1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
7 * Thanks to Essential Communication for providing us with hardware
8 * and very comprehensive documentation without which I would not have
9 * been able to write this driver. A special thank you to John Gibbon
10 * for sorting out the legal issues, with the NDA, allowing the code to
11 * be released under the GPL.
13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14 * stupid bugs in my code.
16 * Softnet support and various other patches from Val Henson of
19 * PCI DMA mapping code partly based on work by Francois Romieu.
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
38 #include <linux/slab.h>
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
45 #include <linux/uaccess.h>
47 #define rr_if_busy(dev) netif_queue_stopped(dev)
48 #define rr_if_running(dev) netif_running(dev)
52 #define RUN_AT(x) (jiffies + (x))
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
59 static const char version[] =
63 static const struct net_device_ops rr_netdev_ops = {
66 .ndo_siocdevprivate = rr_siocdevprivate,
67 .ndo_start_xmit = rr_start_xmit,
68 .ndo_set_mac_address = hippi_mac_addr,
72 * Implementation notes:
74 * The DMA engine only allows for DMA within physical 64KB chunks of
75 * memory. The current approach of the driver (and stack) is to use
76 * linear blocks of memory for the skbuffs. However, as the data block
77 * is always the first part of the skb and skbs are 2^n aligned so we
78 * are guarantted to get the whole block within one 64KB align 64KB
81 * On the long term, relying on being able to allocate 64KB linear
82 * chunks of memory is not feasible and the skb handling code and the
83 * stack will need to know about I/O vectors or something similar.
86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
88 struct net_device *dev;
89 static int version_disp;
91 struct rr_private *rrpriv;
96 dev = alloc_hippi_dev(sizeof(struct rr_private));
100 ret = pci_enable_device(pdev);
106 rrpriv = netdev_priv(dev);
108 SET_NETDEV_DEV(dev, &pdev->dev);
110 ret = pci_request_regions(pdev, "rrunner");
114 pci_set_drvdata(pdev, dev);
116 rrpriv->pci_dev = pdev;
118 spin_lock_init(&rrpriv->lock);
120 dev->netdev_ops = &rr_netdev_ops;
122 /* display version info if adapter is found */
124 /* set display flag to TRUE so that */
125 /* we only display this string ONCE */
130 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131 if (pci_latency <= 0x58){
133 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
136 pci_set_master(pdev);
138 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139 "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140 (unsigned long long)pci_resource_start(pdev, 0),
141 pdev->irq, pci_latency);
144 * Remap the MMIO regs into kernel space.
146 rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
148 printk(KERN_ERR "%s: Unable to map I/O register, "
149 "RoadRunner will be disabled.\n", dev->name);
154 tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
156 rrpriv->tx_ring = tmpptr;
157 rrpriv->tx_ring_dma = ring_dma;
164 tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
166 rrpriv->rx_ring = tmpptr;
167 rrpriv->rx_ring_dma = ring_dma;
174 tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
176 rrpriv->evt_ring = tmpptr;
177 rrpriv->evt_ring_dma = ring_dma;
185 * Don't access any register before this point!
188 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189 &rrpriv->regs->HostCtrl);
192 * Need to add a case for little-endian 64-bit hosts here.
197 ret = register_netdev(dev);
203 if (rrpriv->evt_ring)
204 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205 rrpriv->evt_ring_dma);
207 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
210 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
213 pci_iounmap(pdev, rrpriv->regs);
215 pci_release_regions(pdev);
216 pci_disable_device(pdev);
223 static void rr_remove_one(struct pci_dev *pdev)
225 struct net_device *dev = pci_get_drvdata(pdev);
226 struct rr_private *rr = netdev_priv(dev);
228 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
229 printk(KERN_ERR "%s: trying to unload running NIC\n",
231 writel(HALT_NIC, &rr->regs->HostCtrl);
234 unregister_netdev(dev);
235 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
237 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
239 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
241 pci_iounmap(pdev, rr->regs);
242 pci_release_regions(pdev);
243 pci_disable_device(pdev);
249 * Commands are considered to be slow, thus there is no reason to
252 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
254 struct rr_regs __iomem *regs;
259 * This is temporary - it will go away in the final version.
260 * We probably also want to make this function inline.
262 if (readl(®s->HostCtrl) & NIC_HALTED){
263 printk("issuing command for halted NIC, code 0x%x, "
264 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
265 if (readl(®s->Mode) & FATAL_ERR)
266 printk("error codes Fail1 %02x, Fail2 %02x\n",
267 readl(®s->Fail1), readl(®s->Fail2));
270 idx = rrpriv->info->cmd_ctrl.pi;
272 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
275 idx = (idx - 1) % CMD_RING_ENTRIES;
276 rrpriv->info->cmd_ctrl.pi = idx;
279 if (readl(®s->Mode) & FATAL_ERR)
280 printk("error code %02x\n", readl(®s->Fail1));
285 * Reset the board in a sensible manner. The NIC is already halted
286 * when we get here and a spin-lock is held.
288 static int rr_reset(struct net_device *dev)
290 struct rr_private *rrpriv;
291 struct rr_regs __iomem *regs;
295 rrpriv = netdev_priv(dev);
298 rr_load_firmware(dev);
300 writel(0x01000000, ®s->TX_state);
301 writel(0xff800000, ®s->RX_state);
302 writel(0, ®s->AssistState);
303 writel(CLEAR_INTA, ®s->LocalCtrl);
304 writel(0x01, ®s->BrkPt);
305 writel(0, ®s->Timer);
306 writel(0, ®s->TimerRef);
307 writel(RESET_DMA, ®s->DmaReadState);
308 writel(RESET_DMA, ®s->DmaWriteState);
309 writel(0, ®s->DmaWriteHostHi);
310 writel(0, ®s->DmaWriteHostLo);
311 writel(0, ®s->DmaReadHostHi);
312 writel(0, ®s->DmaReadHostLo);
313 writel(0, ®s->DmaReadLen);
314 writel(0, ®s->DmaWriteLen);
315 writel(0, ®s->DmaWriteLcl);
316 writel(0, ®s->DmaWriteIPchecksum);
317 writel(0, ®s->DmaReadLcl);
318 writel(0, ®s->DmaReadIPchecksum);
319 writel(0, ®s->PciState);
320 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
321 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
322 #elif (BITS_PER_LONG == 64)
323 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
325 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
330 * Don't worry, this is just black magic.
332 writel(0xdf000, ®s->RxBase);
333 writel(0xdf000, ®s->RxPrd);
334 writel(0xdf000, ®s->RxCon);
335 writel(0xce000, ®s->TxBase);
336 writel(0xce000, ®s->TxPrd);
337 writel(0xce000, ®s->TxCon);
338 writel(0, ®s->RxIndPro);
339 writel(0, ®s->RxIndCon);
340 writel(0, ®s->RxIndRef);
341 writel(0, ®s->TxIndPro);
342 writel(0, ®s->TxIndCon);
343 writel(0, ®s->TxIndRef);
344 writel(0xcc000, ®s->pad10[0]);
345 writel(0, ®s->DrCmndPro);
346 writel(0, ®s->DrCmndCon);
347 writel(0, ®s->DwCmndPro);
348 writel(0, ®s->DwCmndCon);
349 writel(0, ®s->DwCmndRef);
350 writel(0, ®s->DrDataPro);
351 writel(0, ®s->DrDataCon);
352 writel(0, ®s->DrDataRef);
353 writel(0, ®s->DwDataPro);
354 writel(0, ®s->DwDataCon);
355 writel(0, ®s->DwDataRef);
358 writel(0xffffffff, ®s->MbEvent);
359 writel(0, ®s->Event);
361 writel(0, ®s->TxPi);
362 writel(0, ®s->IpRxPi);
364 writel(0, ®s->EvtCon);
365 writel(0, ®s->EvtPrd);
367 rrpriv->info->evt_ctrl.pi = 0;
369 for (i = 0; i < CMD_RING_ENTRIES; i++)
370 writel(0, ®s->CmdRing[i]);
373 * Why 32 ? is this not cache line size dependent?
375 writel(RBURST_64|WBURST_64, ®s->PciState);
378 start_pc = rr_read_eeprom_word(rrpriv,
379 offsetof(struct eeprom, rncd_info.FwStart));
382 printk("%s: Executing firmware at address 0x%06x\n",
383 dev->name, start_pc);
386 writel(start_pc + 0x800, ®s->Pc);
390 writel(start_pc, ®s->Pc);
398 * Read a string from the EEPROM.
400 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
401 unsigned long offset,
403 unsigned long length)
405 struct rr_regs __iomem *regs = rrpriv->regs;
406 u32 misc, io, host, i;
408 io = readl(®s->ExtIo);
409 writel(0, ®s->ExtIo);
410 misc = readl(®s->LocalCtrl);
411 writel(0, ®s->LocalCtrl);
412 host = readl(®s->HostCtrl);
413 writel(host | HALT_NIC, ®s->HostCtrl);
416 for (i = 0; i < length; i++){
417 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
419 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
423 writel(host, ®s->HostCtrl);
424 writel(misc, ®s->LocalCtrl);
425 writel(io, ®s->ExtIo);
432 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
433 * it to our CPU byte-order.
435 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
440 if ((rr_read_eeprom(rrpriv, offset,
441 (unsigned char *)&word, 4) == 4))
442 return be32_to_cpu(word);
448 * Write a string to the EEPROM.
450 * This is only called when the firmware is not running.
452 static unsigned int write_eeprom(struct rr_private *rrpriv,
453 unsigned long offset,
455 unsigned long length)
457 struct rr_regs __iomem *regs = rrpriv->regs;
458 u32 misc, io, data, i, j, ready, error = 0;
460 io = readl(®s->ExtIo);
461 writel(0, ®s->ExtIo);
462 misc = readl(®s->LocalCtrl);
463 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
466 for (i = 0; i < length; i++){
467 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
471 * Only try to write the data if it is not the same
474 if ((readl(®s->WinData) & 0xff000000) != data){
475 writel(data, ®s->WinData);
481 if ((readl(®s->WinData) & 0xff000000) ==
486 printk("data mismatch: %08x, "
487 "WinData %08x\n", data,
488 readl(®s->WinData));
496 writel(misc, ®s->LocalCtrl);
497 writel(io, ®s->ExtIo);
504 static int rr_init(struct net_device *dev)
506 u8 addr[HIPPI_ALEN] __aligned(4);
507 struct rr_private *rrpriv;
508 struct rr_regs __iomem *regs;
511 rrpriv = netdev_priv(dev);
514 rev = readl(®s->FwRev);
515 rrpriv->fw_rev = rev;
516 if (rev > 0x00020024)
517 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
518 ((rev >> 8) & 0xff), (rev & 0xff));
519 else if (rev >= 0x00020000) {
520 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
521 "later is recommended)\n", (rev >> 16),
522 ((rev >> 8) & 0xff), (rev & 0xff));
524 printk(" Firmware revision too old: %i.%i.%i, please "
525 "upgrade to 2.0.37 or later.\n",
526 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
530 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
534 * Read the hardware address from the eeprom. The HW address
535 * is not really necessary for HIPPI but awfully convenient.
536 * The pointer arithmetic to put it in dev_addr is ugly, but
537 * Donald Becker does it this way for the GigE version of this
538 * card and it's shorter and more portable than any
539 * other method I've seen. -VAL
543 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
544 *(__be32 *)(addr+2) =
545 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
546 dev_addr_set(dev, addr);
548 printk(" MAC: %pM\n", dev->dev_addr);
550 sram_size = rr_read_eeprom_word(rrpriv, 8);
551 printk(" SRAM size 0x%06x\n", sram_size);
557 static int rr_init1(struct net_device *dev)
559 struct rr_private *rrpriv;
560 struct rr_regs __iomem *regs;
561 unsigned long myjif, flags;
567 rrpriv = netdev_priv(dev);
570 spin_lock_irqsave(&rrpriv->lock, flags);
572 hostctrl = readl(®s->HostCtrl);
573 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
576 if (hostctrl & PARITY_ERR){
577 printk("%s: Parity error halting NIC - this is serious!\n",
579 spin_unlock_irqrestore(&rrpriv->lock, flags);
584 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585 set_infoaddr(regs, rrpriv->info_dma);
587 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589 rrpriv->info->evt_ctrl.mode = 0;
590 rrpriv->info->evt_ctrl.pi = 0;
591 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
593 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595 rrpriv->info->cmd_ctrl.mode = 0;
596 rrpriv->info->cmd_ctrl.pi = 15;
598 for (i = 0; i < CMD_RING_ENTRIES; i++) {
599 writel(0, ®s->CmdRing[i]);
602 for (i = 0; i < TX_RING_ENTRIES; i++) {
603 rrpriv->tx_ring[i].size = 0;
604 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605 rrpriv->tx_skbuff[i] = NULL;
607 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609 rrpriv->info->tx_ctrl.mode = 0;
610 rrpriv->info->tx_ctrl.pi = 0;
611 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
614 * Set dirty_tx before we start receiving interrupts, otherwise
615 * the interrupt handler might think it is supposed to process
616 * tx ints before we are up and running, which may cause a null
617 * pointer access in the int handler.
621 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
626 writel(0x5000, ®s->ConRetry);
627 writel(0x100, ®s->ConRetryTmr);
628 writel(0x500000, ®s->ConTmout);
629 writel(0x60, ®s->IntrTmr);
630 writel(0x500000, ®s->TxDataMvTimeout);
631 writel(0x200000, ®s->RxDataMvTimeout);
632 writel(0x80, ®s->WriteDmaThresh);
633 writel(0x80, ®s->ReadDmaThresh);
635 rrpriv->fw_running = 0;
638 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639 writel(hostctrl, ®s->HostCtrl);
642 spin_unlock_irqrestore(&rrpriv->lock, flags);
644 for (i = 0; i < RX_RING_ENTRIES; i++) {
648 rrpriv->rx_ring[i].mode = 0;
649 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
651 printk(KERN_WARNING "%s: Unable to allocate memory "
652 "for receive ring - halting NIC\n", dev->name);
656 rrpriv->rx_skbuff[i] = skb;
657 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
658 dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
660 * Sanity test to see if we conflict with the DMA
661 * limitations of the Roadrunner.
663 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664 printk("skb alloc error\n");
666 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
670 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672 rrpriv->rx_ctrl[4].mode = 8;
673 rrpriv->rx_ctrl[4].pi = 0;
675 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
680 * Now start the FirmWare.
682 cmd.code = C_START_FW;
686 rr_issue_cmd(rrpriv, &cmd);
689 * Give the FirmWare time to chew on the `get running' command.
691 myjif = jiffies + 5 * HZ;
692 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
695 netif_start_queue(dev);
701 * We might have gotten here because we are out of memory,
702 * make sure we release everything we allocated before failing
704 for (i = 0; i < RX_RING_ENTRIES; i++) {
705 struct sk_buff *skb = rrpriv->rx_skbuff[i];
708 dma_unmap_single(&rrpriv->pci_dev->dev,
709 rrpriv->rx_ring[i].addr.addrlo,
710 dev->mtu + HIPPI_HLEN,
712 rrpriv->rx_ring[i].size = 0;
713 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
715 rrpriv->rx_skbuff[i] = NULL;
723 * All events are considered to be slow (RX/TX ints do not generate
724 * events) and are handled here, outside the main interrupt handler,
725 * to reduce the size of the handler.
727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
729 struct rr_private *rrpriv;
730 struct rr_regs __iomem *regs;
733 rrpriv = netdev_priv(dev);
736 while (prodidx != eidx){
737 switch (rrpriv->evt_ring[eidx].code){
739 tmp = readl(®s->FwRev);
740 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741 "up and running\n", dev->name,
742 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743 rrpriv->fw_running = 1;
744 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
748 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
751 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
754 printk(KERN_WARNING "%s: RX data not moving\n",
758 printk(KERN_INFO "%s: The watchdog is here to see "
762 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
764 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769 printk(KERN_ERR "%s: Host software error\n",
771 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
779 printk(KERN_WARNING "%s: Connection rejected\n",
781 dev->stats.tx_aborted_errors++;
784 printk(KERN_WARNING "%s: Connection timeout\n",
788 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
790 dev->stats.tx_aborted_errors++;
793 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
795 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
800 printk(KERN_WARNING "%s: Transmitter idle\n",
804 printk(KERN_WARNING "%s: Link lost during transmit\n",
806 dev->stats.tx_aborted_errors++;
807 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812 printk(KERN_ERR "%s: Invalid send ring block\n",
814 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819 printk(KERN_ERR "%s: Invalid send buffer address\n",
821 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 printk(KERN_ERR "%s: Invalid descriptor address\n",
828 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
836 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
840 printk(KERN_WARNING "%s: Receive parity error\n",
844 printk(KERN_WARNING "%s: Receive LLRC error\n",
848 printk(KERN_WARNING "%s: Receive packet length "
849 "error\n", dev->name);
852 printk(KERN_WARNING "%s: Data checksum error\n",
856 printk(KERN_WARNING "%s: Unexpected short burst "
857 "error\n", dev->name);
860 printk(KERN_WARNING "%s: Recv. state transition"
861 " error\n", dev->name);
864 printk(KERN_WARNING "%s: Unexpected data error\n",
868 printk(KERN_WARNING "%s: Link lost error\n",
872 printk(KERN_WARNING "%s: Framing Error\n",
876 printk(KERN_WARNING "%s: Flag sync. lost during "
877 "packet\n", dev->name);
880 printk(KERN_ERR "%s: Invalid receive buffer "
881 "address\n", dev->name);
882 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887 printk(KERN_ERR "%s: Invalid receive descriptor "
888 "address\n", dev->name);
889 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894 printk(KERN_ERR "%s: Invalid ring block\n",
896 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
901 /* Label packet to be dropped.
902 * Actual dropping occurs in rx
905 * The index of packet we get to drop is
906 * the index of the packet following
907 * the bad packet. -kbf
910 u16 index = rrpriv->evt_ring[eidx].index;
911 index = (index + (RX_RING_ENTRIES - 1)) %
913 rrpriv->rx_ring[index].mode |=
914 (PACKET_BAD | PACKET_END);
918 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919 dev->name, rrpriv->evt_ring[eidx].code);
921 eidx = (eidx + 1) % EVT_RING_ENTRIES;
924 rrpriv->info->evt_ctrl.pi = eidx;
930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
932 struct rr_private *rrpriv = netdev_priv(dev);
933 struct rr_regs __iomem *regs = rrpriv->regs;
936 struct rx_desc *desc;
939 desc = &(rrpriv->rx_ring[index]);
940 pkt_len = desc->size;
942 printk("index %i, rxlimit %i\n", index, rxlimit);
943 printk("len %x, mode %x\n", pkt_len, desc->mode);
945 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946 dev->stats.rx_dropped++;
951 struct sk_buff *skb, *rx_skb;
953 rx_skb = rrpriv->rx_skbuff[index];
955 if (pkt_len < PKT_COPY_THRESHOLD) {
956 skb = alloc_skb(pkt_len, GFP_ATOMIC);
958 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959 dev->stats.rx_dropped++;
962 dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
967 skb_put_data(skb, rx_skb->data,
970 dma_sync_single_for_device(&rrpriv->pci_dev->dev,
976 struct sk_buff *newskb;
978 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
983 dma_unmap_single(&rrpriv->pci_dev->dev,
985 dev->mtu + HIPPI_HLEN,
988 skb_put(skb, pkt_len);
989 rrpriv->rx_skbuff[index] = newskb;
990 addr = dma_map_single(&rrpriv->pci_dev->dev,
992 dev->mtu + HIPPI_HLEN,
994 set_rraddr(&desc->addr, addr);
996 printk("%s: Out of memory, deferring "
997 "packet\n", dev->name);
998 dev->stats.rx_dropped++;
1002 skb->protocol = hippi_type_trans(skb, dev);
1004 netif_rx(skb); /* send it up */
1006 dev->stats.rx_packets++;
1007 dev->stats.rx_bytes += pkt_len;
1011 desc->size = dev->mtu + HIPPI_HLEN;
1013 if ((index & 7) == 7)
1014 writel(index, ®s->IpRxPi);
1016 index = (index + 1) % RX_RING_ENTRIES;
1017 } while(index != rxlimit);
1019 rrpriv->cur_rx = index;
1024 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1026 struct rr_private *rrpriv;
1027 struct rr_regs __iomem *regs;
1028 struct net_device *dev = (struct net_device *)dev_id;
1029 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1031 rrpriv = netdev_priv(dev);
1032 regs = rrpriv->regs;
1034 if (!(readl(®s->HostCtrl) & RR_INT))
1037 spin_lock(&rrpriv->lock);
1039 prodidx = readl(®s->EvtPrd);
1040 txcsmr = (prodidx >> 8) & 0xff;
1041 rxlimit = (prodidx >> 16) & 0xff;
1045 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1046 prodidx, rrpriv->info->evt_ctrl.pi);
1049 * Order here is important. We must handle events
1050 * before doing anything else in order to catch
1051 * such things as LLRC errors, etc -kbf
1054 eidx = rrpriv->info->evt_ctrl.pi;
1055 if (prodidx != eidx)
1056 eidx = rr_handle_event(dev, prodidx, eidx);
1058 rxindex = rrpriv->cur_rx;
1059 if (rxindex != rxlimit)
1060 rx_int(dev, rxlimit, rxindex);
1062 txcon = rrpriv->dirty_tx;
1063 if (txcsmr != txcon) {
1065 /* Due to occational firmware TX producer/consumer out
1066 * of sync. error need to check entry in ring -kbf
1068 if(rrpriv->tx_skbuff[txcon]){
1069 struct tx_desc *desc;
1070 struct sk_buff *skb;
1072 desc = &(rrpriv->tx_ring[txcon]);
1073 skb = rrpriv->tx_skbuff[txcon];
1075 dev->stats.tx_packets++;
1076 dev->stats.tx_bytes += skb->len;
1078 dma_unmap_single(&rrpriv->pci_dev->dev,
1079 desc->addr.addrlo, skb->len,
1081 dev_kfree_skb_irq(skb);
1083 rrpriv->tx_skbuff[txcon] = NULL;
1085 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1088 txcon = (txcon + 1) % TX_RING_ENTRIES;
1089 } while (txcsmr != txcon);
1092 rrpriv->dirty_tx = txcon;
1093 if (rrpriv->tx_full && rr_if_busy(dev) &&
1094 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1095 != rrpriv->dirty_tx)){
1096 rrpriv->tx_full = 0;
1097 netif_wake_queue(dev);
1101 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1102 writel(eidx, ®s->EvtCon);
1105 spin_unlock(&rrpriv->lock);
1109 static inline void rr_raz_tx(struct rr_private *rrpriv,
1110 struct net_device *dev)
1114 for (i = 0; i < TX_RING_ENTRIES; i++) {
1115 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1118 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1120 dma_unmap_single(&rrpriv->pci_dev->dev,
1121 desc->addr.addrlo, skb->len,
1124 set_rraddr(&desc->addr, 0);
1126 rrpriv->tx_skbuff[i] = NULL;
1132 static inline void rr_raz_rx(struct rr_private *rrpriv,
1133 struct net_device *dev)
1137 for (i = 0; i < RX_RING_ENTRIES; i++) {
1138 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1141 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1143 dma_unmap_single(&rrpriv->pci_dev->dev,
1145 dev->mtu + HIPPI_HLEN,
1148 set_rraddr(&desc->addr, 0);
1150 rrpriv->rx_skbuff[i] = NULL;
1155 static void rr_timer(struct timer_list *t)
1157 struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1158 struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1159 struct rr_regs __iomem *regs = rrpriv->regs;
1160 unsigned long flags;
1162 if (readl(®s->HostCtrl) & NIC_HALTED){
1163 printk("%s: Restarting nic\n", dev->name);
1164 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1165 memset(rrpriv->info, 0, sizeof(struct rr_info));
1168 rr_raz_tx(rrpriv, dev);
1169 rr_raz_rx(rrpriv, dev);
1171 if (rr_init1(dev)) {
1172 spin_lock_irqsave(&rrpriv->lock, flags);
1173 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1175 spin_unlock_irqrestore(&rrpriv->lock, flags);
1178 rrpriv->timer.expires = RUN_AT(5*HZ);
1179 add_timer(&rrpriv->timer);
1183 static int rr_open(struct net_device *dev)
1185 struct rr_private *rrpriv = netdev_priv(dev);
1186 struct pci_dev *pdev = rrpriv->pci_dev;
1187 struct rr_regs __iomem *regs;
1189 unsigned long flags;
1190 dma_addr_t dma_addr;
1192 regs = rrpriv->regs;
1194 if (rrpriv->fw_rev < 0x00020000) {
1195 printk(KERN_WARNING "%s: trying to configure device with "
1196 "obsolete firmware\n", dev->name);
1201 rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1202 256 * sizeof(struct ring_ctrl),
1203 &dma_addr, GFP_KERNEL);
1204 if (!rrpriv->rx_ctrl) {
1208 rrpriv->rx_ctrl_dma = dma_addr;
1210 rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1211 &dma_addr, GFP_KERNEL);
1212 if (!rrpriv->info) {
1216 rrpriv->info_dma = dma_addr;
1219 spin_lock_irqsave(&rrpriv->lock, flags);
1220 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1221 readl(®s->HostCtrl);
1222 spin_unlock_irqrestore(&rrpriv->lock, flags);
1224 if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226 dev->name, pdev->irq);
1231 if ((ecode = rr_init1(dev)))
1234 /* Set the timer to switch to check for link beat and perhaps switch
1235 to an alternate media type. */
1236 timer_setup(&rrpriv->timer, rr_timer, 0);
1237 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1238 add_timer(&rrpriv->timer);
1240 netif_start_queue(dev);
1245 spin_lock_irqsave(&rrpriv->lock, flags);
1246 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1247 spin_unlock_irqrestore(&rrpriv->lock, flags);
1250 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1251 rrpriv->info, rrpriv->info_dma);
1252 rrpriv->info = NULL;
1254 if (rrpriv->rx_ctrl) {
1255 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1256 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257 rrpriv->rx_ctrl = NULL;
1260 netif_stop_queue(dev);
1266 static void rr_dump(struct net_device *dev)
1268 struct rr_private *rrpriv;
1269 struct rr_regs __iomem *regs;
1274 rrpriv = netdev_priv(dev);
1275 regs = rrpriv->regs;
1277 printk("%s: dumping NIC TX rings\n", dev->name);
1279 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280 readl(®s->RxPrd), readl(®s->TxPrd),
1281 readl(®s->EvtPrd), readl(®s->TxPi),
1282 rrpriv->info->tx_ctrl.pi);
1284 printk("Error code 0x%x\n", readl(®s->Fail1));
1286 index = (((readl(®s->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287 cons = rrpriv->dirty_tx;
1288 printk("TX ring index %i, TX consumer %i\n",
1291 if (rrpriv->tx_skbuff[index]){
1292 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294 for (i = 0; i < len; i++){
1297 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1302 if (rrpriv->tx_skbuff[cons]){
1303 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1306 rrpriv->tx_ring[cons].mode,
1307 rrpriv->tx_ring[cons].size,
1308 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309 rrpriv->tx_skbuff[cons]->data,
1310 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311 for (i = 0; i < len; i++){
1314 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1319 printk("dumping TX ring info:\n");
1320 for (i = 0; i < TX_RING_ENTRIES; i++)
1321 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322 rrpriv->tx_ring[i].mode,
1323 rrpriv->tx_ring[i].size,
1324 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1329 static int rr_close(struct net_device *dev)
1331 struct rr_private *rrpriv = netdev_priv(dev);
1332 struct rr_regs __iomem *regs = rrpriv->regs;
1333 struct pci_dev *pdev = rrpriv->pci_dev;
1334 unsigned long flags;
1338 netif_stop_queue(dev);
1342 * Lock to make sure we are not cleaning up while another CPU
1343 * is handling interrupts.
1345 spin_lock_irqsave(&rrpriv->lock, flags);
1347 tmp = readl(®s->HostCtrl);
1348 if (tmp & NIC_HALTED){
1349 printk("%s: NIC already halted\n", dev->name);
1352 tmp |= HALT_NIC | RR_CLEAR_INT;
1353 writel(tmp, ®s->HostCtrl);
1354 readl(®s->HostCtrl);
1357 rrpriv->fw_running = 0;
1359 spin_unlock_irqrestore(&rrpriv->lock, flags);
1360 del_timer_sync(&rrpriv->timer);
1361 spin_lock_irqsave(&rrpriv->lock, flags);
1363 writel(0, ®s->TxPi);
1364 writel(0, ®s->IpRxPi);
1366 writel(0, ®s->EvtCon);
1367 writel(0, ®s->EvtPrd);
1369 for (i = 0; i < CMD_RING_ENTRIES; i++)
1370 writel(0, ®s->CmdRing[i]);
1372 rrpriv->info->tx_ctrl.entries = 0;
1373 rrpriv->info->cmd_ctrl.pi = 0;
1374 rrpriv->info->evt_ctrl.pi = 0;
1375 rrpriv->rx_ctrl[4].entries = 0;
1377 rr_raz_tx(rrpriv, dev);
1378 rr_raz_rx(rrpriv, dev);
1380 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1381 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382 rrpriv->rx_ctrl = NULL;
1384 dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1386 rrpriv->info = NULL;
1388 spin_unlock_irqrestore(&rrpriv->lock, flags);
1389 free_irq(pdev->irq, dev);
1395 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396 struct net_device *dev)
1398 struct rr_private *rrpriv = netdev_priv(dev);
1399 struct rr_regs __iomem *regs = rrpriv->regs;
1400 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401 struct ring_ctrl *txctrl;
1402 unsigned long flags;
1403 u32 index, len = skb->len;
1405 struct sk_buff *new_skb;
1407 if (readl(®s->Mode) & FATAL_ERR)
1408 printk("error codes Fail1 %02x, Fail2 %02x\n",
1409 readl(®s->Fail1), readl(®s->Fail2));
1412 * We probably need to deal with tbusy here to prevent overruns.
1415 if (skb_headroom(skb) < 8){
1416 printk("incoming skb too small - reallocating\n");
1417 if (!(new_skb = dev_alloc_skb(len + 8))) {
1419 netif_wake_queue(dev);
1420 return NETDEV_TX_OK;
1422 skb_reserve(new_skb, 8);
1423 skb_put(new_skb, len);
1424 skb_copy_from_linear_data(skb, new_skb->data, len);
1429 ifield = skb_push(skb, 8);
1432 ifield[1] = hcb->ifield;
1435 * We don't need the lock before we are actually going to start
1436 * fiddling with the control blocks.
1438 spin_lock_irqsave(&rrpriv->lock, flags);
1440 txctrl = &rrpriv->info->tx_ctrl;
1444 rrpriv->tx_skbuff[index] = skb;
1445 set_rraddr(&rrpriv->tx_ring[index].addr,
1446 dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1447 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1451 writel(txctrl->pi, ®s->TxPi);
1453 if (txctrl->pi == rrpriv->dirty_tx){
1454 rrpriv->tx_full = 1;
1455 netif_stop_queue(dev);
1458 spin_unlock_irqrestore(&rrpriv->lock, flags);
1460 return NETDEV_TX_OK;
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1471 static int rr_load_firmware(struct net_device *dev)
1473 struct rr_private *rrpriv;
1474 struct rr_regs __iomem *regs;
1475 size_t eptr, segptr;
1477 u32 localctrl, sptr, len, tmp;
1478 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1480 rrpriv = netdev_priv(dev);
1481 regs = rrpriv->regs;
1483 if (dev->flags & IFF_UP)
1486 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1487 printk("%s: Trying to load firmware to a running NIC.\n",
1492 localctrl = readl(®s->LocalCtrl);
1493 writel(0, ®s->LocalCtrl);
1495 writel(0, ®s->EvtPrd);
1496 writel(0, ®s->RxPrd);
1497 writel(0, ®s->TxPrd);
1500 * First wipe the entire SRAM, otherwise we might run into all
1501 * kinds of trouble ... sigh, this took almost all afternoon
1504 io = readl(®s->ExtIo);
1505 writel(0, ®s->ExtIo);
1506 sram_size = rr_read_eeprom_word(rrpriv, 8);
1508 for (i = 200; i < sram_size / 4; i++){
1509 writel(i * 4, ®s->WinBase);
1511 writel(0, ®s->WinData);
1514 writel(io, ®s->ExtIo);
1517 eptr = rr_read_eeprom_word(rrpriv,
1518 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519 eptr = ((eptr & 0x1fffff) >> 3);
1521 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522 p2len = (p2len << 2);
1523 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524 p2size = ((p2size & 0x1fffff) >> 3);
1526 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527 printk("%s: eptr is invalid\n", dev->name);
1531 revision = rr_read_eeprom_word(rrpriv,
1532 offsetof(struct eeprom, manf.HeaderFmt));
1535 printk("%s: invalid firmware format (%i)\n",
1536 dev->name, revision);
1540 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1543 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1546 for (i = 0; i < nr_seg; i++){
1547 sptr = rr_read_eeprom_word(rrpriv, eptr);
1549 len = rr_read_eeprom_word(rrpriv, eptr);
1551 segptr = rr_read_eeprom_word(rrpriv, eptr);
1552 segptr = ((segptr & 0x1fffff) >> 3);
1555 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556 dev->name, i, sptr, len, segptr);
1558 for (j = 0; j < len; j++){
1559 tmp = rr_read_eeprom_word(rrpriv, segptr);
1560 writel(sptr, ®s->WinBase);
1562 writel(tmp, ®s->WinData);
1570 writel(localctrl, ®s->LocalCtrl);
1576 static int rr_siocdevprivate(struct net_device *dev, struct ifreq *rq,
1577 void __user *data, int cmd)
1579 struct rr_private *rrpriv;
1580 unsigned char *image, *oldimage;
1581 unsigned long flags;
1583 int error = -EOPNOTSUPP;
1585 rrpriv = netdev_priv(dev);
1589 if (!capable(CAP_SYS_RAWIO)){
1593 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1597 if (rrpriv->fw_running){
1598 printk("%s: Firmware already running\n", dev->name);
1603 spin_lock_irqsave(&rrpriv->lock, flags);
1604 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1605 spin_unlock_irqrestore(&rrpriv->lock, flags);
1606 if (i != EEPROM_BYTES){
1607 printk(KERN_ERR "%s: Error reading EEPROM\n",
1612 error = copy_to_user(data, image, EEPROM_BYTES);
1620 if (!capable(CAP_SYS_RAWIO)){
1624 image = memdup_user(data, EEPROM_BYTES);
1626 return PTR_ERR(image);
1628 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1634 if (rrpriv->fw_running){
1635 printk("%s: Firmware already running\n", dev->name);
1640 printk("%s: Updating EEPROM firmware\n", dev->name);
1642 spin_lock_irqsave(&rrpriv->lock, flags);
1643 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1645 printk(KERN_ERR "%s: Error writing EEPROM\n",
1648 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649 spin_unlock_irqrestore(&rrpriv->lock, flags);
1651 if (i != EEPROM_BYTES)
1652 printk(KERN_ERR "%s: Error reading back EEPROM "
1653 "image\n", dev->name);
1655 error = memcmp(image, oldimage, EEPROM_BYTES);
1657 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1667 return put_user(0x52523032, (int __user *)data);
1673 static const struct pci_device_id rr_pci_tbl[] = {
1674 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675 PCI_ANY_ID, PCI_ANY_ID, },
1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1680 static struct pci_driver rr_driver = {
1682 .id_table = rr_pci_tbl,
1683 .probe = rr_init_one,
1684 .remove = rr_remove_one,
1687 module_pci_driver(rr_driver);