1 // SPDX-License-Identifier: GPL-2.0-only
5 * ARM performance counter support.
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
10 * This code is based on the sparc64 perf event code, which is in turn based
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
29 static int armpmu_count_irq_users(const int irq);
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
39 free_irq(irq, per_cpu_ptr(devid, cpu));
42 static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
53 static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 return GENMASK_ULL(62, 0);
114 else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 return GENMASK_ULL(46, 0);
117 return GENMASK_ULL(31, 0);
121 armpmu_map_cache_event(const unsigned (*cache_map)
122 [PERF_COUNT_HW_CACHE_MAX]
123 [PERF_COUNT_HW_CACHE_OP_MAX]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX],
127 unsigned int cache_type, cache_op, cache_result, ret;
129 cache_type = (config >> 0) & 0xff;
130 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
133 cache_op = (config >> 8) & 0xff;
134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
137 cache_result = (config >> 16) & 0xff;
138 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
144 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
146 if (ret == CACHE_OP_UNSUPPORTED)
153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
157 if (config >= PERF_COUNT_HW_MAX)
163 mapping = (*event_map)[config];
164 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
170 return (int)(config & raw_event_mask);
174 armpmu_map_event(struct perf_event *event,
175 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 const unsigned (*cache_map)
177 [PERF_COUNT_HW_CACHE_MAX]
178 [PERF_COUNT_HW_CACHE_OP_MAX]
179 [PERF_COUNT_HW_CACHE_RESULT_MAX],
182 u64 config = event->attr.config;
183 int type = event->attr.type;
185 if (type == event->pmu->type)
186 return armpmu_map_raw_event(raw_event_mask, config);
189 case PERF_TYPE_HARDWARE:
190 return armpmu_map_hw_event(event_map, config);
191 case PERF_TYPE_HW_CACHE:
192 return armpmu_map_cache_event(cache_map, config);
194 return armpmu_map_raw_event(raw_event_mask, config);
200 int armpmu_event_set_period(struct perf_event *event)
202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 struct hw_perf_event *hwc = &event->hw;
204 s64 left = local64_read(&hwc->period_left);
205 s64 period = hwc->sample_period;
209 max_period = arm_pmu_event_max_period(event);
210 if (unlikely(left <= -period)) {
212 local64_set(&hwc->period_left, left);
213 hwc->last_period = period;
217 if (unlikely(left <= 0)) {
219 local64_set(&hwc->period_left, left);
220 hwc->last_period = period;
225 * Limit the maximum period to prevent the counter value
226 * from overtaking the one we are about to program. In
227 * effect we are reducing max_period to account for
228 * interrupt latency (and we are being very conservative).
230 if (left > (max_period >> 1))
231 left = (max_period >> 1);
233 local64_set(&hwc->prev_count, (u64)-left);
235 armpmu->write_counter(event, (u64)(-left) & max_period);
237 perf_event_update_userpage(event);
242 u64 armpmu_event_update(struct perf_event *event)
244 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 struct hw_perf_event *hwc = &event->hw;
246 u64 delta, prev_raw_count, new_raw_count;
247 u64 max_period = arm_pmu_event_max_period(event);
250 prev_raw_count = local64_read(&hwc->prev_count);
251 new_raw_count = armpmu->read_counter(event);
253 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 new_raw_count) != prev_raw_count)
257 delta = (new_raw_count - prev_raw_count) & max_period;
259 local64_add(delta, &event->count);
260 local64_sub(delta, &hwc->period_left);
262 return new_raw_count;
266 armpmu_read(struct perf_event *event)
268 armpmu_event_update(event);
272 armpmu_stop(struct perf_event *event, int flags)
274 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 struct hw_perf_event *hwc = &event->hw;
278 * ARM pmu always has to update the counter, so ignore
279 * PERF_EF_UPDATE, see comments in armpmu_start().
281 if (!(hwc->state & PERF_HES_STOPPED)) {
282 armpmu->disable(event);
283 armpmu_event_update(event);
284 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
288 static void armpmu_start(struct perf_event *event, int flags)
290 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 struct hw_perf_event *hwc = &event->hw;
294 * ARM pmu always has to reprogram the period, so ignore
295 * PERF_EF_RELOAD, see the comment below.
297 if (flags & PERF_EF_RELOAD)
298 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
302 * Set the period again. Some counters can't be stopped, so when we
303 * were stopped we simply disabled the IRQ source and the counter
304 * may have been left counting. If we don't do this step then we may
305 * get an interrupt too soon or *way* too late if the overflow has
306 * happened since disabling.
308 armpmu_event_set_period(event);
309 armpmu->enable(event);
313 armpmu_del(struct perf_event *event, int flags)
315 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 struct hw_perf_event *hwc = &event->hw;
320 armpmu_stop(event, PERF_EF_UPDATE);
321 hw_events->events[idx] = NULL;
322 armpmu->clear_event_idx(hw_events, event);
323 perf_event_update_userpage(event);
324 /* Clear the allocated counter */
329 armpmu_add(struct perf_event *event, int flags)
331 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 struct hw_perf_event *hwc = &event->hw;
336 /* An event following a process won't be stopped earlier */
337 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
340 /* If we don't have a space for the counter then finish early. */
341 idx = armpmu->get_event_idx(hw_events, event);
346 * If there is an event in the counter we are going to use then make
347 * sure it is disabled.
350 armpmu->disable(event);
351 hw_events->events[idx] = event;
353 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354 if (flags & PERF_EF_START)
355 armpmu_start(event, PERF_EF_RELOAD);
357 /* Propagate our changes to the userspace mapping. */
358 perf_event_update_userpage(event);
364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365 struct perf_event *event)
367 struct arm_pmu *armpmu;
369 if (is_software_event(event))
373 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374 * core perf code won't check that the pmu->ctx == leader->ctx
375 * until after pmu->event_init(event).
377 if (event->pmu != pmu)
380 if (event->state < PERF_EVENT_STATE_OFF)
383 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
386 armpmu = to_arm_pmu(event->pmu);
387 return armpmu->get_event_idx(hw_events, event) >= 0;
391 validate_group(struct perf_event *event)
393 struct perf_event *sibling, *leader = event->group_leader;
394 struct pmu_hw_events fake_pmu;
397 * Initialise the fake PMU. We only need to populate the
398 * used_mask for the purposes of validation.
400 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
402 if (!validate_event(event->pmu, &fake_pmu, leader))
408 for_each_sibling_event(sibling, leader) {
409 if (!validate_event(event->pmu, &fake_pmu, sibling))
413 if (!validate_event(event->pmu, &fake_pmu, event))
419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
421 struct arm_pmu *armpmu;
423 u64 start_clock, finish_clock;
426 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428 * do any necessary shifting, we just need to perform the first
431 armpmu = *(void **)dev;
432 if (WARN_ON_ONCE(!armpmu))
435 start_clock = sched_clock();
436 ret = armpmu->handle_irq(armpmu);
437 finish_clock = sched_clock();
439 perf_sample_event_took(finish_clock - start_clock);
444 __hw_perf_event_init(struct perf_event *event)
446 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447 struct hw_perf_event *hwc = &event->hw;
451 mapping = armpmu->map_event(event);
454 pr_debug("event %x:%llx not supported\n", event->attr.type,
460 * We don't assign an index until we actually place the event onto
461 * hardware. Use -1 to signify that we haven't decided where to put it
462 * yet. For SMP systems, each core has it's own PMU so we can't do any
463 * clever allocation or constraints checking at this point.
466 hwc->config_base = 0;
471 * Check whether we need to exclude the counter from certain modes.
473 if (armpmu->set_event_filter &&
474 armpmu->set_event_filter(hwc, &event->attr)) {
475 pr_debug("ARM performance counters do not support "
481 * Store the event encoding into the config_base field.
483 hwc->config_base |= (unsigned long)mapping;
485 if (!is_sampling_event(event)) {
487 * For non-sampling runs, limit the sample_period to half
488 * of the counter width. That way, the new counter value
489 * is far less likely to overtake the previous one unless
490 * you have some serious IRQ latency issues.
492 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
493 hwc->last_period = hwc->sample_period;
494 local64_set(&hwc->period_left, hwc->sample_period);
497 return validate_group(event);
500 static int armpmu_event_init(struct perf_event *event)
502 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
505 * Reject CPU-affine events for CPUs that are of a different class to
506 * that which this PMU handles. Process-following events (where
507 * event->cpu == -1) can be migrated between CPUs, and thus we have to
508 * reject them later (in armpmu_add) if they're scheduled on a
509 * different class of CPU.
511 if (event->cpu != -1 &&
512 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
515 /* does not support taken branch sampling */
516 if (has_branch_stack(event))
519 return __hw_perf_event_init(event);
522 static void armpmu_enable(struct pmu *pmu)
524 struct arm_pmu *armpmu = to_arm_pmu(pmu);
525 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
526 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
528 /* For task-bound events we may be called on other CPUs */
529 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
533 armpmu->start(armpmu);
536 static void armpmu_disable(struct pmu *pmu)
538 struct arm_pmu *armpmu = to_arm_pmu(pmu);
540 /* For task-bound events we may be called on other CPUs */
541 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
544 armpmu->stop(armpmu);
548 * In heterogeneous systems, events are specific to a particular
549 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
550 * the same microarchitecture.
552 static bool armpmu_filter(struct pmu *pmu, int cpu)
554 struct arm_pmu *armpmu = to_arm_pmu(pmu);
555 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558 static ssize_t cpus_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
561 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
562 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
565 static DEVICE_ATTR_RO(cpus);
567 static struct attribute *armpmu_common_attrs[] = {
572 static const struct attribute_group armpmu_common_attr_group = {
573 .attrs = armpmu_common_attrs,
576 static int armpmu_count_irq_users(const int irq)
580 for_each_possible_cpu(cpu) {
581 if (per_cpu(cpu_irq, cpu) == irq)
588 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
590 const struct pmu_irq_ops *ops = NULL;
593 for_each_possible_cpu(cpu) {
594 if (per_cpu(cpu_irq, cpu) != irq)
597 ops = per_cpu(cpu_irq_ops, cpu);
605 void armpmu_free_irq(int irq, int cpu)
607 if (per_cpu(cpu_irq, cpu) == 0)
609 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
612 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
614 per_cpu(cpu_irq, cpu) = 0;
615 per_cpu(cpu_irq_ops, cpu) = NULL;
618 int armpmu_request_irq(int irq, int cpu)
621 const irq_handler_t handler = armpmu_dispatch_irq;
622 const struct pmu_irq_ops *irq_ops;
627 if (!irq_is_percpu_devid(irq)) {
628 unsigned long irq_flags;
630 err = irq_force_affinity(irq, cpumask_of(cpu));
632 if (err && num_possible_cpus() > 1) {
633 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
638 irq_flags = IRQF_PERCPU |
639 IRQF_NOBALANCING | IRQF_NO_AUTOEN |
642 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
643 per_cpu_ptr(&cpu_armpmu, cpu));
645 /* If cannot get an NMI, get a normal interrupt */
647 err = request_irq(irq, handler, irq_flags, "arm-pmu",
648 per_cpu_ptr(&cpu_armpmu, cpu));
649 irq_ops = &pmuirq_ops;
652 irq_ops = &pmunmi_ops;
654 } else if (armpmu_count_irq_users(irq) == 0) {
655 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
657 /* If cannot get an NMI, get a normal interrupt */
659 err = request_percpu_irq(irq, handler, "arm-pmu",
661 irq_ops = &percpu_pmuirq_ops;
664 irq_ops = &percpu_pmunmi_ops;
667 /* Per cpudevid irq was already requested by another CPU */
668 irq_ops = armpmu_find_irq_ops(irq);
670 if (WARN_ON(!irq_ops))
677 per_cpu(cpu_irq, cpu) = irq;
678 per_cpu(cpu_irq_ops, cpu) = irq_ops;
682 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
686 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
688 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
689 return per_cpu(hw_events->irq, cpu);
692 bool arm_pmu_irq_is_nmi(void)
698 * PMU hardware loses all context when a CPU goes offline.
699 * When a CPU is hotplugged back in, since some hardware registers are
700 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
701 * junk values out of them.
703 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
705 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
708 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
713 per_cpu(cpu_armpmu, cpu) = pmu;
715 irq = armpmu_get_cpu_irq(pmu, cpu);
717 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
722 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
724 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
727 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
730 irq = armpmu_get_cpu_irq(pmu, cpu);
732 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
734 per_cpu(cpu_armpmu, cpu) = NULL;
740 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
742 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
743 struct perf_event *event;
746 for (idx = 0; idx < armpmu->num_events; idx++) {
747 event = hw_events->events[idx];
754 * Stop and update the counter
756 armpmu_stop(event, PERF_EF_UPDATE);
759 case CPU_PM_ENTER_FAILED:
761 * Restore and enable the counter.
763 armpmu_start(event, PERF_EF_RELOAD);
771 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
774 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
775 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
776 bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
778 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
782 * Always reset the PMU registers on power-up even if
783 * there are no events running.
785 if (cmd == CPU_PM_EXIT && armpmu->reset)
786 armpmu->reset(armpmu);
793 armpmu->stop(armpmu);
794 cpu_pm_pmu_setup(armpmu, cmd);
797 case CPU_PM_ENTER_FAILED:
798 cpu_pm_pmu_setup(armpmu, cmd);
799 armpmu->start(armpmu);
808 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
810 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
811 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
814 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
816 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
819 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
820 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
823 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
827 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
832 err = cpu_pm_pmu_register(cpu_pmu);
839 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
845 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
847 cpu_pm_pmu_unregister(cpu_pmu);
848 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
852 struct arm_pmu *armpmu_alloc(void)
857 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
861 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
862 if (!pmu->hw_events) {
863 pr_info("failed to allocate per-cpu PMU data.\n");
867 pmu->pmu = (struct pmu) {
868 .pmu_enable = armpmu_enable,
869 .pmu_disable = armpmu_disable,
870 .event_init = armpmu_event_init,
873 .start = armpmu_start,
876 .filter = armpmu_filter,
877 .attr_groups = pmu->attr_groups,
879 * This is a CPU PMU potentially in a heterogeneous
880 * configuration (e.g. big.LITTLE) so
881 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
882 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
885 .capabilities = PERF_PMU_CAP_EXTENDED_REGS |
886 PERF_PMU_CAP_EXTENDED_HW_TYPE,
889 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
890 &armpmu_common_attr_group;
892 for_each_possible_cpu(cpu) {
893 struct pmu_hw_events *events;
895 events = per_cpu_ptr(pmu->hw_events, cpu);
896 raw_spin_lock_init(&events->pmu_lock);
897 events->percpu_pmu = pmu;
908 void armpmu_free(struct arm_pmu *pmu)
910 free_percpu(pmu->hw_events);
914 int armpmu_register(struct arm_pmu *pmu)
918 ret = cpu_pmu_init(pmu);
922 if (!pmu->set_event_filter)
923 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
925 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
929 pr_info("enabled with %s PMU driver, %d counters available%s\n",
930 pmu->name, pmu->num_events,
931 has_nmi ? ", using NMIs" : "");
933 kvm_host_pmu_init(pmu);
938 cpu_pmu_destroy(pmu);
942 static int arm_pmu_hp_init(void)
946 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
947 "perf/arm/pmu:starting",
948 arm_perf_starting_cpu,
949 arm_perf_teardown_cpu);
951 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
955 subsys_initcall(arm_pmu_hp_init);