer_address);
412 pr_debug("Write ptr address == 0x%016llX\n",
413 args->write_pointer_address);
415 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
420 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
424 mutex_unlock(&p->mutex);
428 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
432 struct kfd_ioctl_destroy_queue_args *args = data;
434 pr_debug("Destroying queue id %d for pasid 0x%x\n",
438 mutex_lock(&p->mutex);
440 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
442 mutex_unlock(&p->mutex);
446 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
450 struct kfd_ioctl_update_queue_args *args = data;
451 struct queue_properties properties;
454 * Repurpose queue percentage to accommodate new features:
455 * bit 0-7: queue percentage
456 * bit 8-15: pm4_target_xcc
458 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
459 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
463 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
464 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
468 if ((args->ring_base_address) &&
469 (!access_ok((const void __user *) args->ring_base_address,
470 sizeof(uint64_t)))) {
471 pr_err("Can't access ring base address\n");
475 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
476 pr_err("Ring size must be a power of 2 or 0\n");
480 properties.queue_address = args->ring_base_address;
481 properties.queue_size = args->ring_size;
482 properties.queue_percent = args->queue_percentage & 0xFF;
483 /* bit 8-15 are repurposed to be PM4 target XCC */
484 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
485 properties.priority = args->queue_priority;
487 pr_debug("Updating queue id %d for pasid 0x%x\n",
488 args->queue_id, p->pasid);
490 mutex_lock(&p->mutex);
492 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
494 mutex_unlock(&p->mutex);
499 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
503 const int max_num_cus = 1024;
504 struct kfd_ioctl_set_cu_mask_args *args = data;
505 struct mqd_update_info minfo = {0};
506 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
507 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
509 if ((args->num_cu_mask % 32) != 0) {
510 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
515 minfo.cu_mask.count = args->num_cu_mask;
516 if (minfo.cu_mask.count == 0) {
517 pr_debug("CU mask cannot be 0");
521 /* To prevent an unreasonably large CU mask size, set an arbitrary
522 * limit of max_num_cus bits. We can then just drop any CU mask bits
523 * past max_num_cus bits and just use the first max_num_cus bits.
525 if (minfo.cu_mask.count > max_num_cus) {
526 pr_debug("CU mask cannot be greater than 1024 bits");
527 minfo.cu_mask.count = max_num_cus;
528 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
531 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
532 if (!minfo.cu_mask.ptr)
535 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
537 pr_debug("Could not copy CU mask from userspace");
542 mutex_lock(&p->mutex);
544 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
546 mutex_unlock(&p->mutex);
549 kfree(minfo.cu_mask.ptr);
553 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
554 struct kfd_process *p, void *data)
556 struct kfd_ioctl_get_queue_wave_state_args *args = data;
559 mutex_lock(&p->mutex);
561 r = pqm_get_wave_state(&p->pqm, args->queue_id,
562 (void __user *)args->ctl_stack_address,
563 &args->ctl_stack_used_size,
564 &args->save_area_used_size);
566 mutex_unlock(&p->mutex);
571 static int kfd_ioctl_set_memory_policy(struct file *filep,
572 struct kfd_process *p, void *data)
574 struct kfd_ioctl_set_memory_policy_args *args = data;
576 struct kfd_process_device *pdd;
577 enum cache_policy default_policy, alternate_policy;
579 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
580 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
584 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
585 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
589 mutex_lock(&p->mutex);
590 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
592 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
597 pdd = kfd_bind_process_to_device(pdd->dev, p);
603 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
604 ? cache_policy_coherent : cache_policy_noncoherent;
607 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
608 ? cache_policy_coherent : cache_policy_noncoherent;
610 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
614 (void __user *)args->alternate_aperture_base,
615 args->alternate_aperture_size))
620 mutex_unlock(&p->mutex);
625 static int kfd_ioctl_set_trap_handler(struct file *filep,
626 struct kfd_process *p, void *data)
628 struct kfd_ioctl_set_trap_handler_args *args = data;
630 struct kfd_process_device *pdd;
632 mutex_lock(&p->mutex);
634 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
640 pdd = kfd_bind_process_to_device(pdd->dev, p);
646 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
650 mutex_unlock(&p->mutex);
655 static int kfd_ioctl_dbg_register(struct file *filep,
656 struct kfd_process *p, void *data)
661 static int kfd_ioctl_dbg_unregister(struct file *filep,
662 struct kfd_process *p, void *data)
667 static int kfd_ioctl_dbg_address_watch(struct file *filep,
668 struct kfd_process *p, void *data)
673 /* Parse and generate fixed size data structure for wave control */
674 static int kfd_ioctl_dbg_wave_control(struct file *filep,
675 struct kfd_process *p, void *data)
680 static int kfd_ioctl_get_clock_counters(struct file *filep,
681 struct kfd_process *p, void *data)
683 struct kfd_ioctl_get_clock_counters_args *args = data;
684 struct kfd_process_device *pdd;
686 mutex_lock(&p->mutex);
687 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
688 mutex_unlock(&p->mutex);
690 /* Reading GPU clock counter from KGD */
691 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
693 /* Node without GPU resource */
694 args->gpu_clock_counter = 0;
696 /* No access to rdtsc. Using raw monotonic time */
697 args->cpu_clock_counter = ktime_get_raw_ns();
698 args->system_clock_counter = ktime_get_boottime_ns();
700 /* Since the counter is in nano-seconds we use 1GHz frequency */
701 args->system_clock_freq = 1000000000;
707 static int kfd_ioctl_get_process_apertures(struct file *filp,
708 struct kfd_process *p, void *data)
710 struct kfd_ioctl_get_process_apertures_args *args = data;
711 struct kfd_process_device_apertures *pAperture;
714 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
716 args->num_of_nodes = 0;
718 mutex_lock(&p->mutex);
719 /* Run over all pdd of the process */
720 for (i = 0; i < p->n_pdds; i++) {
721 struct kfd_process_device *pdd = p->pdds[i];
724 &args->process_apertures[args->num_of_nodes];
725 pAperture->gpu_id = pdd->dev->id;
726 pAperture->lds_base = pdd->lds_base;
727 pAperture->lds_limit = pdd->lds_limit;
728 pAperture->gpuvm_base = pdd->gpuvm_base;
729 pAperture->gpuvm_limit = pdd->gpuvm_limit;
730 pAperture->scratch_base = pdd->scratch_base;
731 pAperture->scratch_limit = pdd->scratch_limit;
734 "node id %u\n", args->num_of_nodes);
736 "gpu id %u\n", pdd->dev->id);
738 "lds_base %llX\n", pdd->lds_base);
740 "lds_limit %llX\n", pdd->lds_limit);
742 "gpuvm_base %llX\n", pdd->gpuvm_base);
744 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
746 "scratch_base %llX\n", pdd->scratch_base);
748 "scratch_limit %llX\n", pdd->scratch_limit);
750 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
753 mutex_unlock(&p->mutex);
758 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
759 struct kfd_process *p, void *data)
761 struct kfd_ioctl_get_process_apertures_new_args *args = data;
762 struct kfd_process_device_apertures *pa;
766 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
768 if (args->num_of_nodes == 0) {
769 /* Return number of nodes, so that user space can alloacate
772 mutex_lock(&p->mutex);
773 args->num_of_nodes = p->n_pdds;
777 /* Fill in process-aperture information for all available
778 * nodes, but not more than args->num_of_nodes as that is
779 * the amount of memory allocated by user
781 pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
782 args->num_of_nodes), GFP_KERNEL);
786 mutex_lock(&p->mutex);
789 args->num_of_nodes = 0;
794 /* Run over all pdd of the process */
795 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
796 struct kfd_process_device *pdd = p->pdds[i];
798 pa[i].gpu_id = pdd->dev->id;
799 pa[i].lds_base = pdd->lds_base;
800 pa[i].lds_limit = pdd->lds_limit;
801 pa[i].gpuvm_base = pdd->gpuvm_base;
802 pa[i].gpuvm_limit = pdd->gpuvm_limit;
803 pa[i].scratch_base = pdd->scratch_base;
804 pa[i].scratch_limit = pdd->scratch_limit;
807 "gpu id %u\n", pdd->dev->id);
809 "lds_base %llX\n", pdd->lds_base);
811 "lds_limit %llX\n", pdd->lds_limit);
813 "gpuvm_base %llX\n", pdd->gpuvm_base);
815 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
817 "scratch_base %llX\n", pdd->scratch_base);
819 "scratch_limit %llX\n", pdd->scratch_limit);
821 mutex_unlock(&p->mutex);
823 args->num_of_nodes = i;
825 (void __user *)args->kfd_process_device_apertures_ptr,
827 (i * sizeof(struct kfd_process_device_apertures)));
829 return ret ? -EFAULT : 0;
832 mutex_unlock(&p->mutex);
836 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
839 struct kfd_ioctl_create_event_args *args = data;
842 /* For dGPUs the event page is allocated in user mode. The
843 * handle is passed to KFD with the first call to this IOCTL
844 * through the event_page_offset field.
846 if (args->event_page_offset) {
847 mutex_lock(&p->mutex);
848 err = kfd_kmap_event_page(p, args->event_page_offset);
849 mutex_unlock(&p->mutex);
854 err = kfd_event_create(filp, p, args->event_type,
855 args->auto_reset != 0, args->node_id,
856 &args->event_id, &args->event_trigger_data,
857 &args->event_page_offset,
858 &args->event_slot_index);
860 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
864 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
867 struct kfd_ioctl_destroy_event_args *args = data;
869 return kfd_event_destroy(p, args->event_id);
872 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
875 struct kfd_ioctl_set_event_args *args = data;
877 return kfd_set_event(p, args->event_id);
880 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
883 struct kfd_ioctl_reset_event_args *args = data;
885 return kfd_reset_event(p, args->event_id);
888 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
891 struct kfd_ioctl_wait_events_args *args = data;
893 return kfd_wait_on_events(p, args->num_events,
894 (void __user *)args->events_ptr,
895 (args->wait_for_all != 0),
896 &args->timeout, &args->wait_result);
898 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
899 struct kfd_process *p, void *data)
901 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
902 struct kfd_process_device *pdd;
903 struct kfd_node *dev;
906 mutex_lock(&p->mutex);
907 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
914 pdd = kfd_bind_process_to_device(dev, p);
917 goto bind_process_to_device_fail;
920 pdd->qpd.sh_hidden_private_base = args->va_addr;
922 mutex_unlock(&p->mutex);
924 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
925 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
926 dev->kfd2kgd->set_scratch_backing_va(
927 dev->adev, args->va_addr, pdd->qpd.vmid);
931 bind_process_to_device_fail:
933 mutex_unlock(&p->mutex);
937 static int kfd_ioctl_get_tile_config(struct file *filep,
938 struct kfd_process *p, void *data)
940 struct kfd_ioctl_get_tile_config_args *args = data;
941 struct kfd_process_device *pdd;
942 struct tile_config config;
945 mutex_lock(&p->mutex);
946 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
947 mutex_unlock(&p->mutex);
951 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
953 args->gb_addr_config = config.gb_addr_config;
954 args->num_banks = config.num_banks;
955 args->num_ranks = config.num_ranks;
957 if (args->num_tile_configs > config.num_tile_configs)
958 args->num_tile_configs = config.num_tile_configs;
959 err = copy_to_user((void __user *)args->tile_config_ptr,
960 config.tile_config_ptr,
961 args->num_tile_configs * sizeof(uint32_t));
963 args->num_tile_configs = 0;
967 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
968 args->num_macro_tile_configs =
969 config.num_macro_tile_configs;
970 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
971 config.macro_tile_config_ptr,
972 args->num_macro_tile_configs * sizeof(uint32_t));
974 args->num_macro_tile_configs = 0;
981 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
984 struct kfd_ioctl_acquire_vm_args *args = data;
985 struct kfd_process_device *pdd;
986 struct file *drm_file;
989 drm_file = fget(args->drm_fd);
993 mutex_lock(&p->mutex);
994 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1000 if (pdd->drm_file) {
1001 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1005 ret = kfd_process_device_init_vm(pdd, drm_file);
1009 /* On success, the PDD keeps the drm_file reference */
1010 mutex_unlock(&p->mutex);
1017 mutex_unlock(&p->mutex);
1022 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1024 if (dev->kfd->adev->debug_largebar) {
1025 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1029 if (dev->local_mem_info.local_mem_size_private == 0 &&
1030 dev->local_mem_info.local_mem_size_public > 0)
1033 if (dev->local_mem_info.local_mem_size_public == 0 &&
1034 dev->kfd->adev->gmc.is_app_apu) {
1035 pr_debug("APP APU, Consider like a large bar system\n");
1042 static int kfd_ioctl_get_available_memory(struct file *filep,
1043 struct kfd_process *p, void *data)
1045 struct kfd_ioctl_get_available_memory_args *args = data;
1046 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1050 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1052 kfd_unlock_pdd(pdd);
1056 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057 struct kfd_process *p, void *data)
1059 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060 struct kfd_process_device *pdd;
1062 struct kfd_node *dev;
1065 uint64_t offset = args->mmap_offset;
1066 uint32_t flags = args->flags;
1068 if (args->size == 0)
1071 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072 /* Flush pending deferred work to avoid racing with deferred actions
1073 * from previous memory map changes (e.g. munmap).
1075 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076 mutex_lock(&p->svms.lock);
1077 mmap_write_unlock(current->mm);
1078 if (interval_tree_iter_first(&p->svms.objects,
1079 args->va_addr >> PAGE_SHIFT,
1080 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081 pr_err("Address: 0x%llx already allocated by SVM\n",
1083 mutex_unlock(&p->svms.lock);
1087 /* When register user buffer check if it has been registered by svm by
1088 * buffer cpu virtual address.
1090 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091 interval_tree_iter_first(&p->svms.objects,
1092 args->mmap_offset >> PAGE_SHIFT,
1093 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1094 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1096 mutex_unlock(&p->svms.lock);
1100 mutex_unlock(&p->svms.lock);
1102 mutex_lock(&p->mutex);
1103 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1111 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113 !kfd_dev_is_large_bar(dev)) {
1114 pr_err("Alloc host visible vram on small bar is not allowed\n");
1119 pdd = kfd_bind_process_to_device(dev, p);
1125 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1130 offset = kfd_get_process_doorbells(pdd);
1135 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136 if (args->size != PAGE_SIZE) {
1140 offset = dev->adev->rmmio_remap.bus_addr;
1147 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148 dev->adev, args->va_addr, args->size,
1149 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1155 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156 if (idr_handle < 0) {
1161 /* Update the VRAM usage count */
1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163 uint64_t size = args->size;
1165 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1167 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1170 mutex_unlock(&p->mutex);
1172 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173 args->mmap_offset = offset;
1175 /* MMIO is mapped through kfd device
1176 * Generate a kfd mmap offset
1178 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180 | KFD_MMAP_GPU_ID(args->gpu_id);
1185 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186 pdd->drm_priv, NULL);
1190 mutex_unlock(&p->mutex);
1194 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195 struct kfd_process *p, void *data)
1197 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198 struct kfd_process_device *pdd;
1203 mutex_lock(&p->mutex);
1205 * Safeguard to prevent user space from freeing signal BO.
1206 * It will be freed at process termination.
1208 if (p->signal_handle && (p->signal_handle == args->handle)) {
1209 pr_err("Free signal BO is not allowed\n");
1214 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1216 pr_err("Process device data doesn't exist\n");
1221 mem = kfd_process_device_translate_handle(
1222 pdd, GET_IDR_HANDLE(args->handle));
1228 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1231 /* If freeing the buffer failed, leave the handle in place for
1232 * clean-up during process tear-down.
1235 kfd_process_device_remove_obj_handle(
1236 pdd, GET_IDR_HANDLE(args->handle));
1238 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1242 mutex_unlock(&p->mutex);
1246 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247 struct kfd_process *p, void *data)
1249 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250 struct kfd_process_device *pdd, *peer_pdd;
1252 struct kfd_node *dev;
1255 uint32_t *devices_arr = NULL;
1257 if (!args->n_devices) {
1258 pr_debug("Device IDs array empty\n");
1261 if (args->n_success > args->n_devices) {
1262 pr_debug("n_success exceeds n_devices\n");
1266 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1271 err = copy_from_user(devices_arr,
1272 (void __user *)args->device_ids_array_ptr,
1273 args->n_devices * sizeof(*devices_arr));
1276 goto copy_from_user_failed;
1279 mutex_lock(&p->mutex);
1280 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1283 goto get_process_device_data_failed;
1287 pdd = kfd_bind_process_to_device(dev, p);
1290 goto bind_process_to_device_failed;
1293 mem = kfd_process_device_translate_handle(pdd,
1294 GET_IDR_HANDLE(args->handle));
1297 goto get_mem_obj_from_handle_failed;
1300 for (i = args->n_success; i < args->n_devices; i++) {
1301 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1303 pr_debug("Getting device by id failed for 0x%x\n",
1306 goto get_mem_obj_from_handle_failed;
1309 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310 if (IS_ERR(peer_pdd)) {
1311 err = PTR_ERR(peer_pdd);
1312 goto get_mem_obj_from_handle_failed;
1315 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317 peer_pdd->drm_priv);
1319 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1321 dev_err(dev->adev->dev,
1322 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323 pci_domain_nr(pdev->bus),
1325 PCI_SLOT(pdev->devfn),
1326 PCI_FUNC(pdev->devfn),
1327 ((struct kgd_mem *)mem)->domain);
1328 goto map_memory_to_gpu_failed;
1330 args->n_success = i+1;
1333 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1335 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336 goto sync_memory_failed;
1339 mutex_unlock(&p->mutex);
1341 /* Flush TLBs after waiting for the page table updates to complete */
1342 for (i = 0; i < args->n_devices; i++) {
1343 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344 if (WARN_ON_ONCE(!peer_pdd))
1346 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1352 get_process_device_data_failed:
1353 bind_process_to_device_failed:
1354 get_mem_obj_from_handle_failed:
1355 map_memory_to_gpu_failed:
1357 mutex_unlock(&p->mutex);
1358 copy_from_user_failed:
1364 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365 struct kfd_process *p, void *data)
1367 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368 struct kfd_process_device *pdd, *peer_pdd;
1371 uint32_t *devices_arr = NULL, i;
1374 if (!args->n_devices) {
1375 pr_debug("Device IDs array empty\n");
1378 if (args->n_success > args->n_devices) {
1379 pr_debug("n_success exceeds n_devices\n");
1383 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1388 err = copy_from_user(devices_arr,
1389 (void __user *)args->device_ids_array_ptr,
1390 args->n_devices * sizeof(*devices_arr));
1393 goto copy_from_user_failed;
1396 mutex_lock(&p->mutex);
1397 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1400 goto bind_process_to_device_failed;
1403 mem = kfd_process_device_translate_handle(pdd,
1404 GET_IDR_HANDLE(args->handle));
1407 goto get_mem_obj_from_handle_failed;
1410 for (i = args->n_success; i < args->n_devices; i++) {
1411 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1414 goto get_mem_obj_from_handle_failed;
1416 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1419 pr_err("Failed to unmap from gpu %d/%d\n",
1420 i, args->n_devices);
1421 goto unmap_memory_from_gpu_failed;
1423 args->n_success = i+1;
1426 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1428 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429 (struct kgd_mem *) mem, true);
1431 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432 goto sync_memory_failed;
1436 /* Flush TLBs after waiting for the page table updates to complete */
1437 for (i = 0; i < args->n_devices; i++) {
1438 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1439 if (WARN_ON_ONCE(!peer_pdd))
1442 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1444 /* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1445 amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1448 mutex_unlock(&p->mutex);
1454 bind_process_to_device_failed:
1455 get_mem_obj_from_handle_failed:
1456 unmap_memory_from_gpu_failed:
1458 mutex_unlock(&p->mutex);
1459 copy_from_user_failed:
1464 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1465 struct kfd_process *p, void *data)
1468 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1470 struct kfd_node *dev;
1472 mutex_lock(&p->mutex);
1473 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1487 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1492 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1493 kfd_dbg_has_cwsr_workaround(dev))) {
1498 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1499 mutex_unlock(&p->mutex);
1501 args->first_gws = 0;
1505 mutex_unlock(&p->mutex);
1509 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1510 struct kfd_process *p, void *data)
1512 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1513 struct kfd_node *dev = NULL;
1514 struct amdgpu_device *dmabuf_adev;
1515 void *metadata_buffer = NULL;
1521 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1522 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1528 if (args->metadata_ptr) {
1529 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1530 if (!metadata_buffer)
1534 /* Get dmabuf info from KGD */
1535 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1536 &dmabuf_adev, &args->size,
1537 metadata_buffer, args->metadata_size,
1538 &args->metadata_size, &flags, &xcp_id);
1543 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1545 args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1546 args->flags = flags;
1548 /* Copy metadata buffer to user mode */
1549 if (metadata_buffer) {
1550 r = copy_to_user((void __user *)args->metadata_ptr,
1551 metadata_buffer, args->metadata_size);
1557 kfree(metadata_buffer);
1562 static int kfd_ioctl_import_dmabuf(struct file *filep,
1563 struct kfd_process *p, void *data)
1565 struct kfd_ioctl_import_dmabuf_args *args = data;
1566 struct kfd_process_device *pdd;
1572 mutex_lock(&p->mutex);
1573 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1579 pdd = kfd_bind_process_to_device(pdd->dev, p);
1585 r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1586 args->va_addr, pdd->drm_priv,
1587 (struct kgd_mem **)&mem, &size,
1592 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1593 if (idr_handle < 0) {
1598 mutex_unlock(&p->mutex);
1600 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1605 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1606 pdd->drm_priv, NULL);
1608 mutex_unlock(&p->mutex);
1612 static int kfd_ioctl_export_dmabuf(struct file *filep,
1613 struct kfd_process *p, void *data)
1615 struct kfd_ioctl_export_dmabuf_args *args = data;
1616 struct kfd_process_device *pdd;
1617 struct dma_buf *dmabuf;
1618 struct kfd_node *dev;
1622 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1626 mutex_lock(&p->mutex);
1628 pdd = kfd_get_process_device_data(dev, p);
1634 mem = kfd_process_device_translate_handle(pdd,
1635 GET_IDR_HANDLE(args->handle));
1641 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1642 mutex_unlock(&p->mutex);
1646 ret = dma_buf_fd(dmabuf, args->flags);
1648 dma_buf_put(dmabuf);
1651 /* dma_buf_fd assigns the reference count to the fd, no need to
1652 * put the reference here.
1654 args->dmabuf_fd = ret;
1659 mutex_unlock(&p->mutex);
1664 /* Handle requests for watching SMI events */
1665 static int kfd_ioctl_smi_events(struct file *filep,
1666 struct kfd_process *p, void *data)
1668 struct kfd_ioctl_smi_events_args *args = data;
1669 struct kfd_process_device *pdd;
1671 mutex_lock(&p->mutex);
1673 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1674 mutex_unlock(&p->mutex);
1678 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1681 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1683 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1684 struct kfd_process *p, void *data)
1686 struct kfd_ioctl_set_xnack_mode_args *args = data;
1689 mutex_lock(&p->mutex);
1690 if (args->xnack_enabled >= 0) {
1691 if (!list_empty(&p->pqm.queues)) {
1692 pr_debug("Process has user queues running\n");
1697 if (p->xnack_enabled == args->xnack_enabled)
1700 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1705 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1707 args->xnack_enabled = p->xnack_enabled;
1711 mutex_unlock(&p->mutex);
1716 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1718 struct kfd_ioctl_svm_args *args = data;
1721 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1722 args->start_addr, args->size, args->op, args->nattr);
1724 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1726 if (!args->start_addr || !args->size)
1729 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1735 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1736 struct kfd_process *p, void *data)
1740 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1746 static int criu_checkpoint_process(struct kfd_process *p,
1747 uint8_t __user *user_priv_data,
1748 uint64_t *priv_offset)
1750 struct kfd_criu_process_priv_data process_priv;
1753 memset(&process_priv, 0, sizeof(process_priv));
1755 process_priv.version = KFD_CRIU_PRIV_VERSION;
1756 /* For CR, we don't consider negative xnack mode which is used for
1757 * querying without changing it, here 0 simply means disabled and 1
1758 * means enabled so retry for finding a valid PTE.
1760 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1762 ret = copy_to_user(user_priv_data + *priv_offset,
1763 &process_priv, sizeof(process_priv));
1766 pr_err("Failed to copy process information to user\n");
1770 *priv_offset += sizeof(process_priv);
1774 static int criu_checkpoint_devices(struct kfd_process *p,
1775 uint32_t num_devices,
1776 uint8_t __user *user_addr,
1777 uint8_t __user *user_priv_data,
1778 uint64_t *priv_offset)
1780 struct kfd_criu_device_priv_data *device_priv = NULL;
1781 struct kfd_criu_device_bucket *device_buckets = NULL;
1784 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1785 if (!device_buckets) {
1790 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1796 for (i = 0; i < num_devices; i++) {
1797 struct kfd_process_device *pdd = p->pdds[i];
1799 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1800 device_buckets[i].actual_gpu_id = pdd->dev->id;
1803 * priv_data does not contain useful information for now and is reserved for
1804 * future use, so we do not set its contents.
1808 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1810 pr_err("Failed to copy device information to user\n");
1815 ret = copy_to_user(user_priv_data + *priv_offset,
1817 num_devices * sizeof(*device_priv));
1819 pr_err("Failed to copy device information to user\n");
1822 *priv_offset += num_devices * sizeof(*device_priv);
1825 kvfree(device_buckets);
1826 kvfree(device_priv);
1830 static uint32_t get_process_num_bos(struct kfd_process *p)
1832 uint32_t num_of_bos = 0;
1835 /* Run over all PDDs of the process */
1836 for (i = 0; i < p->n_pdds; i++) {
1837 struct kfd_process_device *pdd = p->pdds[i];
1841 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1842 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1844 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1851 static int criu_get_prime_handle(struct kgd_mem *mem,
1852 int flags, u32 *shared_fd)
1854 struct dma_buf *dmabuf;
1857 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1859 pr_err("dmabuf export failed for the BO\n");
1863 ret = dma_buf_fd(dmabuf, flags);
1865 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1866 goto out_free_dmabuf;
1873 dma_buf_put(dmabuf);
1877 static int criu_checkpoint_bos(struct kfd_process *p,
1879 uint8_t __user *user_bos,
1880 uint8_t __user *user_priv_data,
1881 uint64_t *priv_offset)
1883 struct kfd_criu_bo_bucket *bo_buckets;
1884 struct kfd_criu_bo_priv_data *bo_privs;
1885 int ret = 0, pdd_index, bo_index = 0, id;
1888 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1892 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1898 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1899 struct kfd_process_device *pdd = p->pdds[pdd_index];
1900 struct amdgpu_bo *dumper_bo;
1901 struct kgd_mem *kgd_mem;
1903 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1904 struct kfd_criu_bo_bucket *bo_bucket;
1905 struct kfd_criu_bo_priv_data *bo_priv;
1913 kgd_mem = (struct kgd_mem *)mem;
1914 dumper_bo = kgd_mem->bo;
1916 /* Skip checkpointing BOs that are used for Trap handler
1917 * code and state. Currently, these BOs have a VA that
1918 * is less GPUVM Base
1920 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1923 bo_bucket = &bo_buckets[bo_index];
1924 bo_priv = &bo_privs[bo_index];
1926 bo_bucket->gpu_id = pdd->user_gpu_id;
1927 bo_bucket->addr = (uint64_t)kgd_mem->va;
1928 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1929 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1930 bo_priv->idr_handle = id;
1932 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1933 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1934 &bo_priv->user_addr);
1936 pr_err("Failed to obtain user address for user-pointer bo\n");
1940 if (bo_bucket->alloc_flags
1941 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1942 ret = criu_get_prime_handle(kgd_mem,
1943 bo_bucket->alloc_flags &
1944 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1945 &bo_bucket->dmabuf_fd);
1949 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1952 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1953 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1954 KFD_MMAP_GPU_ID(pdd->dev->id);
1955 else if (bo_bucket->alloc_flags &
1956 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1957 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1958 KFD_MMAP_GPU_ID(pdd->dev->id);
1960 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1962 for (i = 0; i < p->n_pdds; i++) {
1963 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1964 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1967 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1968 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1973 bo_bucket->alloc_flags,
1974 bo_priv->idr_handle);
1979 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1981 pr_err("Failed to copy BO information to user\n");
1986 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1988 pr_err("Failed to copy BO priv information to user\n");
1993 *priv_offset += num_bos * sizeof(*bo_privs);
1996 while (ret && bo_index--) {
1997 if (bo_buckets[bo_index].alloc_flags
1998 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1999 close_fd(bo_buckets[bo_index].dmabuf_fd);
2007 static int criu_get_process_object_info(struct kfd_process *p,
2008 uint32_t *num_devices,
2010 uint32_t *num_objects,
2011 uint64_t *objs_priv_size)
2013 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2014 uint32_t num_queues, num_events, num_svm_ranges;
2017 *num_devices = p->n_pdds;
2018 *num_bos = get_process_num_bos(p);
2020 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2024 num_events = kfd_get_num_events(p);
2026 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2030 *num_objects = num_queues + num_events + num_svm_ranges;
2032 if (objs_priv_size) {
2033 priv_size = sizeof(struct kfd_criu_process_priv_data);
2034 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2035 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2036 priv_size += queues_priv_data_size;
2037 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2038 priv_size += svm_priv_data_size;
2039 *objs_priv_size = priv_size;
2044 static int criu_checkpoint(struct file *filep,
2045 struct kfd_process *p,
2046 struct kfd_ioctl_criu_args *args)
2049 uint32_t num_devices, num_bos, num_objects;
2050 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2052 if (!args->devices || !args->bos || !args->priv_data)
2055 mutex_lock(&p->mutex);
2058 pr_err("No pdd for given process\n");
2063 /* Confirm all process queues are evicted */
2064 if (!p->queues_paused) {
2065 pr_err("Cannot dump process when queues are not in evicted state\n");
2066 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2071 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2075 if (num_devices != args->num_devices ||
2076 num_bos != args->num_bos ||
2077 num_objects != args->num_objects ||
2078 priv_size != args->priv_data_size) {
2084 /* each function will store private data inside priv_data and adjust priv_offset */
2085 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2089 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2090 (uint8_t __user *)args->priv_data, &priv_offset);
2094 /* Leave room for BOs in the private data. They need to be restored
2095 * before events, but we checkpoint them last to simplify the error
2098 bo_priv_offset = priv_offset;
2099 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2102 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2107 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2112 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2117 /* This must be the last thing in this function that can fail.
2118 * Otherwise we leak dmabuf file descriptors.
2120 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2121 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2124 mutex_unlock(&p->mutex);
2126 pr_err("Failed to dump CRIU ret:%d\n", ret);
2128 pr_debug("CRIU dump ret:%d\n", ret);
2133 static int criu_restore_process(struct kfd_process *p,
2134 struct kfd_ioctl_criu_args *args,
2135 uint64_t *priv_offset,
2136 uint64_t max_priv_data_size)
2139 struct kfd_criu_process_priv_data process_priv;
2141 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2144 ret = copy_from_user(&process_priv,
2145 (void __user *)(args->priv_data + *priv_offset),
2146 sizeof(process_priv));
2148 pr_err("Failed to copy process private information from user\n");
2152 *priv_offset += sizeof(process_priv);
2154 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2155 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2156 process_priv.version, KFD_CRIU_PRIV_VERSION);
2160 pr_debug("Setting XNACK mode\n");
2161 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2162 pr_err("xnack mode cannot be set\n");
2166 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2167 p->xnack_enabled = process_priv.xnack_mode;
2174 static int criu_restore_devices(struct kfd_process *p,
2175 struct kfd_ioctl_criu_args *args,
2176 uint64_t *priv_offset,
2177 uint64_t max_priv_data_size)
2179 struct kfd_criu_device_bucket *device_buckets;
2180 struct kfd_criu_device_priv_data *device_privs;
2184 if (args->num_devices != p->n_pdds)
2187 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2190 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2191 if (!device_buckets)
2194 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2195 args->num_devices * sizeof(*device_buckets));
2197 pr_err("Failed to copy devices buckets from user\n");
2202 for (i = 0; i < args->num_devices; i++) {
2203 struct kfd_node *dev;
2204 struct kfd_process_device *pdd;
2205 struct file *drm_file;
2207 /* device private data is not currently used */
2209 if (!device_buckets[i].user_gpu_id) {
2210 pr_err("Invalid user gpu_id\n");
2215 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2217 pr_err("Failed to find device with gpu_id = %x\n",
2218 device_buckets[i].actual_gpu_id);
2223 pdd = kfd_get_process_device_data(dev, p);
2225 pr_err("Failed to get pdd for gpu_id = %x\n",
2226 device_buckets[i].actual_gpu_id);
2230 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2232 drm_file = fget(device_buckets[i].drm_fd);
2234 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2235 device_buckets[i].drm_fd);
2240 if (pdd->drm_file) {
2245 /* create the vm using render nodes for kfd pdd */
2246 if (kfd_process_device_init_vm(pdd, drm_file)) {
2247 pr_err("could not init vm for given pdd\n");
2248 /* On success, the PDD keeps the drm_file reference */
2254 * pdd now already has the vm bound to render node so below api won't create a new
2255 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2256 * for iommu v2 binding and runtime pm.
2258 pdd = kfd_bind_process_to_device(dev, p);
2264 if (!pdd->qpd.proc_doorbells) {
2265 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2272 * We are not copying device private data from user as we are not using the data for now,
2273 * but we still adjust for its private data.
2275 *priv_offset += args->num_devices * sizeof(*device_privs);
2278 kfree(device_buckets);
2282 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2283 struct kfd_criu_bo_bucket *bo_bucket,
2284 struct kfd_criu_bo_priv_data *bo_priv,
2285 struct kgd_mem **kgd_mem)
2289 const bool criu_resume = true;
2292 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2293 if (bo_bucket->size !=
2294 kfd_doorbell_process_slice(pdd->dev->kfd))
2297 offset = kfd_get_process_doorbells(pdd);
2300 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2301 /* MMIO BOs need remapped bus address */
2302 if (bo_bucket->size != PAGE_SIZE) {
2303 pr_err("Invalid page size\n");
2306 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2308 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2311 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2312 offset = bo_priv->user_addr;
2315 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2316 bo_bucket->size, pdd->drm_priv, kgd_mem,
2317 &offset, bo_bucket->alloc_flags, criu_resume);
2319 pr_err("Could not create the BO\n");
2322 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2323 bo_bucket->size, bo_bucket->addr, offset);
2325 /* Restore previous IDR handle */
2326 pr_debug("Restoring old IDR handle for the BO");
2327 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2328 bo_priv->idr_handle + 1, GFP_KERNEL);
2330 if (idr_handle < 0) {
2331 pr_err("Could not allocate idr\n");
2332 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2337 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2338 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2339 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2340 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2341 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2342 bo_bucket->restored_offset = offset;
2343 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2344 bo_bucket->restored_offset = offset;
2345 /* Update the VRAM usage count */
2346 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2351 static int criu_restore_bo(struct kfd_process *p,
2352 struct kfd_criu_bo_bucket *bo_bucket,
2353 struct kfd_criu_bo_priv_data *bo_priv)
2355 struct kfd_process_device *pdd;
2356 struct kgd_mem *kgd_mem;
2360 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2361 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2362 bo_priv->idr_handle);
2364 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2366 pr_err("Failed to get pdd\n");
2370 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2374 /* now map these BOs to GPU/s */
2375 for (j = 0; j < p->n_pdds; j++) {
2376 struct kfd_node *peer;
2377 struct kfd_process_device *peer_pdd;
2379 if (!bo_priv->mapped_gpuids[j])
2382 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2386 peer = peer_pdd->dev;
2388 peer_pdd = kfd_bind_process_to_device(peer, p);
2389 if (IS_ERR(peer_pdd))
2390 return PTR_ERR(peer_pdd);
2392 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2393 peer_pdd->drm_priv);
2395 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2400 pr_debug("map memory was successful for the BO\n");
2401 /* create the dmabuf object and export the bo */
2402 if (bo_bucket->alloc_flags
2403 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2404 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2405 &bo_bucket->dmabuf_fd);
2409 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2415 static int criu_restore_bos(struct kfd_process *p,
2416 struct kfd_ioctl_criu_args *args,
2417 uint64_t *priv_offset,
2418 uint64_t max_priv_data_size)
2420 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2421 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2425 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2428 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2429 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2431 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2435 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2436 args->num_bos * sizeof(*bo_buckets));
2438 pr_err("Failed to copy BOs information from user\n");
2443 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2449 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2450 args->num_bos * sizeof(*bo_privs));
2452 pr_err("Failed to copy BOs information from user\n");
2456 *priv_offset += args->num_bos * sizeof(*bo_privs);
2458 /* Create and map new BOs */
2459 for (; i < args->num_bos; i++) {
2460 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2462 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2467 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2468 ret = copy_to_user((void __user *)args->bos,
2470 (args->num_bos * sizeof(*bo_buckets)));
2475 while (ret && i--) {
2476 if (bo_buckets[i].alloc_flags
2477 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2478 close_fd(bo_buckets[i].dmabuf_fd);
2485 static int criu_restore_objects(struct file *filep,
2486 struct kfd_process *p,
2487 struct kfd_ioctl_criu_args *args,
2488 uint64_t *priv_offset,
2489 uint64_t max_priv_data_size)
2494 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2495 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2496 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2498 for (i = 0; i < args->num_objects; i++) {
2499 uint32_t object_type;
2501 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2502 pr_err("Invalid private data size\n");
2506 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2508 pr_err("Failed to copy private information from user\n");
2512 switch (object_type) {
2513 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2514 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2515 priv_offset, max_priv_data_size);
2519 case KFD_CRIU_OBJECT_TYPE_EVENT:
2520 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2521 priv_offset, max_priv_data_size);
2525 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2526 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2527 priv_offset, max_priv_data_size);
2532 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2541 static int criu_restore(struct file *filep,
2542 struct kfd_process *p,
2543 struct kfd_ioctl_criu_args *args)
2545 uint64_t priv_offset = 0;
2548 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2549 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2551 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2552 !args->num_devices || !args->num_bos)
2555 mutex_lock(&p->mutex);
2558 * Set the process to evicted state to avoid running any new queues before all the memory
2559 * mappings are ready.
2561 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2565 /* Each function will adjust priv_offset based on how many bytes they consumed */
2566 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2570 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2574 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2578 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2582 if (priv_offset != args->priv_data_size) {
2583 pr_err("Invalid private data size\n");
2588 mutex_unlock(&p->mutex);
2590 pr_err("Failed to restore CRIU ret:%d\n", ret);
2592 pr_debug("CRIU restore successful\n");
2597 static int criu_unpause(struct file *filep,
2598 struct kfd_process *p,
2599 struct kfd_ioctl_criu_args *args)
2603 mutex_lock(&p->mutex);
2605 if (!p->queues_paused) {
2606 mutex_unlock(&p->mutex);
2610 ret = kfd_process_restore_queues(p);
2612 pr_err("Failed to unpause queues ret:%d\n", ret);
2614 p->queues_paused = false;
2616 mutex_unlock(&p->mutex);
2621 static int criu_resume(struct file *filep,
2622 struct kfd_process *p,
2623 struct kfd_ioctl_criu_args *args)
2625 struct kfd_process *target = NULL;
2626 struct pid *pid = NULL;
2629 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2632 pid = find_get_pid(args->pid);
2634 pr_err("Cannot find pid info for %i\n", args->pid);
2638 pr_debug("calling kfd_lookup_process_by_pid\n");
2639 target = kfd_lookup_process_by_pid(pid);
2644 pr_debug("Cannot find process info for %i\n", args->pid);
2648 mutex_lock(&target->mutex);
2649 ret = kfd_criu_resume_svm(target);
2651 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2655 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2657 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2660 mutex_unlock(&target->mutex);
2662 kfd_unref_process(target);
2666 static int criu_process_info(struct file *filep,
2667 struct kfd_process *p,
2668 struct kfd_ioctl_criu_args *args)
2672 mutex_lock(&p->mutex);
2675 pr_err("No pdd for given process\n");
2680 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2684 p->queues_paused = true;
2686 args->pid = task_pid_nr_ns(p->lead_thread,
2687 task_active_pid_ns(p->lead_thread));
2689 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2690 &args->num_objects, &args->priv_data_size);
2694 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2695 args->num_devices, args->num_bos, args->num_objects,
2696 args->priv_data_size);
2700 kfd_process_restore_queues(p);
2701 p->queues_paused = false;
2703 mutex_unlock(&p->mutex);
2707 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2709 struct kfd_ioctl_criu_args *args = data;
2712 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2714 case KFD_CRIU_OP_PROCESS_INFO:
2715 ret = criu_process_info(filep, p, args);
2717 case KFD_CRIU_OP_CHECKPOINT:
2718 ret = criu_checkpoint(filep, p, args);
2720 case KFD_CRIU_OP_UNPAUSE:
2721 ret = criu_unpause(filep, p, args);
2723 case KFD_CRIU_OP_RESTORE:
2724 ret = criu_restore(filep, p, args);
2726 case KFD_CRIU_OP_RESUME:
2727 ret = criu_resume(filep, p, args);
2730 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2736 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2741 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2742 bool enable_ttmp_setup)
2746 if (p->is_runtime_retry)
2749 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2752 for (i = 0; i < p->n_pdds; i++) {
2753 struct kfd_process_device *pdd = p->pdds[i];
2755 if (pdd->qpd.queue_count)
2759 * Setup TTMPs by default.
2760 * Note that this call must remain here for MES ADD QUEUE to
2761 * skip_process_ctx_clear unconditionally as the first call to
2762 * SET_SHADER_DEBUGGER clears any stale process context data
2765 if (pdd->dev->kfd->shared_resources.enable_mes)
2766 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2769 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2770 p->runtime_info.r_debug = r_debug;
2771 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2773 if (p->runtime_info.ttmp_setup) {
2774 for (i = 0; i < p->n_pdds; i++) {
2775 struct kfd_process_device *pdd = p->pdds[i];
2777 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2778 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2779 pdd->dev->kfd2kgd->enable_debug_trap(
2782 pdd->dev->vm_info.last_vmid_kfd);
2783 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2784 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2793 if (p->debug_trap_enabled) {
2794 if (!p->is_runtime_retry) {
2795 kfd_dbg_trap_activate(p);
2796 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2797 p, NULL, 0, false, NULL, 0);
2800 mutex_unlock(&p->mutex);
2801 ret = down_interruptible(&p->runtime_enable_sema);
2802 mutex_lock(&p->mutex);
2804 p->is_runtime_retry = !!ret;
2810 static int runtime_disable(struct kfd_process *p)
2813 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2815 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2816 p->runtime_info.r_debug = 0;
2818 if (p->debug_trap_enabled) {
2820 kfd_dbg_trap_deactivate(p, false, 0);
2822 if (!p->is_runtime_retry)
2823 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2824 p, NULL, 0, false, NULL, 0);
2826 mutex_unlock(&p->mutex);
2827 ret = down_interruptible(&p->runtime_enable_sema);
2828 mutex_lock(&p->mutex);
2830 p->is_runtime_retry = !!ret;
2835 if (was_enabled && p->runtime_info.ttmp_setup) {
2836 for (i = 0; i < p->n_pdds; i++) {
2837 struct kfd_process_device *pdd = p->pdds[i];
2839 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2840 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2844 p->runtime_info.ttmp_setup = false;
2846 /* disable ttmp setup */
2847 for (i = 0; i < p->n_pdds; i++) {
2848 struct kfd_process_device *pdd = p->pdds[i];
2850 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2851 pdd->spi_dbg_override =
2852 pdd->dev->kfd2kgd->disable_debug_trap(
2855 pdd->dev->vm_info.last_vmid_kfd);
2857 if (!pdd->dev->kfd->shared_resources.enable_mes)
2858 debug_refresh_runlist(pdd->dev->dqm);
2860 kfd_dbg_set_mes_debug_mode(pdd,
2861 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2868 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2870 struct kfd_ioctl_runtime_enable_args *args = data;
2873 mutex_lock(&p->mutex);
2875 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2876 r = runtime_enable(p, args->r_debug,
2877 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2879 r = runtime_disable(p);
2881 mutex_unlock(&p->mutex);
2886 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2888 struct kfd_ioctl_dbg_trap_args *args = data;
2889 struct task_struct *thread = NULL;
2890 struct mm_struct *mm = NULL;
2891 struct pid *pid = NULL;
2892 struct kfd_process *target = NULL;
2893 struct kfd_process_device *pdd = NULL;
2896 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2897 pr_err("Debugging does not support sched_policy %i", sched_policy);
2901 pid = find_get_pid(args->pid);
2903 pr_debug("Cannot find pid info for %i\n", args->pid);
2908 thread = get_pid_task(pid, PIDTYPE_PID);
2914 mm = get_task_mm(thread);
2920 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2921 bool create_process;
2924 create_process = thread && thread != current && ptrace_parent(thread) == current;
2927 target = create_process ? kfd_create_process(thread) :
2928 kfd_lookup_process_by_pid(pid);
2930 target = kfd_lookup_process_by_pid(pid);
2933 if (IS_ERR_OR_NULL(target)) {
2934 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2935 r = target ? PTR_ERR(target) : -ESRCH;
2939 /* Check if target is still PTRACED. */
2941 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2942 && ptrace_parent(target->lead_thread) != current) {
2943 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2951 mutex_lock(&target->mutex);
2953 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2954 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2959 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2960 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2961 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2962 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2963 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2964 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2965 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2966 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2971 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2972 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2973 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2974 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2975 args->set_node_address_watch.gpu_id :
2976 args->clear_node_address_watch.gpu_id);
2978 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2979 if (user_gpu_id == -EINVAL || !pdd) {
2986 case KFD_IOC_DBG_TRAP_ENABLE:
2988 target->debugger_process = p;
2990 r = kfd_dbg_trap_enable(target,
2991 args->enable.dbg_fd,
2992 (void __user *)args->enable.rinfo_ptr,
2993 &args->enable.rinfo_size);
2995 target->exception_enable_mask = args->enable.exception_mask;
2998 case KFD_IOC_DBG_TRAP_DISABLE:
2999 r = kfd_dbg_trap_disable(target);
3001 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3002 r = kfd_dbg_send_exception_to_runtime(target,
3003 args->send_runtime_event.gpu_id,
3004 args->send_runtime_event.queue_id,
3005 args->send_runtime_event.exception_mask);
3007 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3008 kfd_dbg_set_enabled_debug_exception_mask(target,
3009 args->set_exceptions_enabled.exception_mask);
3011 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3012 r = kfd_dbg_trap_set_wave_launch_override(target,
3013 args->launch_override.override_mode,
3014 args->launch_override.enable_mask,
3015 args->launch_override.support_request_mask,
3016 &args->launch_override.enable_mask,
3017 &args->launch_override.support_request_mask);
3019 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3020 r = kfd_dbg_trap_set_wave_launch_mode(target,
3021 args->launch_mode.launch_mode);
3023 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3024 r = suspend_queues(target,
3025 args->suspend_queues.num_queues,
3026 args->suspend_queues.grace_period,
3027 args->suspend_queues.exception_mask,
3028 (uint32_t *)args->suspend_queues.queue_array_ptr);
3031 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3032 r = resume_queues(target, args->resume_queues.num_queues,
3033 (uint32_t *)args->resume_queues.queue_array_ptr);
3035 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3036 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3037 args->set_node_address_watch.address,
3038 args->set_node_address_watch.mask,
3039 &args->set_node_address_watch.id,
3040 args->set_node_address_watch.mode);
3042 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3043 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3044 args->clear_node_address_watch.id);
3046 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3047 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3049 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3050 r = kfd_dbg_ev_query_debug_event(target,
3051 &args->query_debug_event.queue_id,
3052 &args->query_debug_event.gpu_id,
3053 args->query_debug_event.exception_mask,
3054 &args->query_debug_event.exception_mask);
3056 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3057 r = kfd_dbg_trap_query_exception_info(target,
3058 args->query_exception_info.source_id,
3059 args->query_exception_info.exception_code,
3060 args->query_exception_info.clear_exception,
3061 (void __user *)args->query_exception_info.info_ptr,
3062 &args->query_exception_info.info_size);
3064 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3065 r = pqm_get_queue_snapshot(&target->pqm,
3066 args->queue_snapshot.exception_mask,
3067 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3068 &args->queue_snapshot.num_queues,
3069 &args->queue_snapshot.entry_size);
3071 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3072 r = kfd_dbg_trap_device_snapshot(target,
3073 args->device_snapshot.exception_mask,
3074 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3075 &args->device_snapshot.num_devices,
3076 &args->device_snapshot.entry_size);
3079 pr_err("Invalid option: %i\n", args->op);
3084 mutex_unlock(&target->mutex);
3088 put_task_struct(thread);
3097 kfd_unref_process(target);
3102 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3103 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3104 .cmd_drv = 0, .name = #ioctl}
3107 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3108 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3109 kfd_ioctl_get_version, 0),
3111 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3112 kfd_ioctl_create_queue, 0),
3114 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3115 kfd_ioctl_destroy_queue, 0),
3117 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3118 kfd_ioctl_set_memory_policy, 0),
3120 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3121 kfd_ioctl_get_clock_counters, 0),
3123 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3124 kfd_ioctl_get_process_apertures, 0),
3126 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3127 kfd_ioctl_update_queue, 0),
3129 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3130 kfd_ioctl_create_event, 0),
3132 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3133 kfd_ioctl_destroy_event, 0),
3135 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3136 kfd_ioctl_set_event, 0),
3138 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3139 kfd_ioctl_reset_event, 0),
3141 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3142 kfd_ioctl_wait_events, 0),
3144 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3145 kfd_ioctl_dbg_register, 0),
3147 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3148 kfd_ioctl_dbg_unregister, 0),
3150 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3151 kfd_ioctl_dbg_address_watch, 0),
3153 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3154 kfd_ioctl_dbg_wave_control, 0),
3156 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3157 kfd_ioctl_set_scratch_backing_va, 0),
3159 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3160 kfd_ioctl_get_tile_config, 0),
3162 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3163 kfd_ioctl_set_trap_handler, 0),
3165 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3166 kfd_ioctl_get_process_apertures_new, 0),
3168 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3169 kfd_ioctl_acquire_vm, 0),
3171 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3172 kfd_ioctl_alloc_memory_of_gpu, 0),
3174 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3175 kfd_ioctl_free_memory_of_gpu, 0),
3177 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3178 kfd_ioctl_map_memory_to_gpu, 0),
3180 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3181 kfd_ioctl_unmap_memory_from_gpu, 0),
3183 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3184 kfd_ioctl_set_cu_mask, 0),
3186 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3187 kfd_ioctl_get_queue_wave_state, 0),
3189 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3190 kfd_ioctl_get_dmabuf_info, 0),
3192 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3193 kfd_ioctl_import_dmabuf, 0),
3195 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3196 kfd_ioctl_alloc_queue_gws, 0),
3198 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3199 kfd_ioctl_smi_events, 0),
3201 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3203 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3204 kfd_ioctl_set_xnack_mode, 0),
3206 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3207 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3209 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3210 kfd_ioctl_get_available_memory, 0),
3212 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3213 kfd_ioctl_export_dmabuf, 0),
3215 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3216 kfd_ioctl_runtime_enable, 0),
3218 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3219 kfd_ioctl_set_debug_trap, 0),
3222 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3224 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3226 struct kfd_process *process;
3227 amdkfd_ioctl_t *func;
3228 const struct amdkfd_ioctl_desc *ioctl = NULL;
3229 unsigned int nr = _IOC_NR(cmd);
3230 char stack_kdata[128];
3232 unsigned int usize, asize;
3233 int retcode = -EINVAL;
3234 bool ptrace_attached = false;
3236 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3239 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3242 ioctl = &amdkfd_ioctls[nr];
3244 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3245 usize = asize = _IOC_SIZE(cmd);
3246 if (amdkfd_size > asize)
3247 asize = amdkfd_size;
3253 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3255 /* Get the process struct from the filep. Only the process
3256 * that opened /dev/kfd can use the file descriptor. Child
3257 * processes need to create their own KFD device context.
3259 process = filep->private_data;
3262 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3263 ptrace_parent(process->lead_thread) == current)
3264 ptrace_attached = true;
3267 if (process->lead_thread != current->group_leader
3268 && !ptrace_attached) {
3269 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3274 /* Do not trust userspace, use our own definition */
3277 if (unlikely(!func)) {
3278 dev_dbg(kfd_device, "no function\n");
3284 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3285 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3286 * more priviledged access.
3288 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3289 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3290 !capable(CAP_SYS_ADMIN)) {
3296 if (cmd & (IOC_IN | IOC_OUT)) {
3297 if (asize <= sizeof(stack_kdata)) {
3298 kdata = stack_kdata;
3300 kdata = kmalloc(asize, GFP_KERNEL);
3307 memset(kdata + usize, 0, asize - usize);
3311 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3315 } else if (cmd & IOC_OUT) {
3316 memset(kdata, 0, usize);
3319 retcode = func(filep, process, kdata);
3322 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3327 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3328 task_pid_nr(current), cmd, nr);
3330 if (kdata != stack_kdata)
3334 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3340 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3341 struct vm_area_struct *vma)
3343 phys_addr_t address;
3345 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3348 address = dev->adev->rmmio_remap.bus_addr;
3350 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3351 VM_DONTDUMP | VM_PFNMAP);
3353 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3355 pr_debug("pasid 0x%x mapping mmio page\n"
3356 " target user address == 0x%08llX\n"
3357 " physical address == 0x%08llX\n"
3358 " vm_flags == 0x%04lX\n"
3359 " size == 0x%04lX\n",
3360 process->pasid, (unsigned long long) vma->vm_start,
3361 address, vma->vm_flags, PAGE_SIZE);
3363 return io_remap_pfn_range(vma,
3365 address >> PAGE_SHIFT,
3371 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3373 struct kfd_process *process;
3374 struct kfd_node *dev = NULL;
3375 unsigned long mmap_offset;
3376 unsigned int gpu_id;
3378 process = kfd_get_process(current);
3379 if (IS_ERR(process))
3380 return PTR_ERR(process);
3382 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3383 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3385 dev = kfd_device_by_id(gpu_id);
3387 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3388 case KFD_MMAP_TYPE_DOORBELL:
3391 return kfd_doorbell_mmap(dev, process, vma);
3393 case KFD_MMAP_TYPE_EVENTS:
3394 return kfd_event_mmap(process, vma);
3396 case KFD_MMAP_TYPE_RESERVED_MEM:
3399 return kfd_reserved_mem_mmap(dev, process, vma);
3400 case KFD_MMAP_TYPE_MMIO:
3403 return kfd_mmio_mmap(dev, process, vma);