1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
36 #include "inode-map.h"
38 #include "rcu-string.h"
40 #include "dev-replace.h"
45 #include "compression.h"
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49 * structures are incorrect, as the timespec structure from userspace
50 * is 4 bytes too small. We define these alternatives here to teach
51 * the kernel about the 32-bit struct packing.
53 struct btrfs_ioctl_timespec_32 {
56 } __attribute__ ((__packed__));
58 struct btrfs_ioctl_received_subvol_args_32 {
59 char uuid[BTRFS_UUID_SIZE]; /* in */
60 __u64 stransid; /* in */
61 __u64 rtransid; /* out */
62 struct btrfs_ioctl_timespec_32 stime; /* in */
63 struct btrfs_ioctl_timespec_32 rtime; /* out */
65 __u64 reserved[16]; /* in */
66 } __attribute__ ((__packed__));
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 struct btrfs_ioctl_received_subvol_args_32)
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 __s64 send_fd; /* in */
75 __u64 clone_sources_count; /* in */
76 compat_uptr_t clone_sources; /* in */
77 __u64 parent_root; /* in */
79 __u64 reserved[4]; /* in */
80 } __attribute__ ((__packed__));
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 struct btrfs_ioctl_send_args_32)
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
94 if (S_ISDIR(inode->i_mode))
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
108 unsigned int iflags = 0;
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
141 if (binode->flags & BTRFS_INODE_SYNC)
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
147 if (binode->flags & BTRFS_INODE_NOATIME)
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
162 if (copy_to_user(arg, &flags, sizeof(flags)))
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags)
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 struct inode *inode = file_inode(file);
186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 struct btrfs_inode *binode = BTRFS_I(inode);
188 struct btrfs_root *root = binode->root;
189 struct btrfs_trans_handle *trans;
190 unsigned int fsflags, old_fsflags;
193 unsigned int old_i_flags;
196 if (!inode_owner_or_capable(inode))
199 if (btrfs_root_readonly(root))
202 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
205 ret = check_fsflags(fsflags);
209 ret = mnt_want_write_file(file);
215 old_flags = binode->flags;
216 old_i_flags = inode->i_flags;
217 mode = inode->i_mode;
219 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
220 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
221 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
222 if (!capable(CAP_LINUX_IMMUTABLE)) {
228 if (fsflags & FS_SYNC_FL)
229 binode->flags |= BTRFS_INODE_SYNC;
231 binode->flags &= ~BTRFS_INODE_SYNC;
232 if (fsflags & FS_IMMUTABLE_FL)
233 binode->flags |= BTRFS_INODE_IMMUTABLE;
235 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
236 if (fsflags & FS_APPEND_FL)
237 binode->flags |= BTRFS_INODE_APPEND;
239 binode->flags &= ~BTRFS_INODE_APPEND;
240 if (fsflags & FS_NODUMP_FL)
241 binode->flags |= BTRFS_INODE_NODUMP;
243 binode->flags &= ~BTRFS_INODE_NODUMP;
244 if (fsflags & FS_NOATIME_FL)
245 binode->flags |= BTRFS_INODE_NOATIME;
247 binode->flags &= ~BTRFS_INODE_NOATIME;
248 if (fsflags & FS_DIRSYNC_FL)
249 binode->flags |= BTRFS_INODE_DIRSYNC;
251 binode->flags &= ~BTRFS_INODE_DIRSYNC;
252 if (fsflags & FS_NOCOW_FL) {
255 * It's safe to turn csums off here, no extents exist.
256 * Otherwise we want the flag to reflect the real COW
257 * status of the file and will not set it.
259 if (inode->i_size == 0)
260 binode->flags |= BTRFS_INODE_NODATACOW
261 | BTRFS_INODE_NODATASUM;
263 binode->flags |= BTRFS_INODE_NODATACOW;
267 * Revert back under same assumptions as above
270 if (inode->i_size == 0)
271 binode->flags &= ~(BTRFS_INODE_NODATACOW
272 | BTRFS_INODE_NODATASUM);
274 binode->flags &= ~BTRFS_INODE_NODATACOW;
279 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
280 * flag may be changed automatically if compression code won't make
283 if (fsflags & FS_NOCOMP_FL) {
284 binode->flags &= ~BTRFS_INODE_COMPRESS;
285 binode->flags |= BTRFS_INODE_NOCOMPRESS;
287 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
288 if (ret && ret != -ENODATA)
290 } else if (fsflags & FS_COMPR_FL) {
293 binode->flags |= BTRFS_INODE_COMPRESS;
294 binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
296 comp = btrfs_compress_type2str(fs_info->compress_type);
297 if (!comp || comp[0] == 0)
298 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
300 ret = btrfs_set_prop(inode, "btrfs.compression",
301 comp, strlen(comp), 0);
306 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
307 if (ret && ret != -ENODATA)
309 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
312 trans = btrfs_start_transaction(root, 1);
314 ret = PTR_ERR(trans);
318 btrfs_sync_inode_flags_to_i_flags(inode);
319 inode_inc_iversion(inode);
320 inode->i_ctime = current_time(inode);
321 ret = btrfs_update_inode(trans, root, inode);
323 btrfs_end_transaction(trans);
326 binode->flags = old_flags;
327 inode->i_flags = old_i_flags;
332 mnt_drop_write_file(file);
337 * Translate btrfs internal inode flags to xflags as expected by the
338 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
343 unsigned int xflags = 0;
345 if (flags & BTRFS_INODE_APPEND)
346 xflags |= FS_XFLAG_APPEND;
347 if (flags & BTRFS_INODE_IMMUTABLE)
348 xflags |= FS_XFLAG_IMMUTABLE;
349 if (flags & BTRFS_INODE_NOATIME)
350 xflags |= FS_XFLAG_NOATIME;
351 if (flags & BTRFS_INODE_NODUMP)
352 xflags |= FS_XFLAG_NODUMP;
353 if (flags & BTRFS_INODE_SYNC)
354 xflags |= FS_XFLAG_SYNC;
359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
360 static int check_xflags(unsigned int flags)
362 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
363 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
369 * Set the xflags from the internal inode flags. The remaining items of fsxattr
372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
374 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
377 memset(&fa, 0, sizeof(fa));
378 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
380 if (copy_to_user(arg, &fa, sizeof(fa)))
386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
388 struct inode *inode = file_inode(file);
389 struct btrfs_inode *binode = BTRFS_I(inode);
390 struct btrfs_root *root = binode->root;
391 struct btrfs_trans_handle *trans;
394 unsigned old_i_flags;
397 if (!inode_owner_or_capable(inode))
400 if (btrfs_root_readonly(root))
403 memset(&fa, 0, sizeof(fa));
404 if (copy_from_user(&fa, arg, sizeof(fa)))
407 ret = check_xflags(fa.fsx_xflags);
411 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
414 ret = mnt_want_write_file(file);
420 old_flags = binode->flags;
421 old_i_flags = inode->i_flags;
423 /* We need the capabilities to change append-only or immutable inode */
424 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
425 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
426 !capable(CAP_LINUX_IMMUTABLE)) {
431 if (fa.fsx_xflags & FS_XFLAG_SYNC)
432 binode->flags |= BTRFS_INODE_SYNC;
434 binode->flags &= ~BTRFS_INODE_SYNC;
435 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
436 binode->flags |= BTRFS_INODE_IMMUTABLE;
438 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
439 if (fa.fsx_xflags & FS_XFLAG_APPEND)
440 binode->flags |= BTRFS_INODE_APPEND;
442 binode->flags &= ~BTRFS_INODE_APPEND;
443 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
444 binode->flags |= BTRFS_INODE_NODUMP;
446 binode->flags &= ~BTRFS_INODE_NODUMP;
447 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
448 binode->flags |= BTRFS_INODE_NOATIME;
450 binode->flags &= ~BTRFS_INODE_NOATIME;
452 /* 1 item for the inode */
453 trans = btrfs_start_transaction(root, 1);
455 ret = PTR_ERR(trans);
459 btrfs_sync_inode_flags_to_i_flags(inode);
460 inode_inc_iversion(inode);
461 inode->i_ctime = current_time(inode);
462 ret = btrfs_update_inode(trans, root, inode);
464 btrfs_end_transaction(trans);
468 binode->flags = old_flags;
469 inode->i_flags = old_i_flags;
473 mnt_drop_write_file(file);
478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
480 struct inode *inode = file_inode(file);
482 return put_user(inode->i_generation, arg);
485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
487 struct inode *inode = file_inode(file);
488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
489 struct btrfs_device *device;
490 struct request_queue *q;
491 struct fstrim_range range;
492 u64 minlen = ULLONG_MAX;
496 if (!capable(CAP_SYS_ADMIN))
500 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
504 q = bdev_get_queue(device->bdev);
505 if (blk_queue_discard(q)) {
507 minlen = min_t(u64, q->limits.discard_granularity,
515 if (copy_from_user(&range, arg, sizeof(range)))
519 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
520 * block group is in the logical address space, which can be any
521 * sectorsize aligned bytenr in the range [0, U64_MAX].
523 if (range.len < fs_info->sb->s_blocksize)
526 range.minlen = max(range.minlen, minlen);
527 ret = btrfs_trim_fs(fs_info, &range);
531 if (copy_to_user(arg, &range, sizeof(range)))
537 int btrfs_is_empty_uuid(u8 *uuid)
541 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 static noinline int create_subvol(struct inode *dir,
549 struct dentry *dentry,
550 const char *name, int namelen,
552 struct btrfs_qgroup_inherit *inherit)
554 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
555 struct btrfs_trans_handle *trans;
556 struct btrfs_key key;
557 struct btrfs_root_item *root_item;
558 struct btrfs_inode_item *inode_item;
559 struct extent_buffer *leaf;
560 struct btrfs_root *root = BTRFS_I(dir)->root;
561 struct btrfs_root *new_root;
562 struct btrfs_block_rsv block_rsv;
563 struct timespec64 cur_time = current_time(dir);
568 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
572 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
576 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
581 * Don't create subvolume whose level is not zero. Or qgroup will be
582 * screwed up since it assumes subvolume qgroup's level to be 0.
584 if (btrfs_qgroup_level(objectid)) {
589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
591 * The same as the snapshot creation, please see the comment
592 * of create_snapshot().
594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
598 trans = btrfs_start_transaction(root, 0);
600 ret = PTR_ERR(trans);
601 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
604 trans->block_rsv = &block_rsv;
605 trans->bytes_reserved = block_rsv.size;
607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
617 btrfs_mark_buffer_dirty(leaf);
619 inode_item = &root_item->inode;
620 btrfs_set_stack_inode_generation(inode_item, 1);
621 btrfs_set_stack_inode_size(inode_item, 3);
622 btrfs_set_stack_inode_nlink(inode_item, 1);
623 btrfs_set_stack_inode_nbytes(inode_item,
625 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
627 btrfs_set_root_flags(root_item, 0);
628 btrfs_set_root_limit(root_item, 0);
629 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
631 btrfs_set_root_bytenr(root_item, leaf->start);
632 btrfs_set_root_generation(root_item, trans->transid);
633 btrfs_set_root_level(root_item, 0);
634 btrfs_set_root_refs(root_item, 1);
635 btrfs_set_root_used(root_item, leaf->len);
636 btrfs_set_root_last_snapshot(root_item, 0);
638 btrfs_set_root_generation_v2(root_item,
639 btrfs_root_generation(root_item));
640 uuid_le_gen(&new_uuid);
641 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 root_item->ctime = root_item->otime;
645 btrfs_set_root_ctransid(root_item, trans->transid);
646 btrfs_set_root_otransid(root_item, trans->transid);
648 btrfs_tree_unlock(leaf);
649 free_extent_buffer(leaf);
652 btrfs_set_root_dirid(root_item, new_dirid);
654 key.objectid = objectid;
656 key.type = BTRFS_ROOT_ITEM_KEY;
657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
662 key.offset = (u64)-1;
663 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
664 if (IS_ERR(new_root)) {
665 ret = PTR_ERR(new_root);
666 btrfs_abort_transaction(trans, ret);
670 btrfs_record_root_in_trans(trans, new_root);
672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
674 /* We potentially lose an unused inode item here */
675 btrfs_abort_transaction(trans, ret);
679 mutex_lock(&new_root->objectid_mutex);
680 new_root->highest_objectid = new_dirid;
681 mutex_unlock(&new_root->objectid_mutex);
684 * insert the directory item
686 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
688 btrfs_abort_transaction(trans, ret);
692 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
693 BTRFS_FT_DIR, index);
695 btrfs_abort_transaction(trans, ret);
699 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
700 ret = btrfs_update_inode(trans, root, dir);
703 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
704 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
707 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
708 BTRFS_UUID_KEY_SUBVOL, objectid);
710 btrfs_abort_transaction(trans, ret);
714 trans->block_rsv = NULL;
715 trans->bytes_reserved = 0;
716 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
719 *async_transid = trans->transid;
720 err = btrfs_commit_transaction_async(trans, 1);
722 err = btrfs_commit_transaction(trans);
724 err = btrfs_commit_transaction(trans);
730 inode = btrfs_lookup_dentry(dir, dentry);
732 return PTR_ERR(inode);
733 d_instantiate(dentry, inode);
742 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
743 struct dentry *dentry,
744 u64 *async_transid, bool readonly,
745 struct btrfs_qgroup_inherit *inherit)
747 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
749 struct btrfs_pending_snapshot *pending_snapshot;
750 struct btrfs_trans_handle *trans;
752 bool snapshot_force_cow = false;
754 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
757 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
758 if (!pending_snapshot)
761 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
763 pending_snapshot->path = btrfs_alloc_path();
764 if (!pending_snapshot->root_item || !pending_snapshot->path) {
770 * Force new buffered writes to reserve space even when NOCOW is
771 * possible. This is to avoid later writeback (running dealloc) to
772 * fallback to COW mode and unexpectedly fail with ENOSPC.
774 atomic_inc(&root->will_be_snapshotted);
775 smp_mb__after_atomic();
776 /* wait for no snapshot writes */
777 wait_event(root->subv_writers->wait,
778 percpu_counter_sum(&root->subv_writers->counter) == 0);
780 ret = btrfs_start_delalloc_inodes(root);
785 * All previous writes have started writeback in NOCOW mode, so now
786 * we force future writes to fallback to COW mode during snapshot
789 atomic_inc(&root->snapshot_force_cow);
790 snapshot_force_cow = true;
792 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
794 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
795 BTRFS_BLOCK_RSV_TEMP);
797 * 1 - parent dir inode
800 * 2 - root ref/backref
801 * 1 - root of snapshot
804 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
805 &pending_snapshot->block_rsv, 8,
810 pending_snapshot->dentry = dentry;
811 pending_snapshot->root = root;
812 pending_snapshot->readonly = readonly;
813 pending_snapshot->dir = dir;
814 pending_snapshot->inherit = inherit;
816 trans = btrfs_start_transaction(root, 0);
818 ret = PTR_ERR(trans);
822 spin_lock(&fs_info->trans_lock);
823 list_add(&pending_snapshot->list,
824 &trans->transaction->pending_snapshots);
825 spin_unlock(&fs_info->trans_lock);
827 *async_transid = trans->transid;
828 ret = btrfs_commit_transaction_async(trans, 1);
830 ret = btrfs_commit_transaction(trans);
832 ret = btrfs_commit_transaction(trans);
837 ret = pending_snapshot->error;
841 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
847 ret = PTR_ERR(inode);
851 d_instantiate(dentry, inode);
854 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
856 if (snapshot_force_cow)
857 atomic_dec(&root->snapshot_force_cow);
858 if (atomic_dec_and_test(&root->will_be_snapshotted))
859 wake_up_var(&root->will_be_snapshotted);
861 kfree(pending_snapshot->root_item);
862 btrfs_free_path(pending_snapshot->path);
863 kfree(pending_snapshot);
868 /* copy of may_delete in fs/namei.c()
869 * Check whether we can remove a link victim from directory dir, check
870 * whether the type of victim is right.
871 * 1. We can't do it if dir is read-only (done in permission())
872 * 2. We should have write and exec permissions on dir
873 * 3. We can't remove anything from append-only dir
874 * 4. We can't do anything with immutable dir (done in permission())
875 * 5. If the sticky bit on dir is set we should either
876 * a. be owner of dir, or
877 * b. be owner of victim, or
878 * c. have CAP_FOWNER capability
879 * 6. If the victim is append-only or immutable we can't do anything with
880 * links pointing to it.
881 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
882 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
883 * 9. We can't remove a root or mountpoint.
884 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
885 * nfs_async_unlink().
888 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
892 if (d_really_is_negative(victim))
895 BUG_ON(d_inode(victim->d_parent) != dir);
896 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
898 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
903 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
904 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
907 if (!d_is_dir(victim))
911 } else if (d_is_dir(victim))
915 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
920 /* copy of may_create in fs/namei.c() */
921 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
923 if (d_really_is_positive(child))
927 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
931 * Create a new subvolume below @parent. This is largely modeled after
932 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
933 * inside this filesystem so it's quite a bit simpler.
935 static noinline int btrfs_mksubvol(const struct path *parent,
936 const char *name, int namelen,
937 struct btrfs_root *snap_src,
938 u64 *async_transid, bool readonly,
939 struct btrfs_qgroup_inherit *inherit)
941 struct inode *dir = d_inode(parent->dentry);
942 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
943 struct dentry *dentry;
946 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
950 dentry = lookup_one_len(name, parent->dentry, namelen);
951 error = PTR_ERR(dentry);
955 error = btrfs_may_create(dir, dentry);
960 * even if this name doesn't exist, we may get hash collisions.
961 * check for them now when we can safely fail
963 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
969 down_read(&fs_info->subvol_sem);
971 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
975 error = create_snapshot(snap_src, dir, dentry,
976 async_transid, readonly, inherit);
978 error = create_subvol(dir, dentry, name, namelen,
979 async_transid, inherit);
982 fsnotify_mkdir(dir, dentry);
984 up_read(&fs_info->subvol_sem);
993 * When we're defragging a range, we don't want to kick it off again
994 * if it is really just waiting for delalloc to send it down.
995 * If we find a nice big extent or delalloc range for the bytes in the
996 * file you want to defrag, we return 0 to let you know to skip this
999 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1002 struct extent_map *em = NULL;
1003 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1006 read_lock(&em_tree->lock);
1007 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1008 read_unlock(&em_tree->lock);
1011 end = extent_map_end(em);
1012 free_extent_map(em);
1013 if (end - offset > thresh)
1016 /* if we already have a nice delalloc here, just stop */
1018 end = count_range_bits(io_tree, &offset, offset + thresh,
1019 thresh, EXTENT_DELALLOC, 1);
1026 * helper function to walk through a file and find extents
1027 * newer than a specific transid, and smaller than thresh.
1029 * This is used by the defragging code to find new and small
1032 static int find_new_extents(struct btrfs_root *root,
1033 struct inode *inode, u64 newer_than,
1034 u64 *off, u32 thresh)
1036 struct btrfs_path *path;
1037 struct btrfs_key min_key;
1038 struct extent_buffer *leaf;
1039 struct btrfs_file_extent_item *extent;
1042 u64 ino = btrfs_ino(BTRFS_I(inode));
1044 path = btrfs_alloc_path();
1048 min_key.objectid = ino;
1049 min_key.type = BTRFS_EXTENT_DATA_KEY;
1050 min_key.offset = *off;
1053 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1057 if (min_key.objectid != ino)
1059 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1062 leaf = path->nodes[0];
1063 extent = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_file_extent_item);
1066 type = btrfs_file_extent_type(leaf, extent);
1067 if (type == BTRFS_FILE_EXTENT_REG &&
1068 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1069 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1070 *off = min_key.offset;
1071 btrfs_free_path(path);
1076 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1077 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1081 if (min_key.offset == (u64)-1)
1085 btrfs_release_path(path);
1088 btrfs_free_path(path);
1092 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1094 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1096 struct extent_map *em;
1097 u64 len = PAGE_SIZE;
1100 * hopefully we have this extent in the tree already, try without
1101 * the full extent lock
1103 read_lock(&em_tree->lock);
1104 em = lookup_extent_mapping(em_tree, start, len);
1105 read_unlock(&em_tree->lock);
1108 struct extent_state *cached = NULL;
1109 u64 end = start + len - 1;
1111 /* get the big lock and read metadata off disk */
1112 lock_extent_bits(io_tree, start, end, &cached);
1113 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1114 unlock_extent_cached(io_tree, start, end, &cached);
1123 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1125 struct extent_map *next;
1128 /* this is the last extent */
1129 if (em->start + em->len >= i_size_read(inode))
1132 next = defrag_lookup_extent(inode, em->start + em->len);
1133 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1135 else if ((em->block_start + em->block_len == next->block_start) &&
1136 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1139 free_extent_map(next);
1143 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1144 u64 *last_len, u64 *skip, u64 *defrag_end,
1147 struct extent_map *em;
1149 bool next_mergeable = true;
1150 bool prev_mergeable = true;
1153 * make sure that once we start defragging an extent, we keep on
1156 if (start < *defrag_end)
1161 em = defrag_lookup_extent(inode, start);
1165 /* this will cover holes, and inline extents */
1166 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1172 prev_mergeable = false;
1174 next_mergeable = defrag_check_next_extent(inode, em);
1176 * we hit a real extent, if it is big or the next extent is not a
1177 * real extent, don't bother defragging it
1179 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1180 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1184 * last_len ends up being a counter of how many bytes we've defragged.
1185 * every time we choose not to defrag an extent, we reset *last_len
1186 * so that the next tiny extent will force a defrag.
1188 * The end result of this is that tiny extents before a single big
1189 * extent will force at least part of that big extent to be defragged.
1192 *defrag_end = extent_map_end(em);
1195 *skip = extent_map_end(em);
1199 free_extent_map(em);
1204 * it doesn't do much good to defrag one or two pages
1205 * at a time. This pulls in a nice chunk of pages
1206 * to COW and defrag.
1208 * It also makes sure the delalloc code has enough
1209 * dirty data to avoid making new small extents as part
1212 * It's a good idea to start RA on this range
1213 * before calling this.
1215 static int cluster_pages_for_defrag(struct inode *inode,
1216 struct page **pages,
1217 unsigned long start_index,
1218 unsigned long num_pages)
1220 unsigned long file_end;
1221 u64 isize = i_size_read(inode);
1228 struct btrfs_ordered_extent *ordered;
1229 struct extent_state *cached_state = NULL;
1230 struct extent_io_tree *tree;
1231 struct extent_changeset *data_reserved = NULL;
1232 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1234 file_end = (isize - 1) >> PAGE_SHIFT;
1235 if (!isize || start_index > file_end)
1238 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1241 start_index << PAGE_SHIFT,
1242 page_cnt << PAGE_SHIFT);
1246 tree = &BTRFS_I(inode)->io_tree;
1248 /* step one, lock all the pages */
1249 for (i = 0; i < page_cnt; i++) {
1252 page = find_or_create_page(inode->i_mapping,
1253 start_index + i, mask);
1257 page_start = page_offset(page);
1258 page_end = page_start + PAGE_SIZE - 1;
1260 lock_extent_bits(tree, page_start, page_end,
1262 ordered = btrfs_lookup_ordered_extent(inode,
1264 unlock_extent_cached(tree, page_start, page_end,
1270 btrfs_start_ordered_extent(inode, ordered, 1);
1271 btrfs_put_ordered_extent(ordered);
1274 * we unlocked the page above, so we need check if
1275 * it was released or not.
1277 if (page->mapping != inode->i_mapping) {
1284 if (!PageUptodate(page)) {
1285 btrfs_readpage(NULL, page);
1287 if (!PageUptodate(page)) {
1295 if (page->mapping != inode->i_mapping) {
1307 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1311 * so now we have a nice long stream of locked
1312 * and up to date pages, lets wait on them
1314 for (i = 0; i < i_done; i++)
1315 wait_on_page_writeback(pages[i]);
1317 page_start = page_offset(pages[0]);
1318 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1320 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1321 page_start, page_end - 1, &cached_state);
1322 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1323 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1324 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1327 if (i_done != page_cnt) {
1328 spin_lock(&BTRFS_I(inode)->lock);
1329 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1330 spin_unlock(&BTRFS_I(inode)->lock);
1331 btrfs_delalloc_release_space(inode, data_reserved,
1332 start_index << PAGE_SHIFT,
1333 (page_cnt - i_done) << PAGE_SHIFT, true);
1337 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1340 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1341 page_start, page_end - 1, &cached_state);
1343 for (i = 0; i < i_done; i++) {
1344 clear_page_dirty_for_io(pages[i]);
1345 ClearPageChecked(pages[i]);
1346 set_page_extent_mapped(pages[i]);
1347 set_page_dirty(pages[i]);
1348 unlock_page(pages[i]);
1351 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1353 extent_changeset_free(data_reserved);
1356 for (i = 0; i < i_done; i++) {
1357 unlock_page(pages[i]);
1360 btrfs_delalloc_release_space(inode, data_reserved,
1361 start_index << PAGE_SHIFT,
1362 page_cnt << PAGE_SHIFT, true);
1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1365 extent_changeset_free(data_reserved);
1370 int btrfs_defrag_file(struct inode *inode, struct file *file,
1371 struct btrfs_ioctl_defrag_range_args *range,
1372 u64 newer_than, unsigned long max_to_defrag)
1374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1375 struct btrfs_root *root = BTRFS_I(inode)->root;
1376 struct file_ra_state *ra = NULL;
1377 unsigned long last_index;
1378 u64 isize = i_size_read(inode);
1382 u64 newer_off = range->start;
1384 unsigned long ra_index = 0;
1386 int defrag_count = 0;
1387 int compress_type = BTRFS_COMPRESS_ZLIB;
1388 u32 extent_thresh = range->extent_thresh;
1389 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1390 unsigned long cluster = max_cluster;
1391 u64 new_align = ~((u64)SZ_128K - 1);
1392 struct page **pages = NULL;
1393 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1398 if (range->start >= isize)
1402 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1404 if (range->compress_type)
1405 compress_type = range->compress_type;
1408 if (extent_thresh == 0)
1409 extent_thresh = SZ_256K;
1412 * If we were not given a file, allocate a readahead context. As
1413 * readahead is just an optimization, defrag will work without it so
1414 * we don't error out.
1417 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1419 file_ra_state_init(ra, inode->i_mapping);
1424 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1430 /* find the last page to defrag */
1431 if (range->start + range->len > range->start) {
1432 last_index = min_t(u64, isize - 1,
1433 range->start + range->len - 1) >> PAGE_SHIFT;
1435 last_index = (isize - 1) >> PAGE_SHIFT;
1439 ret = find_new_extents(root, inode, newer_than,
1440 &newer_off, SZ_64K);
1442 range->start = newer_off;
1444 * we always align our defrag to help keep
1445 * the extents in the file evenly spaced
1447 i = (newer_off & new_align) >> PAGE_SHIFT;
1451 i = range->start >> PAGE_SHIFT;
1454 max_to_defrag = last_index - i + 1;
1457 * make writeback starts from i, so the defrag range can be
1458 * written sequentially.
1460 if (i < inode->i_mapping->writeback_index)
1461 inode->i_mapping->writeback_index = i;
1463 while (i <= last_index && defrag_count < max_to_defrag &&
1464 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1466 * make sure we stop running if someone unmounts
1469 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1472 if (btrfs_defrag_cancelled(fs_info)) {
1473 btrfs_debug(fs_info, "defrag_file cancelled");
1478 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1479 extent_thresh, &last_len, &skip,
1480 &defrag_end, do_compress)){
1483 * the should_defrag function tells us how much to skip
1484 * bump our counter by the suggested amount
1486 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1487 i = max(i + 1, next);
1492 cluster = (PAGE_ALIGN(defrag_end) >>
1494 cluster = min(cluster, max_cluster);
1496 cluster = max_cluster;
1499 if (i + cluster > ra_index) {
1500 ra_index = max(i, ra_index);
1502 page_cache_sync_readahead(inode->i_mapping, ra,
1503 file, ra_index, cluster);
1504 ra_index += cluster;
1509 BTRFS_I(inode)->defrag_compress = compress_type;
1510 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1512 inode_unlock(inode);
1516 defrag_count += ret;
1517 balance_dirty_pages_ratelimited(inode->i_mapping);
1518 inode_unlock(inode);
1521 if (newer_off == (u64)-1)
1527 newer_off = max(newer_off + 1,
1528 (u64)i << PAGE_SHIFT);
1530 ret = find_new_extents(root, inode, newer_than,
1531 &newer_off, SZ_64K);
1533 range->start = newer_off;
1534 i = (newer_off & new_align) >> PAGE_SHIFT;
1541 last_len += ret << PAGE_SHIFT;
1549 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1550 filemap_flush(inode->i_mapping);
1551 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags))
1553 filemap_flush(inode->i_mapping);
1556 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1557 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1558 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1559 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1567 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1568 inode_unlock(inode);
1576 static noinline int btrfs_ioctl_resize(struct file *file,
1579 struct inode *inode = file_inode(file);
1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
1585 struct btrfs_ioctl_vol_args *vol_args;
1586 struct btrfs_trans_handle *trans;
1587 struct btrfs_device *device = NULL;
1590 char *devstr = NULL;
1594 if (!capable(CAP_SYS_ADMIN))
1597 ret = mnt_want_write_file(file);
1601 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1602 mnt_drop_write_file(file);
1603 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1606 vol_args = memdup_user(arg, sizeof(*vol_args));
1607 if (IS_ERR(vol_args)) {
1608 ret = PTR_ERR(vol_args);
1612 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1614 sizestr = vol_args->name;
1615 devstr = strchr(sizestr, ':');
1617 sizestr = devstr + 1;
1619 devstr = vol_args->name;
1620 ret = kstrtoull(devstr, 10, &devid);
1627 btrfs_info(fs_info, "resizing devid %llu", devid);
1630 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1632 btrfs_info(fs_info, "resizer unable to find device %llu",
1638 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1640 "resizer unable to apply on readonly device %llu",
1646 if (!strcmp(sizestr, "max"))
1647 new_size = device->bdev->bd_inode->i_size;
1649 if (sizestr[0] == '-') {
1652 } else if (sizestr[0] == '+') {
1656 new_size = memparse(sizestr, &retptr);
1657 if (*retptr != '\0' || new_size == 0) {
1663 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1668 old_size = btrfs_device_get_total_bytes(device);
1671 if (new_size > old_size) {
1675 new_size = old_size - new_size;
1676 } else if (mod > 0) {
1677 if (new_size > ULLONG_MAX - old_size) {
1681 new_size = old_size + new_size;
1684 if (new_size < SZ_256M) {
1688 if (new_size > device->bdev->bd_inode->i_size) {
1693 new_size = round_down(new_size, fs_info->sectorsize);
1695 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1696 rcu_str_deref(device->name), new_size);
1698 if (new_size > old_size) {
1699 trans = btrfs_start_transaction(root, 0);
1700 if (IS_ERR(trans)) {
1701 ret = PTR_ERR(trans);
1704 ret = btrfs_grow_device(trans, device, new_size);
1705 btrfs_commit_transaction(trans);
1706 } else if (new_size < old_size) {
1707 ret = btrfs_shrink_device(device, new_size);
1708 } /* equal, nothing need to do */
1713 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1714 mnt_drop_write_file(file);
1718 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1719 const char *name, unsigned long fd, int subvol,
1720 u64 *transid, bool readonly,
1721 struct btrfs_qgroup_inherit *inherit)
1726 if (!S_ISDIR(file_inode(file)->i_mode))
1729 ret = mnt_want_write_file(file);
1733 namelen = strlen(name);
1734 if (strchr(name, '/')) {
1736 goto out_drop_write;
1739 if (name[0] == '.' &&
1740 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1742 goto out_drop_write;
1746 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1747 NULL, transid, readonly, inherit);
1749 struct fd src = fdget(fd);
1750 struct inode *src_inode;
1753 goto out_drop_write;
1756 src_inode = file_inode(src.file);
1757 if (src_inode->i_sb != file_inode(file)->i_sb) {
1758 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1759 "Snapshot src from another FS");
1761 } else if (!inode_owner_or_capable(src_inode)) {
1763 * Subvolume creation is not restricted, but snapshots
1764 * are limited to own subvolumes only
1768 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1769 BTRFS_I(src_inode)->root,
1770 transid, readonly, inherit);
1775 mnt_drop_write_file(file);
1780 static noinline int btrfs_ioctl_snap_create(struct file *file,
1781 void __user *arg, int subvol)
1783 struct btrfs_ioctl_vol_args *vol_args;
1786 if (!S_ISDIR(file_inode(file)->i_mode))
1789 vol_args = memdup_user(arg, sizeof(*vol_args));
1790 if (IS_ERR(vol_args))
1791 return PTR_ERR(vol_args);
1792 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1794 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1795 vol_args->fd, subvol,
1802 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1803 void __user *arg, int subvol)
1805 struct btrfs_ioctl_vol_args_v2 *vol_args;
1809 bool readonly = false;
1810 struct btrfs_qgroup_inherit *inherit = NULL;
1812 if (!S_ISDIR(file_inode(file)->i_mode))
1815 vol_args = memdup_user(arg, sizeof(*vol_args));
1816 if (IS_ERR(vol_args))
1817 return PTR_ERR(vol_args);
1818 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1820 if (vol_args->flags &
1821 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1822 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1827 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1829 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1831 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1832 if (vol_args->size > PAGE_SIZE) {
1836 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1837 if (IS_ERR(inherit)) {
1838 ret = PTR_ERR(inherit);
1843 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1844 vol_args->fd, subvol, ptr,
1849 if (ptr && copy_to_user(arg +
1850 offsetof(struct btrfs_ioctl_vol_args_v2,
1862 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1865 struct inode *inode = file_inode(file);
1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1871 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1874 down_read(&fs_info->subvol_sem);
1875 if (btrfs_root_readonly(root))
1876 flags |= BTRFS_SUBVOL_RDONLY;
1877 up_read(&fs_info->subvol_sem);
1879 if (copy_to_user(arg, &flags, sizeof(flags)))
1885 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1888 struct inode *inode = file_inode(file);
1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 struct btrfs_trans_handle *trans;
1896 if (!inode_owner_or_capable(inode))
1899 ret = mnt_want_write_file(file);
1903 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1905 goto out_drop_write;
1908 if (copy_from_user(&flags, arg, sizeof(flags))) {
1910 goto out_drop_write;
1913 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1915 goto out_drop_write;
1918 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1920 goto out_drop_write;
1923 down_write(&fs_info->subvol_sem);
1926 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1929 root_flags = btrfs_root_flags(&root->root_item);
1930 if (flags & BTRFS_SUBVOL_RDONLY) {
1931 btrfs_set_root_flags(&root->root_item,
1932 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1935 * Block RO -> RW transition if this subvolume is involved in
1938 spin_lock(&root->root_item_lock);
1939 if (root->send_in_progress == 0) {
1940 btrfs_set_root_flags(&root->root_item,
1941 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1942 spin_unlock(&root->root_item_lock);
1944 spin_unlock(&root->root_item_lock);
1946 "Attempt to set subvolume %llu read-write during send",
1947 root->root_key.objectid);
1953 trans = btrfs_start_transaction(root, 1);
1954 if (IS_ERR(trans)) {
1955 ret = PTR_ERR(trans);
1959 ret = btrfs_update_root(trans, fs_info->tree_root,
1960 &root->root_key, &root->root_item);
1962 btrfs_end_transaction(trans);
1966 ret = btrfs_commit_transaction(trans);
1970 btrfs_set_root_flags(&root->root_item, root_flags);
1972 up_write(&fs_info->subvol_sem);
1974 mnt_drop_write_file(file);
1979 static noinline int key_in_sk(struct btrfs_key *key,
1980 struct btrfs_ioctl_search_key *sk)
1982 struct btrfs_key test;
1985 test.objectid = sk->min_objectid;
1986 test.type = sk->min_type;
1987 test.offset = sk->min_offset;
1989 ret = btrfs_comp_cpu_keys(key, &test);
1993 test.objectid = sk->max_objectid;
1994 test.type = sk->max_type;
1995 test.offset = sk->max_offset;
1997 ret = btrfs_comp_cpu_keys(key, &test);
2003 static noinline int copy_to_sk(struct btrfs_path *path,
2004 struct btrfs_key *key,
2005 struct btrfs_ioctl_search_key *sk,
2008 unsigned long *sk_offset,
2012 struct extent_buffer *leaf;
2013 struct btrfs_ioctl_search_header sh;
2014 struct btrfs_key test;
2015 unsigned long item_off;
2016 unsigned long item_len;
2022 leaf = path->nodes[0];
2023 slot = path->slots[0];
2024 nritems = btrfs_header_nritems(leaf);
2026 if (btrfs_header_generation(leaf) > sk->max_transid) {
2030 found_transid = btrfs_header_generation(leaf);
2032 for (i = slot; i < nritems; i++) {
2033 item_off = btrfs_item_ptr_offset(leaf, i);
2034 item_len = btrfs_item_size_nr(leaf, i);
2036 btrfs_item_key_to_cpu(leaf, key, i);
2037 if (!key_in_sk(key, sk))
2040 if (sizeof(sh) + item_len > *buf_size) {
2047 * return one empty item back for v1, which does not
2051 *buf_size = sizeof(sh) + item_len;
2056 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2061 sh.objectid = key->objectid;
2062 sh.offset = key->offset;
2063 sh.type = key->type;
2065 sh.transid = found_transid;
2067 /* copy search result header */
2068 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2073 *sk_offset += sizeof(sh);
2076 char __user *up = ubuf + *sk_offset;
2078 if (read_extent_buffer_to_user(leaf, up,
2079 item_off, item_len)) {
2084 *sk_offset += item_len;
2088 if (ret) /* -EOVERFLOW from above */
2091 if (*num_found >= sk->nr_items) {
2098 test.objectid = sk->max_objectid;
2099 test.type = sk->max_type;
2100 test.offset = sk->max_offset;
2101 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2103 else if (key->offset < (u64)-1)
2105 else if (key->type < (u8)-1) {
2108 } else if (key->objectid < (u64)-1) {
2116 * 0: all items from this leaf copied, continue with next
2117 * 1: * more items can be copied, but unused buffer is too small
2118 * * all items were found
2119 * Either way, it will stops the loop which iterates to the next
2121 * -EOVERFLOW: item was to large for buffer
2122 * -EFAULT: could not copy extent buffer back to userspace
2127 static noinline int search_ioctl(struct inode *inode,
2128 struct btrfs_ioctl_search_key *sk,
2132 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2133 struct btrfs_root *root;
2134 struct btrfs_key key;
2135 struct btrfs_path *path;
2138 unsigned long sk_offset = 0;
2140 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2141 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2145 path = btrfs_alloc_path();
2149 if (sk->tree_id == 0) {
2150 /* search the root of the inode that was passed */
2151 root = BTRFS_I(inode)->root;
2153 key.objectid = sk->tree_id;
2154 key.type = BTRFS_ROOT_ITEM_KEY;
2155 key.offset = (u64)-1;
2156 root = btrfs_read_fs_root_no_name(info, &key);
2158 btrfs_free_path(path);
2159 return PTR_ERR(root);
2163 key.objectid = sk->min_objectid;
2164 key.type = sk->min_type;
2165 key.offset = sk->min_offset;
2168 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2174 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2175 &sk_offset, &num_found);
2176 btrfs_release_path(path);
2184 sk->nr_items = num_found;
2185 btrfs_free_path(path);
2189 static noinline int btrfs_ioctl_tree_search(struct file *file,
2192 struct btrfs_ioctl_search_args __user *uargs;
2193 struct btrfs_ioctl_search_key sk;
2194 struct inode *inode;
2198 if (!capable(CAP_SYS_ADMIN))
2201 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2203 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2206 buf_size = sizeof(uargs->buf);
2208 inode = file_inode(file);
2209 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2212 * In the origin implementation an overflow is handled by returning a
2213 * search header with a len of zero, so reset ret.
2215 if (ret == -EOVERFLOW)
2218 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2223 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2226 struct btrfs_ioctl_search_args_v2 __user *uarg;
2227 struct btrfs_ioctl_search_args_v2 args;
2228 struct inode *inode;
2231 const size_t buf_limit = SZ_16M;
2233 if (!capable(CAP_SYS_ADMIN))
2236 /* copy search header and buffer size */
2237 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2238 if (copy_from_user(&args, uarg, sizeof(args)))
2241 buf_size = args.buf_size;
2243 /* limit result size to 16MB */
2244 if (buf_size > buf_limit)
2245 buf_size = buf_limit;
2247 inode = file_inode(file);
2248 ret = search_ioctl(inode, &args.key, &buf_size,
2249 (char __user *)(&uarg->buf[0]));
2250 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2252 else if (ret == -EOVERFLOW &&
2253 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2260 * Search INODE_REFs to identify path name of 'dirid' directory
2261 * in a 'tree_id' tree. and sets path name to 'name'.
2263 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2264 u64 tree_id, u64 dirid, char *name)
2266 struct btrfs_root *root;
2267 struct btrfs_key key;
2273 struct btrfs_inode_ref *iref;
2274 struct extent_buffer *l;
2275 struct btrfs_path *path;
2277 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2282 path = btrfs_alloc_path();
2286 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2288 key.objectid = tree_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2291 root = btrfs_read_fs_root_no_name(info, &key);
2293 ret = PTR_ERR(root);
2297 key.objectid = dirid;
2298 key.type = BTRFS_INODE_REF_KEY;
2299 key.offset = (u64)-1;
2302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2306 ret = btrfs_previous_item(root, path, dirid,
2307 BTRFS_INODE_REF_KEY);
2317 slot = path->slots[0];
2318 btrfs_item_key_to_cpu(l, &key, slot);
2320 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2321 len = btrfs_inode_ref_name_len(l, iref);
2323 total_len += len + 1;
2325 ret = -ENAMETOOLONG;
2330 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2332 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2335 btrfs_release_path(path);
2336 key.objectid = key.offset;
2337 key.offset = (u64)-1;
2338 dirid = key.objectid;
2340 memmove(name, ptr, total_len);
2341 name[total_len] = '\0';
2344 btrfs_free_path(path);
2348 static int btrfs_search_path_in_tree_user(struct inode *inode,
2349 struct btrfs_ioctl_ino_lookup_user_args *args)
2351 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2352 struct super_block *sb = inode->i_sb;
2353 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2354 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2355 u64 dirid = args->dirid;
2356 unsigned long item_off;
2357 unsigned long item_len;
2358 struct btrfs_inode_ref *iref;
2359 struct btrfs_root_ref *rref;
2360 struct btrfs_root *root;
2361 struct btrfs_path *path;
2362 struct btrfs_key key, key2;
2363 struct extent_buffer *leaf;
2364 struct inode *temp_inode;
2371 path = btrfs_alloc_path();
2376 * If the bottom subvolume does not exist directly under upper_limit,
2377 * construct the path in from the bottom up.
2379 if (dirid != upper_limit.objectid) {
2380 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2382 key.objectid = treeid;
2383 key.type = BTRFS_ROOT_ITEM_KEY;
2384 key.offset = (u64)-1;
2385 root = btrfs_read_fs_root_no_name(fs_info, &key);
2387 ret = PTR_ERR(root);
2391 key.objectid = dirid;
2392 key.type = BTRFS_INODE_REF_KEY;
2393 key.offset = (u64)-1;
2395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2398 } else if (ret > 0) {
2399 ret = btrfs_previous_item(root, path, dirid,
2400 BTRFS_INODE_REF_KEY);
2403 } else if (ret > 0) {
2409 leaf = path->nodes[0];
2410 slot = path->slots[0];
2411 btrfs_item_key_to_cpu(leaf, &key, slot);
2413 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2414 len = btrfs_inode_ref_name_len(leaf, iref);
2416 total_len += len + 1;
2417 if (ptr < args->path) {
2418 ret = -ENAMETOOLONG;
2423 read_extent_buffer(leaf, ptr,
2424 (unsigned long)(iref + 1), len);
2426 /* Check the read+exec permission of this directory */
2427 ret = btrfs_previous_item(root, path, dirid,
2428 BTRFS_INODE_ITEM_KEY);
2431 } else if (ret > 0) {
2436 leaf = path->nodes[0];
2437 slot = path->slots[0];
2438 btrfs_item_key_to_cpu(leaf, &key2, slot);
2439 if (key2.objectid != dirid) {
2444 temp_inode = btrfs_iget(sb, &key2, root, NULL);
2445 if (IS_ERR(temp_inode)) {
2446 ret = PTR_ERR(temp_inode);
2449 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2456 if (key.offset == upper_limit.objectid)
2458 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2463 btrfs_release_path(path);
2464 key.objectid = key.offset;
2465 key.offset = (u64)-1;
2466 dirid = key.objectid;
2469 memmove(args->path, ptr, total_len);
2470 args->path[total_len] = '\0';
2471 btrfs_release_path(path);
2474 /* Get the bottom subvolume's name from ROOT_REF */
2475 root = fs_info->tree_root;
2476 key.objectid = treeid;
2477 key.type = BTRFS_ROOT_REF_KEY;
2478 key.offset = args->treeid;
2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482 } else if (ret > 0) {
2487 leaf = path->nodes[0];
2488 slot = path->slots[0];
2489 btrfs_item_key_to_cpu(leaf, &key, slot);
2491 item_off = btrfs_item_ptr_offset(leaf, slot);
2492 item_len = btrfs_item_size_nr(leaf, slot);
2493 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2494 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2495 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2500 /* Copy subvolume's name */
2501 item_off += sizeof(struct btrfs_root_ref);
2502 item_len -= sizeof(struct btrfs_root_ref);
2503 read_extent_buffer(leaf, args->name, item_off, item_len);
2504 args->name[item_len] = 0;
2507 btrfs_free_path(path);
2511 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2514 struct btrfs_ioctl_ino_lookup_args *args;
2515 struct inode *inode;
2518 args = memdup_user(argp, sizeof(*args));
2520 return PTR_ERR(args);
2522 inode = file_inode(file);
2525 * Unprivileged query to obtain the containing subvolume root id. The
2526 * path is reset so it's consistent with btrfs_search_path_in_tree.
2528 if (args->treeid == 0)
2529 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2531 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2536 if (!capable(CAP_SYS_ADMIN)) {
2541 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2542 args->treeid, args->objectid,
2546 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2554 * Version of ino_lookup ioctl (unprivileged)
2556 * The main differences from ino_lookup ioctl are:
2558 * 1. Read + Exec permission will be checked using inode_permission() during
2559 * path construction. -EACCES will be returned in case of failure.
2560 * 2. Path construction will be stopped at the inode number which corresponds
2561 * to the fd with which this ioctl is called. If constructed path does not
2562 * exist under fd's inode, -EACCES will be returned.
2563 * 3. The name of bottom subvolume is also searched and filled.
2565 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2567 struct btrfs_ioctl_ino_lookup_user_args *args;
2568 struct inode *inode;
2571 args = memdup_user(argp, sizeof(*args));
2573 return PTR_ERR(args);
2575 inode = file_inode(file);
2577 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2578 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2580 * The subvolume does not exist under fd with which this is
2587 ret = btrfs_search_path_in_tree_user(inode, args);
2589 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2596 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2597 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2599 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2600 struct btrfs_fs_info *fs_info;
2601 struct btrfs_root *root;
2602 struct btrfs_path *path;
2603 struct btrfs_key key;
2604 struct btrfs_root_item *root_item;
2605 struct btrfs_root_ref *rref;
2606 struct extent_buffer *leaf;
2607 unsigned long item_off;
2608 unsigned long item_len;
2609 struct inode *inode;
2613 path = btrfs_alloc_path();
2617 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2619 btrfs_free_path(path);
2623 inode = file_inode(file);
2624 fs_info = BTRFS_I(inode)->root->fs_info;
2626 /* Get root_item of inode's subvolume */
2627 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2628 key.type = BTRFS_ROOT_ITEM_KEY;
2629 key.offset = (u64)-1;
2630 root = btrfs_read_fs_root_no_name(fs_info, &key);
2632 ret = PTR_ERR(root);
2635 root_item = &root->root_item;
2637 subvol_info->treeid = key.objectid;
2639 subvol_info->generation = btrfs_root_generation(root_item);
2640 subvol_info->flags = btrfs_root_flags(root_item);
2642 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2643 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2645 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2648 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2649 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2650 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2652 subvol_info->otransid = btrfs_root_otransid(root_item);
2653 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2654 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2656 subvol_info->stransid = btrfs_root_stransid(root_item);
2657 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2658 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2660 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2661 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2662 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2664 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2665 /* Search root tree for ROOT_BACKREF of this subvolume */
2666 root = fs_info->tree_root;
2668 key.type = BTRFS_ROOT_BACKREF_KEY;
2670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2673 } else if (path->slots[0] >=
2674 btrfs_header_nritems(path->nodes[0])) {
2675 ret = btrfs_next_leaf(root, path);
2678 } else if (ret > 0) {
2684 leaf = path->nodes[0];
2685 slot = path->slots[0];
2686 btrfs_item_key_to_cpu(leaf, &key, slot);
2687 if (key.objectid == subvol_info->treeid &&
2688 key.type == BTRFS_ROOT_BACKREF_KEY) {
2689 subvol_info->parent_id = key.offset;
2691 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2692 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2694 item_off = btrfs_item_ptr_offset(leaf, slot)
2695 + sizeof(struct btrfs_root_ref);
2696 item_len = btrfs_item_size_nr(leaf, slot)
2697 - sizeof(struct btrfs_root_ref);
2698 read_extent_buffer(leaf, subvol_info->name,
2699 item_off, item_len);
2706 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2710 btrfs_free_path(path);
2711 kzfree(subvol_info);
2716 * Return ROOT_REF information of the subvolume containing this inode
2717 * except the subvolume name.
2719 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2721 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2722 struct btrfs_root_ref *rref;
2723 struct btrfs_root *root;
2724 struct btrfs_path *path;
2725 struct btrfs_key key;
2726 struct extent_buffer *leaf;
2727 struct inode *inode;
2733 path = btrfs_alloc_path();
2737 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2738 if (IS_ERR(rootrefs)) {
2739 btrfs_free_path(path);
2740 return PTR_ERR(rootrefs);
2743 inode = file_inode(file);
2744 root = BTRFS_I(inode)->root->fs_info->tree_root;
2745 objectid = BTRFS_I(inode)->root->root_key.objectid;
2747 key.objectid = objectid;
2748 key.type = BTRFS_ROOT_REF_KEY;
2749 key.offset = rootrefs->min_treeid;
2752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2755 } else if (path->slots[0] >=
2756 btrfs_header_nritems(path->nodes[0])) {
2757 ret = btrfs_next_leaf(root, path);
2760 } else if (ret > 0) {
2766 leaf = path->nodes[0];
2767 slot = path->slots[0];
2769 btrfs_item_key_to_cpu(leaf, &key, slot);
2770 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2775 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2780 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2781 rootrefs->rootref[found].treeid = key.offset;
2782 rootrefs->rootref[found].dirid =
2783 btrfs_root_ref_dirid(leaf, rref);
2786 ret = btrfs_next_item(root, path);
2789 } else if (ret > 0) {
2796 if (!ret || ret == -EOVERFLOW) {
2797 rootrefs->num_items = found;
2798 /* update min_treeid for next search */
2800 rootrefs->min_treeid =
2801 rootrefs->rootref[found - 1].treeid + 1;
2802 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2807 btrfs_free_path(path);
2812 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2815 struct dentry *parent = file->f_path.dentry;
2816 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2817 struct dentry *dentry;
2818 struct inode *dir = d_inode(parent);
2819 struct inode *inode;
2820 struct btrfs_root *root = BTRFS_I(dir)->root;
2821 struct btrfs_root *dest = NULL;
2822 struct btrfs_ioctl_vol_args *vol_args;
2826 if (!S_ISDIR(dir->i_mode))
2829 vol_args = memdup_user(arg, sizeof(*vol_args));
2830 if (IS_ERR(vol_args))
2831 return PTR_ERR(vol_args);
2833 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2834 namelen = strlen(vol_args->name);
2835 if (strchr(vol_args->name, '/') ||
2836 strncmp(vol_args->name, "..", namelen) == 0) {
2841 err = mnt_want_write_file(file);
2846 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2848 goto out_drop_write;
2849 dentry = lookup_one_len(vol_args->name, parent, namelen);
2850 if (IS_ERR(dentry)) {
2851 err = PTR_ERR(dentry);
2852 goto out_unlock_dir;
2855 if (d_really_is_negative(dentry)) {
2860 inode = d_inode(dentry);
2861 dest = BTRFS_I(inode)->root;
2862 if (!capable(CAP_SYS_ADMIN)) {
2864 * Regular user. Only allow this with a special mount
2865 * option, when the user has write+exec access to the
2866 * subvol root, and when rmdir(2) would have been
2869 * Note that this is _not_ check that the subvol is
2870 * empty or doesn't contain data that we wouldn't
2871 * otherwise be able to delete.
2873 * Users who want to delete empty subvols should try
2877 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2881 * Do not allow deletion if the parent dir is the same
2882 * as the dir to be deleted. That means the ioctl
2883 * must be called on the dentry referencing the root
2884 * of the subvol, not a random directory contained
2891 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2896 /* check if subvolume may be deleted by a user */
2897 err = btrfs_may_delete(dir, dentry, 1);
2901 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2907 err = btrfs_delete_subvolume(dir, dentry);
2908 inode_unlock(inode);
2917 mnt_drop_write_file(file);
2923 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2925 struct inode *inode = file_inode(file);
2926 struct btrfs_root *root = BTRFS_I(inode)->root;
2927 struct btrfs_ioctl_defrag_range_args *range;
2930 ret = mnt_want_write_file(file);
2934 if (btrfs_root_readonly(root)) {
2939 switch (inode->i_mode & S_IFMT) {
2941 if (!capable(CAP_SYS_ADMIN)) {
2945 ret = btrfs_defrag_root(root);
2949 * Note that this does not check the file descriptor for write
2950 * access. This prevents defragmenting executables that are
2951 * running and allows defrag on files open in read-only mode.
2953 if (!capable(CAP_SYS_ADMIN) &&
2954 inode_permission(inode, MAY_WRITE)) {
2959 range = kzalloc(sizeof(*range), GFP_KERNEL);
2966 if (copy_from_user(range, argp,
2972 /* compression requires us to start the IO */
2973 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2974 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2975 range->extent_thresh = (u32)-1;
2978 /* the rest are all set to zero by kzalloc */
2979 range->len = (u64)-1;
2981 ret = btrfs_defrag_file(file_inode(file), file,
2982 range, BTRFS_OLDEST_GENERATION, 0);
2991 mnt_drop_write_file(file);
2995 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2997 struct btrfs_ioctl_vol_args *vol_args;
3000 if (!capable(CAP_SYS_ADMIN))
3003 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3004 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3006 vol_args = memdup_user(arg, sizeof(*vol_args));
3007 if (IS_ERR(vol_args)) {
3008 ret = PTR_ERR(vol_args);
3012 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3013 ret = btrfs_init_new_device(fs_info, vol_args->name);
3016 btrfs_info(fs_info, "disk added %s", vol_args->name);
3020 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3024 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3026 struct inode *inode = file_inode(file);
3027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3028 struct btrfs_ioctl_vol_args_v2 *vol_args;
3031 if (!capable(CAP_SYS_ADMIN))
3034 ret = mnt_want_write_file(file);
3038 vol_args = memdup_user(arg, sizeof(*vol_args));
3039 if (IS_ERR(vol_args)) {
3040 ret = PTR_ERR(vol_args);
3044 /* Check for compatibility reject unknown flags */
3045 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3050 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3051 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3055 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3056 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3058 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3059 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3061 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3064 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3065 btrfs_info(fs_info, "device deleted: id %llu",
3068 btrfs_info(fs_info, "device deleted: %s",
3074 mnt_drop_write_file(file);
3078 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3080 struct inode *inode = file_inode(file);
3081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3082 struct btrfs_ioctl_vol_args *vol_args;
3085 if (!capable(CAP_SYS_ADMIN))
3088 ret = mnt_want_write_file(file);
3092 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3093 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3094 goto out_drop_write;
3097 vol_args = memdup_user(arg, sizeof(*vol_args));
3098 if (IS_ERR(vol_args)) {
3099 ret = PTR_ERR(vol_args);
3103 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3104 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3107 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3110 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3112 mnt_drop_write_file(file);
3117 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3120 struct btrfs_ioctl_fs_info_args *fi_args;
3121 struct btrfs_device *device;
3122 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3125 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3130 fi_args->num_devices = fs_devices->num_devices;
3132 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3133 if (device->devid > fi_args->max_id)
3134 fi_args->max_id = device->devid;
3138 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3139 fi_args->nodesize = fs_info->nodesize;
3140 fi_args->sectorsize = fs_info->sectorsize;
3141 fi_args->clone_alignment = fs_info->sectorsize;
3143 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3150 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3153 struct btrfs_ioctl_dev_info_args *di_args;
3154 struct btrfs_device *dev;
3156 char *s_uuid = NULL;
3158 di_args = memdup_user(arg, sizeof(*di_args));
3159 if (IS_ERR(di_args))
3160 return PTR_ERR(di_args);
3162 if (!btrfs_is_empty_uuid(di_args->uuid))
3163 s_uuid = di_args->uuid;
3166 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
3173 di_args->devid = dev->devid;
3174 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3175 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3176 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3178 strncpy(di_args->path, rcu_str_deref(dev->name),
3179 sizeof(di_args->path) - 1);
3180 di_args->path[sizeof(di_args->path) - 1] = 0;
3182 di_args->path[0] = '\0';
3187 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3194 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3198 page = grab_cache_page(inode->i_mapping, index);
3200 return ERR_PTR(-ENOMEM);
3202 if (!PageUptodate(page)) {
3205 ret = btrfs_readpage(NULL, page);
3207 return ERR_PTR(ret);
3209 if (!PageUptodate(page)) {
3212 return ERR_PTR(-EIO);
3214 if (page->mapping != inode->i_mapping) {
3217 return ERR_PTR(-EAGAIN);
3224 static int gather_extent_pages(struct inode *inode, struct page **pages,
3225 int num_pages, u64 off)
3228 pgoff_t index = off >> PAGE_SHIFT;
3230 for (i = 0; i < num_pages; i++) {
3232 pages[i] = extent_same_get_page(inode, index + i);
3233 if (IS_ERR(pages[i])) {
3234 int err = PTR_ERR(pages[i]);
3245 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3246 bool retry_range_locking)
3249 * Do any pending delalloc/csum calculations on inode, one way or
3250 * another, and lock file content.
3251 * The locking order is:
3254 * 2) range in the inode's io tree
3257 struct btrfs_ordered_extent *ordered;
3258 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3259 ordered = btrfs_lookup_first_ordered_extent(inode,
3262 ordered->file_offset + ordered->len <= off ||
3263 ordered->file_offset >= off + len) &&
3264 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3265 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3267 btrfs_put_ordered_extent(ordered);
3270 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3272 btrfs_put_ordered_extent(ordered);
3273 if (!retry_range_locking)
3275 btrfs_wait_ordered_range(inode, off, len);
3280 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3282 inode_unlock(inode1);
3283 inode_unlock(inode2);
3286 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3288 if (inode1 < inode2)
3289 swap(inode1, inode2);
3291 inode_lock_nested(inode1, I_MUTEX_PARENT);
3292 inode_lock_nested(inode2, I_MUTEX_CHILD);
3295 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3296 struct inode *inode2, u64 loff2, u64 len)
3298 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3299 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3302 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3303 struct inode *inode2, u64 loff2, u64 len,
3304 bool retry_range_locking)
3308 if (inode1 < inode2) {
3309 swap(inode1, inode2);
3312 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3315 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3317 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3324 struct page **src_pages;
3325 struct page **dst_pages;
3328 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3333 for (i = 0; i < cmp->num_pages; i++) {
3334 pg = cmp->src_pages[i];
3338 cmp->src_pages[i] = NULL;
3340 pg = cmp->dst_pages[i];
3344 cmp->dst_pages[i] = NULL;
3349 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3350 struct inode *dst, u64 dst_loff,
3351 u64 len, struct cmp_pages *cmp)
3354 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3356 cmp->num_pages = num_pages;
3358 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3362 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3366 btrfs_cmp_data_free(cmp);
3370 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3374 struct page *src_page, *dst_page;
3375 unsigned int cmp_len = PAGE_SIZE;
3376 void *addr, *dst_addr;
3380 if (len < PAGE_SIZE)
3383 BUG_ON(i >= cmp->num_pages);
3385 src_page = cmp->src_pages[i];
3386 dst_page = cmp->dst_pages[i];
3387 ASSERT(PageLocked(src_page));
3388 ASSERT(PageLocked(dst_page));
3390 addr = kmap_atomic(src_page);
3391 dst_addr = kmap_atomic(dst_page);
3393 flush_dcache_page(src_page);
3394 flush_dcache_page(dst_page);
3396 if (memcmp(addr, dst_addr, cmp_len))
3399 kunmap_atomic(addr);
3400 kunmap_atomic(dst_addr);
3412 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3416 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3418 if (off + olen > inode->i_size || off + olen < off)
3421 /* if we extend to eof, continue to block boundary */
3422 if (off + len == inode->i_size)
3423 *plen = len = ALIGN(inode->i_size, bs) - off;
3425 /* Check that we are block aligned - btrfs_clone() requires this */
3426 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3432 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3433 struct inode *dst, u64 dst_loff,
3434 struct cmp_pages *cmp)
3438 bool same_inode = (src == dst);
3439 u64 same_lock_start = 0;
3440 u64 same_lock_len = 0;
3442 ret = extent_same_check_offsets(src, loff, &len, olen);
3446 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3452 * Single inode case wants the same checks, except we
3453 * don't want our length pushed out past i_size as
3454 * comparing that data range makes no sense.
3456 * extent_same_check_offsets() will do this for an
3457 * unaligned length at i_size, so catch it here and
3458 * reject the request.
3460 * This effectively means we require aligned extents
3461 * for the single-inode case, whereas the other cases
3462 * allow an unaligned length so long as it ends at
3468 /* Check for overlapping ranges */
3469 if (dst_loff + len > loff && dst_loff < loff + len)
3472 same_lock_start = min_t(u64, loff, dst_loff);
3473 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3476 * If the source and destination inodes are different, the
3477 * source's range end offset matches the source's i_size, that
3478 * i_size is not a multiple of the sector size, and the
3479 * destination range does not go past the destination's i_size,
3480 * we must round down the length to the nearest sector size
3481 * multiple. If we don't do this adjustment we end replacing
3482 * with zeroes the bytes in the range that starts at the
3483 * deduplication range's end offset and ends at the next sector
3486 if (loff + olen == i_size_read(src) &&
3487 dst_loff + len < i_size_read(dst)) {
3488 const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3490 len = round_down(i_size_read(src), sz) - loff;
3496 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3501 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3504 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3507 * If one of the inodes has dirty pages in the respective range or
3508 * ordered extents, we need to flush dellaloc and wait for all ordered
3509 * extents in the range. We must unlock the pages and the ranges in the
3510 * io trees to avoid deadlocks when flushing delalloc (requires locking
3511 * pages) and when waiting for ordered extents to complete (they require
3514 if (ret == -EAGAIN) {
3516 * Ranges in the io trees already unlocked. Now unlock all
3517 * pages before waiting for all IO to complete.
3519 btrfs_cmp_data_free(cmp);
3521 btrfs_wait_ordered_range(src, same_lock_start,
3524 btrfs_wait_ordered_range(src, loff, len);
3525 btrfs_wait_ordered_range(dst, dst_loff, len);
3531 /* ranges in the io trees already unlocked */
3532 btrfs_cmp_data_free(cmp);
3536 /* pass original length for comparison so we stay within i_size */
3537 ret = btrfs_cmp_data(olen, cmp);
3539 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3542 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3543 same_lock_start + same_lock_len - 1);
3545 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3547 btrfs_cmp_data_free(cmp);
3552 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3554 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3555 struct inode *dst, u64 dst_loff)
3558 struct cmp_pages cmp;
3559 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3560 bool same_inode = (src == dst);
3561 u64 i, tail_len, chunk_count;
3569 btrfs_double_inode_lock(src, dst);
3571 /* don't make the dst file partly checksummed */
3572 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3573 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3578 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3579 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3580 if (chunk_count == 0)
3581 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3584 * If deduping ranges in the same inode, locking rules make it
3585 * mandatory to always lock pages in ascending order to avoid deadlocks
3586 * with concurrent tasks (such as starting writeback/delalloc).
3588 if (same_inode && dst_loff < loff)
3589 swap(loff, dst_loff);
3592 * We must gather up all the pages before we initiate our extent
3593 * locking. We use an array for the page pointers. Size of the array is
3594 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3596 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3597 GFP_KERNEL | __GFP_ZERO);
3598 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3599 GFP_KERNEL | __GFP_ZERO);
3600 if (!cmp.src_pages || !cmp.dst_pages) {
3605 for (i = 0; i < chunk_count; i++) {
3606 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3607 dst, dst_loff, &cmp);
3611 loff += BTRFS_MAX_DEDUPE_LEN;
3612 dst_loff += BTRFS_MAX_DEDUPE_LEN;
3616 ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3620 kvfree(cmp.src_pages);
3621 kvfree(cmp.dst_pages);
3627 btrfs_double_inode_unlock(src, dst);
3632 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3633 struct inode *inode,
3639 struct btrfs_root *root = BTRFS_I(inode)->root;
3642 inode_inc_iversion(inode);
3643 if (!no_time_update)
3644 inode->i_mtime = inode->i_ctime = current_time(inode);
3646 * We round up to the block size at eof when determining which
3647 * extents to clone above, but shouldn't round up the file size.
3649 if (endoff > destoff + olen)
3650 endoff = destoff + olen;
3651 if (endoff > inode->i_size)
3652 btrfs_i_size_write(BTRFS_I(inode), endoff);
3654 ret = btrfs_update_inode(trans, root, inode);
3656 btrfs_abort_transaction(trans, ret);
3657 btrfs_end_transaction(trans);
3660 ret = btrfs_end_transaction(trans);
3665 static void clone_update_extent_map(struct btrfs_inode *inode,
3666 const struct btrfs_trans_handle *trans,
3667 const struct btrfs_path *path,
3668 const u64 hole_offset,
3671 struct extent_map_tree *em_tree = &inode->extent_tree;
3672 struct extent_map *em;
3675 em = alloc_extent_map();
3677 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3682 struct btrfs_file_extent_item *fi;
3684 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3685 struct btrfs_file_extent_item);
3686 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3687 em->generation = -1;
3688 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3689 BTRFS_FILE_EXTENT_INLINE)
3690 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3691 &inode->runtime_flags);
3693 em->start = hole_offset;
3695 em->ram_bytes = em->len;
3696 em->orig_start = hole_offset;
3697 em->block_start = EXTENT_MAP_HOLE;
3699 em->orig_block_len = 0;
3700 em->compress_type = BTRFS_COMPRESS_NONE;
3701 em->generation = trans->transid;
3705 write_lock(&em_tree->lock);
3706 ret = add_extent_mapping(em_tree, em, 1);
3707 write_unlock(&em_tree->lock);
3708 if (ret != -EEXIST) {
3709 free_extent_map(em);
3712 btrfs_drop_extent_cache(inode, em->start,
3713 em->start + em->len - 1, 0);
3717 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3721 * Make sure we do not end up inserting an inline extent into a file that has
3722 * already other (non-inline) extents. If a file has an inline extent it can
3723 * not have any other extents and the (single) inline extent must start at the
3724 * file offset 0. Failing to respect these rules will lead to file corruption,
3725 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3727 * We can have extents that have been already written to disk or we can have
3728 * dirty ranges still in delalloc, in which case the extent maps and items are
3729 * created only when we run delalloc, and the delalloc ranges might fall outside
3730 * the range we are currently locking in the inode's io tree. So we check the
3731 * inode's i_size because of that (i_size updates are done while holding the
3732 * i_mutex, which we are holding here).
3733 * We also check to see if the inode has a size not greater than "datal" but has
3734 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3735 * protected against such concurrent fallocate calls by the i_mutex).
3737 * If the file has no extents but a size greater than datal, do not allow the
3738 * copy because we would need turn the inline extent into a non-inline one (even
3739 * with NO_HOLES enabled). If we find our destination inode only has one inline
3740 * extent, just overwrite it with the source inline extent if its size is less
3741 * than the source extent's size, or we could copy the source inline extent's
3742 * data into the destination inode's inline extent if the later is greater then
3745 static int clone_copy_inline_extent(struct inode *dst,
3746 struct btrfs_trans_handle *trans,
3747 struct btrfs_path *path,
3748 struct btrfs_key *new_key,
3749 const u64 drop_start,
3755 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3756 struct btrfs_root *root = BTRFS_I(dst)->root;
3757 const u64 aligned_end = ALIGN(new_key->offset + datal,
3758 fs_info->sectorsize);
3760 struct btrfs_key key;
3762 if (new_key->offset > 0)
3765 key.objectid = btrfs_ino(BTRFS_I(dst));
3766 key.type = BTRFS_EXTENT_DATA_KEY;
3768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3771 } else if (ret > 0) {
3772 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3773 ret = btrfs_next_leaf(root, path);
3777 goto copy_inline_extent;
3779 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3780 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3781 key.type == BTRFS_EXTENT_DATA_KEY) {
3782 ASSERT(key.offset > 0);
3785 } else if (i_size_read(dst) <= datal) {
3786 struct btrfs_file_extent_item *ei;
3790 * If the file size is <= datal, make sure there are no other
3791 * extents following (can happen do to an fallocate call with
3792 * the flag FALLOC_FL_KEEP_SIZE).
3794 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3795 struct btrfs_file_extent_item);
3797 * If it's an inline extent, it can not have other extents
3800 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3801 BTRFS_FILE_EXTENT_INLINE)
3802 goto copy_inline_extent;
3804 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3805 if (ext_len > aligned_end)
3808 ret = btrfs_next_item(root, path);
3811 } else if (ret == 0) {
3812 btrfs_item_key_to_cpu(path->nodes[0], &key,
3814 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3815 key.type == BTRFS_EXTENT_DATA_KEY)
3822 * We have no extent items, or we have an extent at offset 0 which may
3823 * or may not be inlined. All these cases are dealt the same way.
3825 if (i_size_read(dst) > datal) {
3827 * If the destination inode has an inline extent...
3828 * This would require copying the data from the source inline
3829 * extent into the beginning of the destination's inline extent.
3830 * But this is really complex, both extents can be compressed
3831 * or just one of them, which would require decompressing and
3832 * re-compressing data (which could increase the new compressed
3833 * size, not allowing the compressed data to fit anymore in an
3835 * So just don't support this case for now (it should be rare,
3836 * we are not really saving space when cloning inline extents).
3841 btrfs_release_path(path);
3842 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3845 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3850 const u32 start = btrfs_file_extent_calc_inline_size(0);
3852 memmove(inline_data + start, inline_data + start + skip, datal);
3855 write_extent_buffer(path->nodes[0], inline_data,
3856 btrfs_item_ptr_offset(path->nodes[0],
3859 inode_add_bytes(dst, datal);
3865 * btrfs_clone() - clone a range from inode file to another
3867 * @src: Inode to clone from
3868 * @inode: Inode to clone to
3869 * @off: Offset within source to start clone from
3870 * @olen: Original length, passed by user, of range to clone
3871 * @olen_aligned: Block-aligned value of olen
3872 * @destoff: Offset within @inode to start clone
3873 * @no_time_update: Whether to update mtime/ctime on the target inode
3875 static int btrfs_clone(struct inode *src, struct inode *inode,
3876 const u64 off, const u64 olen, const u64 olen_aligned,
3877 const u64 destoff, int no_time_update)
3879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3880 struct btrfs_root *root = BTRFS_I(inode)->root;
3881 struct btrfs_path *path = NULL;
3882 struct extent_buffer *leaf;
3883 struct btrfs_trans_handle *trans;
3885 struct btrfs_key key;
3889 const u64 len = olen_aligned;
3890 u64 last_dest_end = destoff;
3893 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3897 path = btrfs_alloc_path();
3903 path->reada = READA_FORWARD;
3905 key.objectid = btrfs_ino(BTRFS_I(src));
3906 key.type = BTRFS_EXTENT_DATA_KEY;
3910 u64 next_key_min_offset = key.offset + 1;
3913 * note the key will change type as we walk through the
3916 path->leave_spinning = 1;
3917 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3922 * First search, if no extent item that starts at offset off was
3923 * found but the previous item is an extent item, it's possible
3924 * it might overlap our target range, therefore process it.
3926 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3927 btrfs_item_key_to_cpu(path->nodes[0], &key,
3928 path->slots[0] - 1);
3929 if (key.type == BTRFS_EXTENT_DATA_KEY)
3933 nritems = btrfs_header_nritems(path->nodes[0]);
3935 if (path->slots[0] >= nritems) {
3936 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3941 nritems = btrfs_header_nritems(path->nodes[0]);
3943 leaf = path->nodes[0];
3944 slot = path->slots[0];
3946 btrfs_item_key_to_cpu(leaf, &key, slot);
3947 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3948 key.objectid != btrfs_ino(BTRFS_I(src)))
3951 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3952 struct btrfs_file_extent_item *extent;
3955 struct btrfs_key new_key;
3956 u64 disko = 0, diskl = 0;
3957 u64 datao = 0, datal = 0;
3961 extent = btrfs_item_ptr(leaf, slot,
3962 struct btrfs_file_extent_item);
3963 comp = btrfs_file_extent_compression(leaf, extent);
3964 type = btrfs_file_extent_type(leaf, extent);
3965 if (type == BTRFS_FILE_EXTENT_REG ||
3966 type == BTRFS_FILE_EXTENT_PREALLOC) {
3967 disko = btrfs_file_extent_disk_bytenr(leaf,
3969 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3971 datao = btrfs_file_extent_offset(leaf, extent);
3972 datal = btrfs_file_extent_num_bytes(leaf,
3974 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3975 /* take upper bound, may be compressed */
3976 datal = btrfs_file_extent_ram_bytes(leaf,
3981 * The first search might have left us at an extent
3982 * item that ends before our target range's start, can
3983 * happen if we have holes and NO_HOLES feature enabled.
3985 if (key.offset + datal <= off) {
3988 } else if (key.offset >= off + len) {
3991 next_key_min_offset = key.offset + datal;
3992 size = btrfs_item_size_nr(leaf, slot);
3993 read_extent_buffer(leaf, buf,
3994 btrfs_item_ptr_offset(leaf, slot),
3997 btrfs_release_path(path);
3998 path->leave_spinning = 0;
4000 memcpy(&new_key, &key, sizeof(new_key));
4001 new_key.objectid = btrfs_ino(BTRFS_I(inode));
4002 if (off <= key.offset)
4003 new_key.offset = key.offset + destoff - off;
4005 new_key.offset = destoff;
4008 * Deal with a hole that doesn't have an extent item
4009 * that represents it (NO_HOLES feature enabled).
4010 * This hole is either in the middle of the cloning
4011 * range or at the beginning (fully overlaps it or
4012 * partially overlaps it).
4014 if (new_key.offset != last_dest_end)
4015 drop_start = last_dest_end;
4017 drop_start = new_key.offset;
4020 * 1 - adjusting old extent (we may have to split it)
4021 * 1 - add new extent
4024 trans = btrfs_start_transaction(root, 3);
4025 if (IS_ERR(trans)) {
4026 ret = PTR_ERR(trans);
4030 if (type == BTRFS_FILE_EXTENT_REG ||
4031 type == BTRFS_FILE_EXTENT_PREALLOC) {
4033 * a | --- range to clone ---| b
4034 * | ------------- extent ------------- |
4037 /* subtract range b */
4038 if (key.offset + datal > off + len)
4039 datal = off + len - key.offset;
4041 /* subtract range a */
4042 if (off > key.offset) {
4043 datao += off - key.offset;
4044 datal -= off - key.offset;
4047 ret = btrfs_drop_extents(trans, root, inode,
4049 new_key.offset + datal,
4052 if (ret != -EOPNOTSUPP)
4053 btrfs_abort_transaction(trans,
4055 btrfs_end_transaction(trans);
4059 ret = btrfs_insert_empty_item(trans, root, path,
4062 btrfs_abort_transaction(trans, ret);
4063 btrfs_end_transaction(trans);
4067 leaf = path->nodes[0];
4068 slot = path->slots[0];
4069 write_extent_buffer(leaf, buf,
4070 btrfs_item_ptr_offset(leaf, slot),
4073 extent = btrfs_item_ptr(leaf, slot,
4074 struct btrfs_file_extent_item);
4076 /* disko == 0 means it's a hole */
4080 btrfs_set_file_extent_offset(leaf, extent,
4082 btrfs_set_file_extent_num_bytes(leaf, extent,
4086 inode_add_bytes(inode, datal);
4087 ret = btrfs_inc_extent_ref(trans,
4090 root->root_key.objectid,
4091 btrfs_ino(BTRFS_I(inode)),
4092 new_key.offset - datao);
4094 btrfs_abort_transaction(trans,
4096 btrfs_end_transaction(trans);
4101 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
4105 if (off > key.offset) {
4106 skip = off - key.offset;
4107 new_key.offset += skip;
4110 if (key.offset + datal > off + len)
4111 trim = key.offset + datal - (off + len);
4113 if (comp && (skip || trim)) {
4115 btrfs_end_transaction(trans);
4118 size -= skip + trim;
4119 datal -= skip + trim;
4121 ret = clone_copy_inline_extent(inode,
4128 if (ret != -EOPNOTSUPP)
4129 btrfs_abort_transaction(trans,
4131 btrfs_end_transaction(trans);
4134 leaf = path->nodes[0];
4135 slot = path->slots[0];
4138 /* If we have an implicit hole (NO_HOLES feature). */
4139 if (drop_start < new_key.offset)
4140 clone_update_extent_map(BTRFS_I(inode), trans,
4142 new_key.offset - drop_start);
4144 clone_update_extent_map(BTRFS_I(inode), trans,
4147 btrfs_mark_buffer_dirty(leaf);
4148 btrfs_release_path(path);
4150 last_dest_end = ALIGN(new_key.offset + datal,
4151 fs_info->sectorsize);
4152 ret = clone_finish_inode_update(trans, inode,
4158 if (new_key.offset + datal >= destoff + len)
4161 btrfs_release_path(path);
4162 key.offset = next_key_min_offset;
4164 if (fatal_signal_pending(current)) {
4171 if (last_dest_end < destoff + len) {
4173 * We have an implicit hole (NO_HOLES feature is enabled) that
4174 * fully or partially overlaps our cloning range at its end.
4176 btrfs_release_path(path);
4179 * 1 - remove extent(s)
4182 trans = btrfs_start_transaction(root, 2);
4183 if (IS_ERR(trans)) {
4184 ret = PTR_ERR(trans);
4187 ret = btrfs_drop_extents(trans, root, inode,
4188 last_dest_end, destoff + len, 1);
4190 if (ret != -EOPNOTSUPP)
4191 btrfs_abort_transaction(trans, ret);
4192 btrfs_end_transaction(trans);
4195 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
4197 destoff + len - last_dest_end);
4198 ret = clone_finish_inode_update(trans, inode, destoff + len,
4199 destoff, olen, no_time_update);
4203 btrfs_free_path(path);
4208 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
4209 u64 off, u64 olen, u64 destoff)
4211 struct inode *inode = file_inode(file);
4212 struct inode *src = file_inode(file_src);
4213 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4214 struct btrfs_root *root = BTRFS_I(inode)->root;
4217 u64 bs = fs_info->sb->s_blocksize;
4218 int same_inode = src == inode;
4222 * - split compressed inline extents. annoying: we need to
4223 * decompress into destination's address_space (the file offset
4224 * may change, so source mapping won't do), then recompress (or
4225 * otherwise reinsert) a subrange.
4227 * - split destination inode's inline extents. The inline extents can
4228 * be either compressed or non-compressed.
4231 if (btrfs_root_readonly(root))
4234 if (file_src->f_path.mnt != file->f_path.mnt ||
4235 src->i_sb != inode->i_sb)
4238 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
4242 btrfs_double_inode_lock(src, inode);
4247 /* don't make the dst file partly checksummed */
4248 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
4249 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
4254 /* determine range to clone */
4256 if (off + len > src->i_size || off + len < off)
4259 olen = len = src->i_size - off;
4260 /* if we extend to eof, continue to block boundary */
4261 if (off + len == src->i_size)
4262 len = ALIGN(src->i_size, bs) - off;
4269 /* verify the end result is block aligned */
4270 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4271 !IS_ALIGNED(destoff, bs))
4274 /* verify if ranges are overlapped within the same file */
4276 if (destoff + len > off && destoff < off + len)
4280 if (destoff > inode->i_size) {
4281 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4287 * Lock the target range too. Right after we replace the file extent
4288 * items in the fs tree (which now point to the cloned data), we might
4289 * have a worker replace them with extent items relative to a write
4290 * operation that was issued before this clone operation (i.e. confront
4291 * with inode.c:btrfs_finish_ordered_io).
4294 u64 lock_start = min_t(u64, off, destoff);
4295 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4297 ret = lock_extent_range(src, lock_start, lock_len, true);
4299 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4304 /* ranges in the io trees already unlocked */
4308 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4311 u64 lock_start = min_t(u64, off, destoff);
4312 u64 lock_end = max_t(u64, off, destoff) + len - 1;
4314 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4316 btrfs_double_extent_unlock(src, off, inode, destoff, len);
4319 * Truncate page cache pages so that future reads will see the cloned
4320 * data immediately and not the previous data.
4322 truncate_inode_pages_range(&inode->i_data,
4323 round_down(destoff, PAGE_SIZE),
4324 round_up(destoff + len, PAGE_SIZE) - 1);
4327 btrfs_double_inode_unlock(src, inode);
4333 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4334 struct file *dst_file, loff_t destoff, loff_t len,
4335 unsigned int remap_flags)
4339 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4342 if (remap_flags & REMAP_FILE_DEDUP) {
4343 struct inode *src = file_inode(src_file);
4344 struct inode *dst = file_inode(dst_file);
4345 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
4347 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
4349 * Btrfs does not support blocksize < page_size. As a
4350 * result, btrfs_cmp_data() won't correctly handle
4351 * this situation without an update.
4356 ret = btrfs_extent_same(src, off, len, dst, destoff);
4358 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4360 return ret < 0 ? ret : len;
4363 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4365 struct inode *inode = file_inode(file);
4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4367 struct btrfs_root *root = BTRFS_I(inode)->root;
4368 struct btrfs_root *new_root;
4369 struct btrfs_dir_item *di;
4370 struct btrfs_trans_handle *trans;
4371 struct btrfs_path *path;
4372 struct btrfs_key location;
4373 struct btrfs_disk_key disk_key;
4378 if (!capable(CAP_SYS_ADMIN))
4381 ret = mnt_want_write_file(file);
4385 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4391 objectid = BTRFS_FS_TREE_OBJECTID;
4393 location.objectid = objectid;
4394 location.type = BTRFS_ROOT_ITEM_KEY;
4395 location.offset = (u64)-1;
4397 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4398 if (IS_ERR(new_root)) {
4399 ret = PTR_ERR(new_root);
4402 if (!is_fstree(new_root->root_key.objectid)) {
4407 path = btrfs_alloc_path();
4412 path->leave_spinning = 1;
4414 trans = btrfs_start_transaction(root, 1);
4415 if (IS_ERR(trans)) {
4416 btrfs_free_path(path);
4417 ret = PTR_ERR(trans);
4421 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4422 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4423 dir_id, "default", 7, 1);
4424 if (IS_ERR_OR_NULL(di)) {
4425 btrfs_free_path(path);
4426 btrfs_end_transaction(trans);
4428 "Umm, you don't have the default diritem, this isn't going to work");
4433 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4434 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4435 btrfs_mark_buffer_dirty(path->nodes[0]);
4436 btrfs_free_path(path);
4438 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4439 btrfs_end_transaction(trans);
4441 mnt_drop_write_file(file);
4445 static void get_block_group_info(struct list_head *groups_list,
4446 struct btrfs_ioctl_space_info *space)
4448 struct btrfs_block_group_cache *block_group;
4450 space->total_bytes = 0;
4451 space->used_bytes = 0;
4453 list_for_each_entry(block_group, groups_list, list) {
4454 space->flags = block_group->flags;
4455 space->total_bytes += block_group->key.offset;
4456 space->used_bytes +=
4457 btrfs_block_group_used(&block_group->item);
4461 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4464 struct btrfs_ioctl_space_args space_args;
4465 struct btrfs_ioctl_space_info space;
4466 struct btrfs_ioctl_space_info *dest;
4467 struct btrfs_ioctl_space_info *dest_orig;
4468 struct btrfs_ioctl_space_info __user *user_dest;
4469 struct btrfs_space_info *info;
4470 static const u64 types[] = {
4471 BTRFS_BLOCK_GROUP_DATA,
4472 BTRFS_BLOCK_GROUP_SYSTEM,
4473 BTRFS_BLOCK_GROUP_METADATA,
4474 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4482 if (copy_from_user(&space_args,
4483 (struct btrfs_ioctl_space_args __user *)arg,
4484 sizeof(space_args)))
4487 for (i = 0; i < num_types; i++) {
4488 struct btrfs_space_info *tmp;
4492 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4494 if (tmp->flags == types[i]) {
4504 down_read(&info->groups_sem);
4505 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4506 if (!list_empty(&info->block_groups[c]))
4509 up_read(&info->groups_sem);
4513 * Global block reserve, exported as a space_info
4517 /* space_slots == 0 means they are asking for a count */
4518 if (space_args.space_slots == 0) {
4519 space_args.total_spaces = slot_count;
4523 slot_count = min_t(u64, space_args.space_slots, slot_count);
4525 alloc_size = sizeof(*dest) * slot_count;
4527 /* we generally have at most 6 or so space infos, one for each raid
4528 * level. So, a whole page should be more than enough for everyone
4530 if (alloc_size > PAGE_SIZE)
4533 space_args.total_spaces = 0;
4534 dest = kmalloc(alloc_size, GFP_KERNEL);
4539 /* now we have a buffer to copy into */
4540 for (i = 0; i < num_types; i++) {
4541 struct btrfs_space_info *tmp;
4548 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4550 if (tmp->flags == types[i]) {
4559 down_read(&info->groups_sem);
4560 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4561 if (!list_empty(&info->block_groups[c])) {
4562 get_block_group_info(&info->block_groups[c],
4564 memcpy(dest, &space, sizeof(space));
4566 space_args.total_spaces++;
4572 up_read(&info->groups_sem);
4576 * Add global block reserve
4579 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4581 spin_lock(&block_rsv->lock);
4582 space.total_bytes = block_rsv->size;
4583 space.used_bytes = block_rsv->size - block_rsv->reserved;
4584 spin_unlock(&block_rsv->lock);
4585 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4586 memcpy(dest, &space, sizeof(space));
4587 space_args.total_spaces++;
4590 user_dest = (struct btrfs_ioctl_space_info __user *)
4591 (arg + sizeof(struct btrfs_ioctl_space_args));
4593 if (copy_to_user(user_dest, dest_orig, alloc_size))
4598 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4604 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4607 struct btrfs_trans_handle *trans;
4611 trans = btrfs_attach_transaction_barrier(root);
4612 if (IS_ERR(trans)) {
4613 if (PTR_ERR(trans) != -ENOENT)
4614 return PTR_ERR(trans);
4616 /* No running transaction, don't bother */
4617 transid = root->fs_info->last_trans_committed;
4620 transid = trans->transid;
4621 ret = btrfs_commit_transaction_async(trans, 0);
4623 btrfs_end_transaction(trans);
4628 if (copy_to_user(argp, &transid, sizeof(transid)))
4633 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4639 if (copy_from_user(&transid, argp, sizeof(transid)))
4642 transid = 0; /* current trans */
4644 return btrfs_wait_for_commit(fs_info, transid);
4647 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4649 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4650 struct btrfs_ioctl_scrub_args *sa;
4653 if (!capable(CAP_SYS_ADMIN))
4656 sa = memdup_user(arg, sizeof(*sa));
4660 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4661 ret = mnt_want_write_file(file);
4666 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4667 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4670 if (copy_to_user(arg, sa, sizeof(*sa)))
4673 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4674 mnt_drop_write_file(file);
4680 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4682 if (!capable(CAP_SYS_ADMIN))
4685 return btrfs_scrub_cancel(fs_info);
4688 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4691 struct btrfs_ioctl_scrub_args *sa;
4694 if (!capable(CAP_SYS_ADMIN))
4697 sa = memdup_user(arg, sizeof(*sa));
4701 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4703 if (copy_to_user(arg, sa, sizeof(*sa)))
4710 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4713 struct btrfs_ioctl_get_dev_stats *sa;
4716 sa = memdup_user(arg, sizeof(*sa));
4720 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4725 ret = btrfs_get_dev_stats(fs_info, sa);
4727 if (copy_to_user(arg, sa, sizeof(*sa)))
4734 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4737 struct btrfs_ioctl_dev_replace_args *p;
4740 if (!capable(CAP_SYS_ADMIN))
4743 p = memdup_user(arg, sizeof(*p));
4748 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4749 if (sb_rdonly(fs_info->sb)) {
4753 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4754 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4756 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4757 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4760 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4761 btrfs_dev_replace_status(fs_info, p);
4764 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4765 p->result = btrfs_dev_replace_cancel(fs_info);
4773 if (copy_to_user(arg, p, sizeof(*p)))
4780 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4786 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4787 struct inode_fs_paths *ipath = NULL;
4788 struct btrfs_path *path;
4790 if (!capable(CAP_DAC_READ_SEARCH))
4793 path = btrfs_alloc_path();
4799 ipa = memdup_user(arg, sizeof(*ipa));
4806 size = min_t(u32, ipa->size, 4096);
4807 ipath = init_ipath(size, root, path);
4808 if (IS_ERR(ipath)) {
4809 ret = PTR_ERR(ipath);
4814 ret = paths_from_inode(ipa->inum, ipath);
4818 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4819 rel_ptr = ipath->fspath->val[i] -
4820 (u64)(unsigned long)ipath->fspath->val;
4821 ipath->fspath->val[i] = rel_ptr;
4824 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4825 ipath->fspath, size);
4832 btrfs_free_path(path);
4839 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4841 struct btrfs_data_container *inodes = ctx;
4842 const size_t c = 3 * sizeof(u64);
4844 if (inodes->bytes_left >= c) {
4845 inodes->bytes_left -= c;
4846 inodes->val[inodes->elem_cnt] = inum;
4847 inodes->val[inodes->elem_cnt + 1] = offset;
4848 inodes->val[inodes->elem_cnt + 2] = root;
4849 inodes->elem_cnt += 3;
4851 inodes->bytes_missing += c - inodes->bytes_left;
4852 inodes->bytes_left = 0;
4853 inodes->elem_missed += 3;
4859 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4860 void __user *arg, int version)
4864 struct btrfs_ioctl_logical_ino_args *loi;
4865 struct btrfs_data_container *inodes = NULL;
4866 struct btrfs_path *path = NULL;
4869 if (!capable(CAP_SYS_ADMIN))
4872 loi = memdup_user(arg, sizeof(*loi));
4874 return PTR_ERR(loi);
4877 ignore_offset = false;
4878 size = min_t(u32, loi->size, SZ_64K);
4880 /* All reserved bits must be 0 for now */
4881 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4885 /* Only accept flags we have defined so far */
4886 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4890 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4891 size = min_t(u32, loi->size, SZ_16M);
4894 path = btrfs_alloc_path();
4900 inodes = init_data_container(size);
4901 if (IS_ERR(inodes)) {
4902 ret = PTR_ERR(inodes);
4907 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4908 build_ino_list, inodes, ignore_offset);
4914 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4920 btrfs_free_path(path);
4928 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4929 struct btrfs_ioctl_balance_args *bargs)
4931 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4933 bargs->flags = bctl->flags;
4935 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4936 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4937 if (atomic_read(&fs_info->balance_pause_req))
4938 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4939 if (atomic_read(&fs_info->balance_cancel_req))
4940 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4942 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4943 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4944 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4946 spin_lock(&fs_info->balance_lock);
4947 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4948 spin_unlock(&fs_info->balance_lock);
4951 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4953 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4954 struct btrfs_fs_info *fs_info = root->fs_info;
4955 struct btrfs_ioctl_balance_args *bargs;
4956 struct btrfs_balance_control *bctl;
4957 bool need_unlock; /* for mut. excl. ops lock */
4960 if (!capable(CAP_SYS_ADMIN))
4963 ret = mnt_want_write_file(file);
4968 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4969 mutex_lock(&fs_info->balance_mutex);
4975 * mut. excl. ops lock is locked. Three possibilities:
4976 * (1) some other op is running
4977 * (2) balance is running
4978 * (3) balance is paused -- special case (think resume)
4980 mutex_lock(&fs_info->balance_mutex);
4981 if (fs_info->balance_ctl) {
4982 /* this is either (2) or (3) */
4983 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4984 mutex_unlock(&fs_info->balance_mutex);
4986 * Lock released to allow other waiters to continue,
4987 * we'll reexamine the status again.
4989 mutex_lock(&fs_info->balance_mutex);
4991 if (fs_info->balance_ctl &&
4992 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4994 need_unlock = false;
4998 mutex_unlock(&fs_info->balance_mutex);
5002 mutex_unlock(&fs_info->balance_mutex);
5008 mutex_unlock(&fs_info->balance_mutex);
5009 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
5014 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
5017 bargs = memdup_user(arg, sizeof(*bargs));
5018 if (IS_ERR(bargs)) {
5019 ret = PTR_ERR(bargs);
5023 if (bargs->flags & BTRFS_BALANCE_RESUME) {
5024 if (!fs_info->balance_ctl) {
5029 bctl = fs_info->balance_ctl;
5030 spin_lock(&fs_info->balance_lock);
5031 bctl->flags |= BTRFS_BALANCE_RESUME;
5032 spin_unlock(&fs_info->balance_lock);
5040 if (fs_info->balance_ctl) {
5045 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
5052 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
5053 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
5054 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
5056 bctl->flags = bargs->flags;
5058 /* balance everything - no filters */
5059 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
5062 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
5069 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
5070 * btrfs_balance. bctl is freed in reset_balance_state, or, if
5071 * restriper was paused all the way until unmount, in free_fs_info.
5072 * The flag should be cleared after reset_balance_state.
5074 need_unlock = false;
5076 ret = btrfs_balance(fs_info, bctl, bargs);
5080 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5089 mutex_unlock(&fs_info->balance_mutex);
5091 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
5093 mnt_drop_write_file(file);
5097 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
5099 if (!capable(CAP_SYS_ADMIN))
5103 case BTRFS_BALANCE_CTL_PAUSE:
5104 return btrfs_pause_balance(fs_info);
5105 case BTRFS_BALANCE_CTL_CANCEL:
5106 return btrfs_cancel_balance(fs_info);
5112 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
5115 struct btrfs_ioctl_balance_args *bargs;
5118 if (!capable(CAP_SYS_ADMIN))
5121 mutex_lock(&fs_info->balance_mutex);
5122 if (!fs_info->balance_ctl) {
5127 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
5133 btrfs_update_ioctl_balance_args(fs_info, bargs);
5135 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5140 mutex_unlock(&fs_info->balance_mutex);
5144 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
5146 struct inode *inode = file_inode(file);
5147 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5148 struct btrfs_ioctl_quota_ctl_args *sa;
5151 if (!capable(CAP_SYS_ADMIN))
5154 ret = mnt_want_write_file(file);
5158 sa = memdup_user(arg, sizeof(*sa));
5164 down_write(&fs_info->subvol_sem);
5167 case BTRFS_QUOTA_CTL_ENABLE:
5168 ret = btrfs_quota_enable(fs_info);
5170 case BTRFS_QUOTA_CTL_DISABLE:
5171 ret = btrfs_quota_disable(fs_info);
5179 up_write(&fs_info->subvol_sem);
5181 mnt_drop_write_file(file);
5185 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
5187 struct inode *inode = file_inode(file);
5188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5189 struct btrfs_root *root = BTRFS_I(inode)->root;
5190 struct btrfs_ioctl_qgroup_assign_args *sa;
5191 struct btrfs_trans_handle *trans;
5195 if (!capable(CAP_SYS_ADMIN))
5198 ret = mnt_want_write_file(file);
5202 sa = memdup_user(arg, sizeof(*sa));
5208 trans = btrfs_join_transaction(root);
5209 if (IS_ERR(trans)) {
5210 ret = PTR_ERR(trans);
5215 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
5217 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
5220 /* update qgroup status and info */
5221 err = btrfs_run_qgroups(trans);
5223 btrfs_handle_fs_error(fs_info, err,
5224 "failed to update qgroup status and info");
5225 err = btrfs_end_transaction(trans);
5232 mnt_drop_write_file(file);
5236 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5238 struct inode *inode = file_inode(file);
5239 struct btrfs_root *root = BTRFS_I(inode)->root;
5240 struct btrfs_ioctl_qgroup_create_args *sa;
5241 struct btrfs_trans_handle *trans;
5245 if (!capable(CAP_SYS_ADMIN))
5248 ret = mnt_want_write_file(file);
5252 sa = memdup_user(arg, sizeof(*sa));
5258 if (!sa->qgroupid) {
5263 trans = btrfs_join_transaction(root);
5264 if (IS_ERR(trans)) {
5265 ret = PTR_ERR(trans);
5270 ret = btrfs_create_qgroup(trans, sa->qgroupid);
5272 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
5275 err = btrfs_end_transaction(trans);
5282 mnt_drop_write_file(file);
5286 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5288 struct inode *inode = file_inode(file);
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 struct btrfs_ioctl_qgroup_limit_args *sa;
5291 struct btrfs_trans_handle *trans;
5296 if (!capable(CAP_SYS_ADMIN))
5299 ret = mnt_want_write_file(file);
5303 sa = memdup_user(arg, sizeof(*sa));
5309 trans = btrfs_join_transaction(root);
5310 if (IS_ERR(trans)) {
5311 ret = PTR_ERR(trans);
5315 qgroupid = sa->qgroupid;
5317 /* take the current subvol as qgroup */
5318 qgroupid = root->root_key.objectid;
5321 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5323 err = btrfs_end_transaction(trans);
5330 mnt_drop_write_file(file);
5334 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5336 struct inode *inode = file_inode(file);
5337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5338 struct btrfs_ioctl_quota_rescan_args *qsa;
5341 if (!capable(CAP_SYS_ADMIN))
5344 ret = mnt_want_write_file(file);
5348 qsa = memdup_user(arg, sizeof(*qsa));
5359 ret = btrfs_qgroup_rescan(fs_info);
5364 mnt_drop_write_file(file);
5368 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5370 struct inode *inode = file_inode(file);
5371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5372 struct btrfs_ioctl_quota_rescan_args *qsa;
5375 if (!capable(CAP_SYS_ADMIN))
5378 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5382 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5384 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5387 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5394 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5396 struct inode *inode = file_inode(file);
5397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5399 if (!capable(CAP_SYS_ADMIN))
5402 return btrfs_qgroup_wait_for_completion(fs_info, true);
5405 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5406 struct btrfs_ioctl_received_subvol_args *sa)
5408 struct inode *inode = file_inode(file);
5409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5410 struct btrfs_root *root = BTRFS_I(inode)->root;
5411 struct btrfs_root_item *root_item = &root->root_item;
5412 struct btrfs_trans_handle *trans;
5413 struct timespec64 ct = current_time(inode);
5415 int received_uuid_changed;
5417 if (!inode_owner_or_capable(inode))
5420 ret = mnt_want_write_file(file);
5424 down_write(&fs_info->subvol_sem);
5426 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5431 if (btrfs_root_readonly(root)) {
5438 * 2 - uuid items (received uuid + subvol uuid)
5440 trans = btrfs_start_transaction(root, 3);
5441 if (IS_ERR(trans)) {
5442 ret = PTR_ERR(trans);
5447 sa->rtransid = trans->transid;
5448 sa->rtime.sec = ct.tv_sec;
5449 sa->rtime.nsec = ct.tv_nsec;
5451 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5453 if (received_uuid_changed &&
5454 !btrfs_is_empty_uuid(root_item->received_uuid)) {
5455 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5456 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5457 root->root_key.objectid);
5458 if (ret && ret != -ENOENT) {
5459 btrfs_abort_transaction(trans, ret);
5460 btrfs_end_transaction(trans);
5464 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5465 btrfs_set_root_stransid(root_item, sa->stransid);
5466 btrfs_set_root_rtransid(root_item, sa->rtransid);
5467 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5468 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5469 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5470 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5472 ret = btrfs_update_root(trans, fs_info->tree_root,
5473 &root->root_key, &root->root_item);
5475 btrfs_end_transaction(trans);
5478 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5479 ret = btrfs_uuid_tree_add(trans, sa->uuid,
5480 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5481 root->root_key.objectid);
5482 if (ret < 0 && ret != -EEXIST) {
5483 btrfs_abort_transaction(trans, ret);
5484 btrfs_end_transaction(trans);
5488 ret = btrfs_commit_transaction(trans);
5490 up_write(&fs_info->subvol_sem);
5491 mnt_drop_write_file(file);
5496 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5499 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5500 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5503 args32 = memdup_user(arg, sizeof(*args32));
5505 return PTR_ERR(args32);
5507 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5513 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5514 args64->stransid = args32->stransid;
5515 args64->rtransid = args32->rtransid;
5516 args64->stime.sec = args32->stime.sec;
5517 args64->stime.nsec = args32->stime.nsec;
5518 args64->rtime.sec = args32->rtime.sec;
5519 args64->rtime.nsec = args32->rtime.nsec;
5520 args64->flags = args32->flags;
5522 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5526 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5527 args32->stransid = args64->stransid;
5528 args32->rtransid = args64->rtransid;
5529 args32->stime.sec = args64->stime.sec;
5530 args32->stime.nsec = args64->stime.nsec;
5531 args32->rtime.sec = args64->rtime.sec;
5532 args32->rtime.nsec = args64->rtime.nsec;
5533 args32->flags = args64->flags;
5535 ret = copy_to_user(arg, args32, sizeof(*args32));
5546 static long btrfs_ioctl_set_received_subvol(struct file *file,
5549 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5552 sa = memdup_user(arg, sizeof(*sa));
5556 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5561 ret = copy_to_user(arg, sa, sizeof(*sa));
5570 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5572 struct inode *inode = file_inode(file);
5573 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5576 char label[BTRFS_LABEL_SIZE];
5578 spin_lock(&fs_info->super_lock);
5579 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5580 spin_unlock(&fs_info->super_lock);
5582 len = strnlen(label, BTRFS_LABEL_SIZE);
5584 if (len == BTRFS_LABEL_SIZE) {
5586 "label is too long, return the first %zu bytes",
5590 ret = copy_to_user(arg, label, len);
5592 return ret ? -EFAULT : 0;
5595 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5597 struct inode *inode = file_inode(file);
5598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5599 struct btrfs_root *root = BTRFS_I(inode)->root;
5600 struct btrfs_super_block *super_block = fs_info->super_copy;
5601 struct btrfs_trans_handle *trans;
5602 char label[BTRFS_LABEL_SIZE];
5605 if (!capable(CAP_SYS_ADMIN))
5608 if (copy_from_user(label, arg, sizeof(label)))
5611 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5613 "unable to set label with more than %d bytes",
5614 BTRFS_LABEL_SIZE - 1);
5618 ret = mnt_want_write_file(file);
5622 trans = btrfs_start_transaction(root, 0);
5623 if (IS_ERR(trans)) {
5624 ret = PTR_ERR(trans);
5628 spin_lock(&fs_info->super_lock);
5629 strcpy(super_block->label, label);
5630 spin_unlock(&fs_info->super_lock);
5631 ret = btrfs_commit_transaction(trans);
5634 mnt_drop_write_file(file);
5638 #define INIT_FEATURE_FLAGS(suffix) \
5639 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5640 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5641 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5643 int btrfs_ioctl_get_supported_features(void __user *arg)
5645 static const struct btrfs_ioctl_feature_flags features[3] = {
5646 INIT_FEATURE_FLAGS(SUPP),
5647 INIT_FEATURE_FLAGS(SAFE_SET),
5648 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5651 if (copy_to_user(arg, &features, sizeof(features)))
5657 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5659 struct inode *inode = file_inode(file);
5660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5661 struct btrfs_super_block *super_block = fs_info->super_copy;
5662 struct btrfs_ioctl_feature_flags features;
5664 features.compat_flags = btrfs_super_compat_flags(super_block);
5665 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5666 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5668 if (copy_to_user(arg, &features, sizeof(features)))
5674 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5675 enum btrfs_feature_set set,
5676 u64 change_mask, u64 flags, u64 supported_flags,
5677 u64 safe_set, u64 safe_clear)
5679 const char *type = btrfs_feature_set_names[set];
5681 u64 disallowed, unsupported;
5682 u64 set_mask = flags & change_mask;
5683 u64 clear_mask = ~flags & change_mask;
5685 unsupported = set_mask & ~supported_flags;
5687 names = btrfs_printable_features(set, unsupported);
5690 "this kernel does not support the %s feature bit%s",
5691 names, strchr(names, ',') ? "s" : "");
5695 "this kernel does not support %s bits 0x%llx",
5700 disallowed = set_mask & ~safe_set;
5702 names = btrfs_printable_features(set, disallowed);
5705 "can't set the %s feature bit%s while mounted",
5706 names, strchr(names, ',') ? "s" : "");
5710 "can't set %s bits 0x%llx while mounted",
5715 disallowed = clear_mask & ~safe_clear;
5717 names = btrfs_printable_features(set, disallowed);
5720 "can't clear the %s feature bit%s while mounted",
5721 names, strchr(names, ',') ? "s" : "");
5725 "can't clear %s bits 0x%llx while mounted",
5733 #define check_feature(fs_info, change_mask, flags, mask_base) \
5734 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5735 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5736 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5737 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5739 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5741 struct inode *inode = file_inode(file);
5742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5743 struct btrfs_root *root = BTRFS_I(inode)->root;
5744 struct btrfs_super_block *super_block = fs_info->super_copy;
5745 struct btrfs_ioctl_feature_flags flags[2];
5746 struct btrfs_trans_handle *trans;
5750 if (!capable(CAP_SYS_ADMIN))
5753 if (copy_from_user(flags, arg, sizeof(flags)))
5757 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5758 !flags[0].incompat_flags)
5761 ret = check_feature(fs_info, flags[0].compat_flags,
5762 flags[1].compat_flags, COMPAT);
5766 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5767 flags[1].compat_ro_flags, COMPAT_RO);
5771 ret = check_feature(fs_info, flags[0].incompat_flags,
5772 flags[1].incompat_flags, INCOMPAT);
5776 ret = mnt_want_write_file(file);
5780 trans = btrfs_start_transaction(root, 0);
5781 if (IS_ERR(trans)) {
5782 ret = PTR_ERR(trans);
5783 goto out_drop_write;
5786 spin_lock(&fs_info->super_lock);
5787 newflags = btrfs_super_compat_flags(super_block);
5788 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5789 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5790 btrfs_set_super_compat_flags(super_block, newflags);
5792 newflags = btrfs_super_compat_ro_flags(super_block);
5793 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5794 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5795 btrfs_set_super_compat_ro_flags(super_block, newflags);
5797 newflags = btrfs_super_incompat_flags(super_block);
5798 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5799 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5800 btrfs_set_super_incompat_flags(super_block, newflags);
5801 spin_unlock(&fs_info->super_lock);
5803 ret = btrfs_commit_transaction(trans);
5805 mnt_drop_write_file(file);
5810 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5812 struct btrfs_ioctl_send_args *arg;
5816 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5817 struct btrfs_ioctl_send_args_32 args32;
5819 ret = copy_from_user(&args32, argp, sizeof(args32));
5822 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5825 arg->send_fd = args32.send_fd;
5826 arg->clone_sources_count = args32.clone_sources_count;
5827 arg->clone_sources = compat_ptr(args32.clone_sources);
5828 arg->parent_root = args32.parent_root;
5829 arg->flags = args32.flags;
5830 memcpy(arg->reserved, args32.reserved,
5831 sizeof(args32.reserved));
5836 arg = memdup_user(argp, sizeof(*arg));
5838 return PTR_ERR(arg);
5840 ret = btrfs_ioctl_send(file, arg);
5845 long btrfs_ioctl(struct file *file, unsigned int
5846 cmd, unsigned long arg)
5848 struct inode *inode = file_inode(file);
5849 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5850 struct btrfs_root *root = BTRFS_I(inode)->root;
5851 void __user *argp = (void __user *)arg;
5854 case FS_IOC_GETFLAGS:
5855 return btrfs_ioctl_getflags(file, argp);
5856 case FS_IOC_SETFLAGS:
5857 return btrfs_ioctl_setflags(file, argp);
5858 case FS_IOC_GETVERSION:
5859 return btrfs_ioctl_getversion(file, argp);
5861 return btrfs_ioctl_fitrim(file, argp);
5862 case BTRFS_IOC_SNAP_CREATE:
5863 return btrfs_ioctl_snap_create(file, argp, 0);
5864 case BTRFS_IOC_SNAP_CREATE_V2:
5865 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5866 case BTRFS_IOC_SUBVOL_CREATE:
5867 return btrfs_ioctl_snap_create(file, argp, 1);
5868 case BTRFS_IOC_SUBVOL_CREATE_V2:
5869 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5870 case BTRFS_IOC_SNAP_DESTROY:
5871 return btrfs_ioctl_snap_destroy(file, argp);
5872 case BTRFS_IOC_SUBVOL_GETFLAGS:
5873 return btrfs_ioctl_subvol_getflags(file, argp);
5874 case BTRFS_IOC_SUBVOL_SETFLAGS:
5875 return btrfs_ioctl_subvol_setflags(file, argp);
5876 case BTRFS_IOC_DEFAULT_SUBVOL:
5877 return btrfs_ioctl_default_subvol(file, argp);
5878 case BTRFS_IOC_DEFRAG:
5879 return btrfs_ioctl_defrag(file, NULL);
5880 case BTRFS_IOC_DEFRAG_RANGE:
5881 return btrfs_ioctl_defrag(file, argp);
5882 case BTRFS_IOC_RESIZE:
5883 return btrfs_ioctl_resize(file, argp);
5884 case BTRFS_IOC_ADD_DEV:
5885 return btrfs_ioctl_add_dev(fs_info, argp);
5886 case BTRFS_IOC_RM_DEV:
5887 return btrfs_ioctl_rm_dev(file, argp);
5888 case BTRFS_IOC_RM_DEV_V2:
5889 return btrfs_ioctl_rm_dev_v2(file, argp);
5890 case BTRFS_IOC_FS_INFO:
5891 return btrfs_ioctl_fs_info(fs_info, argp);
5892 case BTRFS_IOC_DEV_INFO:
5893 return btrfs_ioctl_dev_info(fs_info, argp);
5894 case BTRFS_IOC_BALANCE:
5895 return btrfs_ioctl_balance(file, NULL);
5896 case BTRFS_IOC_TREE_SEARCH:
5897 return btrfs_ioctl_tree_search(file, argp);
5898 case BTRFS_IOC_TREE_SEARCH_V2:
5899 return btrfs_ioctl_tree_search_v2(file, argp);
5900 case BTRFS_IOC_INO_LOOKUP:
5901 return btrfs_ioctl_ino_lookup(file, argp);
5902 case BTRFS_IOC_INO_PATHS:
5903 return btrfs_ioctl_ino_to_path(root, argp);
5904 case BTRFS_IOC_LOGICAL_INO:
5905 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5906 case BTRFS_IOC_LOGICAL_INO_V2:
5907 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5908 case BTRFS_IOC_SPACE_INFO:
5909 return btrfs_ioctl_space_info(fs_info, argp);
5910 case BTRFS_IOC_SYNC: {
5913 ret = btrfs_start_delalloc_roots(fs_info, -1);
5916 ret = btrfs_sync_fs(inode->i_sb, 1);
5918 * The transaction thread may want to do more work,
5919 * namely it pokes the cleaner kthread that will start
5920 * processing uncleaned subvols.
5922 wake_up_process(fs_info->transaction_kthread);
5925 case BTRFS_IOC_START_SYNC:
5926 return btrfs_ioctl_start_sync(root, argp);
5927 case BTRFS_IOC_WAIT_SYNC:
5928 return btrfs_ioctl_wait_sync(fs_info, argp);
5929 case BTRFS_IOC_SCRUB:
5930 return btrfs_ioctl_scrub(file, argp);
5931 case BTRFS_IOC_SCRUB_CANCEL:
5932 return btrfs_ioctl_scrub_cancel(fs_info);
5933 case BTRFS_IOC_SCRUB_PROGRESS:
5934 return btrfs_ioctl_scrub_progress(fs_info, argp);
5935 case BTRFS_IOC_BALANCE_V2:
5936 return btrfs_ioctl_balance(file, argp);
5937 case BTRFS_IOC_BALANCE_CTL:
5938 return btrfs_ioctl_balance_ctl(fs_info, arg);
5939 case BTRFS_IOC_BALANCE_PROGRESS:
5940 return btrfs_ioctl_balance_progress(fs_info, argp);
5941 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5942 return btrfs_ioctl_set_received_subvol(file, argp);
5944 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5945 return btrfs_ioctl_set_received_subvol_32(file, argp);
5947 case BTRFS_IOC_SEND:
5948 return _btrfs_ioctl_send(file, argp, false);
5949 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5950 case BTRFS_IOC_SEND_32:
5951 return _btrfs_ioctl_send(file, argp, true);
5953 case BTRFS_IOC_GET_DEV_STATS:
5954 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5955 case BTRFS_IOC_QUOTA_CTL:
5956 return btrfs_ioctl_quota_ctl(file, argp);
5957 case BTRFS_IOC_QGROUP_ASSIGN:
5958 return btrfs_ioctl_qgroup_assign(file, argp);
5959 case BTRFS_IOC_QGROUP_CREATE:
5960 return btrfs_ioctl_qgroup_create(file, argp);
5961 case BTRFS_IOC_QGROUP_LIMIT:
5962 return btrfs_ioctl_qgroup_limit(file, argp);
5963 case BTRFS_IOC_QUOTA_RESCAN:
5964 return btrfs_ioctl_quota_rescan(file, argp);
5965 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5966 return btrfs_ioctl_quota_rescan_status(file, argp);
5967 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5968 return btrfs_ioctl_quota_rescan_wait(file, argp);
5969 case BTRFS_IOC_DEV_REPLACE:
5970 return btrfs_ioctl_dev_replace(fs_info, argp);
5971 case BTRFS_IOC_GET_FSLABEL:
5972 return btrfs_ioctl_get_fslabel(file, argp);
5973 case BTRFS_IOC_SET_FSLABEL:
5974 return btrfs_ioctl_set_fslabel(file, argp);
5975 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5976 return btrfs_ioctl_get_supported_features(argp);
5977 case BTRFS_IOC_GET_FEATURES:
5978 return btrfs_ioctl_get_features(file, argp);
5979 case BTRFS_IOC_SET_FEATURES:
5980 return btrfs_ioctl_set_features(file, argp);
5981 case FS_IOC_FSGETXATTR:
5982 return btrfs_ioctl_fsgetxattr(file, argp);
5983 case FS_IOC_FSSETXATTR:
5984 return btrfs_ioctl_fssetxattr(file, argp);
5985 case BTRFS_IOC_GET_SUBVOL_INFO:
5986 return btrfs_ioctl_get_subvol_info(file, argp);
5987 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5988 return btrfs_ioctl_get_subvol_rootref(file, argp);
5989 case BTRFS_IOC_INO_LOOKUP_USER:
5990 return btrfs_ioctl_ino_lookup_user(file, argp);
5996 #ifdef CONFIG_COMPAT
5997 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6000 * These all access 32-bit values anyway so no further
6001 * handling is necessary.
6004 case FS_IOC32_GETFLAGS:
6005 cmd = FS_IOC_GETFLAGS;
6007 case FS_IOC32_SETFLAGS:
6008 cmd = FS_IOC_SETFLAGS;
6010 case FS_IOC32_GETVERSION:
6011 cmd = FS_IOC_GETVERSION;
6015 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));