1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
37 #define DRV_MODULE_NAME "n2_crypto"
38 #define DRV_MODULE_VERSION "0.2"
39 #define DRV_MODULE_RELDATE "July 28, 2011"
41 static const char version[] =
42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
49 #define N2_CRA_PRIORITY 200
51 static DEFINE_MUTEX(spu_lock);
55 unsigned long qhandle;
62 struct list_head jobs;
69 struct list_head list;
73 struct spu_queue *queue;
77 static struct spu_queue **cpu_to_cwq;
78 static struct spu_queue **cpu_to_mau;
80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
82 if (q->q_type == HV_NCS_QTYPE_MAU) {
83 off += MAU_ENTRY_SIZE;
84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
87 off += CWQ_ENTRY_SIZE;
88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
94 struct n2_request_common {
95 struct list_head entry;
98 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
100 /* An async job request records the final tail value it used in
101 * n2_request_common->offset, test to see if that offset is in
102 * the range old_head, new_head, inclusive.
104 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105 unsigned long old_head, unsigned long new_head)
107 if (old_head <= new_head) {
108 if (offset > old_head && offset <= new_head)
111 if (offset > old_head || offset <= new_head)
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118 * a virtual device INO interrupt. We should process the
119 * completed CWQ entries and adjust the HEAD marker to clear
122 static irqreturn_t cwq_intr(int irq, void *dev_id)
124 unsigned long off, new_head, hv_ret;
125 struct spu_queue *q = dev_id;
127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 smp_processor_id(), q->qhandle);
132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 smp_processor_id(), new_head, hv_ret);
137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142 if (hv_ret == HV_EOK)
145 spin_unlock(&q->lock);
150 static irqreturn_t mau_intr(int irq, void *dev_id)
152 struct spu_queue *q = dev_id;
153 unsigned long head, hv_ret;
157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 smp_processor_id(), q->qhandle);
160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 smp_processor_id(), head, hv_ret);
165 sun4v_ncs_sethead_marker(q->qhandle, head);
167 spin_unlock(&q->lock);
172 static void *spu_queue_next(struct spu_queue *q, void *cur)
174 return q->q + spu_next_offset(q, cur - q->q);
177 static int spu_queue_num_free(struct spu_queue *q)
179 unsigned long head = q->head;
180 unsigned long tail = q->tail;
181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
187 diff = (end - tail) + head;
189 return (diff / CWQ_ENTRY_SIZE) - 1;
192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
194 int avail = spu_queue_num_free(q);
196 if (avail >= num_entries)
197 return q->q + q->tail;
202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
204 unsigned long hv_ret, new_tail;
206 new_tail = spu_next_offset(q, last - q->q);
208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209 if (hv_ret == HV_EOK)
214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215 int enc_type, int auth_type,
216 unsigned int hash_len,
217 bool sfas, bool sob, bool eob, bool encrypt,
220 u64 word = (len - 1) & CONTROL_LEN;
222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
226 word |= CONTROL_STORE_FINAL_AUTH_STATE;
228 word |= CONTROL_START_OF_BLOCK;
230 word |= CONTROL_END_OF_BLOCK;
232 word |= CONTROL_ENCRYPT;
234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
244 if (this_len >= 64 ||
245 qp->head != qp->tail)
251 struct n2_ahash_alg {
252 struct list_head entry;
259 struct ahash_alg alg;
262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
264 struct crypto_alg *alg = tfm->__crt_alg;
265 struct ahash_alg *ahash_alg;
267 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
269 return container_of(ahash_alg, struct n2_ahash_alg, alg);
273 const char *child_alg;
274 struct n2_ahash_alg derived;
277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
279 struct crypto_alg *alg = tfm->__crt_alg;
280 struct ahash_alg *ahash_alg;
282 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
288 struct crypto_ahash *fallback_tfm;
291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
294 struct n2_hash_ctx base;
296 struct crypto_shash *child_shash;
299 unsigned char hash_key[N2_HASH_KEY_MAX];
302 struct n2_hash_req_ctx {
304 struct md5_state md5;
305 struct sha1_state sha1;
306 struct sha256_state sha256;
309 struct ahash_request fallback_req;
312 static int n2_hash_async_init(struct ahash_request *req)
314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
321 return crypto_ahash_init(&rctx->fallback_req);
324 static int n2_hash_async_update(struct ahash_request *req)
326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332 rctx->fallback_req.nbytes = req->nbytes;
333 rctx->fallback_req.src = req->src;
335 return crypto_ahash_update(&rctx->fallback_req);
338 static int n2_hash_async_final(struct ahash_request *req)
340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346 rctx->fallback_req.result = req->result;
348 return crypto_ahash_final(&rctx->fallback_req);
351 static int n2_hash_async_finup(struct ahash_request *req)
353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359 rctx->fallback_req.nbytes = req->nbytes;
360 rctx->fallback_req.src = req->src;
361 rctx->fallback_req.result = req->result;
363 return crypto_ahash_finup(&rctx->fallback_req);
366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
371 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
376 static int n2_hash_cra_init(struct crypto_tfm *tfm)
378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381 struct crypto_ahash *fallback_tfm;
384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385 CRYPTO_ALG_NEED_FALLBACK);
386 if (IS_ERR(fallback_tfm)) {
387 pr_warn("Fallback driver '%s' could not be loaded!\n",
388 fallback_driver_name);
389 err = PTR_ERR(fallback_tfm);
393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394 crypto_ahash_reqsize(fallback_tfm)));
396 ctx->fallback_tfm = fallback_tfm;
403 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
408 crypto_free_ahash(ctx->fallback_tfm);
411 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417 struct crypto_ahash *fallback_tfm;
418 struct crypto_shash *child_shash;
421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422 CRYPTO_ALG_NEED_FALLBACK);
423 if (IS_ERR(fallback_tfm)) {
424 pr_warn("Fallback driver '%s' could not be loaded!\n",
425 fallback_driver_name);
426 err = PTR_ERR(fallback_tfm);
430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431 if (IS_ERR(child_shash)) {
432 pr_warn("Child shash '%s' could not be loaded!\n",
434 err = PTR_ERR(child_shash);
435 goto out_free_fallback;
438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439 crypto_ahash_reqsize(fallback_tfm)));
441 ctx->child_shash = child_shash;
442 ctx->base.fallback_tfm = fallback_tfm;
446 crypto_free_ahash(fallback_tfm);
452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
457 crypto_free_ahash(ctx->base.fallback_tfm);
458 crypto_free_shash(ctx->child_shash);
461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465 struct crypto_shash *child_shash = ctx->child_shash;
466 struct crypto_ahash *fallback_tfm;
469 fallback_tfm = ctx->base.fallback_tfm;
470 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
474 bs = crypto_shash_blocksize(child_shash);
475 ds = crypto_shash_digestsize(child_shash);
476 BUG_ON(ds > N2_HASH_KEY_MAX);
478 err = crypto_shash_tfm_digest(child_shash, key, keylen,
483 } else if (keylen <= N2_HASH_KEY_MAX)
484 memcpy(ctx->hash_key, key, keylen);
486 ctx->hash_key_len = keylen;
491 static unsigned long wait_for_tail(struct spu_queue *qp)
493 unsigned long head, hv_ret;
496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 if (hv_ret != HV_EOK) {
498 pr_err("Hypervisor error on gethead\n");
501 if (head == qp->tail) {
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 struct cwq_initial_entry *ent)
512 unsigned long hv_ret = spu_queue_submit(qp, ent);
514 if (hv_ret == HV_EOK)
515 hv_ret = wait_for_tail(qp);
520 static int n2_do_async_digest(struct ahash_request *req,
521 unsigned int auth_type, unsigned int digest_size,
522 unsigned int result_size, void *hash_loc,
523 unsigned long auth_key, unsigned int auth_key_len)
525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 struct cwq_initial_entry *ent;
527 struct crypto_hash_walk walk;
528 struct spu_queue *qp;
533 /* The total effective length of the operation may not
536 if (unlikely(req->nbytes > (1 << 16))) {
537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 rctx->fallback_req.base.flags =
542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 rctx->fallback_req.nbytes = req->nbytes;
544 rctx->fallback_req.src = req->src;
545 rctx->fallback_req.result = req->result;
547 return crypto_ahash_digest(&rctx->fallback_req);
550 nbytes = crypto_hash_walk_first(req, &walk);
553 qp = cpu_to_cwq[cpu];
557 spin_lock_irqsave(&qp->lock, flags);
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
562 ent = qp->q + qp->tail;
564 ent->control = control_word_base(nbytes, auth_key_len, 0,
565 auth_type, digest_size,
566 false, true, false, false,
569 ent->src_addr = __pa(walk.data);
570 ent->auth_key_addr = auth_key;
571 ent->auth_iv_addr = __pa(hash_loc);
572 ent->final_auth_state_addr = 0UL;
573 ent->enc_key_addr = 0UL;
574 ent->enc_iv_addr = 0UL;
575 ent->dest_addr = __pa(hash_loc);
577 nbytes = crypto_hash_walk_done(&walk, 0);
579 ent = spu_queue_next(qp, ent);
581 ent->control = (nbytes - 1);
582 ent->src_addr = __pa(walk.data);
583 ent->auth_key_addr = 0UL;
584 ent->auth_iv_addr = 0UL;
585 ent->final_auth_state_addr = 0UL;
586 ent->enc_key_addr = 0UL;
587 ent->enc_iv_addr = 0UL;
588 ent->dest_addr = 0UL;
590 nbytes = crypto_hash_walk_done(&walk, 0);
592 ent->control |= CONTROL_END_OF_BLOCK;
594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
599 spin_unlock_irqrestore(&qp->lock, flags);
602 memcpy(req->result, hash_loc, result_size);
609 static int n2_hash_async_digest(struct ahash_request *req)
611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
615 ds = n2alg->digest_size;
616 if (unlikely(req->nbytes == 0)) {
617 memcpy(req->result, n2alg->hash_zero, ds);
620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 return n2_do_async_digest(req, n2alg->auth_type,
623 n2alg->hw_op_hashsz, ds,
627 static int n2_hmac_async_digest(struct ahash_request *req)
629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
635 ds = n2alg->derived.digest_size;
636 if (unlikely(req->nbytes == 0) ||
637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 rctx->fallback_req.base.flags =
643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 rctx->fallback_req.nbytes = req->nbytes;
645 rctx->fallback_req.src = req->src;
646 rctx->fallback_req.result = req->result;
648 return crypto_ahash_digest(&rctx->fallback_req);
650 memcpy(&rctx->u, n2alg->derived.hash_init,
651 n2alg->derived.hw_op_hashsz);
653 return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 n2alg->derived.hw_op_hashsz, ds,
656 __pa(&ctx->hash_key),
660 struct n2_skcipher_context {
664 u8 aes[AES_MAX_KEY_SIZE];
665 u8 des[DES_KEY_SIZE];
666 u8 des3[3 * DES_KEY_SIZE];
670 #define N2_CHUNK_ARR_LEN 16
672 struct n2_crypto_chunk {
673 struct list_head entry;
674 unsigned long iv_paddr : 44;
675 unsigned long arr_len : 20;
676 unsigned long dest_paddr;
677 unsigned long dest_final;
679 unsigned long src_paddr : 44;
680 unsigned long src_len : 20;
681 } arr[N2_CHUNK_ARR_LEN];
684 struct n2_request_context {
685 struct skcipher_walk walk;
686 struct list_head chunk_list;
687 struct n2_crypto_chunk chunk;
691 /* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size. This means that a cipher block
696 * can span at most 2 descriptors. However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size). So, for example, assuming an 8 byte block size:
701 * 0xe --> 0xa --> 0x8
703 * is a valid length sequence, whereas:
705 * 0xe --> 0xb --> 0x7
707 * is not a valid sequence.
710 struct n2_skcipher_alg {
711 struct list_head entry;
713 struct skcipher_alg skcipher;
716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
720 return container_of(alg, struct n2_skcipher_alg, skcipher);
723 struct n2_skcipher_request_context {
724 struct skcipher_walk walk;
727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
730 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
734 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 case AES_KEYSIZE_128:
738 ctx->enc_type |= ENC_TYPE_ALG_AES128;
740 case AES_KEYSIZE_192:
741 ctx->enc_type |= ENC_TYPE_ALG_AES192;
743 case AES_KEYSIZE_256:
744 ctx->enc_type |= ENC_TYPE_ALG_AES256;
750 ctx->key_len = keylen;
751 memcpy(ctx->key.aes, key, keylen);
755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
758 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
763 err = verify_skcipher_des_key(skcipher, key);
767 ctx->enc_type = n2alg->enc_type;
769 ctx->key_len = keylen;
770 memcpy(ctx->key.des, key, keylen);
774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
777 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
782 err = verify_skcipher_des3_key(skcipher, key);
786 ctx->enc_type = n2alg->enc_type;
788 ctx->key_len = keylen;
789 memcpy(ctx->key.des3, key, keylen);
793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
795 int this_len = nbytes;
797 this_len -= (nbytes & (block_size - 1));
798 return this_len > (1 << 16) ? (1 << 16) : this_len;
801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802 struct n2_crypto_chunk *cp,
803 struct spu_queue *qp, bool encrypt)
805 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806 struct cwq_initial_entry *ent;
810 ent = spu_queue_alloc(qp, cp->arr_len);
812 pr_info("queue_alloc() of %d fails\n",
817 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
819 ent->control = control_word_base(cp->arr[0].src_len,
820 0, ctx->enc_type, 0, 0,
821 false, true, false, encrypt,
823 (in_place ? OPCODE_INPLACE_BIT : 0));
824 ent->src_addr = cp->arr[0].src_paddr;
825 ent->auth_key_addr = 0UL;
826 ent->auth_iv_addr = 0UL;
827 ent->final_auth_state_addr = 0UL;
828 ent->enc_key_addr = __pa(&ctx->key);
829 ent->enc_iv_addr = cp->iv_paddr;
830 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
832 for (i = 1; i < cp->arr_len; i++) {
833 ent = spu_queue_next(qp, ent);
835 ent->control = cp->arr[i].src_len - 1;
836 ent->src_addr = cp->arr[i].src_paddr;
837 ent->auth_key_addr = 0UL;
838 ent->auth_iv_addr = 0UL;
839 ent->final_auth_state_addr = 0UL;
840 ent->enc_key_addr = 0UL;
841 ent->enc_iv_addr = 0UL;
842 ent->dest_addr = 0UL;
844 ent->control |= CONTROL_END_OF_BLOCK;
846 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
849 static int n2_compute_chunks(struct skcipher_request *req)
851 struct n2_request_context *rctx = skcipher_request_ctx(req);
852 struct skcipher_walk *walk = &rctx->walk;
853 struct n2_crypto_chunk *chunk;
854 unsigned long dest_prev;
855 unsigned int tot_len;
859 err = skcipher_walk_async(walk, req);
863 INIT_LIST_HEAD(&rctx->chunk_list);
865 chunk = &rctx->chunk;
866 INIT_LIST_HEAD(&chunk->entry);
868 chunk->iv_paddr = 0UL;
870 chunk->dest_paddr = 0UL;
872 prev_in_place = false;
876 while ((nbytes = walk->nbytes) != 0) {
877 unsigned long dest_paddr, src_paddr;
881 src_paddr = (page_to_phys(walk->src.phys.page) +
882 walk->src.phys.offset);
883 dest_paddr = (page_to_phys(walk->dst.phys.page) +
884 walk->dst.phys.offset);
885 in_place = (src_paddr == dest_paddr);
886 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
888 if (chunk->arr_len != 0) {
889 if (in_place != prev_in_place ||
891 dest_paddr != dest_prev) ||
892 chunk->arr_len == N2_CHUNK_ARR_LEN ||
893 tot_len + this_len > (1 << 16)) {
894 chunk->dest_final = dest_prev;
895 list_add_tail(&chunk->entry,
897 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
902 INIT_LIST_HEAD(&chunk->entry);
905 if (chunk->arr_len == 0) {
906 chunk->dest_paddr = dest_paddr;
909 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910 chunk->arr[chunk->arr_len].src_len = this_len;
913 dest_prev = dest_paddr + this_len;
914 prev_in_place = in_place;
917 err = skcipher_walk_done(walk, nbytes - this_len);
921 if (!err && chunk->arr_len != 0) {
922 chunk->dest_final = dest_prev;
923 list_add_tail(&chunk->entry, &rctx->chunk_list);
929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
931 struct n2_request_context *rctx = skcipher_request_ctx(req);
932 struct n2_crypto_chunk *c, *tmp;
935 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
937 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
939 if (unlikely(c != &rctx->chunk))
945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
947 struct n2_request_context *rctx = skcipher_request_ctx(req);
948 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949 int err = n2_compute_chunks(req);
950 struct n2_crypto_chunk *c, *tmp;
951 unsigned long flags, hv_ret;
952 struct spu_queue *qp;
957 qp = cpu_to_cwq[get_cpu()];
962 spin_lock_irqsave(&qp->lock, flags);
964 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
969 if (unlikely(c != &rctx->chunk))
973 hv_ret = wait_for_tail(qp);
974 if (hv_ret != HV_EOK)
978 spin_unlock_irqrestore(&qp->lock, flags);
983 n2_chunk_complete(req, NULL);
987 static int n2_encrypt_ecb(struct skcipher_request *req)
989 return n2_do_ecb(req, true);
992 static int n2_decrypt_ecb(struct skcipher_request *req)
994 return n2_do_ecb(req, false);
997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
999 struct n2_request_context *rctx = skcipher_request_ctx(req);
1000 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001 unsigned long flags, hv_ret, iv_paddr;
1002 int err = n2_compute_chunks(req);
1003 struct n2_crypto_chunk *c, *tmp;
1004 struct spu_queue *qp;
1005 void *final_iv_addr;
1007 final_iv_addr = NULL;
1012 qp = cpu_to_cwq[get_cpu()];
1017 spin_lock_irqsave(&qp->lock, flags);
1020 iv_paddr = __pa(rctx->walk.iv);
1021 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1023 c->iv_paddr = iv_paddr;
1024 err = __n2_crypt_chunk(tfm, c, qp, true);
1027 iv_paddr = c->dest_final - rctx->walk.blocksize;
1028 list_del(&c->entry);
1029 if (unlikely(c != &rctx->chunk))
1032 final_iv_addr = __va(iv_paddr);
1034 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1036 if (c == &rctx->chunk) {
1037 iv_paddr = __pa(rctx->walk.iv);
1039 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040 tmp->arr[tmp->arr_len-1].src_len -
1041 rctx->walk.blocksize);
1043 if (!final_iv_addr) {
1046 pa = (c->arr[c->arr_len-1].src_paddr +
1047 c->arr[c->arr_len-1].src_len -
1048 rctx->walk.blocksize);
1049 final_iv_addr = rctx->temp_iv;
1050 memcpy(rctx->temp_iv, __va(pa),
1051 rctx->walk.blocksize);
1053 c->iv_paddr = iv_paddr;
1054 err = __n2_crypt_chunk(tfm, c, qp, false);
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1063 hv_ret = wait_for_tail(qp);
1064 if (hv_ret != HV_EOK)
1068 spin_unlock_irqrestore(&qp->lock, flags);
1073 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1077 static int n2_encrypt_chaining(struct skcipher_request *req)
1079 return n2_do_chaining(req, true);
1082 static int n2_decrypt_chaining(struct skcipher_request *req)
1084 return n2_do_chaining(req, false);
1087 struct n2_skcipher_tmpl {
1089 const char *drv_name;
1092 struct skcipher_alg skcipher;
1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096 /* DES: ECB CBC and CFB are supported */
1097 { .name = "ecb(des)",
1098 .drv_name = "ecb-des",
1099 .block_size = DES_BLOCK_SIZE,
1100 .enc_type = (ENC_TYPE_ALG_DES |
1101 ENC_TYPE_CHAINING_ECB),
1103 .min_keysize = DES_KEY_SIZE,
1104 .max_keysize = DES_KEY_SIZE,
1105 .setkey = n2_des_setkey,
1106 .encrypt = n2_encrypt_ecb,
1107 .decrypt = n2_decrypt_ecb,
1110 { .name = "cbc(des)",
1111 .drv_name = "cbc-des",
1112 .block_size = DES_BLOCK_SIZE,
1113 .enc_type = (ENC_TYPE_ALG_DES |
1114 ENC_TYPE_CHAINING_CBC),
1116 .ivsize = DES_BLOCK_SIZE,
1117 .min_keysize = DES_KEY_SIZE,
1118 .max_keysize = DES_KEY_SIZE,
1119 .setkey = n2_des_setkey,
1120 .encrypt = n2_encrypt_chaining,
1121 .decrypt = n2_decrypt_chaining,
1124 { .name = "cfb(des)",
1125 .drv_name = "cfb-des",
1126 .block_size = DES_BLOCK_SIZE,
1127 .enc_type = (ENC_TYPE_ALG_DES |
1128 ENC_TYPE_CHAINING_CFB),
1130 .min_keysize = DES_KEY_SIZE,
1131 .max_keysize = DES_KEY_SIZE,
1132 .setkey = n2_des_setkey,
1133 .encrypt = n2_encrypt_chaining,
1134 .decrypt = n2_decrypt_chaining,
1138 /* 3DES: ECB CBC and CFB are supported */
1139 { .name = "ecb(des3_ede)",
1140 .drv_name = "ecb-3des",
1141 .block_size = DES_BLOCK_SIZE,
1142 .enc_type = (ENC_TYPE_ALG_3DES |
1143 ENC_TYPE_CHAINING_ECB),
1145 .min_keysize = 3 * DES_KEY_SIZE,
1146 .max_keysize = 3 * DES_KEY_SIZE,
1147 .setkey = n2_3des_setkey,
1148 .encrypt = n2_encrypt_ecb,
1149 .decrypt = n2_decrypt_ecb,
1152 { .name = "cbc(des3_ede)",
1153 .drv_name = "cbc-3des",
1154 .block_size = DES_BLOCK_SIZE,
1155 .enc_type = (ENC_TYPE_ALG_3DES |
1156 ENC_TYPE_CHAINING_CBC),
1158 .ivsize = DES_BLOCK_SIZE,
1159 .min_keysize = 3 * DES_KEY_SIZE,
1160 .max_keysize = 3 * DES_KEY_SIZE,
1161 .setkey = n2_3des_setkey,
1162 .encrypt = n2_encrypt_chaining,
1163 .decrypt = n2_decrypt_chaining,
1166 { .name = "cfb(des3_ede)",
1167 .drv_name = "cfb-3des",
1168 .block_size = DES_BLOCK_SIZE,
1169 .enc_type = (ENC_TYPE_ALG_3DES |
1170 ENC_TYPE_CHAINING_CFB),
1172 .min_keysize = 3 * DES_KEY_SIZE,
1173 .max_keysize = 3 * DES_KEY_SIZE,
1174 .setkey = n2_3des_setkey,
1175 .encrypt = n2_encrypt_chaining,
1176 .decrypt = n2_decrypt_chaining,
1179 /* AES: ECB CBC and CTR are supported */
1180 { .name = "ecb(aes)",
1181 .drv_name = "ecb-aes",
1182 .block_size = AES_BLOCK_SIZE,
1183 .enc_type = (ENC_TYPE_ALG_AES128 |
1184 ENC_TYPE_CHAINING_ECB),
1186 .min_keysize = AES_MIN_KEY_SIZE,
1187 .max_keysize = AES_MAX_KEY_SIZE,
1188 .setkey = n2_aes_setkey,
1189 .encrypt = n2_encrypt_ecb,
1190 .decrypt = n2_decrypt_ecb,
1193 { .name = "cbc(aes)",
1194 .drv_name = "cbc-aes",
1195 .block_size = AES_BLOCK_SIZE,
1196 .enc_type = (ENC_TYPE_ALG_AES128 |
1197 ENC_TYPE_CHAINING_CBC),
1199 .ivsize = AES_BLOCK_SIZE,
1200 .min_keysize = AES_MIN_KEY_SIZE,
1201 .max_keysize = AES_MAX_KEY_SIZE,
1202 .setkey = n2_aes_setkey,
1203 .encrypt = n2_encrypt_chaining,
1204 .decrypt = n2_decrypt_chaining,
1207 { .name = "ctr(aes)",
1208 .drv_name = "ctr-aes",
1209 .block_size = AES_BLOCK_SIZE,
1210 .enc_type = (ENC_TYPE_ALG_AES128 |
1211 ENC_TYPE_CHAINING_COUNTER),
1213 .ivsize = AES_BLOCK_SIZE,
1214 .min_keysize = AES_MIN_KEY_SIZE,
1215 .max_keysize = AES_MAX_KEY_SIZE,
1216 .setkey = n2_aes_setkey,
1217 .encrypt = n2_encrypt_chaining,
1218 .decrypt = n2_encrypt_chaining,
1223 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1225 static LIST_HEAD(skcipher_algs);
1227 struct n2_hash_tmpl {
1229 const u8 *hash_zero;
1230 const u8 *hash_init;
1239 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1240 cpu_to_le32(MD5_H0),
1241 cpu_to_le32(MD5_H1),
1242 cpu_to_le32(MD5_H2),
1243 cpu_to_le32(MD5_H3),
1245 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1246 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1248 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1249 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1250 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1252 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1253 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1254 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1257 static const struct n2_hash_tmpl hash_tmpls[] = {
1259 .hash_zero = md5_zero_message_hash,
1260 .hash_init = (u8 *)n2_md5_init,
1261 .auth_type = AUTH_TYPE_MD5,
1262 .hmac_type = AUTH_TYPE_HMAC_MD5,
1263 .hw_op_hashsz = MD5_DIGEST_SIZE,
1264 .digest_size = MD5_DIGEST_SIZE,
1265 .statesize = sizeof(struct md5_state),
1266 .block_size = MD5_HMAC_BLOCK_SIZE },
1268 .hash_zero = sha1_zero_message_hash,
1269 .hash_init = (u8 *)n2_sha1_init,
1270 .auth_type = AUTH_TYPE_SHA1,
1271 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1272 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1273 .digest_size = SHA1_DIGEST_SIZE,
1274 .statesize = sizeof(struct sha1_state),
1275 .block_size = SHA1_BLOCK_SIZE },
1277 .hash_zero = sha256_zero_message_hash,
1278 .hash_init = (u8 *)n2_sha256_init,
1279 .auth_type = AUTH_TYPE_SHA256,
1280 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1281 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1282 .digest_size = SHA256_DIGEST_SIZE,
1283 .statesize = sizeof(struct sha256_state),
1284 .block_size = SHA256_BLOCK_SIZE },
1286 .hash_zero = sha224_zero_message_hash,
1287 .hash_init = (u8 *)n2_sha224_init,
1288 .auth_type = AUTH_TYPE_SHA256,
1289 .hmac_type = AUTH_TYPE_RESERVED,
1290 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1291 .digest_size = SHA224_DIGEST_SIZE,
1292 .statesize = sizeof(struct sha256_state),
1293 .block_size = SHA224_BLOCK_SIZE },
1295 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1297 static LIST_HEAD(ahash_algs);
1298 static LIST_HEAD(hmac_algs);
1300 static int algs_registered;
1302 static void __n2_unregister_algs(void)
1304 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1305 struct n2_ahash_alg *alg, *alg_tmp;
1306 struct n2_hmac_alg *hmac, *hmac_tmp;
1308 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1309 crypto_unregister_skcipher(&skcipher->skcipher);
1310 list_del(&skcipher->entry);
1313 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1314 crypto_unregister_ahash(&hmac->derived.alg);
1315 list_del(&hmac->derived.entry);
1318 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1319 crypto_unregister_ahash(&alg->alg);
1320 list_del(&alg->entry);
1325 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1327 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1331 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1333 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1334 struct skcipher_alg *alg;
1341 *alg = tmpl->skcipher;
1343 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1344 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1345 alg->base.cra_priority = N2_CRA_PRIORITY;
1346 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1347 CRYPTO_ALG_ALLOCATES_MEMORY;
1348 alg->base.cra_blocksize = tmpl->block_size;
1349 p->enc_type = tmpl->enc_type;
1350 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1351 alg->base.cra_module = THIS_MODULE;
1352 alg->init = n2_skcipher_init_tfm;
1354 list_add(&p->entry, &skcipher_algs);
1355 err = crypto_register_skcipher(alg);
1357 pr_err("%s alg registration failed\n", alg->base.cra_name);
1358 list_del(&p->entry);
1361 pr_info("%s alg registered\n", alg->base.cra_name);
1366 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1368 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1369 struct ahash_alg *ahash;
1370 struct crypto_alg *base;
1376 p->child_alg = n2ahash->alg.halg.base.cra_name;
1377 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1378 INIT_LIST_HEAD(&p->derived.entry);
1380 ahash = &p->derived.alg;
1381 ahash->digest = n2_hmac_async_digest;
1382 ahash->setkey = n2_hmac_async_setkey;
1384 base = &ahash->halg.base;
1385 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1386 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1388 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1389 base->cra_init = n2_hmac_cra_init;
1390 base->cra_exit = n2_hmac_cra_exit;
1392 list_add(&p->derived.entry, &hmac_algs);
1393 err = crypto_register_ahash(ahash);
1395 pr_err("%s alg registration failed\n", base->cra_name);
1396 list_del(&p->derived.entry);
1399 pr_info("%s alg registered\n", base->cra_name);
1404 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1406 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1407 struct hash_alg_common *halg;
1408 struct crypto_alg *base;
1409 struct ahash_alg *ahash;
1415 p->hash_zero = tmpl->hash_zero;
1416 p->hash_init = tmpl->hash_init;
1417 p->auth_type = tmpl->auth_type;
1418 p->hmac_type = tmpl->hmac_type;
1419 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1420 p->digest_size = tmpl->digest_size;
1423 ahash->init = n2_hash_async_init;
1424 ahash->update = n2_hash_async_update;
1425 ahash->final = n2_hash_async_final;
1426 ahash->finup = n2_hash_async_finup;
1427 ahash->digest = n2_hash_async_digest;
1428 ahash->export = n2_hash_async_noexport;
1429 ahash->import = n2_hash_async_noimport;
1431 halg = &ahash->halg;
1432 halg->digestsize = tmpl->digest_size;
1433 halg->statesize = tmpl->statesize;
1436 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1437 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1438 base->cra_priority = N2_CRA_PRIORITY;
1439 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1440 CRYPTO_ALG_NEED_FALLBACK;
1441 base->cra_blocksize = tmpl->block_size;
1442 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1443 base->cra_module = THIS_MODULE;
1444 base->cra_init = n2_hash_cra_init;
1445 base->cra_exit = n2_hash_cra_exit;
1447 list_add(&p->entry, &ahash_algs);
1448 err = crypto_register_ahash(ahash);
1450 pr_err("%s alg registration failed\n", base->cra_name);
1451 list_del(&p->entry);
1454 pr_info("%s alg registered\n", base->cra_name);
1456 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1457 err = __n2_register_one_hmac(p);
1461 static int n2_register_algs(void)
1465 mutex_lock(&spu_lock);
1466 if (algs_registered++)
1469 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1470 err = __n2_register_one_ahash(&hash_tmpls[i]);
1472 __n2_unregister_algs();
1476 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1477 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1479 __n2_unregister_algs();
1485 mutex_unlock(&spu_lock);
1489 static void n2_unregister_algs(void)
1491 mutex_lock(&spu_lock);
1492 if (!--algs_registered)
1493 __n2_unregister_algs();
1494 mutex_unlock(&spu_lock);
1497 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1498 * a devino. This isn't very useful to us because all of the
1499 * interrupts listed in the device_node have been translated to
1500 * Linux virtual IRQ cookie numbers.
1502 * So we have to back-translate, going through the 'intr' and 'ino'
1503 * property tables of the n2cp MDESC node, matching it with the OF
1504 * 'interrupts' property entries, in order to figure out which
1505 * devino goes to which already-translated IRQ.
1507 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1508 unsigned long dev_ino)
1510 const unsigned int *dev_intrs;
1514 for (i = 0; i < ip->num_intrs; i++) {
1515 if (ip->ino_table[i].ino == dev_ino)
1518 if (i == ip->num_intrs)
1521 intr = ip->ino_table[i].intr;
1523 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1527 for (i = 0; i < dev->archdata.num_irqs; i++) {
1528 if (dev_intrs[i] == intr)
1535 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1536 const char *irq_name, struct spu_queue *p,
1537 irq_handler_t handler)
1542 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1546 index = find_devino_index(dev, ip, p->devino);
1550 p->irq = dev->archdata.irqs[index];
1552 sprintf(p->irq_name, "%s-%d", irq_name, index);
1554 return request_irq(p->irq, handler, 0, p->irq_name, p);
1557 static struct kmem_cache *queue_cache[2];
1559 static void *new_queue(unsigned long q_type)
1561 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1564 static void free_queue(void *p, unsigned long q_type)
1566 kmem_cache_free(queue_cache[q_type - 1], p);
1569 static int queue_cache_init(void)
1571 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1572 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1573 kmem_cache_create("mau_queue",
1576 MAU_ENTRY_SIZE, 0, NULL);
1577 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1580 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1581 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1582 kmem_cache_create("cwq_queue",
1585 CWQ_ENTRY_SIZE, 0, NULL);
1586 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1587 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1588 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1594 static void queue_cache_destroy(void)
1596 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1597 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1598 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1599 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1602 static long spu_queue_register_workfn(void *arg)
1604 struct spu_qreg *qr = arg;
1605 struct spu_queue *p = qr->queue;
1606 unsigned long q_type = qr->type;
1607 unsigned long hv_ret;
1609 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1610 CWQ_NUM_ENTRIES, &p->qhandle);
1612 sun4v_ncs_sethead_marker(p->qhandle, 0);
1614 return hv_ret ? -EINVAL : 0;
1617 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1619 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1620 struct spu_qreg qr = { .queue = p, .type = q_type };
1622 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1625 static int spu_queue_setup(struct spu_queue *p)
1629 p->q = new_queue(p->q_type);
1633 err = spu_queue_register(p, p->q_type);
1635 free_queue(p->q, p->q_type);
1642 static void spu_queue_destroy(struct spu_queue *p)
1644 unsigned long hv_ret;
1649 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1652 free_queue(p->q, p->q_type);
1655 static void spu_list_destroy(struct list_head *list)
1657 struct spu_queue *p, *n;
1659 list_for_each_entry_safe(p, n, list, list) {
1662 for (i = 0; i < NR_CPUS; i++) {
1663 if (cpu_to_cwq[i] == p)
1664 cpu_to_cwq[i] = NULL;
1668 free_irq(p->irq, p);
1671 spu_queue_destroy(p);
1677 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1678 * gathering cpu membership information.
1680 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1681 struct platform_device *dev,
1682 u64 node, struct spu_queue *p,
1683 struct spu_queue **table)
1687 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1688 u64 tgt = mdesc_arc_target(mdesc, arc);
1689 const char *name = mdesc_node_name(mdesc, tgt);
1692 if (strcmp(name, "cpu"))
1694 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1695 if (table[*id] != NULL) {
1696 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1700 cpumask_set_cpu(*id, &p->sharing);
1706 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1707 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1708 struct platform_device *dev, struct mdesc_handle *mdesc,
1709 u64 node, const char *iname, unsigned long q_type,
1710 irq_handler_t handler, struct spu_queue **table)
1712 struct spu_queue *p;
1715 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1717 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1722 cpumask_clear(&p->sharing);
1723 spin_lock_init(&p->lock);
1725 INIT_LIST_HEAD(&p->jobs);
1726 list_add(&p->list, list);
1728 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1732 err = spu_queue_setup(p);
1736 return spu_map_ino(dev, ip, iname, p, handler);
1739 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1740 struct spu_mdesc_info *ip, struct list_head *list,
1741 const char *exec_name, unsigned long q_type,
1742 irq_handler_t handler, struct spu_queue **table)
1747 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1750 type = mdesc_get_property(mdesc, node, "type", NULL);
1751 if (!type || strcmp(type, exec_name))
1754 err = handle_exec_unit(ip, list, dev, mdesc, node,
1755 exec_name, q_type, handler, table);
1757 spu_list_destroy(list);
1765 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1766 struct spu_mdesc_info *ip)
1772 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1774 printk("NO 'ino'\n");
1778 ip->num_intrs = ino_len / sizeof(u64);
1779 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1785 for (i = 0; i < ip->num_intrs; i++) {
1786 struct ino_blob *b = &ip->ino_table[i];
1794 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1795 struct platform_device *dev,
1796 struct spu_mdesc_info *ip,
1797 const char *node_name)
1801 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0)
1804 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1808 name = mdesc_get_property(mdesc, node, "name", NULL);
1809 if (!name || strcmp(name, node_name))
1811 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812 if (!chdl || (*chdl != reg))
1814 ip->cfg_handle = *chdl;
1815 return get_irq_props(mdesc, node, ip);
1821 static unsigned long n2_spu_hvapi_major;
1822 static unsigned long n2_spu_hvapi_minor;
1824 static int n2_spu_hvapi_register(void)
1828 n2_spu_hvapi_major = 2;
1829 n2_spu_hvapi_minor = 0;
1831 err = sun4v_hvapi_register(HV_GRP_NCS,
1833 &n2_spu_hvapi_minor);
1836 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1838 n2_spu_hvapi_minor);
1843 static void n2_spu_hvapi_unregister(void)
1845 sun4v_hvapi_unregister(HV_GRP_NCS);
1848 static int global_ref;
1850 static int grab_global_resources(void)
1854 mutex_lock(&spu_lock);
1859 err = n2_spu_hvapi_register();
1863 err = queue_cache_init();
1865 goto out_hvapi_release;
1868 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1871 goto out_queue_cache_destroy;
1873 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1876 goto out_free_cwq_table;
1883 mutex_unlock(&spu_lock);
1890 out_queue_cache_destroy:
1891 queue_cache_destroy();
1894 n2_spu_hvapi_unregister();
1898 static void release_global_resources(void)
1900 mutex_lock(&spu_lock);
1901 if (!--global_ref) {
1908 queue_cache_destroy();
1909 n2_spu_hvapi_unregister();
1911 mutex_unlock(&spu_lock);
1914 static struct n2_crypto *alloc_n2cp(void)
1916 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1919 INIT_LIST_HEAD(&np->cwq_list);
1924 static void free_n2cp(struct n2_crypto *np)
1926 kfree(np->cwq_info.ino_table);
1927 np->cwq_info.ino_table = NULL;
1932 static void n2_spu_driver_version(void)
1934 static int n2_spu_version_printed;
1936 if (n2_spu_version_printed++ == 0)
1937 pr_info("%s", version);
1940 static int n2_crypto_probe(struct platform_device *dev)
1942 struct mdesc_handle *mdesc;
1943 struct n2_crypto *np;
1946 n2_spu_driver_version();
1948 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1952 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1957 err = grab_global_resources();
1959 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1964 mdesc = mdesc_grab();
1967 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1970 goto out_free_global;
1972 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1974 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1976 mdesc_release(mdesc);
1977 goto out_free_global;
1980 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1983 mdesc_release(mdesc);
1986 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1988 goto out_free_global;
1991 err = n2_register_algs();
1993 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1995 goto out_free_spu_list;
1998 dev_set_drvdata(&dev->dev, np);
2003 spu_list_destroy(&np->cwq_list);
2006 release_global_resources();
2014 static int n2_crypto_remove(struct platform_device *dev)
2016 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2018 n2_unregister_algs();
2020 spu_list_destroy(&np->cwq_list);
2022 release_global_resources();
2029 static struct n2_mau *alloc_ncp(void)
2031 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2034 INIT_LIST_HEAD(&mp->mau_list);
2039 static void free_ncp(struct n2_mau *mp)
2041 kfree(mp->mau_info.ino_table);
2042 mp->mau_info.ino_table = NULL;
2047 static int n2_mau_probe(struct platform_device *dev)
2049 struct mdesc_handle *mdesc;
2053 n2_spu_driver_version();
2055 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2059 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2064 err = grab_global_resources();
2066 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2071 mdesc = mdesc_grab();
2074 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2077 goto out_free_global;
2080 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2082 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2084 mdesc_release(mdesc);
2085 goto out_free_global;
2088 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2089 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2091 mdesc_release(mdesc);
2094 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2096 goto out_free_global;
2099 dev_set_drvdata(&dev->dev, mp);
2104 release_global_resources();
2112 static int n2_mau_remove(struct platform_device *dev)
2114 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2116 spu_list_destroy(&mp->mau_list);
2118 release_global_resources();
2125 static const struct of_device_id n2_crypto_match[] = {
2128 .compatible = "SUNW,n2-cwq",
2132 .compatible = "SUNW,vf-cwq",
2136 .compatible = "SUNW,kt-cwq",
2141 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2143 static struct platform_driver n2_crypto_driver = {
2146 .of_match_table = n2_crypto_match,
2148 .probe = n2_crypto_probe,
2149 .remove = n2_crypto_remove,
2152 static const struct of_device_id n2_mau_match[] = {
2155 .compatible = "SUNW,n2-mau",
2159 .compatible = "SUNW,vf-mau",
2163 .compatible = "SUNW,kt-mau",
2168 MODULE_DEVICE_TABLE(of, n2_mau_match);
2170 static struct platform_driver n2_mau_driver = {
2173 .of_match_table = n2_mau_match,
2175 .probe = n2_mau_probe,
2176 .remove = n2_mau_remove,
2179 static struct platform_driver * const drivers[] = {
2184 static int __init n2_init(void)
2186 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2189 static void __exit n2_exit(void)
2191 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2194 module_init(n2_init);
2195 module_exit(n2_exit);